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Abstract
Bone loss associated with type 1 diabetes mellitus (T1DM) begins at the onset of 
the disease, already in childhood, determining a lower bone mass peak and hence 
a greater risk of osteoporosis and fractures later in life. The mechanisms 
underlying diabetic bone fragility are not yet completely understood. Hyper-
glycemia and insulin deficiency can affect the bone cells functions, as well as the 
bone marrow fat, thus impairing the bone strength, geometry, and microarchi-
tecture. Several factors, like insulin and growth hormone/insulin-like growth 
factor 1, can control bone marrow mesenchymal stem cell commitment, and the 
receptor activator of nuclear factor-κB ligand/osteoprotegerin and Wnt-b catenin 
pathways can impair bone turnover. Some myokines may have a key role in 
regulating metabolic control and improving bone mass in T1DM subjects. The aim 
of this review is to provide an overview of the current knowledge of the 
mechanisms underlying altered bone remodeling in children affected by T1DM.
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Core Tip: Bone fragility is a well-known complication related to type 1 diabetes 
mellitus, and it can manifest from the disease onset, already in childhood. The 
mechanisms underlying this relationship, and the precise role of metabolic control in 
preventing bone impairment, are not yet fully understood. Future studies are needed to 
clarify better the factors responsible for bone damage in diabetic subjects, and to 
identify strategies for avoiding and managing osteopenia/osteoporosis in these subjects.
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INTRODUCTION
Type 1 diabetes mellitus (T1DM) is a common endocrine disease that affects approx-
imately 500000 children and adolescents worldwide. Moreover, in the last decade the 
incidence has been rising and the age at onset dropping[1]. Micro and macrovascular 
T1DM-related complications may already have developed a few years after disease 
onset[2] and are correlated with the age at onset, diabetes duration, body mass index, 
and pubertal development[3-5]. Hyperglycemia is the main systemic risk factor for 
diabetic complications, although multiple biochemical pathways, such as the 
formation of advanced glycation end products, oxidative stress, endoplasmic 
reticulum stress, inflammatory cytokines, and kallikrein-bradykinin activation, link 
the adverse effects of hyperglycemia with the microvascular dysfunction[6]. 
Consequently, long-term glycemic control is considered the most important modifiable 
factor to delay the onset, as well as the progression of microvascular complications, as 
clearly demonstrated by The Diabetes Control and Complications Trial[7]. In addition, 
beyond the effect of glycemic control, the impairment of some protective factors, such 
as insulin and insulin-like growth factor-1 (IGF1), may contribute to the vascular 
damage over time[8].

Recently, it was recognized that autoimmune diabetic disease also affects the 
skeleton[9-11]. In T1DM, a reduced bone mass may be present at an early stage after 
diagnosis[11], but it is unclear whether it is the duration of diabetes or degree of 
glycemic control that may induce a lifelong increased risk of fractures[12]. The 
association between glucose metabolism and bone-fat tissue interactions[13,14], as well 
as muscle-bone crosstalk, has been clearly demonstrated[15]. In particular, the skeleton 
acts as an endocrine organ, by modulating glucose tolerance through the secretion of 
bone-specific proteins, in particular osteocalcin (OCN). Furthermore, proteins 
involved in bone remodeling, like osteoprotegerin (OPG), are associated with an 
impaired insulin function[16].

The aim of this review is to provide an overview of current knowledge of the 
mechanisms underlying altered bone remodeling in children affected by T1DM.

FACTORS INFLUENCING BONE MASS ACCRUAL IN T1DM CHILDREN 
AND ADOLESCENTS
Childhood and adolescence are the critical ages for linear growth, bone mineral 
accrual, and the attainment of the peak bone mass, which is a key determinant of the 
lifelong risk of osteoporosis[17,18]. Therefore, osteoporosis prevention begins by 
improving bone mineral gains during an individual's years of growth[19]. During 
peripuberty, the bone mineral content and bone mineral density (BMD) in the lumbar 
spine and proximal femur increase by four-fold to six-fold. Furthermore, puberty is 
also the time when the main gender differences in bone growth emerge, particularly in 
terms of bone size and bone mass content. At the same time, the peak T1DM onset 
time ranges between the ages of 9 and 14 years[20], so children and adolescents 
affected by T1DM may be particularly predisposed to bone impairment.

Among the risk factors for osteoporosis, some factors are modifiable, such as a 
balanced diet and exercise, which have an important role already in childhood, 
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whereas obvious non-modifiable factors include gender, age, genetic factors, diseases, 
and drugs[21,22].

Impaired bone mass accrual (density and quality) in T1DM children has been 
attributed to multiple local factors in the bone marrow, as well as to systemic factors, 
which affect osteoblast (OB) differentiation and function (Figure 1).

Local factors in the bone marrow
Several studies have suggested that hyperglycemia impairs the biology and function of 
multipotent bone marrow-derived mesenchymal stem cells (BMSCs), which generate 
mesodermal tissues including cartilage, bone, muscle, tendon, ligament, and fat[23]. In 
particular, hyperglycemia both reduces the proliferation and increases the senescence 
of BMSCs in vitro[24,25] and also inhibits OB activities[26] (Figure 1). In addition, runt-
related transcription factor 2 (RUNX2) and RUNX2-related osteogenic genes are 
downregulated in T1DM[27], suggesting that diabetic conditions may affect the BMSC 
fate commitment. Chronic hyperglycemia increases the expression of peroxisome 
proliferator-activated receptors (PPAR) genes, which also stimulate BMSCs differen-
tiation in bone marrow adipocytes[28] (Figure 1). In addition to this, thiazolidine-
diones, antidiabetic PPARγ agonists, promote marrow adipogenesis, thus increasing 
the fracture risk[29]. The bone marrow adipose tissue (BMAT) is considered to be a 
single anatomical entity with a different distribution in the various skeletal sites. In an 
animal T1DM model, BMAT was significantly augmented, and bone formation was 
inversely associated with the adipocytes in the bone marrow[30]. BMAT also directly 
regulates osteoclastogenesis by producing receptor activator of nuclear factor-κB 
ligand (RANKL)[31]. Bone morphogenetic protein-6 (BMP6) is known to induce bone 
formation (Figure 1), and adipose-derived BMSCs overexpressing BMP6 have been 
shown to be capable of repairing bone defects in an animal model[32]. In addition, 
BMP6 can probably mitigate T1DM-associated bone loss by directing BMSC differen-
tiation towards the osteogenic lineage. Recently, BMP6 supplementation in strepto-
zotocin-induced diabetic mice has been demonstrated to directly restore BMD without 
influencing glucose levels[33], although a possible indirect role of BMP6 exerted 
through the modulation of glucose concentrations was observed[34].

This finding suggests that hyperglycemia may not be the main determinant of bone 
loss in T1DM patients, since other factors, like insulin and the growth hormone/ 
insulin-like growth factor 1 (GH/IGF-1) axis, could modulate BMSCs osteogenesis via 
BMP6 or other pathways.

Insulin and GH/IGF-1 axis
Insulin, GH, and IGF-1 are anabolic hormones that directly affect bone cells (Figure 1). 
Insulin stimulates both osteoclast (OC) formation and OB proliferation, achieving a 
steady state in favor of bone formation[35]. Insulin signaling is essential for normal 
bone acquisition, as demonstrated in insulin receptor (IR) knockout mice[36], likely 
due to the role of insulin in the regulation of bone energy metabolism. Moreover, IR 
activation in the growth plate of mice fed with a hypercaloric diet stimulates skeletal 
growth as well as growth plate chondrogenesis[37]. OBs also express the IGF-1 
receptor (IGF1R), and IGF-1 binds both to IGF1R and, with a lower affinity, to IR, thus 
triggering the insulin signaling pathway and exerting osteoanabolic activities.

Linear growth as well as BMD are critically affected by the GH/IGF-1 axis. 
Moreover, GH and IGF-1 play a key role at the growth plate, acting on chondrocyte 
proliferation, differentiation, and hypertrophy. Abnormalities in this axis have been 
reported in T1DM subjects, especially during puberty because of the increased insulin 
requirements due to physiological insulin resistance. In particular, T1DM patients 
exhibit GH hypersecretion, resulting from portal insulinopenia associated with a 
decreased hepatic output of IGF-1 together with pituitary hypersecretion of GH. The 
low IGF-1 serum levels are also related to increased levels of the inflammatory 
cytokines interleukin-6 and interleukin-8, which inhibit IGF-1 transcription[38] 
(Figure 1).

Several studies have established correlations between a low BMD, low IGF-1, and 
glycemic control in T1DM children and adolescents, also providing evidence of low 
BMD in subjects with poor glycemic control[39-42]. These data are correlated with 
reduced IGF1, IGF1R and transforming growth factor β1 gene expression in peripheral 
blood mononuclear cells in T1DM patients[43]. In addition, changes in the levels of the 
IGF-1 binding proteins that modulate IGF-1 bioactivity in serum and tissues have been 
observed in T1DM subjects[44].
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Figure 1 Mechanisms underlying altered bone remodeling in type-1-diabetes. APC: Adenomatous polyposis coli; BMP6: Bone morphogenetic protein-
6; BMSCs: Bone marrow-derived mesenchymal stem cells; CK1: Casein kinase I; CTX: C-terminal cross-link of collagen; DKK-1: Dickkopf-1; DVL: Disheveled; GH: 
Growth hormone; GSIS: Glucose-stimulated insulin secretion; GSK3: Glycogen synthase kinase 3 beta; IR: Insulin receptor; IGF1: Insulin-like growth factor-1; IGF1R: 
Insulin-like growth factor-1 receptor; IGFBPs: IGF-1 binding proteins; IL-6: Interleukin-6; IL-8: Interleukin-8; LPR5/6: LDL receptor related protein 5; OCN: 
Osteocalcin; OPG: Osteoprotegerin; PPAR: Peroxisome proliferator-activated receptors; RANK: Receptor activator of nuclear factor-kappa B; RANKL: Receptor 
activator of nuclear factor-kappa B ligand; RUNX2: Related transcription factor 2; SOST: Sclerostin; TCF/LEF: T-cell factor/lymphoid enhancer factor.

RANKL/RANK/OPG pathway
Bone health depends on the balance between OCs, the bone-reabsorbing cells, and 
OBs, the bone-forming cells. In several pediatric diseases, bone impairment is due to 
an imbalance of OBs and OCs activity accomplishing the remodeling process[45]. OBs 
produce positive and negative regulators of osteoclastogenesis, such as the RANKL 
and the natural decoy receptor for RANKL, OPG, respectively[46]. Although OBs are a 
major source of RANKL, this cytokine is also expressed by osteocytes, fibroblasts, and 
immune system cells, including T cells and mature dendritic cells[47]. OCs differ-
entiate under the control of RANKL, which binds to its receptor, RANK. OPG is the 
RANKL decoy receptor, thus acting as a negative regulator of osteoclastogenesis 
(Figure 1). OPG is produced not only by OBs but also by B lymphocytes and dendritic 
cells, as well as several cytokines[47,48]. In the last years, the impaired OB differen-
tiation and function mechanisms in diabetic bone have been further elucidated, 
demonstrated by low serum levels of OB markers in T1DM subjects[49], and a 
decreased osteoblastic activity in streptozotocin-induced T1DM mice[50]. However, 
OC activity and bone resorption in T1DM are still debated. In diabetic animal models, 
an increase in OC numbers[51], as well as messenger RNA (mRNA levels of tartrate 
resistant acid phosphatase (TRAP) and cathepsin K, bone resorption markers, has been 
demonstrated[52,53]. By contrast, bone resorption was unaffected or even decreased in 
T1DM rodents[54]. In a recent study by Yang et al[55] the OC activity of trabecular 
bone was increased in diabetic mice at the early stage, accompanied by an augmented 
protein expression of RANKL. Remarkably, the RANKL mRNA levels remained 
unchanged, suggesting that the increased bone resorption in early-stage diabetic mice 
is induced by RANKL derived from BMAT rather than from the bone tissue itself[55]. 
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This finding indicates that BMAT could be a key factor in regulating bone homeostasis 
in pathological conditions such as diabetes.

Data about OPG and RANKL levels in T1DM children and adolescents are 
conflicting. Chrysis et al[56] found that serum OPG levels were significantly increased 
in patients with T1DM compared with controls, whereas RANKL levels did not 
change. The low RANKL levels in T1DM patients are probably due to blockade of the 
RANKL signal by an OPG increase on the OPG/RANKL/RANK axis[56]. Con-
sistently, Galluzzi et al[57] observed significantly higher levels of OPG in children with 
long-lasting T1DM compared to the controls. In the study by Szymańska et al[58], OPG 
levels were higher in T1DM subjects at the onset as compared to the control group, 
and decreased thereafter, while on the contrary, RANKL levels were lower than in 
controls but increased during follow-up. The authors speculated that the decreased 
insulin secretion in patients at the onset of diabetes may result in decreased insulin 
binding to the OB receptor, leading to a transitory increase of OPG levels in the early 
stage of diabetes[58]. Loureiro et al[59] reported low OPG levels in T1DM children, 
which were correlated with the metabolic control level. In the recent study by 
Karalazou et al[60], T1DM patients showed higher RANKL levels and lower OPG 
levels than controls. Taking literature data into account, high OPG levels would seem 
to be positively associated with the progression of diabetes and the development of 
complications[61-63], while low OPG levels are not associated with microvascular 
alterations[64,65].

Wnt/β-catenin pathway
The Wnt/β-catenin pathway is a signal transduction cascade that controls numerous 
processes during development. Thus, aberrant Wnt signaling underlies a broad range 
of diseases in humans.

The pathway is regulated at several levels, also by secreted Frizzled-related proteins 
and Wnt inhibitory protein, both of which inhibit interactions between Wnt and Wnt 
receptors[66] (Figure 1). Other Wnt inhibitors belong to the Dickkopf-1 (DKK-1) and 
the WISE/SOST families, which antagonize signaling by binding low-density 
lipoprotein-related receptor-5/6[67]. DKK-1 is expressed by preosteoblasts, OBs, and 
osteocytes, and acts as an antagonist of the canonical Wnt signaling by binding to low-
density lipoprotein-related receptor-5/6 (Figure 1). Sclerostin is a secreted protein 
encoded by the SOST gene and produced by mature osteocytes, which antagonizes 
Wnt/β-catenin signaling by abrogating its bone anabolic actions[68,69] (Figure 1). 
DKK-1 and sclerostin are key regulators of bone mass, and high levels of these Wnt 
signaling inhibitors have been found in several bone diseases[70]. The important role 
of both molecules has also been demonstrated in a mouse model, showing that a 
bispecific antibody targeting sclerostin and DKK-1 supports bone mass accrual and 
fracture repair, exerting a greater effect compared to monotherapies[71]. In type 1 
diabetic rats, an increased SOST mRNA and sclerostin expression has been observed
[72]. Clinical studies and Homeostatic Model Assessment for Insulin Resistance have 
shown an inverse correlation between sclerostin and insulin levels, suggesting that 
sclerostin could modulate glucose homeostasis[73]. DKK-1 involvement has been 
demonstrated in a large cohort of T1DM children and adolescents affected by T1DM
[74], in which DKK-1 levels were correlated with bone formation markers, the BMD-Z-
score, sex, and pubertal stage[74]. Neumann et al[75] reported higher serum levels of 
sclerostin in T1DM subjects compared with controls but found no correlations between 
sclerostin levels and bone metabolism markers. On the contrary, Tsentidis et al[76] 
found comparable levels of sclerostin in T1DM children and controls. Recent data 
suggested that sclerostin levels are increased in pediatric T1MD patients and 
confirmed a relationship between sclerostin and the glucose metabolism[77]. In 
addition, in T1MD subjects’ bone-derived OCN, as well as fat-derived leptin, appear to 
modulate sclerostin support in metabolic regulation[77]. Future studies are needed to 
clarify the role of sclerostin in bone impairment associated with T1DM.

Muscle-bone crosstalk
Bone and muscles are integrated organs that exert a mutual control and are in turn 
controlled by several factors, such as the GH-IGF-1 axis, sex steroids, adipokines (e.g., 
leptin, adiponectin, visfatin, resistin), and vitamin D[78,79]. In addition to mediating 
the muscle-bone crosstalk, muscles release myokines that affect other organs and 
tissues, including the liver, intestine, and adipose tissue, which in turn release 
cytokines and hormones responsible for regulating bone homeostasis. Among the 
myokines, irisin is a small peptide derived from the proteolytic cleavage of fibronectin 
III domain-containing protein 5, produced during physical exercise[80]. This myokine 
has been associated with the browning response and thermogenesis of white adipose 
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tissue[80]. In addition, it has an essential role in the bone-muscle unit, and exerts 
anabolic effects on bone, both in vitro and in vivo[81]. Irisin acts through the activation 
of osteoblastic bone formation, the induction of the pro-osteoblastic genes, and the 
decrease of osteoblastogenesis inhibitors[81]. The direct effect of irisin on OBs is 
exerted by means of a downregulation of SOST expression, which negatively regulates 
bone formation[81] (Figure 1). In agreement with this finding, Zhang et al[82] 
demonstrated in vitro that treatment with recombinant irisin on OB precursors causes 
the accumulation of β-catenin in the nucleus, suggesting that irisin restores SOST-
mediated inhibition of the Wnt/β-catenin pathway by directly inhibiting SOST. In 
addition, irisin interacts with osteocytes by directly binding to αV integrin receptors, 
thus protecting them from apoptosis, and inducing the secretion of SOST in vivo[83]. 
Regarding its metabolic effects, recombinant irisin has been shown to stimulate insulin 
biosynthesis and glucose-stimulated insulin secretion in a protein kinase A-dependent 
manner. It also prevents saturated fatty acid-induced apoptosis in human and rat 
pancreatic β cells, as well as in human and murine pancreatic islets, via the AKT/B-cell 
lymphoma 2 signaling pathway[84] (Figure 1). Studies in humans have elucidated the 
role of irisin both in healthy subjects and in patients affected by diseases related to 
bone metabolism, such as hyperparathyroidism and T1DM. In a recent study, irisin 
was demonstrated to be one of the main determinants of bone mineral status during 
childhood[85]. In addition, high irisin levels have been found in adult patients with 
long-lasting T1DM that were correlated with positivity for anti-glutamic acid 
decarboxylase antibodies, suggesting that autoimmunity can have a role in regulating 
the levels of this myokine[86,87].

In T1DM children and adolescents, elevated irisin levels have been found to be 
closely related to better metabolic control and an improved bone mass[88]. These 
findings are in agreement with the recent data showing that irisin can promote insulin 
synthesis as well as glucose-stimulated insulin secretion[84]. In addition, irisin overex-
pression enhanced insulin sensitivity in mice while reducing hyperlipidemia and 
hyperglycemia[89], suggesting that irisin could have a key role in diabetes man-
agement.

BONE TURNOVER MARKERS IN T1DM CHILDREN
Bone is considered to be an endocrine “gland,” and its modulation of glucose tolerance 
by the secretion of bone-specific proteins, in particular OCN, has been clearly 
demonstrated[16]. OCN is the main non-collagen protein secreted by the OBs and 
stored in the bone extracellular matrix. The carboxylated form of OCN shows a high 
affinity to hydroxyapatite, the mineral present in bone. Instead, the uncarboxylated 
form is free in the circulation and regulates glucose metabolism and insulin resistance
[90]. Several data have suggested that serum levels of uncarboxylated OCN are 
negatively correlated with insulin resistance, obesity, diabetes, and markers of the 
metabolic syndrome[91-93].

T1DM subjects show a low bone turnover, which is another mechanism underlying 
bone fragility in these subjects[94]. Previous studies demonstrated that both markers 
of bone resorption, such as the C-terminal cross-link of collagen (CTX), and markers of 
bone formation, such as OCN, were decreased in T1DM compared to healthy controls
[94]. Furthermore, while levels of TRAP and procollagen type 1 amino terminal 
propeptide (P1NP) were comparable in patients with T1DM and healthy subjects, low 
vitamin D levels were found in T1DM patients[94]. Similarly, reduced OCN levels 
were observed in children and adolescents with T1DM, while P1NP levels would seem 
to be lower and CTX levels higher in T1DM than in healthy subjects[95]. Chen et al[96] 
showed low levels of bone alkaline phosphatase and CTX in T1DM children as 
compared to controls.

A recent report by Madsen et al[97] investigated bone turnover markers in relation 
to BMD and metabolic control in T1DM children and adolescents. The results of this 
study demonstrated that markers of bone formation and resorption were significantly 
decreased in both sexes, and HbA1c levels were negatively correlated to the resorption 
marker CTX but not to any of the bone formation markers[97]. Another important 
finding of this study was that the decreased levels of both markers of bone formation 
and bone resorption were independent of the T1DM duration and Tanner stage. Thus, 
the impairment of bone health in T1DM begins in early childhood, independently of 
age and pubertal stage.

A possible explanation for the low bone turnover in diabetic subjects may be an 
insulin deficiency, which contributes to a low bone formation, as demonstrated by low 
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bone turnover in a mouse model of insulinopenia and restoration following insulin 
treatment[98].

It is possible that the low bone turnover caused by insulin deficiency occurs over 
time and may not be detected in studies based on acute changes in insulin levels[99].

FUTURE PROSPECTS IN THE MANAGEMENT OF BONE IMPAIRMENT IN 
T1DM SUBJECTS
T1DM is the most frequent chronic disease in the pediatric population. It is associated 
with an increased bone fragility from childhood onward, and hence the risk of 
fractures later in life. Although a low BMD is documented in diabetic individuals, the 
precise mechanisms underlying bone loss are not yet fully understood. Hyperglycemia 
seems not to be the main cause of bone impairment in T1DM patients, but other 
factors, like insulin deficiency, the GH/IGF-1 axis, and low bone turnover, could 
contribute to the bone impairment observed in these subjects. The use of diabetes 
technologies, like the use of insulin pumps and continuous glucose monitors, to 
achieve glycemia control appears to be correlated with an improved bone health, 
although further studies are needed to confirm this finding. In addition, prospective 
studies should clarify the causal relationships among metabolic control, bone turnover 
markers, the RANKL/OPG ratio, Wnt-signaling inhibitors, myokine activity, and bone 
mineralization in T1DM subjects.

To date, no specific biomarkers are available to predict accurately fracture outcomes 
in T1DM patients. Additional large-scale prospective studies are needed to identify 
high-risk patients. In addition to dual x-ray absorptiometry, a fracture risk assessment 
tool and trabecular bone score could, in the future, offer additional technologies to 
evaluate better the bone quality of T1DM patients[100].

There is no clear evidence in support of early intervention to avoid the risk of 
osteoporosis or of the use of anti-osteoporotic drugs in diabetic subjects[101].

Preclinical studies indicated that denosumab, a human monoclonal antibody to 
RANKL approved for the treatment of osteoporosis or for patients at high fracture risk
[102], may stimulate β-cell proliferation in humans[103] and improve liver insulin 
sensitivity[104].

No data are currently available on romosozumab, an anti-sclerostin antibody 
indicated to reduce the risk of clinical and vertebral fractures in postmenopausal 
women with osteoporosis[105]. In addition, there are still few data on the effects of 
vitamin D, calcium intake, and physical activity on bone health in T1DM subjects
[106]. Recently, toll-like receptor-4 (TLR4) has been correlated with diabetic bone 
disorders via the nuclear factor-κB pathway[107,108]. It has been demonstrated that 
TLR4 deletion improves streptozotocin-induced diabetic osteoporosis in mice, so TLR4 
may be a possible therapeutic target for the treatment of diabetic osteoporosis[109].

CONCLUSION
T1DM has a strong impact on bone health, and skeletal fragility is now recognized 
among the complications of diabetes. The fracture risk is greater in patients with 
T1DM and increases linearly with the disease duration. T1DM subjects show a 
decreased BMD already in childhood, possibly due to an absolute insulin deficiency 
and the inability of exogenous insulin to reflect endogenous insulin secretion. 
However, the reduction in BMD does not entirely explain the increase in bone fragility 
observed in these subjects. It is unclear whether reducing hypoglycemic events by 
means of continuous glucose monitoring and a closed-loop insulin delivery system can 
improve bone health in subjects with T1DM. Randomized clinical trials to evaluate the 
efficacy of anti-fracture drugs in diabetes are lacking, while some observational data 
have indicated an analogous efficacy in those with or without diabetes, so such drugs 
should be used according to existing indications.

Further studies are warranted to clarify better the factors responsible for bone 
damage in diabetic subjects and to identify efficacious strategies to prevent 
osteopenia/osteoporosis and the risk of fractures in these subjects.
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