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Abstract
Matrix tri-factorization subject to binary constraints is a versatile and powerful
framework for the simultaneous clustering of observations and features, also known
as biclustering. Applications for biclustering encompass the clustering of high-
dimensional data and explorative data mining, where the selection of the most
important features is relevant. Unfortunately, due to the lack of suitable methods for
the optimization subject to binary constraints, the powerful framework of bicluster-
ing is typically constrained to clusterings which partition the set of observations or
features. As a result, overlap between clusters cannot be modelled and every item,
even outliers in the data, have to be assigned to exactly one cluster. In this paper we
propose Broccoli, an optimization scheme for matrix factorization subject to binary
constraints, which is based on the theoretically well-founded optimization scheme of
proximal stochastic gradient descent. Thereby, we do not impose any restrictions on
the obtained clusters. Our experimental evaluation, performed on both synthetic and
real-world data, and against 6 competitor algorithms, show reliable and competitive

Responsible editor: Annalisa Appice, Sergio Escalera, Jose A. Gamez, Heike Trautman

B Gianvito Pio
gianvito.pio@uniba.it

Sibylle Hess
s.c.hess@tue.nl

Michiel Hochstenbach
m.e.hochstenbach@tue.nl

Michelangelo Ceci
michelangelo.ceci@uniba.it

1 Department of Mathematics and Computer Science, TU Eindhoven, 5600 MB Eindhoven, The
Netherlands

2 Department of Computer Science, University of Bari Aldo Moro, Via Orabona, 4, Bari, Italy

3 Big Data Lab, National Interuniversity Consortium for Informatics (CINI), Rome, Italy

4 Jozef Stefan Institute, Jamova 39, Ljubljana, Slovenia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-021-00787-z&domain=pdf
https://orcid.org/0000-0002-2557-4604
http://orcid.org/0000-0003-2520-3616
https://orcid.org/0000-0002-9196-8257
https://orcid.org/0000-0002-6690-7583


S. Hess et al.

performance, even in presence of a high amount of noise in the data.Moreover, a quali-
tative analysis of the identified clusters shows that Broccolimay provide meaningful
and interpretable clustering structures.

Keywords Biclustering · Co-clustering · Proximal stochastic gradient descent ·
Matrix tri-factorization

1 Introduction

In the field of clustering, and more generally in data mining, one of the biggest open
problems is the optimization subject to binary constraints. The imposition of binary
constraints in the objective of the optimization corresponds, in the context of cluster-
ing, to requiring that each observation clearly belongs to one cluster or not, with no
gray areas. More generally, binary constraints arise from a request for interpretable
and definite data mining results: is a picture showing a cat? Should a movie be recom-
mended to this user? Should the next chess move be this one? Binary results provide
definite yes or no answers to the questions arising when solving data mining tasks.

Manymethods are able to solve binary-constrained problems.However, theymostly
work under one condition: exclusivity. In particular, we are assuming that if a picture
shows a cat, then it cannot show a dog; if a movie is assigned to one cluster (e.g., a
genre), then it cannot belong to another cluster (i.e., to another genre); there should
be only one possible next chess move, which is the optimal one. From these exam-
ples, we can easily observe that the exclusivity assumption may make sense or not
depending on the specific application. For example, for the movie genre case, and for
movie recommendation in general, the exclusivity assumption is inappropriate: there
is no one-to-one relation between genres and groups of movies, or between groups
of users and movies. This scenario provides an ideal motivation for the fundamen-
tal contribution of the biclustering task: the simultaneous clustering (identification of
groups) of users and movies, where a bicluster is a selection of users and movies, such
that the users give similar ratings for the movies in the group, and the movies have
similar ratings from the users in the group. Unfortunately, this motivation only works
for the philosophy behind biclustering; many algorithms for biclustering impose the
exclusivity constraint, even though it is no necessarily required by the task definition.
Provided that they are not constrained by such an exclusivity assumption, biclusters
could, e.g., represent a group of science-fiction fans and science-fiction movies. A
science-fiction fan (usually) does not exclusively like science-fiction movies. Anal-
ogously, a science-fiction movie is not exclusively watched by science-fiction fans.
In this respect, the exclusivity assumption is clearly imposing stringent, unrealistic,
constraints.

Similar observations can be drawn in other biclustering applications. For exam-
ple, biclustering of gene-expression data is employed to identify groups of genes and
patients, which are strongly linked by similar expression levels. Such an analysis can
be used to discover functions of genes related to clinical traits. However, one gene
generally does not have one single function in an organism, but is actually involved
in multiple biological processes (Pio et al. 2015). On the other hand, not every gene

123



BROCCOLI: biclustering through PSGD

necessarily plays a significant role in the considered conditions. In this case, the exclu-
sivity assumption would force every gene to belong to one cluster. Hence, outliers, or
isolated objects, could be improperly modelled in presence of the exclusivity assump-
tion.

A popular way to circumvent the difficulties of binary optimization is to relax the
binary constraint into a nonnegative and/or orthogonal one (cf. Sect. 3.2). However,
the resulting fuzzy clusters are not always easy to interpret and are usually difficult to
process automatically.

In this paper we propose the method Broccoli (Binary RObust Co-Clustering
Optimization through alternating LInearized minimization) to obtain models which
can handle cluster overlap and the presence of outliers.Broccoli employs a penaliza-
tion approach, where the relaxed objective is optimized while the violation of binary
constraints is penalized. The penalization degree is optimized during the training, such
that the returned minimizer of the objective function satisfies the binary constraints.
Our optimizationmethod is based on the theoretically founded framework of Proximal
Stochastic Gradient Descent (PSGD) for matrix factorizations (Driggs et al. 2020).

We evaluate Broccoli on synthetic and real-world data, showing that it is able
to detect biclusterings of various structures, being robust to the noise in the data. A
qualitative inspection reveals that Broccoli is able to derive meaningful clusters,
which are interpretable by their modular structure.

2 Background of biclusteringmodels

The biclustering task is relevant when relationships in both observations and features
(or rows and columns) have to be captured. Several biclustering approaches have been
proposed in the literature, including spectral methods (Dhillon 2001; Kluger 2003),
iterative greedy methods (Pio et al. 2012, 2013), matrix factorization methods (Long
et al. 2005; Yoo and Choi 2010; Del Buono and Pio 2015), and multi-type meth-
ods (Barracchia et al. 2020).

In this paper, we focus on biclusteringmodels based onmatrix factorization.Matrix
factorization is applied in multiple contexts, including image reconstruction (Zhou
and Qi 2011; Yokota et al. 2019) and data representation (Cai et al. 2011; Wang et al.
2018). It is also intrinsically linked to clustering, due to its recognized role as a general
framework for clustering objectives (Ding et al. 2006a; Pompili et al. 2014).

Existing clustering algorithms based on matrix factorization mainly rely on an
iterative optimization approach, that aims to find a factorization of the input datamatrix
into two or more matrices that provide cluster membership information. Specifically,
given a data matrix D ∈ R

m×n , there exist suitable numerical methods to optimize a
nonnegative matrix tri-factorization:

min
X ,Y ,C

‖D − YCX�‖2 s.t. X ∈ R
n×rx+ , Y ∈ R

m×ry
+ , C ∈ R

ry×rx
+ ,

where the matrix Y has an interpretation as a fuzzy row-cluster indicator, X as a fuzzy
column-cluster indicator, ry is the number of row-clusters, and rx is the number of
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Table 1 Overview of biclustering objectives based on matrix factorization

Biclustering min
X ,C,Y

‖D − YCX�‖2 s.t.

Checkerboard X ∈ �
n×rx , Y ∈ �

m×ry , C ∈ R
ry×rx

Block Diagonal X ∈ �
n×r , Y ∈ �

m×r , C = diag(C11, . . . ,Crr )

Binary X ∈ {0, 1}n×r , Y ∈ {0, 1}m×r , C = I

Broccoli X ∈ {0, 1}n×r , Y ∈ {0, 1}m×r , C ∈ R
r×r

column-clusters. The matrix C is the core matrix that assigns a weight to each (fuzzy)
bicluster, i.e., to each pair of a row cluster and a column cluster. In particular, Y js

generally represents the degree of membership of the j th row of the data matrix to the
row cluster s, while Xit represents the degree of membership of the column i of the
data matrix to the column cluster t .

Depending on the application, different constraints can be imposed. For example,
if we force Y to be binary and to have orthogonal columns, then the objective above
becomes equivalent to the one of k-means clustering (Bauckhage 2015). In this case,
the matrix Y indicates the assigned cluster for each observation, while the matrix
CX� represents the centroids. We denote the space of (m × ry)-dimensional cluster
indicator matrices, implementing the exclusivity assumption, with �

m×ry . We have
Y ∈ �

m×ry if and only if Y ∈ {0, 1}m×ry and |Y j ·| = 1. In essence, Y ∈ �
n×ry if Y is

binary and has orthogonal columns.
If we now want to model biclusters, assigning observations as well as features to

clusters, without making use of the exclusivity assumption, then we impose binary
constraints on the matrices X and Y :

min
X ,Y ,C

‖D − YCX�‖2 s.t. X ∈ {0, 1}n×rx , Y ∈ {0, 1}m×ry , C ∈ R
ry×rx
+ .

In this case, Y js = 1 (resp., Y js = 0) means that the j th row of the data matrix is
(resp., is not) assigned to the row cluster s, while Xit = 1 (resp., Xit = 0) means
that the column i of the data matrix is (resp., is not) assigned to the column cluster
t . Again, the matrix C assigns a weight to each bicluster, i.e., to each pair of a row
cluster and a column cluster.

In Table 1, we show three common biclustering models: checkerboard, diagonal
and binary biclustering.

We observe that the objectives of checkerboard and diagonal biclustering impose
the exclusivity by constraining the binary factor matrices to the �-space. Since the
exclusivity assumption enforces row- and column-clusters not to overlap, for checker-
board and diagonal biclusters there exists a permutation of rows and columns, such
that each bicluster appears as a coherent block. This is shown in Fig. 1, where the area
of the bicluster combining row-cluster s with column-cluster t is filled with one color,
representing the value Cst . This clustering concept goes back to Hartigan (1972).

A special case of biclustering arises if the data matrix is binary. In this case, a
decomposition into two binary matrices (where the core matrix is equal to the identity
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Fig. 1 Visualization of checkerboard (on the top), block-diagonal (second from the top), binary (third from
the top, with non-overlapping row-clusters but overlapping column-clusters) and the Broccoli (on the
bottom) biclustering models. Every bicluster is a combination of a row-cluster and a column-cluster, which
we visualize here as a block. Real values are indicated by colors, while binary values are indicated in black
and white (black represents a one; white represents a zero). Best viewed in color

matrix) may benefit the interpretability of the result (see Table 1). We refer to such
factorizations as binary biclustering. For this task, the exclusivity constraint is usually
not imposed on both binary factor matrices. This is because it would lead to a binary
block-diagonal model, which is too simplistic for most applications. However, binary
biclusters do have an inbuilt penalization of overlap, because overlapping areas of
binary biclusters are approximated with a value of 2—introducing an approximation
error of at least one. As a result, every pair of overlapping biclusters adds to the
approximation error a value equal to the size of the overlapping area. Consequently,
binarybiclusters haveusually either non-overlapping row-or non-overlapping column-
clusters, as depicted in Fig. 1 (third row).

In this paper, we aim to get rid of restrictive constraints on the clustering structure.
Our objective (see Table 1) resembles that of checkerboard biclustering, with the
difference that our cluster indicator matrices do not enforce the exclusivity constraint.
The result may yield overlapping row- and column-clusters (as shown in Fig. 1), and
identify outlier observations (rows of the data matrix which are not assigned to any
row-cluster) and outlier features (columns of the data matrix which are not assigned
to any column-cluster).
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3 Related work

Themajor challenge faced by clusteringmethods,without assuming exclusivity, comes
from the optimization phase. While the fuzzy real-valued counterparts can suitably
be optimized by numerical methods, the discrete nature of binary clustering tasks
does not allow for a direct adaptation of such optimization methods. Deriving defi-
nite cluster assignments is an inherently combinatorial complex problem. The major
advantage of using the exclusivity assumption is the possibility to adopt an efficient
iterative optimization scheme, based on alternating minimization (cf. Sect. 3.1). If the
exclusivity assumption is supposed to be relaxed, then the usual way is to relax the
binary clustering constraints as well, such that numerical optimization methods can be
applied (cf. Sect. 3.2). It is noteworthy that also the approach proposed in this paper,
for the optimization of non-exclusive clusterings, is based on a relaxation of the con-
straints. In particular, our approach is related to the penalization approach reviewed
in Sect. 3.3. However, in our method, the relaxations are gradually reversed, being a
part of the optimization, such that we obtain binary solutions in the end.

3.1 Methods based on alternatingminimization

Alternating minimization for clustering has been introduced by Lloyd (1982) with
the k-means algorithm. Iteratively, one of the factor matrices is optimized while the
other factor matrices are kept fixed. The exclusivity assumption enables the analytical
derivation of the optimizer in every iteration (Gaul and Schader 1996; Mirkin et al.
1995). In otherwords, it is not necessary to apply gradient descent at every optimization
step, but it is possible to directly state the optimum for one of thematrices. Thisway, the
optimization subject to binary constraints is facilitated. The alternating minimization
scheme has been implemented for checkerboard biclustering (Vichi 2001; Wang et al.
2011; Cho et al. 2004) and for diagonal biclustering (Han et al. 2017; Song et al.
2020). Koyutürk and Grama (2003), Li (2005) proposed alternating minimization for
binary matrix factorization, where one the factor matrices is constrained to satisfy the
exclusivity assumption. In this scenario, row-clusters are always nonoverlapping, but
column-clusters may overlap, or vice versa. Although alternating minimization is an
elegant and theoretically founded optimization method, it has the drawback that the
global, yet separate, minimization in every step tends to converge to a minimumwhich
is not far from the starting point. This behavior makes alternating minimization very
sensitive to the initialization (Zhou et al. 2015). In contrast, gradient-based methods
are generally more prone to explore the hypothesis space, before converging to a
stationary point (assuming that the chosen step-size is not particularly small).

3.2 Methods based on (soft-) orthogonal relaxations

Since the binary constraints in clustering objectives hinder the application of numerical
optimization methods, relaxations of the binary constraints have been adopted in the
literature. The most popular approaches are based on nonnegative (soft-) orthogonal
relaxations (Ding et al. 2006b; Yoo and Choi 2010; Zha et al. 2001; Dhillon 2001; Nie
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0 0.5 1
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1 10(x2 − x)2 (Mexican hat)
Λ(x) (cf. Eq. (3))

Fig. 2 Binary penalization functions: the Mexican hat function and Λ

et al. 2017). These methods aim at solving the following objective:

min
Y≥0,C≥0,X≥0

∥
∥
∥D − YCX�

∥
∥
∥

2
, s.t. Y�Y = I , X�X = I . (1)

The orthogonal relaxation is interesting because of its correspondence to hard (binary)
clusterings: requiring that the columns of X and Y are orthogonal and nonnegative
implies that every row has at most one nonzero entry.

Moreover, matrices having orthogonal columns may contain rows entirely filled
with zeros, indicating that the corresponding observation or feature is not assigned
to any cluster. However, orthogonal nonnegative matrix factorization is an NP-hard
problem (Asteris et al. 2015), and in practice only soft-orthogonality of the matrices is
achieved. On the one hand, the resulting fuzzy, soft-orthogonal indication of clusters is
in principle suitable tomodel overlapping clusters as well. On the other hand, the fuzzy
indication of clusters requires to make a-posteriori decisions to obtain definite cluster
membership indications. A straightforward approach would be to assign observation
j (or feature i) to the k clusters having the highest values in Y j · (or Xi ·). Of course,
imposing exclusivity would correspond to setting k = 1 (Del Buono and Pio 2015;
Yoo and Choi 2010), but determining the correct value of k for each observation or
feature in an overlapping setting may be very problematic.

The optimization of (soft)-orthogonal factorizations is usually performedwithmul-
tiplicative updates. These updates can be considered as gradient descent, where the
step-size is chosen small enough such that the constraints are not violated. Unfortu-
nately, the conservative choice of the step-size results in a slow convergence rate.

3.3 Methods based on penalization of nonbinary values

One of the very few attempts to solve binary constrained biclustering, without impos-
ing the exclusivity, is the penalization approach proposed by Zhang et al. (2007, 2010,
2013). They propose a multiplicative update algorithm to minimize the approximation
error togetherwith a term that penalizes non-binary values. The employed penalization
term is theMexican hat function, shown in Fig. 2. Such a penalization scheme has also
been applied for Boolean matrix factorization. This is a variant of binary bicluster-
ing, where clusters are explicitly allowed to overlap. Here, the matrix multiplication
is computed in Boolean algebra, yielding 1 ⊕ 1 = 1. Note that, in binary matrix
factorization, areas where two biclusters overlap are approximated by 1 + 1 = 2,
areas where three biclusters overlap are approximated by 1 + 1 + 1 = 3, and so on.
Hence, overlap of binary biclusters introduces an approximation error to the binary
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data matrix. In Boolean algebra, this is not the case and we always obtain a binary
approximation by the Boolean product. In this context, Hess et al. (2017) proposed
a proximal optimization scheme, employing the penalization function Λ defined in
Eq. (3) and shown in Fig. 2. Adapting the functionΛ instead of the Mexican Hat func-
tion has the advantage to lead to more matrix entries which are actually binary, instead
of just being close to binary values. The optimization of a Boolean factorization in
elementary algebra is approached by an optimization of the penalized objective and a
subsequent thresholding to binary matrices. As we will detail in Sect. 4, Broccoli is
built upon this approach, while exploiting the fact that the checkerboard biclustering
objective does not require the approximation of a multiplication in another algebra.

3.4 Methods to explicitly model overlaps and outliers

In the literature,we canfind a fewmethodswhich aim to specificallymodel outliers and
overlaps among clusters. For example, Whang and Dhillon (2017) propose a semidef-
inite program that allows for a specified amount of overlap and a specified amount
of outliers for row- and column-clusters. This approach introduces four parameters,
which are not easy to estimate beforehand. Laclau and Brault (2019) propose a prob-
abilistic binary biclustering model, which simultaneously facilitates feature selection.
In this way, feature-(column-) clusters are not required to be exhaustive, and implicitly
discard features that can be considered outliers. However, the same does not hold for
the observations, and the identified clusters are still disjoint.

A specific context in which bicluster overlap has been explicitly modelled is that
of bioinformatics. Among the approaches proposed in the literature, it is worth men-
tioning Floc (Yang et al. 2005), that addresses the issues originally present in the
sequential approach proposed by Cheng and Church (2000). Floc is a probabilistic
algorithm that can discover a set of possibly overlapping biclusters simultaneously,
by iteratively and greedily determining the best actions (called moves) to perform for
each row and column, as long as an improvement of the objective function is observed.
Another relevant method is Fabia (Hochreiter et al. 2010), that is based on a multi-
plicative model that assumes that two feature vectors are similar if one is a multiple of
the other, i.e., if the angle between them is zero or, as realization of random variables,
their correlation coefficient is 1 or − 1. This model was specifically adopted to cap-
ture possible linear dependencies between gene expressions and conditions, as well as
heavy tailed distributions, which are typically observed in real-world transcriptomic
data. However, although being generally able to discover overlapping biclusters, such
approaches may appear to be inadequate if the underlying assumptions do not hold
for the data at hand.

4 A novel stochastic optimization for non-exclusive biclusters

The objective of the biclustering task is nonconvex, as known for matrix factoriza-
tions. This entails that there are multiple local optima, which are typically not all
suited to reflect a true, underlying clustering structure. Moreover, binary constraints

123



BROCCOLI: biclustering through PSGD

on the matrices make this issue even more evident: every binary matrix induces a
local optimum. Indeed, every binary matrix is the only feasible (and, therefore, the
best) optimizer within its ε-ball neighborhood for small enough ε. Therefore, the opti-
mization of the non-binary core matrix C , when fixing two arbitrary binary matrices,
leads to a local optimum. It is noteworthy that a real-valued core matrix, as in the case
of checkerboard biclustering, can lead to a significant decrease in the approximation
error, even if the biclustering represented by the binary matrices is far away from the
global optimum. This phenomenon makes it hard to distinguish between local optima
and the global optimum by means of the objective function value (i.e., by observing
the approximation error). In other words, having a good optimizer is not enough: We
need a very good optimizer which simultaneously (i) handles the existence of many
local optima that are almost indistinguishable from the global optimum by observing
only the objective function, (ii) integrates binary constraints, and (iii) is robust to noise
and can handle the presence of outliers.

4.1 Gradually increasing penalization of nonbinary values

We propose a biclustering optimization scheme based on the stochastic, proximal opti-
mization framework SPRING (Driggs et al. 2020). Stochastic optimization computes
the gradient descent updates in every iteration on a batch of the data. This makes
stochastic optimization suitable for large scale data. Stochastic gradient descent is
also known for its generalizing properties (Hardt et al. 2016; Hoffer et al. 2017).

We propose to optimize the following objective:

min
X ,Y ,C,
λx ,λy

1

mn
‖D − YCX�‖2 + 〈λx ,Λ(X) − 1〉 + 〈λy,Λ(Y ) − 1〉 + φc(C)

s.t. λx ∈ [0, θ ]n×r ,λy ∈ [0, θ ]m×r . (2)

The parameter θ is here employed as a placeholder for the required regularization
weights λx and λy such that the optimizing factor matrices Y and X of Eq. (2) are
binary. Bounding the regularization weights above by the parameter θ ensures that
the objective in Eq. (2) is well-defined. However, we do not need to determine the
parameter θ in practice.

The regularization term 〈λx ,Λ(X) − 1〉 is composed of two parts: the nonbinary
penalisation term 〈λx ,Λ(X)〉 and a term which pushes λx to be as large as possible
−〈λx , 1〉. The matrix 1 is here a constant one matrix, whose dimensionality is inferred
from the context. The parameter matrices λx and λy are the regularization weights of
the non-binary penalization functionsΛ(X) andΛ(Y ). The matrixΛ(X) = (Λ(Xis))

is defined by the elementwise application of the function:

Λ(x) =
{

−|1 − 2x | + 1 x ∈ [0, 1],
∞ otherwise.

(3)
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The functionΛ (graphically depicted in Fig. 2) reaches its maximum value (1.0) at 0.5,
its minimum value (0.0) at binary values, and returns infinity outside of the interval
[0, 1]. It defines the feasible set of the matrices X ∈ [0, 1]n×r and Y ∈ [0, 1]m×r in
the objective function [Eq. (2].
The Frobenius inner product

〈λ,Λ(X)〉 =
∑

i,s

λisΛ(Xis)

sums the elementwise penalization terms weighted by the parameters λ.
The function Λ is non-smooth, but feasible for optimization by proximal gradient

descent. Proximal optimization is a theoretically well-founded way to facilitate the
optimization of non-smooth and possibly non-continuous terms of the objective. It is
particularly used when the loss is a smooth function, and the constraints are possibly
non-smooth but simple penalization terms. The proximal mapping of a function φ is
a function which returns a matrix solving the following optimization problem:

proxφ(X) ∈ arg min
X∗

{
1
2 ‖X − X∗‖2 + φ(X∗)

}

. (4)

Loosely speaking, the proximal mapping gives its argument a little push into a
direction which minimizes φ. For a detailed discussion, see, e.g., the work by Parikh
et al. (2014). This operator is employed in every iteration,whichmakes its optimization
by numerical methods infeasible in practice. The trick is to use only simple functions
φ for which the proximal mapping can be calculated analytically, in a closed form.

The proximal operator for Λ has been shown by Hess et al. (2017) to satisfy, for
x ∈ R

proxλΛ(x) =
{

max{0, x − 2λ} x ≤ 0.5,

min{1, x + 2λ} x > 0.5.
(5)

The larger the regularization weight λ, the more the corresponding matrix value is
pushed into the direction of binary values. After every gradient descent step of one
of the cluster indicator matrices, the prox-operator is applied and pushes the matrix
towards binary values. As a result, if we choose λ large enough, then we will get
binary matrices after a couple of iterations. However, in this case, we also risk to
converge to a local optimum close to the initialization. This would make our method
even more sensitive to the initialization than it already is due to the nonconvexity of
the objective. In turn, if we choose a too small value for λ, then the optimum of the
penalized objective might not return binary matrices.

In order to circumvent these issues,we gradually increase the regularizationweights
throughout the optimization process. In addition, we employ individually deter-
mined regularization weights. To this end, we introduce the regularization weights
as optimization parameters and subtract the sum of the regularization parameters
〈λx , 1〉 + 〈λy, 1〉 from the objective function value. As a result, matrix entries which
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Algorithm 1The proposed general biclustering optimization schemeBroccoli, min-
imizing the objective in Eq (2).
1: function Broccoli(D, r , γ )
2: (C, X , Y ) ← Init (D, r)
3: (λX , λY ) ← (0n×r , 0m×r )  Initialize the regularization weights of φX and φY
4: M,N ,R = {1, . . . ,m}, {1, . . . n}, {1, . . . , r}
5: while not converged do
6: Sample batches I ⊆ N ,J ⊆ M
7: X ← Update(X , φx ,M × I)  Note: φx (X) = 〈λx , Λ(X)〉
8: C ← Update(C, φc,M × I)
9: λx ← λx − γ (Λ(X) − 1) �N×R  Increase the penalization weights
10: Y ← Update(Y , φy ,J × N )
11: C ← Update(C, φc,J × N )  Note: φy(Y ) = 〈λy ,Λ(Y )〉
12: λy ← λy − γ (Λ(Y ) − 1) �M×R  Increase the penalization weights
13: end while
14: return (C, X , Y )

15: end function
16: function Update(A, φ,B)
17: ∇A ← ∇AMSE(C, X , Y ) �B  Batch gradient
18: α ← 1/4L∇A
19: return proxαφ(A − α∇A)  Proximal gradient step
20: end function

naturally fall close to a binary value receive a stronger push towards binary values
than those entries which are undecided (i.e., close to 0.5).

4.2 Themethod BROCCOLI

We formally describe our method Broccoli in Algorithm 1. The method returns a
non-exclusive biclustering model, which is defined by the specification of constraints
on the core matrix by φc. In this paper, we focus on the identification of nonnegative
checkerboard clusterings. Specifically, we set

φc(x) =
{

∞, if x < 0 or x > maxc
0, otherwise.

The proximal operator proxαφc
(C) projects the elements of the matrix C onto the

interval Cs,t ∈ [0,maxc], with the effect of bounding the maximum value of C . This
prevents an imbalance of the matrices where X or Y have very low values, which are
compensated by large values in C .

The input of our method Broccoli is the data matrix D, the rank of the factor-
ization r and the step-size γ of the gradient descent steps, updating the regularisation
parameters λx and λy .

In every iteration, a batch of columns of the data matrix is sampled and the matrices
C and X , as well as the regularization weights, are updated. Likewise, a batch of rows
of the data matrix is sampled subject to which the matricesC and Y are updated. Every
update computes the proximal mapping of the gradient step, performed on the respec-
tive batch. The step-size is chosen by means of the Lipschitz constant of the gradient
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(cf. Appendix A). Under these circumstances, SPRING guarantees convergence to a
local minimum in expectation (Driggs et al. 2020).

4.2.1 Initialization

As generally known from matrix factorization, the initialization may influence the
results. There are multiple issues which can occur during the optimization of matrix
factorizations with binary constraints, and which can be alleviated with a good ini-
tialization method. One of these issues is an imbalance in the scale of the factor
matrices (Zhang et al. 2007). For nonnegativematrix factorization this is not a big issue.
However, it is a problemwhen binary constraints are imposed. Suppose that the ground
truth biclustering is given by the matrices Y ∗, X∗ and C∗. Let x, y ∈ R

r be positive
vectors. Then, for Y = Y ∗ diag(y)−1,C = diag(y)C∗ diag(x) and X = X∗ diag(x)−1,
we have:

Y ∗C∗X∗� = Y ∗ diag(y)−1 diag(y)C∗ diag(x) diag(x)−1X∗� = YCX�. (6)

As a result, the matrix product YCX� is indistinguishable from the one of the ground
truth, although the factor matrices differ from the ground truth factors. During opti-
mization, when the binary constraints are relaxed, we might obtain differently scaled
matrices as iterates. If the vector x in Eq. (6) contains large numbers, then the matrix
X has columns which are close to zero. In upcoming iterations, the proximal operator
pushes these small values even closer to zero, which has to be balanced by the scaling
of C . This scaling coping mechanism works until the values in X reach zero. If that is
the case, then we observe a sudden increase of the approximation error.

The scaling issue can be alleviated by a suitable initialization.We consider two pos-
sible schemes (seeAlgorithm2): a baseline approach consisting of a uniformly random
initialization of the (relaxed) cluster indicator matrices (henceforth this approach will
be denoted as InitRND), and a more sophisticated initialization based on a shortly
optimized nonnegative matrix factorization (henceforth this approach will be denoted
as InitNMF). The latter approach is the one that we propose in this paper. In both
cases, the inputs are the data matrix D and the rank r . The method InitNMF has
one additional parameter p, specifying the percentage of fuzzy cluster assignments
which are set to 1.0 after the initialization. In Broccoli we adopt p = 80, which
according to a set of independent preliminary experiments, appears to be appropriate
and reasonable.

The proposed InitNMF employs the uniformly random initialization InitRND for
its own initialization. The optimization consists of 100 proximal stochastic gradient
descent updates for nonnegative matrix factorization. The nonnegative constraints are
incorporated by the regularizing function φ+, which returns infinity at negative matrix
entries, zero otherwise. The proximal operator of this function is a projection of the
argument matrix onto nonnegative values (Bolte et al. 2014).

Given the resulting nonnegative factors (X+,Y+), they are converted into a suitable
tri-factorization (C, X ,Y ). Ideally, the initialization yields factor matrices X and Y
which already reflect the optimal distribution of zeros and ones per cluster. Since
the optimal distribution is not known in advance, we employ a heuristic strategy.
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Algorithm 2 Proposed NMF and RND initialization schemes for Broccoli.
1: function InitNMF(D, r; p = 80)
2: (C, X , Y ) ← InitRND (D, r)
3: M,N = {1, . . . ,m}, {1, . . . n}
4: for t ∈ {1, . . . 100} do
5: Sample batches I ⊆ N ,J ⊆ M
6: X ← Update(X , φ+,M × I)  Note: φ+(x) = ∞ if x < 0
7: Y ← Update(Y , φ+,J × N )
8: end for
9: x ← (Pp%(X ·1), . . . , Pp%(X ·r ))
10: y ← (Pp%(Y·1), . . . , Pp%(Y·r ))
11: (xs , ys ) ←

(

xs + 0.1 xs√
xsys

, ys + 0.1 ys√
xsys

)

for all 1 ≤ s ≤ r

12: C ← [diag(x) diag(y)]≤maxc

13: (Y , X) ←
([

Y diag(y)−1
]

≤1
,
[

X diag(x)−1
]

≤1

)

14: return (C, X , Y )

15: end function
16: function InitRND(D, r )
17: C → I  C is equal to the r × r identity matrix
18: X → SampleUniform(m, r , [0, 1])
19: Y → SampleUniform(m, r , [0, 1])
20: return (C, X , Y )

21: end function

In particular, we determine scaling vectors x and y, whose product will reflect the
diagonal entries of C (cf. Steps 12 and 13). In the first step, we set the scaling vectors
x and y to the pth percentile of the nonnegative indicators of each cluster. In this
way, we ensure that the cluster indicator matrices are not too sparse, having at least
100 − p% of all entries equal to one. At the same time, we need to ensure that the
core matrix C is not too sparse. If one row or column of the core matrix is equal to
zero, then the corresponding row- or column-cluster is not used. Therefore, we add
0.01 to the diagonal of the core matrix. This is achieved by adding 0.1 to the scaling
vectors, where we additionally apply a weighting scheme (cf. Step 11) that provides a
higher weight to denser factor matrices than to sparse indicator matrices. Broccoli’s
tri-factorization is finally initialized by the scaled nonnegative matrix factorization.

4.2.2 Time complexity analysis

The complexity of Broccoli’s optimization scheme corresponds to the complexity
of an update step times the number of required iterations. In the following, we derive
the complexity of each update step asO(mnr), resulting in an overall time complexity
of O(Tmnr), where T is the number of iterations.

For each update step, we compute the gradient, the Lipschitz constant and the proxi-
mal operator. The complexity for computing the gradient and theLipschitz constant can
be derived by the complexity ofmatrixmultiplications, that isO(mnr) for themultipli-
cation of an n×r matrixwith an r×mmatrix. Accordingly, the gradients are computed
inO(mnr), while the Lipschitz constant is computed inO(r2), if the required matrix
products are reused from the computation of the gradient (cf. Appendix A). Finally,
all employed proximal operators require constant time to update one matrix entry
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[cf. Eq. (5)]. Therefore, the proximal mappings of a factor matrix are computed in
O(max{nr ,mr , r2}). Since we can assume that r ≤ min{n,m}, the dominating factor
is the computation of the gradient, resulting in an overall complexity for each update
step equal to O(mnr).

As regards the initialization strategy, it is noteworthy that it does not affect the time
complexity, since the more expensive initialization scheme proposed in this paper
(InitNMF) takes O(mnr), required by the gradient update steps. In this case, the
number of iterations is constant (T = 100) and does not asymptotically affect the
time complexity.

5 Experiments

We compare the proposed method Broccoli against six competitors: two methods
based on a nonnegative relaxation (henceforth denoted by N (Long et al. 2005) and
NN (Del Buono and Pio 2015)), two methods based on an orthogonal relaxation
(henceforth denoted byO (Yoo andChoi 2010) andOO (Del Buono and Pio 2015)) and
the biclustering methods Fabia (Hochreiter et al. 2010) and Floc (Yang et al. 2005).
Since N, NN, O and OO return fuzzy membership values for each observation, we
binarize the result for comparison purposes. For each sample (observation or feature)
we set the top-k fuzzy cluster indicator values to one, where k is the number of
ground truth clusters the sample belongs to. Note that in this way we provide our
competitors with additional background knowledge, which is not available in real-
world scenarios. The goal is to estimate how good the clustering, derived from a
relaxed result, could potentially be, if supported by additional knowledge provided
(e.g., by domain experts).

Broccoli1 is implemented in PyTorch, exploits the inbuilt implementation of SGD
and batch sampling, and relies on the heavily parallelized execution of matrix mul-
tiplications by Graphics Processing Units (GPUs). The batch sampling is performed
epoch-wise. In every epoch, data is partitioned into 10 sets, which are returned as
batches in subsequent iterations. Hence, the size of the batches are approximately
equal to 0.1n and 0.1m, respectively. As default values for the step-size of the regular-
ization weight updates, we set γ = 10−9, that is suitable for most datasets. In practice,
the step-size should be as low as the run-time allows. In order to speed up convergence
without noticeably harming the quality of the results, we double the step-size γ every
2000 epochs. We set the parameter maxc of the function φc equal to the maximum
value in D.

The rank is set equal to the rank of the ground truth. In some experiments we
denote the ranks ry and rx , which are the number of row-clusters and column-clusters,
respectively, of the obtained result. Note that the ranks of the returned tri-factorization
may be smaller than the specified rank, due to constant zero columns in X or Y , or
constant zero columns or rows in C .

1 The system is publicly available at: https://github.com/Sibylse/Broccoli.
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We evaluate Broccoli using both the initialization schemes described in
Sect. 4.2.1. Specifically, we denote the variant based on InitNMF asBroccoli NMF,
and the variant based on InitRND as Broccoli RND.

5.1 Evaluationmeasures

We quantify how well a computed cluster indicator matrix Y matches the ground truth
Y ∗ by an adaptation of the averaged F1-measure, known frommulti-class classification
tasks. We compute a one-to-one matching τ between computed and ground truth
clustering and compute the average F1-measure of the matched clusters. Formally,
the F1-measure of two binary vectors y and y∗ is computed as the harmonic mean of
precision and recall:

pre(y, y∗) = y�y∗

‖y‖2 , rec(y, y∗) = y�y∗

‖y∗‖2 .

F1(y, y
∗) = 2

pre(y, y∗) · rec(y, y∗)
pre(y, y∗) + rec(y, y∗)

= 2y�y∗

‖y‖2 + ‖y∗‖2 .

The average F1-measures for column- and row-clusters are then computed by

F1(Y ,Y ∗) = 1

ry

ry
∑

s=1

F1(Y·s,Y ∗
·τy(s)), F1(X , X∗) = 1

rx

rx∑

t=1

F1(X ·t , X∗
·τx (t)).

In addition to this matching-based measure, we also compute two agreement mea-
sures for overlapping clusterings proposed by Rabbany and Zaïane (2015). Given a
cluster indicator matrix Y , these measures are defined as

Icos(Y ,Y ∗) = ‖Y�Y ∗‖2
‖Y�Y‖‖Y ∗�Y ∗‖ Isub(Y ,Y ∗) = ‖Y�Y ∗‖

‖Y‖‖Y ∗‖ .

The term

‖Y�Y ∗‖2 =
∑

1≤s,t≤r

(Y�·s Y ∗·s)2 = |YY� ◦ Y ∗Y ∗�|

represents the agreement according to the number of elements that the two clusters
Y·s and Y·t have in common (see Appendix B for a more detailed discussion of the
clustering agreement indexes).

If we are given the ground truth for the row- and column-clusters, then we return
the average of the measures:

F1 = 1
2 (F1(Y ,Y ∗) + F1(X , X∗))

Icos = 1
2 (Icos(Y ,Y ∗) + Icos(X , X∗))

Isub = 1
2 (Isub(Y ,Y ∗) + Isub(X , X∗))
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Table 2 Statistics about the synthetic datasets

m n Clusters Overlap X Overlap Y Outliers X Outliers Y

300 200 3 1.17 ± 0.03 1.17 ± 0.03 44 ± 3% 43 ± 3%

1000 800 5 1.33 ± 0.02 1.33 ± 0.02 25 ± 1% 24 ± 1%

All measures range between 0.0 and 1.0. The closer they approach 1.0, the more the
computed clustering matches the ground truth. Note that Isub does generally attain a
value smaller than 1.0 also if the cluster indicator matrix perfectly corresponds to the
ground truth.

Finally, we report the value of the approximation error of the factorization with
respect to the original data matrix, measured through the Mean Squared Error in
percentage (MSE%). Formally:

MSE% = ‖D − YCX�‖2
‖D‖2 · 100.

Note that, contrary to the performance measures, the lower the MSE% the better the
approximation.After all, theMSE%represents the average errormade by the factoriza-
tion of the input data matrix. However, we also caution that a low approximation error
does not necessarily indicate a correctly identified clustering structure (cf. Sect. 4).

5.2 Synthetic datasets

We create a set of synthetic datasets with overlap and outliers by sampling every
cluster indicator matrix by a Bernoulli distribution. Each entry X∗

i t and Y
∗
js is equal to

1 with probability q = 0.2. Thereby, we ensure that each cluster contains at least 1%
of the observations/features, which are exclusively assigned to that specific cluster.
The core matrix is sampled as a sparse matrix containing uniformly distributed values
Cst ∈ [0, 5]. The probability that a non-diagonal element is not zero is equal to 1/r .
The data matrix is then generated by adding random Gaussian noise to the ground
truth factorization:

Dji = [Y ∗
j ·CX∗

i ·
� + ε j i ]≥0,

where ε j i ∼ N (0, σ ) and the operator [·]≥0 projects negative values to zero. We gen-
erate five datasets for every noise variance σ ∈ {0, 0.2, 0.4, . . . , 2} and dimensionality
(m, n) ∈ {(300, 200), (1000, 800)} (see Table 2 for a summary of the statistics of the
generated datasets).

For the smaller 300 × 200 dataset we choose a rank of r = 3, while for the larger
1000 × 800 dataset we choose a rank of r = 5. The characteristics overlap X and
overlap Y denote the average number of clusters a feature or observation is assigned to,
when it is not an outlier. Outliers are features or observations which are not assigned
to any cluster.
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Fig. 3 Average F1-, Icos- and Isub-measure (the higher the better), plotted against the Gaussian noise
parameter σ . Error bars have a length of twice the standard deviation
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Table 3 Characteristics of selected datasets for multi-label classification

D m n Classes Overlap Y Outliers Y Dji ∈ P99.9%

Birds 645 260 19 1.86 ± 0.97 45% [0, 103512] 3806.7

Emotions 593 72 6 1.86 ± 0.67 0% [0, 336] 299.1

Genbase 662 1185 19 1.23 ± 0.67 0% {0, 1} 1.0

Scene 2407 294 6 1.07 ± 0.26 0% [0, 1] 1.0

Yeast 2417 103 14 4.24 ± 1.57 0% [0, 1.52] 1.21

20News 11314 6643 20 0.00±0.00 0% [0, 800] 3.0

We denote the dimensionalities m, n, the number of classes, the average number of classes an observation
is assigned to (overlap Y ), the percentage of outliers, the range of values in the data matrix and the 99.9th
percentile of values in the data matrix

In Fig. 3, we plot the F1-, Icos- and Isub-measures, against the Gaussian noise
parameter σ . For σ = 2, roughly 1/3 of the noise samples are larger than or equal to
1.0, and about 2/3 of all noise samples have an absolute value larger than or equal
to 1.0 in expectation. We can observe that the measures overall indicate a similar
ranking of the performance of the algorithms. Throughout the increase of the noise,
Broccoli NMF attains very high scores, while Broccoli RND exhibits slightly
lower performances. We also observe an increased variance of Broccoli RND’s
results (shown by the error bars), indicating a sensitivity to the random initialization.
Broccoli’s performance drops especially in the Icos-measure when the noise exceeds
1.5. Since this drop is more pronounced in the small dataset (300 × 200), it may be
due to the combination of a high amount of noise and of a high number of outliers.

The methods N, NN, O and OO, which are based on orthogonal and nonnegative
relaxations, seem largely unaffected by the noise parameter. We remind that we pro-
vided these methods with the advantage of knowing the true number of clusters for
each observation or feature, during the binarization. On the contrary, this advantage
was not provided to Broccoli. Despite such an advantage, they never achieve a score
larger than 0.8. Fabia and Floc attain the lowest scores among all the considered
competitors, where the scores of Fabia have a tendency to increase with the noise
parameter. This behavior is possibly due to the fact that Fabia (together with Floc)
does not explicitly handle the possible presence of noise in the data, and is therefore
very sensitive to it. The difficulty faced in modeling the true clustering structure with
no noise (F1- and Icos-measure close to 0.5 for σ = 0) may ideally be alleviated in
presence of a huge amount of noise, which strongly pushes it away from the (wrong)
local minimum it was possibly stuck on.

5.3 Real-world datasets

We also evaluate our method on a series of real-world datasets, originally designed
for multi-label classification tasks. These datasets have naturally multiple classes per
observation, which we employ as the ground truth for evaluation purposes. The statis-
tics of these datasets are depicted in Table 3. The birds dataset is derived from audio
files (Briggs et al. 2013), emotions addresses the sentiment of music (Trohidis et al.
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2008), scene is an image dataset (Boutell et al. 2004) and genebase and yeast are
derived from the biological domain (Diplaris et al. 2005; Elisseeff and Weston 2002).
We also adopt the 20 Newsgroups (20News) dataset2, that in principle is not multi-
label. However, since in 20News labels are hierarchically organized, it allows us to
emphasize the capabilities of the considered methods in catching overlaps in terms of
hierarchically organized clusters (i.e., a more general category is overlapping with—
actually includes—more specific categories).

We evaluate how well the computed row-clusters match with the given labels.
However, we should keep in mind that the fundamental task of clustering is to find
the prevalent structure in the dataset, which does not necessarily correspond to the
specific structure encoded by the class labels.

Table 4 summarizes the results on the selected multilabel datasets. As a benchmark,
we train the factor matrix X of a nonnegative matrix factorization when fixing Y to
the class-assignment matrix:

min
X

1

nm
‖D − Y X�‖2, s.t. X ∈ R

n×r+ , (7)

The optimization problem in Eq. (7) is convex. Hence, we can compute the global
minimum of this objective, which provides a lower bound of the MSE which could
possibly be attained by a biclusteringwhere the row-clusters actually reflect the classes.
We refer to this method as NMF given Y.

Table 4 does not display MSE% values for the algorithms Fabia and Floc, since
these algorithms only return the cluster indicator matrices and not the core matrix.
The performance measures of N,NN,O and OO are again derived from a binarization
of the fuzzy row-clusters by means of the class-indicator matrix. The MSE of these
methods is denoted for the relaxed (fuzzy) factor matrices. For all methods we set the
number of clusters r equal to the number of classes.

Table 4 displays how well the competing algorithms match the given class labels.
For five out of the six datasets, the row-clustering of Broccoli NMF attains the best
score in at least one of the considered measures.

We observe that Broccoli (NMF and RND) returns fewer clusters with respect to
the specified rank, for birds and genbase. In this case, we also report in the parentheses
the F1-score averaged only over the best-matched clusters identified by Broccoli. In
other words, the F1-scores in parentheses denote howwell Broccoli’s clusters match
a selection of true classes.

The birds dataset poses an exception for Broccoli NMF. First, Broccoli NMF
is not able to factorize this dataset with a low MSE%. This is partly due to the fact
that almost half of the observations do not belong to any class and are thus marked
as outliers. Additionally, the gap between the 99.9th percentile of data values and the
maximum data value is very big (cf. Table 3). Therefore, there are very few values
which dominate the mean squared error if these values are not approximated. In this
case, the relaxed methods (O,OO, N and NN) are in advantage, because their relaxed
approximation scheme allows for the adaptation to single, exceptionally high values

2 http://qwone.com/~jason/20Newsgroups/.
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Table 4 Evaluation of the clustering methods on real-world datasets

Data Method MSE % F(Y , Y ∗) Icos(Y , Y ∗) Isub(Y , Y ∗) rX rY

Birds NMF given Y 62.57 1.00 1.00 0.32 – 19

Broccoli NMF 72.18 0.11 (0.12) 0.28 0.29 11 17

Broccoli RND 85.23 0.09 (0.16) 0.27 0.29 7 11

N 0.05 0.20 0.42 0.26 19 19

NN 0.04 0.20 0.38 0.23 19 19

O 0.14 0.21 0.43 0.24 19 19

OO 0.08 0.23 0.37 0.20 19 19

Fabia – 0.20 0.32 0.20 9 19

Floc – 0.10 0.25 0.28 19 19

Emotions NMF given Y 9.30 1.00 1.00 0.51 – 6

Broccoli NMF 0.05 0.52 0.64 0.50 6 6

Broccoli RND 0.05 0.51 0.65 0.48 6 6

N 0.13 0.40 0.56 0.36 6 6

NN 0.14 0.38 0.56 0.36 6 6

O 0.16 0.37 0.59 0.39 6 6

OO 0.11 0.37 0.59 0.43 6 6

Fabia – 0.47 0.46 0.30 3 6

Floc – 0.42 0.56 0.44 6 6

Genbase NMF given Y 0.07 1.00 1.00 0.33 – 19

Broccoli NMF 0.27 0.09 (0.57) 0.37 0.33 19 3

Broccoli RND 97.56 0.01 (0.19) 0.03 0.10 19 1

N 0.20 0.16 0.14 0.11 19 19

NN 0.21 0.16 0.15 0.11 19 19

O 0.20 0.18 0.17 0.13 19 19

OO 0.20 0.20 0.16 0.13 19 19

Fabia – 0.29 0.29 0.23 17 19

Floc – 0.11 0.28 0.30 19 19

Scene NMF given Y 19.56 1.00 1.00 0.41 – 6

Broccoli NMF 16.20 0.45 0.48 0.32 6 6

Broccoli RND 20.09 0.27 0.35 0.26 6 6

N 15.08 0.33 0.35 0.26 6 6

NN 12.75 0.43 0.40 0.27 6 6

O 15.04 0.37 0.33 0.25 6 6

OO 15.67 0.37 0.30 0.23 6 6

Fabia – 0.43 0.39 0.30 6 6

Floc – 0.42 0.22 0.21 6 6
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Table 4 continued

Data Method MSE % F(Y , Y ∗) Icos(Y , Y ∗) Isub(Y , Y ∗) rX rY

Yeast NMF given Y 13.24 1.00 1.00 0.56 – 14

Broccoli NMF 1.38 0.29 0.57 0.32 14 14

Broccoli RND 20.09 0.27 0.35 0.26 14 14

N 1.49 0.32 0.80 0.42 14 14

NN 1.39 0.34 0.80 0.42 14 14

O 1.49 0.36 0.82 0.45 14 14

OO 1.40 0.35 0.81 0.44 14 14

Fabia – 0.34 0.63 0.37 14 14

Floc – 0.05 0.06 0.10 14 14

20News NMF given Y 95.36 1.00 1.00 0.22 – 20

Broccoli NMF 93.18 0.14 0.07 0.08 20 20

Broccoli RND 98.77 0.01 0.00 0.02 20 20

N 55.70 0.04 0.20 0.18 20 20

NN 56.10 0.04 0.21 0.21 20 20

O 58.30 0.02 0.22 0.22 20 20

OO 57.06 0.05 0.22 0.22 20 20

Fabia – - – – – –

Floc – – – – – –

We compare the novel method Broccoli with the selected competitors and a baseline NMF, where we fix
the cluster assignment matrix Y to the class-assignment matrix and optimize only for one other factor matrix
(NMF given Y ). Best results are emphasized in bold, except for the (lowest) MSE%, since the values are
not directly comparable (all MSE% values, except for those measured for Broccoli, are computed based
on a relaxed solution). The F1-scores reported in the parentheses correspond to the average F1-scores
considering only the best-matched clusters identified by Broccoli

within one bicluster (a similar effect is observable on 20News). In addition, the bina-
rization ensures that all the outliers are also reflected as such in the binary factorization,
which positively influences the performance measures.

In contrast, the genbase dataset is a binary dataset which is similarly well-factorized
by Broccoli NMF as by the relaxed methods. In particular, Broccoli NMF attains
a low MSE% with only three of the possible 19 row-clusters. With these few clusters,
Broccoli NMF achieves the highest Icos and Isub agreement measures, which do not
explicitly depend on the number of modeled clusters due to their scaling invariance
(cf. Appendix B). Yet, Broccoli NMF and Broccoli RND produce the lowest
F1-score, which is largely due to the fact that the average F1-score returns a score
of zero for every non-modeled cluster. On the other hand, the high F1-score (shown
in the parentheses), averaged over only the modeled three clusters, indicates a proper
match of the clusters modeled by Broccoli NMF with true labels.

The genbase dataset is the only one for which Fabia attains a high score in at
least one of the measures. On the other datasets, Fabia is often reaching good but not
outstanding scores,which are not too far from the best ones.Flocusually obtains lower
F1-scores than Fabia, but the results in terms of agreement measures are discordant.
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Table 5 Summary of the 20 Newsgroup categories

Belief Comp Misc Rec Sci Politics

alt.atheism graphics forsale autos crypt guns

religion.christian os.ms-windows.misc motorcycles electronics mideast

talk.religion sys.ibm.pc.hardware sport.baseball med misc

sys.mac.hardware sport.hockey space

windows.x

The topics are divided into six categories which have a set of sub-categories

We observe that for all the other datasets, Broccoli NMF attains a lower MSE%
than the benchmark NMF for given Y . This shows that the true class labels generally
do not yield a suitable clustering, which approximates the data well. No clustering
which actually aligns with the class labels can obtain a lower MSE% than the one
denoted for NMF given Y . After all, the MSE% measures how well the identified
clustering structure matches the data. Hence, any clustering which obtains a MSE%
which is substantially lower than the baseline of NMF given Y cannot have a per-
formance measure close to 1.0. We further note that Broccoli NMF usually attains
a MSE% which is close to the one of relaxed factorizations N, NN, O and OO. For
the emotions and the yeast dataset, Broccoli achieves even a lower MSE% than the
relaxed factorizations. This demonstrates the strengths of the employed optimization.

Finally, we observe that Broccoli RND, based on a random initialization, gener-
ally performs worse than Broccoli NMF. In particular, we can observe significantly
higher values of the MSE%, indicating that Broccoli RND often converges to
noticeable worse local optima than Broccoli NMF. This result confirms the positive
contribution of the proposed initialization strategy that, on the other hand, requires a
negligible amount of additional running time.

5.4 Qualitative evaluation of the 20 newsgroups dataset

We perform a qualitative evaluation of results on the 20News dataset. This dataset
is a collection of posts assigned to 20 topics which are hierarchically organized
(cf. Table 5). We process the textual data as a data matrix, corresponding to the term
frequency of n = 6643 lemmatized words in m = 11314 posts (training data only, as
provided by scikit-learn3). We applyNN,OO, Broccoli RND and Broccoli NMF
to derive r = 20 row- and column-clusters. Fabia and Floc were not able to process
such a large dataset.

5.4.1 Inspection of feature clusters

The obtained column-clusters (the feature clusters which, in this case, are clusters of
words) are shown in Figs. 4, 5, 6 and 7. For the fuzzy cluster indicators of NN andOO,
the size of the word i in the wordcloud of cluster s corresponds to the assigned weight

3 https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.
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Fig. 4 Illustration of derived word-clusters by the method NN on the 20 Newsgroups dataset. The size of
a word reflects its weight in the corresponding cluster (X ·s )

Fig. 5 Illustration of derived word-clusters by the method OO on the 20 Newsgroups dataset. The size of
a word reflects its weight in the corresponding cluster (X ·s )
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Fig. 6 Illustration of derived word-clusters by Broccoli RND on the 20 Newsgroups dataset. The size of
a word reflects its weight in the corresponding cluster (X ·s )

Fig. 7 Illustration of derived word-clusters by Broccoli NMF on the 20 Newsgroups dataset. The size of
a word reflects its weight in the corresponding cluster (X ·s )
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Xis ≥ 0. In turn, the binary word-indicators of Broccoli RND and Broccoli NMF
are visualized such that the size of a word in the cloud is proportional to the inverse of
the number of clusters the word is assigned to. That is, those words which are unique
to the respective cluster are larger than those words which are assigned to multiple
clusters.

Looking at the visualizations of clusters, we see that the word max pops up promi-
nently inmany clusters. Thewordmax obtains comparably very high term frequencies.
The average term frequency of a word is equal to 1.59, and 99% of all words have
a term frequency smaller than or equal to 8. The word max occurs in 149 posts and
obtains term frequencies in [1, 800]. Hence, the word max attains exceptionally high
term frequencies in a few posts and exhibits therewith a special role. The unusual high
term frequencies of this word are handled differently among the clustering methods.
While NN and OO give a high weight to this word in almost all clusters, Broccoli
RND and Broccoli NMF reflect more general clustering structures. It is noteworthy
that, as we can observe in Table 4, Broccoli RND and Broccoli NMF obtain a
notably higher (worse) MSE% than competitors. The unusually high frequency of the
wordmax vastly increases the approximation error for any cluster model that does not
adapt to (and possibly overfit on) these particularly high word occurrences. Neverthe-
less, the approximation error exhibited by the model based on true class labels (i.e.,
NMF given Y ) is comparable to that achieved by Broccoli RND and Broccoli
NMF.

In any case,we can detectmeaningful clusterswhich represent a specific topic for all
clustering methods. Comparing the topics, we can see that Broccoli NMF provides
a distinctive view on the dataset, identifying, for example, a religion cluster, which is
not featured by the methods NN and OO. Hence, although Broccoli’s optimization
makes use of a relaxed objective, its results still provide another view on the data with
respect to that provided by the relaxed counterparts NN and OO.

5.4.2 The distribution of observation-clusters over 20News categories

The differences between the cluster models are evident also when we look at the visual
representation of the cluster overlaps with the 20News categories, depicted in Fig. 8.
In this figure, on the horizontal axis we show the 20News categories at the bottom and
super-categories at the top, while on the vertical axis we list the identified clusters.
The intensity of each pixel reflects the normalized count of posts in the corresponding
cluster and category. The cluster-category count is normalized such that every cluster
has amaximumagreement of 1.0with at least one of the categories,while the remaining
agreement values range between 0.0 and 1.0. Consequently, we see at least one pixel
per row having the highest intensity. The presence of multiple pixels per row with a
high intensity means that such a cluster covers multiple categories with equally high
agreement.

In Fig. 8, we can observe that all methods except Broccoli NMF yield clus-
ters which overlap mostly with only one of the categories. For OO and NN,
such a category is comp.os.ms-windows, while for Broccoli RND such a cat-
egory is comp.windows.x. It is interesting to note that comp.os.ms-windows and
comp.windows.x are the categories which contain few posts with an exceptionally
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Fig. 8 Visualization of the overlap of Broccoli NMF clusters on the 20News dataset and the given
categories

high frequency of the word max. From an optimization perspective this is not sur-
prising, since the fuzzy clustering of NN and OO is able to notably decrease the
MSE%, by specifically focusing on those data matrix entries with very high values,
which strongly influence the (squared) approximation error. On the other hand, from
a clustering perspective, this behavior is not necessarily desirable, since it can result
in a very one-sided representation of the data, as shown in Fig. 8: the clusters are
overfitting 12 posts containing the word max at least 45 times. As regards Broccoli
RND, the imposed binary constraints result in slightly more widespread clusters, since
they ensure that all features in one bicluster are approximated with the same value.
However, Broccoli RND’s clusters concentrate around one of the categories with
the unusual high word occurrences. Here, the random initialization does not seem to
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Fig. 9 Visualization of the overlap of Broccoli NMF clusters on the 20News dataset for different ranks

be suitable to find a good starting point for the optimization: neither the performance
measures nor the approximation error nor the visual analysis indicate that Broccoli
RND reflect meaningful topic similarities.

In contrast, the clusters identified byBroccoli NMF are diverse and cover various
categories. In particular, we can see clusters which clearly originate only from one cat-
egory (e.g., talk.politics.guns in cluster 8), and others which summarize various topics
(e.g., comp in clusters 14–19). Few clusters cover categories from different super-
categories. For example, cluster 11 comprises posts from comp.graphics and sci.space,
while cluster 5 models posts from talk.politics.mideast and religion.christian. How-
ever, even if they come from different super-categories, such specific combinations
semantically make sense, and emphasize the ability of Broccoli NMF of catching
such particular inter-topic relationships.

5.4.3 Influence of the rank

Besides the optimization aspects, there is one open problem for (bi)clustering applica-
tions in practice: the determination of the rank, i.e., of the most appropriate number of
clusters. Although specifically addressing such a vast topic is out of the scope of this
paper, in this subsectionwe qualitatively observe the influence of the rank on the results
obtained on the 20News dataset. In Table 4, we have already observed that Broccoli
NMF identifies for some datasets a number of biclusters that is smaller than the spec-
ified rank. In Fig. 9 we show the category distribution of Broccoli NMF clusters,
when we specify lower ranks r ∈ {5, 10, 15}. We observe that Broccoli NMF tends
to model more general clusters for smaller ranks. For r = 5, there are two clusters
focused on sci.crypt, which go either in the direction of politics or comp-related top-
ics, a cluster representing the super-category belief, a cluster encompassing politics
and belief, and a cluster encompassing sports and politics. As expected, the more we
increase the rank, the more specific the clusters become, until they only cover few
categories. It is noteworthy that, even when choosing a rank which apparently seems
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too low, Broccoli NMF still groups together categories that are somehow related, or
belonging to the same super-category. This behavior is evident starting from r = 10,
where sub-categories related to religion, talks and computers, respectively, appear to
be reasonably grouped into distinct clusters.

5.5 Discussion on possible limitations

Our proposed penalized optimization approach is flexible and has the potential to
become a novel general approach for the optimization of nonexclusive clustering struc-
tures based on matrix factorization. Notably, most of the popular clustering methods
are based on (or can be viewed as) a matrix factorization with binary constraints,
including k-means, spectral clustering, and variants of deep clustering. Despite these
characteristics, in the following we highlight possible limitations of the proposed
approach. We should first note that the adopted squared Frobenius norm is sensitive to
data matrix entries having a magnitude that is much higher than the average. In other
words, if there are very few data entries with very high values, then any factorization
with a low MSE needs to fit the clustering to the unusual high-valued entries. This
phenomenon is in contrast with the general concept of clustering, which is to group
reoccurring patterns. We actually considered two examples of datasets which have
few unusual high values: birds and 20News. For these datasets, we observe a big gap
between the 99.9th percentile and the maximum data value (cf. Table 3). For both
datasets, Broccoli NMF is not able to achieve a low MSE and the performance
measures give contrasting signals. This does not mean that the clusters identified by
Broccoli NMF are not meaningful, as confirmed in the qualitative exploration we
performed for 20News. However, outliers with extremely high values aggravates the
optimization.

This leads to the second limitation of our approach: the initialization. We have
been able to derive a suitable heuristic for the initialization, which works well for
most of the considered cases. However, other contexts might benefit from a different
initialization. In practice, variations of the proposed initialization should be considered
in future experiments, by varying, for example, the percentage of cluster indicators
which are scaled to one.

Finally, there is the issue of selecting the rank. This is not a point in question
specifically for the proposed method, but is related to a general open problem in
clustering. There is always the possibility to apply popular heuristics such as the
elbow method, which is based on the identification of an elbow in the curve of the
approximation error, plotted against the rank. Moreover, we have also observed that,
in some datasets, increasing the user-specified rank does not necessarily correspond
to a higher number of clusters identified by Broccoli NMF. This means that such
heuristics might be adopted to determine an upper bound of the clusters Broccoli
should identify, but, in general, the determination of the rank based on theoretically
justified grounds is still an open problem.
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6 Conclusions

Wehave proposed the biclusteringmethodBroccoli, which employs recent advances
in optimization theory for the optimization of nonnegative tri-factorizations with
binary constraints. To the best of authors’ knowledge, Broccoli can be considered
the first algorithm that is able to model the possible overlap between clusters, as well
as the presence of outliers in the data, without requiring the user to specify character-
istics about the obtained clustering (such as the amount of overlap or outliers), while
returning definite, non-fuzzy cluster assignments. Employing the well-founded theory
of proximal stochastic optimization, our method is guaranteed to converge to a local
minimum in expectation (Driggs et al. 2020). Our method is based on the penaliza-
tion of non-binary terms in the cluster-assignment matrices. The regularization weight
of the penalizing terms is automatically updated during training, while the user has
only to specify the step-size of these updates, which should be as small as possible in
practice.

Our experiments on synthetic datasets show that our method is able to detect the
underlying clustering structure and that it is robust to noise. Figure 3 shows that
the direct optimization for binary cluster indicator matrices of Broccoli generally
achieves higher performance measures (cf. Sect. 5.1) than the methods which com-
pute a relaxed factorization, which are binarized according to the (generally unknown)
ground truth. Broccoli relies on an initialization based on shortly optimized nonneg-
ative matrix factorization.While this initialization method did not make a very notable
difference for the synthetic data, which have a clear biclustering structure as ground
truth, we have seen that the initialization becomes important for real-world data. The
experiments on real-world data (cf. Table 4) show that the initialization of Broccoli
with a shortly optimized nonnegative matrix factorization (Broccoli NMF) is suit-
able to find minima which attain a remarkably low approximation error, sometimes
even lower than the one of relaxed factorizations. Finally, in our qualitative evaluation,
we have observed that Broccoli NMF is able to derive meaningful clusters in terms
of the found feature-clusters (cf. Figs. 4, 5, 6, 7.) and the observation clusters (cf.
Fig. 8). Furthermore, we have briefly discussed the effect of the setting of the rank
for Broccoli NMF (cf. Fig. 9). We found that for smaller ranks, Broccoli NMF
tends to return more encompassing clusters, which overarch multiple categories and
super-categories.

We can conclude that Broccoli allows swift adaptations of advances in the theory
of nonconvex optimization. In addition, techniques to cope with specific data charac-
teristics in matrix factorization can easily be transferred to the optimization scheme
adopted in Broccoli. For example, a common technique for handling missing data
in matrix factorization consists in the minimization of the approximation error only
for the observed data matrix entries, i.e., on the non-missing data. This approach can
be integrated in Broccoli by setting the partial derivatives in the gradient descent
updates to zero in correspondence with the missing data indices.

This makes Broccoli a theoretically founded, practically well-performing and
flexible approach which has the potential to spark further research on the optimization
of non-exclusive clusterings in particular, and on the learning of discrete structures in
general.
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Appendix A: Lipschitz constants of the batch-gradient

We briefly denote the Lipschitz constants, which define the step-sizes in Algorithm 1.
Given the mean squared error function:

MSE(C, X ,Y ) = 1

nm
‖D − YCX�‖2,

the gradients with respect to single matrices are given by:

∇XMSE(C, X ,Y ) = 2

nm
(D − YCX�)�YC

∇YMSE(C, X ,Y ) = 2

nm
(D − YCX�)XC�

∇CMSE(C, X ,Y ) = 2

nm
Y�(D − YCX�)X .

If we compute the gradients on a batchM×I or J ×N , for J ⊆M and I ⊆N , and
N = {1, . . . , n} and M = {1, . . . ,m}, then we obtain the following batch gradients:

∇XMSE(C, X ,Y ) �J×N = 2

|J | n (DJ · − YJ ·CX�)�YJ ·C

∇YMSE(C, X ,Y ) �M×I = 2

|I|m (D·I − YCX�
I·)XI·C�

∇CMSE(C, X ,Y ) �J×N = 2

|J | n Y
�
J ·(DJ · − YJ ·CX�)X

∇CMSE(C, X ,Y ) �M×I = 2

|I|mY�(D·I − YCX�
I·)XI·.
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The Lipschitz constants of the batch gradients are then given by:

L∇X�J×N = 2

|J | n ‖(YJ ·C)�YJ ·C‖

L∇Y �M×I = 2

|I|m ‖(XI·C�)�XI·C�‖

L∇C�J×N = 2

|J | n ‖Y�
J ·YJ ·‖ ‖X�X‖.

L∇C�M×I = 2

|I|m ‖Y�Y‖ ‖X�
I·XI·‖.

Appendix B: Discussion on clustering agreement measures

Rabbany and Zaïane (2015) propose four main agreement measures for overlapping
clusters. In the following, we first discuss the two measures which we omitted from
our experimental evaluation, namely:

IARI(Y ,Y ∗) = ‖Y�Y ∗�‖2 − 1
m2 |YY�||Y ∗Y ∗�|

‖YY�‖2 + ‖Y ∗Y ∗�‖2 − 1
m2 |YY�||Y ∗Y ∗�| ,

IF (Y ,Y ∗) = ‖Y�Y ∗�‖2
‖YY�‖2 + ‖Y ∗Y ∗�‖2 .

The IARI-measure is an extension of the Adjusted Randomized Index (ARI) for over-
lapping clusters. We observe that IARI is related to IF . The difference is that IARI
subtracts a term from both, the nominator and the denominator of the IF measure.
The subtracted term is introduced by the normalization of the ARI measure, which
adjusts for random cluster correspondences by assuming independence of the matri-
ces YY� and Y ∗Y ∗�. Both measures are not scaling invariant. That is, the condition
I (αY ,Y ∗) = I (Y ,Y ∗) does generally not hold for α ∈ R. As a result, the above men-
tioned measures are sensitive to the norm of the cluster indicator matrices. This does
not have to be an issue, but we noticed that the scaling sensitivity leads to inaccurate
reflections of the clustering performance. In a preliminary experimental evaluation,
we found out that clusters consisting of a mix of observations coming from multi-
ple ground truth clusters (e.g., 20% observations randomly taken from 6 different
ground truth clusters) obtain a much higher (often up to 10 times higher) IARI and IF
measurement than clusterings which merge two or three whole ground truth clusters.
Since the possible reward which is given to clusterings picking few observations from
various ground truth clusters (thus scattering the ground truth structure) provides mis-
leading performance indications, we do not consider IARI and IF in our experimental
evaluation.

The two other clustering measures proposed by Rabbany and Zaïane (2015) are the
following ones:
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Icos(Y ,Y ∗) = ‖Y�Y ∗�‖2
‖YY�‖‖Y ∗Y ∗�‖ ,

Isub(Y ,Y ∗) = ‖Y�Y ∗�‖
‖Y‖‖Y ∗‖ .

Weobserve that thesemeasures are scaling invariant, that is the condition I (αY ,Y ∗) =
I (Y ,Y ∗) holds for all α ∈ R. Indeed, the Icos measure can be interpreted as the cosine
of the angle of the vectorized matrices vec(YY�) and vec(Y ∗Y ∗�).

Proposition 1 For matrices Y ,Y ∗ ∈ R
m×r we have

Icos(Y ,Y ∗) = cos(∠(vec(YY�), vec(Y ∗Y ∗�
))),

where

vec(YY�) =
⎛

⎜
⎝

Y1·Y�
1·

...

Ym·Y�
m·

⎞

⎟
⎠

Proof Given two cluster indicator matrices Y ∈ {0, 1}m×r and Y ∗ ∈ {0, 1}m×r∗
, the

clustering agreement is according to the definition of the Frobenius norm via the trace
equal to

‖Y�Y ∗‖2 = tr(Y�Y ∗Y ∗�Y ) = tr(Y ∗Y ∗�YY�).

The trace defines an inner product, the Frobenius inner product, which can be defined
for matrices A, B ∈ R

a×b by means of the vec operator:

〈A, B〉 = tr(A�B) = vec(A)� vec(B).

Correspondingly, we can write the Frobenius norm by means of the vec-operator as

‖A‖ = √〈A, A〉 =
√

vec(A)� vec(A) = ‖vec(A)‖.

As a result, we obtain for the Icos-measure the following presentation:

Icos(Y ,Y ∗) = ‖Y�Y ∗‖2
‖YY�‖‖Y ∗Y ∗�‖

= vec(Y ∗Y ∗�)� vec(YY�)

‖vec(YY�)‖ ‖vec(Y ∗Y ∗�)‖
= cos(∠(vec(YY�), vec(Y ∗Y ∗�

))).

��
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The Icos measure indicates the similarity between two clusterings Y and Y ∗ as the
cosine similarity of the agreement matrices YY� and Y ∗Y ∗�.

In comparison, the Isub measure is more related to a weighted similarity measure-
ment of the subspaces, spanned by the columns ofY andY ∗. Formally, letY = UΣV�
and Y ∗ = U∗Σ∗V ∗� be the singular value decompositions of the cluster indicator
matrices. Then we have

‖Y�Y ∗‖2 = ‖VΣ�U�U∗Σ∗V ∗�‖2
= ‖Σ�U�U∗Σ∗‖2
=

∑

s,t

σ 2
s σ ∗

t
2
(U�·s U∗·t )2.

The columns of the matrix U ∈ R
m×r indicate an orthogonal basis of the subspace

spanned by the columns of Y . The normalization term is equal to:

‖Y‖2‖Y ∗‖2 = ‖Σ‖2‖Σ∗‖2 =
∑

s,t

σ 2
s σ ∗

t
2
.

As a result, the Isub measure returns a weighted comparison of the subspaces induced
by the cluster indicator columns, as follows:

Isub(Y ,Y ∗) =
∑

s,t σ
2
s σ 2

t (U�·s U∗·t )
∑

s,t σ
2
s σ 2

t
.
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