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Abstract

Motivation: Gene regulation is responsible for controlling numerous physiological functions and
dynamically responding to environmental fluctuations. Reconstructing the human network of gene
regulatory interactions is thus paramount to understanding the cell functional organisation across cell
types, as well as to elucidating pathogenic processes and identifying molecular drug targets. Although
significant effort has been devoted towards this direction, existing computational methods mainly rely on
gene expression levels, possibly ignoring the information conveyed by mechanistic biochemical knowledge.
Moreover, except for a few recent attempts, most of the existing approaches only consider the information
of the organism under analysis, without exploiting the information of related model organisms.
Results: We propose a novel method for the reconstruction of the human gene regulatory network, based
on a transfer learning strategy that synergically exploits information from human and mouse, conveyed by
gene-related metabolic features generated in-silico from gene expression data. Specifically, we learn
a predictive model from metabolic activity inferred via tissue-specific metabolic modelling of artificial
gene knockouts. Our experiments show that the combination of our transfer learning approach with the
constructed metabolic features provides a significant advantage in terms of reconstruction accuracy, as
well as additional clues on the contribution of each constructed metabolic feature.
Availability: The system, the datasets and all the results obtained in this study are available at:
https://doi.org/10.6084/m9.figshare.c.5237687

Contact: gianvito.pio@uniba.it
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Living organisms need, for their survival and replication, a gene regulatory
system responsible for their maintenance, development and response to

changing environmental conditions. Gene regulation is orchestrated by
large sets of regulator molecules with specific targets, which collectively
form a gene regulatory network (GRN). The mapping of GRNs was
recently propelled by the surge of high-throughput data, that led to both the
discovery of unknown biological interactions and a deeper understanding
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of known structures (Davidson, 2010; Ye et al., 2018; Gardner et al., 2003).
The problem of GRN reconstruction has therefore wide applications in
basic biology, but also in related disciplines, such as biomedicine and
biotechnology (Karlebach and Shamir, 2008).

Several computational methods for GRN reconstruction have been
proposed in the literature, including graphical Gaussian models (Schäfer
and Strimmer, 2005), Bayesian networks (Zou and Conzen, 2005), as well
as approaches that consider and exploit causality phenomena (Pio et al.,
2020; Luo et al., 2009) or knowledge derived from related organisms
(Mignone et al., 2020a). To predict unknown relationships, GRNs have
also been mathematically integrated with metabolic networks, which
mediate interactions between gene regulation and environmental cues
(Yeang and Vingron, 2006).

At the same time, the importance of GRNs is connected to the long-
standing problem of understanding the relationship between genotype
and phenotype. Solving this problem can shed light on many open
biological questions, such as the etiology of a disease and its potential
treatments, or the mechanisms that regulate cell physiology. The most
adopted approaches are genome-wide association studies (GWAS) and
systems biology methods. GWAS can associate gene variations to
phenotypic traits, but fail to provide a mechanistic explanation for
their findings (Welter et al., 2014). Systems biology techniques are
designed to address this issue (Yurkovich and Palsson, 2015). Widely used
systems biology methods are genome-scale metabolic models (GSMMs),
i.e., mathematical representations of known biochemical reactions and
transmembrane transporters in an organism. Being focused on metabolism,
they biologically complement GRN models, and are indeed suited for
integration (Chandrasekaran and Price, 2010; Motamedian et al., 2017b).

A peculiarity of GSMMs is that they allow capturing long-range
phenomena on the scale of cellular systems thanks to the functional
information they contain, encoded in their metabolic pathway and reaction
representations (Richelle et al., 2020). Flux balance analysis (FBA) is
one of the most employed techniques to estimate the metabolic activity
within a GSMM at steady-state (i.e., when metabolite concentrations do
not change). This enables the conversion of the mathematical approach
into a linear system, which is solved for the reaction rates, namely the
activity of each reaction in the network (Palsson, 2015). The additional
advantage of this approach is that GSMMs can be tailored to a specific
condition or individual. This is achieved by constraining the GSMM using
experimental data and omics profiles, thereby creating a context-specific
model from which to draw conclusions for a specific experimental setting
(Töpfer et al., 2015; Vijayakumar et al., 2018; Nielsen, 2017). These
models, exploited by methods such as FBA, can provide context-specific
metabolic reaction fluxes, whose information can be used coupled with
other relevant omic data to make predictions or improve the understanding
of several biological phenomena (Magazzù et al., 2021; Yang et al., 2019).

There is a growing trend in the adoption of machine learning methods
in biology Tonkovic et al. (2020) and, specifically, to process and interpret
the output of metabolic models (Zampieri et al., 2019; Kavvas et al.,
2020; Yang et al., 2019; Culley et al., 2020; Ben Guebila and Thiele,
2019). In silico metabolic information has been adopted in reconstructing
GRNs (Karlebach and Shamir, 2008; Schlitt and Brazma, 2007), and to
infer gene relationships by analysing the metabolic effect of simultaneous
gene KO (Wang et al., 2017; Occhipinti et al., 2020). However, metabolic
network modelling has not been used to inform GRN inference methods
in combination with transfer learning.

Following this line of research, in this paper we investigate the potential
of the exploitation of metabolic information while reconstructing the
human GRN, in an integrated transfer learning framework. In particular,
we reconstruct the human GRN by leveraging the knowledge about an
additional model organism (Mignone et al., 2020b), i.e., the mouse, and
exploit both a set of known/verified regulations as well as a large set

of still unstudied gene regulations. The two considered organisms are
linked by considering their orthologous genes, i.e., genes inherited in
both species from a common ancestor gene. Such genes are integrated
within a constraint-based model that simulates their artificial knockout
and determines how this perturbation propagates over the corresponding
metabolic network. This approach allows us to catch possible analogies
between the organisms in terms of their metabolic fluxes, in both known
and still unknown regulations. Our experimental evaluation, described
in detail in Section 3, empirically proves the effectiveness of the
proposed integrated approach, in terms of both increased accuracy of
the reconstruction and of possible clues coming from the analysis of the
most important metabolic features contributing to the GRN reconstruction,
related to either the human or to the mouse organism.

2 Methods
In this section, we first describe how we built the dataset under analysis,
from the collection of the gene expression levels for both human and
mouse genes to the construction of metabolic features. Then we provide
the methodological details of the proposed transfer learning approach. A
graphical overview of the proposed approach is shown in Fig. 1.

2.1 Gene expression levels

We collected raw expression data from the Gene Expression Omnibus -
GEO (https://www.ncbi.nlm.nih.gov/geo/). We considered
the platform GPL570 for the human organism and the platform GPL1261
for the mouse organism. We took only control samples to reconstruct
the gene regulatory networks, without the potential influence of disease
conditions. A complete list of the considered GEO Accession Numbers is
reported in Supplementary Table S1.

Quantitatively, for the human organism, we collected 54, 675

probesets, described by 180 samples (that correspond to features in our
case): 17 for bone marrow, 37 for brain, 6 for breast, 4 for heart, 7

for liver, 45 for lung, 64 for skin. As for the mouse organism, we
collected 45, 101 probesets described by 171 features, distributed as
follows according to the organs: 14 for bone marrow, 8 for brain, 10

for breast, 8 for heart, 124 for liver, 4 for lung, and 3 for skin. We
processed the raw control samples according to the workflow proposed
in the DREAM5 challenge (Marbach et al., 2012). In particular, for
each organism, we applied microarray normalization Robust Multichip
Averaging (RMA) (Irizarry et al., 2003), considering one batch per organ,
through Affymetrix Expression Console Software. Data was background
adjusted, quantile normalized, and summarized using median polish.
Normalized data was exported as log-transformed expression values. The
mapping from Affymetrix probeset IDs to gene IDs was performed through
the Affymetrix libraries. Finally, the expression values obtained from
multiple probesets mapping to the same gene were aggregated through
the arithmetic mean.

2.2 Metabolic features

To construct the metabolic features, we first filtered out genes with no
corresponding HGNC ID (Yates et al., 2016). We also removed all the
genes for which we did not find any regulatory information according to
the RegNetwork database (Liu et al., 2015). Finally, to obtain an expression
fold change for constraining the metabolic model, each gene expression
value was normalised against its median value across all the samples.

In order to include the regulatory information into the metabolic
features explicitly, we used TRFBA (Motamedian et al., 2017b), which
integrates a transcriptional regulatory network and the related-organism
genome-scale metabolic model (GSMM). We used Recon2.2 (Swainston
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Fig. 1. Starting from the selected gene sets for the human and mouse organisms (a), we compute metabolic fluxes from gene expression levels through genome-scale metabolic modelling
of gene knockouts (b) using TRFBA. Genes are then filtered to consider only the subset of orthologous genes for human and mouse (c). For both organisms, we estimate the confidence
of existence on unlabelled (i.e. untested) interactions through a clustering-based procedure, and in this way obtain a set of interaction confidence scores (d). Finally, we build multi-target
training instances and train a multi-target regression tree (e) to maximize the homogeneity both in the input and in the output spaces, between gene regulations of both human and mouse.
The values in the circles of the regression tree represent the prediction (for the human and for the mouse organisms) provided to a gene pair falling into a specific leaf of the regression tree.

et al., 2016) and iMM1415 (Sigurdsson et al., 2010) as the human and
mouse metabolic models respectively. The solution selected by TRFBA
lies in the feasible solution space defined by the following constraints:

Sv = 0

vlb ≤ v ≤ vub∑
i∈Rj

vi ≤ Ej × C

sI ×
∑

r∈GT

Er − ET + U × wI,1 + U × wI,2 ≥ −INI

∑
r∈GT

Er + U × wI,1 − U ≤ λI

∑
r∈GT

Er − U × wI,2 + U ≥ λI+1,

(1)

where S is the stoichiometric matrix associated with the species’
organism’s metabolism, v is the vector of metabolic flux rates, vlb and
vub are the metabolic fluxes lower and upper bounds respectively, Rj

is the set of indices corresponding to the reactions which are associated
with metabolic gene j, GT is the set of indices of the regulatory genes
of target gene T , Ei indicates the gene expression of gene i, U is
a very large number (in our experiments, it was set to the maximum
observed expression level multiplied by 5) and sI , INI , wI,1, wI,2,
λI and λI+1 are parameters computed directly by the method from the
gene expression levels (Motamedian et al., 2017b). The hyperparameter C,

used to convert the expression levels of the genes to the upper bounds of the
reactions, was set to 0.00014 as suggested by Motamedian et al. (2017a).
All the other parameters of TRFBA and the boundary constraints for the
metabolic models were left to the default values. Therefore, TRFBA adds
to the stoichiometric matrix of a GSMM further reactions representing
the transcriptomic regulations among the genes, which we exploited by
computing the single gene-knockouts and the resulting metabolic fluxes via
FBA (Palsson, 2015) for all the genes in the datasets. This was performed
for both organisms, obtaining a flux distribution for each knockout.

To account for the tolerance of the solver Gurobi, we then eliminated
all the obtained fluxes whose value was lower than 10−7 for all the
samples, and applied a principal component analysis (PCA) to reduce
the dimensionality of the flux distributions. In both cases we retained an
explained variance >99%, obtaining 250- and 150-dimensional features
for the human and mouse samples, amounting to 1.7% and 0.92% of
the original features respectively. These steps were conducted using the
COBRA toolbox (Heirendt et al., 2019) in Matlab R2017b.

2.3 Transfer learning for the reconstruction of the human
GRN from metabolic features

We here describe our transfer learning approach for the reconstruction
of the human GRN, which also exploits the information conveyed by the
mouse organism. Our approach learns a model that is able to predict a score
in [0, 1], representing the degree of certainty about the existence of a given
regulation between two genes. The synergies among the two considered
organisms are captured by resembling to a multi-target prediction model,
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which aims at predicting the existence of a given regulation between
two genes in the two organisms simultaneously. Although predicting the
existence of a given regulation for the mouse organism is not of specific
interest in this study, this strategy allows us to exploit possible correlations
between the organisms not only in the input space, but also in the output
space (Levatic et al., 2017).

Methodologically, we focused on orthologous genes, i.e. different
genes of the human and mouse organisms that originated from a
single common ancestor gene. Each possible pair of orthologous genes
corresponds to a unit of analysis for the predictive task at hand, namely
to a possible regulation activity between the two genes. The descriptive
attributes of a gene pair correspond to the concatenation of principal
component features calculated from flux rates obtained after the respective
single-gene knockouts. On the other hand, the value of each target attribute
(i.e., the degree of certainty of the existence of such regulation, in the
human and in the mouse organisms, respectively) was set to 1.0 if the
corresponding gene regulation was experimentally validated according
to the BioGRID database (Stark et al., 2006), or estimated through a
clustering-based solution (Mignone et al., 2020a) if such regulation has
not yet been studied (i.e., it is an unlabelled example). This setting
corresponds to the so-called Positive-Unlabelled setting, that is a subclass
of the semi-supervised setting as well as a different way to model a one-
class classification task (Kaufmann et al., 2020). We note that, for the
descriptive attributes of each gene pair, one can in principle compute a
flux distribution after a double gene-knockout for the pair, rather than
concatenating single-gene knockout fluxes; however, this would require
prohibitive computational resources for the dataset and metabolic model
at hand (several years of computational time), but it could be a viable
approach for smaller models.

Specifically, the known regulations were grouped into clusters, whose
number was optimized via a silhouette analysis (Rousseeuw, 1987). The
value of the target attributes for unlabelled pairs of genes was then
estimated according to the similarity with their closest cluster, computed
on the descriptive attributes. Formally, given the descriptive feature vectors
xh ∈ Rp (for the human organism) and xm ∈ Rq (for the mouse
organism) for the same gene pair, we computed the value of the target
variables th (for the human organism) and tm (for the mouse organism)
to use during the training of the predictive model, as follows:

th(xh) = max
c∈Ch

simp(xh, cent(c))

tm(xm) = max
c∈Cm

simq(xm, cent(c)),
(2)

where Ch and Cm are the sets of clusters identified for the human
and mouse organisms, respectively; cent(c) is the feature vector of
the centroid of the cluster c; simk: Rk × Rk → [0, 1] is a vector
similarity function working on arbitrary k-dimensional vectors, based on
the Euclidean distance after applying a min-max normalization (in the
range [0, 1]) to all the descriptive features. Formally, simk(a, b) =

1 − 1/k ·
√∑k

i=1 (ai − bi)
2. In this way, we exploited both the

information on verified regulations and the information conveyed by a
large set of unlabelled examples, according to their similarity with respect
to labelled examples.

Finally, we built a predictive model in the form of a multi-target
regression tree, by exploiting the system CLUS (Levatic et al., 2018),
which is based on the predictive clustering framework. Predictive
clustering approaches appear adequate to solve the task at hand, since
they have proven to be generally effective in detecting different kinds
of autocorrelation phenomena (Corizzo et al., 2019), including network
autocorrelation phenomena usually exhibited by data organized in network
structures (Pio et al., 2018; Serafino et al., 2018).

The multi-target regression tree was built via a standard procedure
for the top-down induction of regression trees, where the tests of the
internal nodes are greedily chosen by considering the reduction of variance
achieved by partitioning the examples according to this test. In our case,
the model aims to reduce the variance of both target attributes th and tm.
More formally, for a given internal node of the tree under construction,
it aims to maximize the reduction of the average variance over the target
attributes due to the split, namely

V arX(th, tm)− (V arX′ (th, tm) + V arX′′ (th, tm)) , (3)

whereX,X′, X′′ are the sets of examples in the parent, left child and right
child nodes, respectively, and V arZ(th, tm) =

V arZ(th)+V arZ(tm)
2

is the average variance on the target attributes th and tm, computed over
the set of examples Z. As a result, we maximized the homogeneity of the
defined subsets of examples, that also depends on the correlations, both in
the input and in the output spaces, between gene regulations of both the
human and the mouse organisms.

3 Results and Discussion
The final network under consideration consists of 512,576 possible
interactions. Among them, 507,656 are unlabelled, while 4,920 are
labelled/known interactions from BioGRID. Therefore, the proportion of
labelled:unlabelled interactions is ∼1:100.

We compare the results obtained by our framework based on metabolic
features, hereafter referred to as TRANSFER, with those achieved by two
different settings:

• Expression Levels. We adopt the same workflow proposed in this
paper, but directly using the expression level features instead of
metabolic features. This setting allows us to evaluate the actual
contribution provided by metabolic features.

• NOTRANSFER. We only exploit features related to the genes of the
human organism. This setting allows us to evaluate the contribution
provided by information conveyed by the mouse organism as well as
the effectiveness of the proposed transfer learning solution.

The experiments were performed through 10-fold cross-validation. In
particular, each fold consists of 9/10 positive examples for training and
1/10 positive examples for testing, while all the unlabelled examples are
used for both training and testing purposes. Therefore, coherently with
the semi-supervised transductive setting (Ji et al., 2010; Ma et al., 2020),
at training time the methods know the examples for which they have to
make a prediction, i.e., they may already observe and exploit the value of
descriptive attributes, but not the actual value of the target attributes. We
note that the confidence scores estimated by our method are not adopted to
define a ground truth for unlabelled examples, but only as an intermediate
step for the construction of the multi-target regression tree.

The results were evaluated in terms of recall@k (r@k), the area under
the recall@k curve (AUR@K), the area under the ROC curve (AUROC)
and the area under the precision-recall curve (AUPR). We note that, while
r@k and AUR@K do not introduce any bias on the existence of a regulation
activity on unlabelled gene pairs, the computation of the AUROC and
AUPR requires considering the unlabelled examples as negative examples.

In Fig. 2 we show the measured recall@k in the range [0, 1%],
that is the range of the top-1% most reliable interactions returned
by all the approaches considered. Our results show that the adoption
of metabolic fluxes is beneficial, with respect to directly adopting
the raw gene expression levels, both when exploiting the knowledge
coming from the mouse organism (TRANSFER) and when ignoring
such additional information (NOTRANSFER). Specifically, such an
improvement amounts to 6.6% in the case of NOTRANSFER and to 8.73%
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Fig. 2. Recall@k measured in the range [0, 1%] for the reconstruction of the human GRN,
by considering different sets of features. The NOTRANSFER approach does not exploit
data of the mouse organism, while the TRANSFER approach exploits also the mouse GRN
knowledge.

in the case of TRANSFER, when observing the recall@1%. Moreover,
it is noteworthy that, in the TRANSFER setting, we identify existing
gene regulations much earlier in the returned ranked list of interactions.
Specifically, we identify 96% of the known interactions of the testing set in
the top-0.3% interactions returned in the case of the TRANSFER setting,
whereas we need to consider 0.8% of the list of the returned interactions
to identify the same amount of known interactions in the NOTRANSFER
setting. This behaviour emphasizes that the knowledge coming from the
mouse organism can fruitfully be exploited to improve the accuracy of the
reconstruction of the human GRN.

A more comprehensive overview is reported in Fig. 3, where we show
boxplots representing AUR@K, AUROC and AUPR measured over the
10 folds of the cross-validation. These show that the predictive models
trained via metabolic fluxes can better exploit the mouse gene regulation
knowledge leading to more stable predictive models (i.e., with a lower
variance observed over different folds of the 10-fold CV). Furthermore,
the area under all the considered curves is higher and more stable when
adopting the metabolic fluxes in combination with the TRANSFER setting.
Conversely, when adopting metabolic fluxes in the NOTRANSFER
setting, we observe worse results with respect to directly using expression
levels. This phenomenon indicates that the metabolic fluxes of the human
organism alone are not able to describe the regulatory activities as well
as expression levels, but the exploitation of mouse and human metabolic
fluxes in combination provides our framework with a significant advantage,
leading to the best overall results. This observation confirms that the
proposed workflow, which synergically exploits metabolic fluxes and the
knowledge of the mouse GRN, provides significant advantages in terms
of the quality of the reconstruction of the human GRN.

To understand the contribution provided by human and mouse
metabolic features in human GRN reconstruction, we performed additional
experiments in the TRANSFER and NOTRANSFER settings. Specifically,
we considered the approach proposed by Petković et al. (2017), based on
the evaluation of the (negative) effect of noise. We purposely introduced
noise in a given feature by randomly permuting its values over the
examples, evaluating the effect on the predictive performance of the tree:
the greater the performance degradation, measured through the relative
increase of the predictive error, the higher is the importance/contribution
of the feature. We produced a descending ranking of the features for each
fold of the 10-fold cross-validation, and analyzed the average ranks (see
Supplementary Table S2 for the computed average ranks).

As shown in Fig. 4(c), the metabolic features related to the mouse
organism dominate the upper half of the ranking and are therefore
assigned a higher relevance than those related to the human, in the setting
TRANSFER. Conversely, when directly using gene expression levels,
many features from human retain a high relevance when combined with
those from mouse (see Supplementary Table S2). This finding further
confirms the advantage provided by the adoption of our transfer learning
technique on GSMM-derived information.

Further, a consistent number of metabolic features (295/800) present a
relevance score equal to zero, as opposed to the more gradual decline
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Fig. 3. Boxplots for the 10 folds of the human GRN reconstruction task. Each row
corresponds to a measure, i.e., AUR@K, AUROC, AUPR, respectively, measured in the
range [0, 1%] of the top-k ranked interactions. Each column corresponds to a learning
setting, i.e., without and with the exploitation of the mouse GRN knowledge, respectively.

in gene expression feature relevance. This is in line with previous
experimental results from another data integration task, where metabolic
features displayed a highly skewed relevance distribution compared to
transcriptomic ones (Culley et al., 2020). A possible explanation is given
by the structure of metabolic networks and by the method used to estimate
its activity, which is based on a linearly constrained MILP problem that
generates collinearity and redundancy among the features.

Consistently, the addition of mouse-related features impacts the
importance of human-related features to a varying degree depending on
their type. When comparing the TRANSFER and NOTRANSFER settings,
human metabolic features have indeed an average importance difference
of 2.12±2.80, whereas for human transcriptomic features such difference
is 2.99±1.25. In other words, human gene expression features that are
considered poorly (or highly) relevant in the NOTRANSFER scenario
have on average a higher chance to be considered more (or less) relevant
in the TRANSFER setting – and by a larger extent – as compared to human
metabolic features. However, the difference in importance for the latter is
highly variable and reaches the highest values. The addition of mouse-
related features therefore appears to drastically change the learned model
when using metabolic features.

To further characterise our results, we inspected the metabolic
pathways associated with the most relevant reactions adopted in the
construction of the metabolic features. We conducted a flux enrichment
analysis using the MATLAB Bioinformatics Toolbox on the subset of
reactions which, for each organism in the two experimental settings
(TRANSFER and NOTRANSFER), had been given a weight above the
90th percentile. The weight for the j-th reaction was computed as

θj =
∑
i

|lij × σ2
i × (rank1j + rank2j)|, (4)

where lij is the linear coefficient of the j-th feature/reaction with respect to
the i-th principal component deriving from the PCA (adopted to generate
the metabolic features), σ2

i is the variance explained by the i-th principal
component, while rank1j and rank2j are the rankings of the j-th feature,
computed using the approach proposed by Petković et al. (2017), when
considered in the first and second position, respectively, in the gene pair.
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Fig. 4. (a) Enrichment p-values (corrected through the Benjamini-Hochberg procedure for multiple hypothesis testing) for the pathways assigned to the 10% most relevant metabolic features
in the three experimental settings considered. (b) Mean flux weight across pathways for the human metabolic features used in the setting NOTRANSFER. (c) Mean flux weight across
pathways for the human (blue) and mouse (red) metabolic features used in the setting TRANSFER. (d) Euler-Venn diagram that summarises the overlap in terms of biological pathway
enrichment (pathways with associated corrected p-value≤ 0.05) for the 10% most relevant metabolic features in the three considered settings.

From these values, we computed the average flux weight for each metabolic
pathway as the average weight of its reactions.

As shown in Fig. 4(a)(d), the number of enriched pathways (associated
p-value ≤ 0.05, corrected through the Benjamini-Hochberg procedure
for multiple hypothesis testing) is higher for the metabolic features
of the mouse, while it is almost equal for the human ones. Indeed,
reactions enriched in the human features employed when building the
model without the mouse features (NOTRANSFER-Human) were all
included in the pool of enriched reactions from the human features used
in the TRANSFER setting. In particular, in this setting, the enrichment
also includes exchange/demand reactions (p-value > 0.05 for the
NOTRANSFER-Human features), indicating that adding features from a
different organism increased the importance of the features associated with
internal production/consumption reactions and extracellular/intracellular
transport reactions. Conversely, mouse features share all the transport
pathways of the human ones, except for that relating to lysosomal transport,
and also encompass the pathways associated with the citric acid cycle,
nucleotide metabolism, fatty acid activation and the metabolism of leucine,
isoleucine and valine (see Fig. 4 (a)).

Overall, these results demonstrated the effectiveness of the proposed
approach, which exploits metabolic information coming from two
organisms through our transfer learning method. Moreover, the analysis of
the contribution of the metabolic features emphasized the new information
introduced by the mouse features. We believe that our results pave the
way towards the exploitation of knowledge of multiple model organisms

- across several omic layers - while reconstructing the GRN of a target
organism.

4 Conclusion
We presented a novel method for the reconstruction of the human gene
regulatory network that fruitfully exploits the information conveyed by in
silico-generated metabolic fluxes of both mouse and human organisms.
Specifically, we exploit a transfer learning method to capture analogies
between the metabolic responses in mouse and human upon simulated
deletion of their orthologous genes.

Our results show that metabolic features, computed from gene
expression levels and metabolic modelling, improve the performance and
the stability of the trained predictive models when exploited in combination
with our transfer learning approach. This emphasizes that the underlying
regulatory patterns are better captured when (both known and possible)
gene regulations are described through metabolic features, computed
through genome-scale metabolic model simulations, on both the human
and the mouse organisms. To our knowledge, this work is the first attempt
to exploit metabolic features and a transfer learning approach for the
reconstruction of the human GRN, and our results support the adoption of
the developed method as a state-of-the-art tool for solving this task.

As future work, we aim to design a multi-source approach to capture
possible dependencies among multiple organisms and to simultaneously
reconstruct their GRNs, even when the knowledge about their orthologous
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genes is limited. In conjunction with multi-omic integration strategies,
this could lead to refined GRN reconstructions, thus expanding the current
knowledge on the biological mechanisms of metabolic regulation.
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