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Simple Summary: Several anti-angiogenic drugs have been approved for cancer treatment, alone
or in combination with other anti-tumoral agents. Angiogenesis inhibitors cause drug resistance,
metastasis formation, and reduced delivery of chemotherapeutic agents, as a consequence of decrease
of tumor vasculature. The endothelial cells as gatekeepers inspired a revisited interpretation of the
vascular function in several malignancies.

Abstract: Resistance to anti-vascular endothelial growth factor (VEGF) molecules causes lack of
response and disease recurrence. Acquired resistance develops as a result of genetic/epigenetic
changes conferring to the cancer cells a drug resistant phenotype. In addition to tumor cells, tumor
endothelial cells also undergo epigenetic modifications involved in resistance to anti-angiogenic
therapies. The association of multiple anti-angiogenic molecules or a combination of anti-angiogenic
drugs with other treatment regimens have been indicated as alternative therapeutic strategies to
overcome resistance to anti-angiogenic therapies. Alternative mechanisms of tumor vasculature,
including intussusceptive microvascular growth (IMG), vasculogenic mimicry, and vascular co-
option, are involved in resistance to anti-angiogenic therapies. The crosstalk between angiogenesis
and immune cells explains the efficacy of combining anti-angiogenic drugs with immune check-
point inhibitors. Collectively, in order to increase clinical benefits and overcome resistance to
anti-angiogenesis therapies, pan-omics profiling is key.
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1. Introduction

Several anti-angiogenic drugs have been approved for cancer treatment, alone or in
combination with other anti-tumoral agents, and anti-angiogenic therapy is essentially
an anti-vascular endothelial growth factor (VEGF) or anti-VEGF-receptor (VEGFR) ther-
apy [1]. The first anti-angiogenic drug, bevacizumab (Avastin), a humanized anti-VEGF-A
monoclonal antibody, was approved for the treatment of previously untreated metastatic
colorectal cancers in combination with chemotherapy [2]. Ranibizumab is a humanized
antibody based on a single antigen-binding site (Fab) derived from bevacizumab, but with
a higher VEGF-A binding activity. Tyrosine kinase inhibitors are additional anti-angiogenic
drugs, which interfere with VEGFR-1, VEGFR-2, platelet derived growth factor receptor
(PDGFR), fibroblast growth factor receptors (FGFRs), and Tie2 signaling [3]. VEGF-trap
protein aflibercept, obtained by fusion of VEGF binding domain of VEGFR-1 and R-2,
which acts as a ‘VEGF ligand trap’, has been approved for the treatment of metastatic
colorectal cancer [4].
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Anti-angiogenic drugs lead to an increase in patient’s overall survival (OS) in the
range of weeks to months and a 3–6-month increase in progression-free survival (PFS),
followed by relapse in tumor angiogenesis and growth. Discontinuation of the therapy is
the principal factor responsible for the ineffectiveness of the anti-angiogenic therapies [5].
In fact, when VEGF-targeted therapies are discontinued, tumor vasculature is rapidly
re-established [6], whereas continuation of bevacizumab treatment is associated with an
increase in OS [7].

Angiogenesis inhibitors are responsible for metastasis formation and reduced delivery
of chemotherapeutic agents, as a consequence of decrease of tumor vasculature. Increased
invasiveness is secondary to enhanced expression of angiogenic cytokines or recruitment of
endothelial progenitor cells (EPCs), favoring the formation of a pre-metastatic niche [8–10].
Clear cell renal carcinoma (CCRC) cells and glioblastoma multiforme cells show a high
metastatic potential after treatment with bevacizumab and VEGF inhibition [11–13].

Resistance to anti-VEGF molecules is responsible for the lack of response and disease
recurrence. Acquired resistance develops as a result of genetic/epigenetic changes con-
ferring a drug resistant phenotype to the cancer cells [14–16]. The intent of this literature
review is to uncover the state-of-the-art understanding of the key mechanisms support-
ing angiogenesis and facilitating an immune-tolerogenic environment throughout tumor
growth and progression.

2. Vascular Normalization and Tumor Hypoxia

VEGF inhibition normalizes tumor vasculature, decreasing vascular permeability and
enhancing delivery of oxygen and drugs to intratumoral sites [17]. Vascular homeostasis is
transiently restored during the first days of therapy. The improvement in tumor oxygena-
tion takes place in the last 2–4 days after anti-VEGF treatment [17]. Hypoxia re-increases,
inducing systemic secretion of other angiogenic cytokines, selects more malignant cells,
able to grow in hypoxic conditions, and stimulates β1 integrin expression, a marker of
resistance to cancer treatment [18]. Hypoxia-inducible factor (HIF) plays a critical role in
resistance to anti-angiogenic therapies and is a survival factor used by cancer cells in a
condition of oxygen deprivation. Moreover, HIF triggers epithelial mesenchymal transition
(EMT) and metastasis [19]. Invasiveness is increased as a consequence of the production of
pro-migratory proteins, including stromal cells derived factor-1 alpha (SDF-1α), hepatocyte
growth factor (HGF), and pro-invasive extracellular matrix proteins [20,21]. Circulating
EPCs move to hypoxic sites and contribute to the generation of new blood vessels, and
the inhibition of VEGF prevents the mobilization of EPCs to the tumor site [22,23]. Hy-
poxia triggers the differentiation of tumor-infiltrating myeloid cells to M2-pro-angiogenic
tumor-associated macrophages (TAMs), the recruitment of EPCs, genetic instability in
tumor endothelial cells, and the selection of more invasive metastatic tumor cell clones,
resistant to anti-angiogenic agents [24–26].

3. Role of Inflammatory Cells, Endothelial Cells, and Tumor Cells

TAMs and tumor associated fibroblasts (TAFs) are both involved in resistance to anti-
VEGF agents. Blocking TAM recruitment is the winning strategy to overcome resistance to
anti-angiogenic therapy. Both TAMs and TAFs promote tumor growth and angiogenesis
through the release of growth factors and proteases. Tumors refractory to anti-VEGF
therapy display an increased number of myeloid-derived suppressor cells (MDSCs) [27].
In addition to tumor cells, tumor endothelial cells also undergo epigenetic modifications
involved in resistance to anti-angiogenic therapies [28]. Furthermore, the effect that the anti-
VEGF treatment has on the cancer cell itself has been largely ignored and only recently has
been receiving the attention it deserves. Studies like the one from Luo and co-workers [29]
demonstrate a direct effect of VEGF on the actual cancer cell rather than the vasculature,
although this is something not taken into account so far in clinical trials. The importance of
VEGF is further supported by the findings that, in some cases, tumors cells can become more
aggressive after treatment with bevacizumab. This is, for example, the case with human
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glioma cells in which bevacizumab treatment induces invasion through the activation
of the beta catenin pathway [30]. Moreover, bevacizumab-treated glioblastoma patients
have an increased relapse in comparison to bevacizumab-untreated patients, linked to an
upregulation of c-MET and phospho-c-MET [31].

4. Alternative Mechanisms of Tumor Vasculature

Alternative mechanisms of tumor vasculature, including intussusceptive microvascu-
lar growth (IMG), vasculogenic mimicry, and vascular co-option, are involved in resistance
to anti-angiogenic therapies [32,33], but again, anti-angiogenic treatments have been so
far provided without evaluating whether the tumors are angiogenic or not or in which
proportions a tumor is angiogenic or not angiogenic [34]. IMG, in which the capillary
network increases its complexity by insertion of a multitude of transcapillary pillars, has
been observed in different human tumors, including melanoma, colon and breast carci-
noma, lymphoma, and glioblastoma [32]. The vasculogenic mimicry, in which tumor cells
differentiate into endothelial-like cells, has been recognized in melanoma, glioblastoma,
renal cell carcinoma, and breast, ovarian, and lung cancer [35]. Bevacizumab elicits vascu-
logenic mimicry leading to tumor escape and metastasis [36]. Vascular co-option, in which
tumor cells co-opt and grow as cuffs around adjacent vessels, has been observed in liver
metastasis of breast and colorectal cancer [36]. Bevacizumab-treated metastatic colorectal
patients showed a limited response due to vascular co-option [36].

5. Pleiotropic Role of VEGF in Angiogenesis, Inflammation, and Immunity

Tumor cells, the secreted soluble factors the interstitial stroma and extracellular matrix,
pericytes, and endothelial cells represent a complex neighborhood in which a vicious cycle
develops, acting as a pro-angiogenic reservoir. The endothelial cells are main actors on the
angiogenic field, expressing a plethora of tyrosine kinase receptors that trigger proliferation,
migration, and differentiation signals [37]. Costa et al. uncovered Int-2 oncogene as an
angiogenesis inductor [38] and prompted further studies on additional mechanism, includ-
ing VEGF [39]. VEGF family comprises VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E,
and VEGF-F. VEGFR-2, also known as placental growth factor (PGF), is the main signal
transducer and activates the main mechanism of PI3K, MAPK, IP3, and eNOS, which
imprint one of the main features of malignant angiogenesis: the vasodilatation with en-
dothelial detachment paralleling the cellular dynamics alteration [40]. The eNOS activation
and NO production explain one of the major adverse events of anti-angiogenic treatment,
namely the arterial hypertension, due to the decreased NO production. Conversely, VEGF
production is related to vasodilation; VEGFR-2 is also related to cell survival and migration,
and VEGFR-1 is additionally related to vascular stabilization, whereas VEGFR-3 is much
more related to lymphangiogenesis [40]. By looking into the cellular system and compart-
mentalization for cell motility, it is important to highlight that an anaerobic metabolism is
developed, and the proliferating endothelial cells (tip cell) trigger the sprouting angiogen-
esis via motile filopodia anchored to an extracellular matrix, attracting the cells through
a VEGF gradient. Bystander cells suffice for an integrated system (stalk cell) while the
cancer cell enhances the glycolytic activity supporting its migratory activity [41]. Thus,
the actors on the scene are the neoplastic cells, the tip cells, rapidly migrating, the stalk
cells, with supporting function, and the quiescent phalanx cells from which this structure
is sprouting [41], tip and stalk cells being the most responsive to VEGF and its receptor
VEGFR-2. The tumor vascular pattern largely differs from the normal vascular one in terms
of morphology due to an abnormal vascular pattern of growth in which the blood and nu-
trient flow is absolutely aberrant, driving ischemia and abnormal solute and drugs delivery
as demonstrated by VEGF expression tumor imaging performed with [42] Zr-Bevacizumab,
with a decay in the drug concentration in 168 h. Contrariwise, as a proof of concept, VEGF
within the tumor site is high. Imaging of VEGFR-2 expression addressed with [43] CU-
DOTA-VEGF121 paralleled VEGF expression behavior in vivo models [44]. Remarkably,
the role of hypoxia and VEGF in cancer is multifaced; nonetheless, in a hypoxic tumor, an
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overproduction of VEGF exerts an inhibitory effect on the dendritic cell and a stimulatory
effect on the tumor-associated macrophages and on MDSCs, boosting Treg lymphocytes.
Therefore, the result is an aberrant vasculogenesis within an immune-permissive niche [45]
(Figure 1).

Cancers 2021, 13, x  4 of 18 
 

 

from the normal vascular one in terms of morphology due to an abnormal vascular pattern 

of growth in which the blood and nutrient flow is absolutely aberrant, driving ischemia 

and abnormal solute and drugs delivery as demonstrated by VEGF expression tumor 

imaging performed with [42] Zr-Bevacizumab, with a decay in the drug concentration in 

168 h. Contrariwise, as a proof of concept, VEGF within the tumor site is high. Imaging of 

VEGFR-2 expression addressed with [43] CU-DOTA-VEGF121 paralleled VEGF 

expression behavior in vivo models [44]. Remarkably, the role of hypoxia and VEGF in 

cancer is multifaced; nonetheless, in a hypoxic tumor, an overproduction of VEGF exerts 

an inhibitory effect on the dendritic cell and a stimulatory effect on the tumor-associated 

macrophages and on MDSCs, boosting Treg lymphocytes. Therefore, the result is an 

aberrant vasculogenesis within an immune-permissive niche [45] (Figure 1). 

 

Vascular mimicry

Bone marrow-derived cells

Endothelial progenitor cells

(EPC)

Hematopoietic stem cells

(HSC)

M
ig

ra
tio

n
 t
o
 tu

m
o
u
r

Leaky cancer-associated vessel

Cancer cells

Blood vessel

Macrophage

Tip cells
Stalk cells

Sprouting vessel

Migration to VEGF gradient

Hypoxia

Figure 1. Cancer angiogenesis as a multi-faced, multistep process, recruiting divergent cell types and cell proliferation,
migration, invasion, and differentiation, depending on the cancer-associated milieu.

The expression of angiogenic factors in gastrointestinal cell lines behaves as an
archetype of the spectrum of a new vessel-sustaining phenotype. Across the plethora of
pro-angiogenic molecules, VEGF largely predominates over PIGF, interleukin-8 (IL-8), and
fibroblast growth factor-2 (FGF-2) [46]. Remarkably, one of the paramount features of the tu-
mor angiogenesis is the presence of precursors progenitors within the newly formed vessels
expressing VEGFR-2. EPCs promote angiogenesis in hepatocellular carcinoma [47]. Ligand
neutralization, antibody targeting extracellular domain of VEGFR, and small molecules’
tyrosine kinase inhibitors are valuable strategies [48]. However, the parameters involved in
the dynamics of blood flow are crucial in order to modulate and normalize the pathological
vicious cycle of angiogenesis. Amid the cancerous vascularization, shunts are predominant
over perfusion, due to a high interstitial pressure halting the soluble factors diffusion
within the tumor. Therefore, allowing a normalized perfusion and restoring the angiogenic
homeostasis are optimal activity markers [49]. Moreover, a markedly elevated interstitial
fluid pressure in human tumors and normal tissues decreases the drug effect [50]. Among
the tumor diseases, the stronger rationale behind the use of an antiangiogenic therapy in
case of kidney tumors is due to VHL gene mutation [11,51]; nonetheless, in gastric cancer,
HIF-1 overproduction boosts pro-angiogenic factor production [52]. Indeed, gastric cancer
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represents an ideal model to discuss anti-angiogenic approaches’ challenges in oncology.
VEGF and VEGFR are significant molecular targets in gastric cancer [53–55]. Furthermore,
VEGF and PDGF production in gastric cancer is expressed in the different subtypes [56],
holding biological implications since the Kaplan–Meier OS curve significantly differs in
relation to preoperative serum VEGF levels [57]. Wang et al. corroborated these findings by
stratifying patients according to type A vs. type C VEGF [58]. A synergic action between
chemotherapy and angiogenesis inhibition is plausible due to the experimental model’s
results showing that bevacizumab improves the penetration of paclitaxel and the antitumor
effect on a MX-1 breast cancer xenograft [59]. Moreover, VEGF and HIF-1alpha are dose-
dependently decreased by SN-38 in experimental models [60]. These results prompted an
intensive investigation in order to better sketch the proper patient for the proper treatment.
However, the adaptive–evasive responses by tumors to anti-angiogenic therapies represent
an unmet need [48], due to the lack of validated soluble biomarkers, despite the intensive
investigation also in the field of liquid biopsy [61,62]. A paradigm shift has been opened
by the discovery of the glycosylation-dependent galectin-VEGFR-2 binding, which pre-
serves angiogenesis in anti-VEGF refractory tumors [63]. This study initiated an intense
investigation regarding efforts aiming to overcome resistance to angiogenesis inhibitors.

6. The Biology of Angiogenesis and Its Implication in Overcoming the Challenge of
Identifying Biomarkers

Anti-angiogenic therapies have limited efficacy, only prolonging OS in metastatic
colorectal carcinoma. Several different indications have demonstrated that primarily
advantages in PFS have been obtained, and only in a small number of cancer indications
including colorectal (mCRC), an increased OS has been observed (Table 1).

Table 1. Angiogenesis-targeting agents and their impact on survival.

Tumor Site Name of the Study Endpoint Effect on OS
Months (p-Value)

Effect on PFS
Months (p-Value)

Prostate * CALGB 90401 OS 2.4 (0.0001) 1.1 (0.18)

Pancreas * AVITA OS 1 (0.0002) 1.1 (0.21)

Lung * ECOG E4599 OS 1.7 (<0.001) 2 (0.003)

Lung * AVAIL PFS, OS 0.6 (0.0003) 0.5 (0.2)

Kidney * CALGB 90206 OS 3.3 (<0.001) 0.9 (0.097)

Breast * ECOG E2100 PFS 5.9 (0.001) 1.5 (0.16)

Breast * AVADO PFS 1.9 (0.006) −1.7 (0.85)

Breast * RIBBON-1 PFS 2.9 (0.0002) 7.8 (0.27)

Gastric * AVAGAST OS 1.4 (0.0037) 2 (0.1)

Colorectal * Hurwitz et al. (2008) OS 4.4 (<0.001) 4.7 (<0.001)

Colorectal ** VELOUR OS 2.23 (<0.001) 1.4 (0.0032)

Colorectal # RAISE OS 1.2 (<0.0005) 1.6 (0.0219)

Colorectal ## CORRECT OS 1.4 (0.0052)

* Bevacizumab; ** Aflibercept; # Ramucirumab; ## Regorafenib.

Indeed, some tumors are initially resistant to VEGF inhibition, and others eventually
develop resistance. Two types of phenotypic resistance are classically observed. Intrinsic
non-responsiveness includes cases of malignancies that at first do not respond to anti-
angiogenics, yet a later adaptive response to treatment can be observed; hence, patients
who initially obtain a response can relapse afterwards, showing adaptive mechanisms of re-
sistance [64]. Within the intrinsic resistance to angiogenesis inhibitors, there is a pre-existing
multiplicity of redundant pro-angiogenic signals. As soon as the tumor cannot be fueled
by VEGF, an ability to circumvent this dependence is operative, feeding into a vicious cycle
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boosted by PGF, angiopoietins, and PDGF [65], activating several biological pathways such
as VEGFR-2, mTOR, and heparin-binding EGF-like growth factor (HB-EGF)-epidermal
growth factor receptor (EGFR) signaling [43,66–68] and acting as an intelligent evolving
organism. The inflammatory cell-mediated vascular protection prompts the hypothesis
and the notion of combining anti-angiogenesis with immunotherapies [11,22], because
the tumor becomes hypoxic and growth inflammatory and immune-derived mediators
unleash monocytes, macrophages, and MDSCs. All the above said cell types are able to
produce angiogenic factors in both solid and hematological malignancies [69–71]. Thus,
halting angiogenesis with anti-angiogenic compounds [72,73] and approved drugs [74],
immunotherapies can parallel the “on-tumor” effect by hampering the anti-proliferative
effects [75]. Additionally, a characteristic hypovascularity and indifference toward an-
giogenesis inhibitors has also been observed. The archetypic example is represented by
pancreatic ductal adenocarcinoma (PDAC), where it is possible to detect a broad range of
evidence of a poorly vascularized and fibrogenic area [76,77] with a characteristic cancer
propensity to survive within a hypoxic milieu [78,79]. Consequently, PDAC is difficult
to treat with anti-angiogenics; therefore, novel approaches have attempted to combine
immune-directed therapies to peculiar invasive phenotypes [64,78,80]. Conversely, ac-
quired resistance to angiogenesis inhibitors is mainly due to activation and up-regulation
of alternative signaling pathways within the tumor, also supported by the recruitment of
bone marrow-derived pro-angiogenic cells, such as the circulating EPCs and immune cells,
which all have the ability to generate pro-angiogenic factors [81,82]. Moreover, increased
pericyte coverage of tumor vessels is also important, particularly due to active PDGFR-beta
signaling [22,83,84] also being an issue when we think about cardiovascular toxicity [85].
Surprisingly, the activation and enhancement of invasion and metastasis to provide ac-
cess to normal tissue vasculature has also been observed in case of anti-angiogenesis
therapy [86–88]. Nevertheless, this preclinical evidence has not been confirmed in a robust
clinical fashion, with the exception of a report on glioblastoma [89]. Van Beijnum et al.
reviewed the hallmarks of resistance to angiostatic therapy, systematically pinpointing
growth factor redundancy, recruitment of bone-marrow derived cells, and local stromal
cells as the main factors paralleling vessel co-option and vasculogenesis mimicry in jeop-
ardizing anti-angiogenesis [14]. Moreover, endothelial cell heterogeneity can prompt
MDR molecule expression [42], and extracellular vesicles have been shown to decrease
the anti-angiogenic effects [90]. Specifically referring to sunitinib, lysosomal degrada-
tion [91] emerged as a novel mechanism of resistance, warranting an unexplored dual
inhibition [92]. Additionally, glycosylation [63] and genetic polymorphism [93] represent
emerging mechanisms with promising effects in overcoming resistance to angiostatics.

Angiogenesis can be revisited as a complex biological process with numerous compen-
satory pathways that can be activated, challenging the discovery of predictive biomarkers,
since the cancer microenvironment and the complex milieu are difficult to classify and
several actors are simultaneously shaping the key pro-angiogenic ecosystem. Bevacizumab
represents the archetypic example of the various mechanisms of action, which may differ
between cancer types and chemotherapy, unveiling the multifaceted functions in driving
regression of existing tumor vasculature, halting new vessel growth, shaping the anti-
permeability of surviving vasculature, and priming vessel normalization and co-option.
Unfortunately, a poor correlation between response and survival exists, and the effects are
mainly limited to PFS, and from a clinical trials standpoint, cross-over events at progression
make identification of response criteria and biomarkers difficult [94]. Imaging has been
employed in particular in glioblastoma by using MRI [95] in order to address the response
to angiostatics. Another challenge for the investigation focused on predictive biomarkers is
that bevacizumab is combined with standard chemotherapy, making it difficult to discrimi-
nate the response due to chemotherapeutic from the anti-angiogenic. However, multiple
biomarkers from various locations within the tumor may play a role. Circulating angiogenic
factors are deemed as the first in class indicators to predict outcome. Undeniably, high
plasma VEGF is associated with worse outcomes regardless of bevacizumab therapy, being
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a prognostic marker rather than a predictive one [96]; nevertheless, while thinking about
post-transcription regulation of VEGF, short isoforms (VEGF110,120) can easily diffuse in the
tumor site. Contrariwise, longer isoforms (VEGF165,189) do not move far from the tumor.
Thus, short VEGF isoforms could provide a better read-out of the tumor-derived VEGF,
potentially impacting clinical prediction in metastatic breast, gastric, and pancreatic cancer.
Even so, short VEGF isoforms hold prognostic but not predictive value in mCRC, mNSCLC,
and mRCC [97], and it is necessary to bear in mind that in breast gastric and pancreatic
cancer, EDTA was employed as sample buffer, although citrate has been utilized in the
colorectal, lung, and renal malignancies. This technical characteristic might have impacted
on the differences observed in the potentially predictive value [74,98]. The first biomarker-
driven trial for anti-angiogenesis is de MERiDiAN GO25632 for metastatic breast cancer,
in which patients receiving paclitaxel alone or in combination with bevacizumab were
stratified according to short VEGF isoform levels [99,100]. Furthermore, a pro-angiogenic
genetic signature has been used in other solid and haematological malignancies clinical
and pre-clinical models, which characterized patients with good prognosis compared to
others, showing that these patients can respond better to anti-angiogenic monotherapy
rather than immunotherapy or other treatments even in combination [101–103]. Moreover,
a compensatory upregulation of other angiogenic markers after VEGF inhibition emerged
as a paradigmatic example of adaptive angiogenesis, because within a hypoxic environ-
ment besides VEGF, other factors such as PIGF, angiopoietins, and FGFs would be able to
fuel into a vicious cycle [104]. The AFFIRM trial dynamically analyzed plasma markers
while testing aflibercept in the first-line CRC, measuring 27 circulating angiogenic factors
in plasma from mCRC patients receiving aflibercept. Baseline IL-8 and changes in IL-8
expression correlated with PFS in the aflibercept arm [105].

Multiple biomarkers from various locations within the tumor may play a role in the
angiogenesis, because as early as 2012, Lambrechts et al. uncovered the genetic variant’s
role in determining the VEGF circulation level [106], performing a very comprehensive
SNPs analysis for all the anti-angiogenic factors, uncovering rs7993418 inVEGFR-1 to have
a predictive value in bevacizumab response in pancreatic cancer patients enrolled in the
AviTA study, with an improved survival. Pancreatic cancer patients with rs7993418 A allele
have no improved OS in the placebo arm [106]. Moreover, VEGFR-1 rs7993418 C allele
also correlates with reduced OS in 91 sunitinib-treated renal cell carcinoma, making it
therefore tempting to speculate about a predictive role for the VEGF3-1 locus for tyrosine
kinase inhibitors [107,108]. The basic functional output of the above-mentioned SNP
in VEGFR-1 is that the patients who have high VEGFR-1 and high soluble VEGFR-1
(sVEGFR-1) have poor outcomes in different scenarios, such as bevacizumab [109–113]
and cediranib [114,115]. Remarkably, immunohistochemistry confirmed these results on
tumor tissue before treatment by showing high VEGFR-1 expression to be correlated with
bevacizumab poor outcome in CRC (NO16966) and gastric cancer (AVAGAST) [116,117].
Other approaches investigated soluble neuropilin-1 (sNRP-1), which is a co-receptor for
VEGF in mCRC. sNRP-1 levels predict response to bevacizumab and the VEGFR inhibitor
Tivozanib in mCRC [118,119]. Figuratively, it can be conceivable that when we have high
sVEGFR-1 or sNRP-1, VEGF is sequestered in a decoy receptor-dependent manner, and
no response to anti-VEGF can be observed; contrariwise, in the case of low sVEGFR-1 or
sNRP-1, a response to anti-VEGF would be likely. Thus, endogenous levels of soluble
anti-angiogenic VEGF receptors are predictive of treatment outcome.

Tumor and stromal markers also play a major role in shaping the angiogenic land-
scape. In the frame of this thinking, low tumor NRP1 expression in mCRC (NO16966
trial) seems to be associated with improved PFS with similar findings for sNRP1 in var-
ious studies [120,121]. Tumor VEGF-A and NRP expression have also been evaluated in
metastatic gastric cancer, confirming that low tumor NRP1 expression is associated with
improved OS. A similar association was seen for PFS [117]. Newly emerging biomarkers in
gastric carcinoma involving ramucirumab monotherapy pinpoint to immunohistochem-
istry for VEGFR-2 as a promising tool, since the patient showed a high VEGFR-2 score, even
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if no robust differences have been detected, likely due to a lack of statistical power [122].
Molecular subtyping holds the potential to overcome the basic pathological intra tumor
phenotyping by providing a novel model aiming to develop the next generation of per-
sonalized approach. Hu et al. pioneered the identification of molecular dissection in
angiogenesis phenotyping [123], and Sandmann et al. did so in angiostatic targeting, iden-
tifying four molecular subtypes in IDH1 wild-type glioblastoma based on gene expression
data [124], looking at the response of patients as classified according to molecular subtypes,
which have been developed from publicly available databases. Looking at PFS across the
four identified subtypes, namely mesenchymal, proliferative, proneural, and unclassified,
the mesenchymal and proneural subgroups exhibited a PFS benefit from bevacizumab.
Mesenchymal GBM are highly angiogenic with stromal invasion, and proneural tend to
be IDH wild-type tumors. Surprisingly, looking at the OS, the only molecular subtypes
of GBM that had a OS benefit were shown in those subjects included in the proneural
group, unveiling that not only the expression of angiogenic factors may be worth con-
sidering in terms of the predictive potential but also the downstream pathways affected
by targeting the VEGF signaling [124]. These data prompted further investigation in the
oncology field [125–128]. In colorectal cancer, several molecular subtypes have also been
identified [129]. The mesenchymal subgroup, the one with worse prognosis, had a better
response to regorafenib; nonetheless, these data need a statistically powered perspective
validation [130].

To date, there is not a single biomarker that is consistent with all the trials tested,
since response to anti-angiogenesis is a complex phenotype. A single biomarker might not
be sufficient to capture the true heterogeneity of the response, and the response to anti-
angiogenesis seems to be a continuum; thus, a panel of multiple markers may be necessary
to cover the full spectrum, but application is clinically challenging. Biomarkers provide
important information on how to overcome resistance to anti-angiogenic therapies by
guiding the inhibition of multiple angiogenic factors, destabilizing resistant tumor vessels,
and prompting a state-of-the art inhibition of immune-cell recruitment, assuming that the
endothelial cells and vasculogenic function are gatekeepers of the immune patrolling and
therefore envisioning a synergism with immunotherapeutics.

7. What Can We Do and What Needs to Be Done?

The therapeutic effect of targeting a single angiogenic growth factor is limited due
to intrinsic resistance as a consequence of redundancy in activated pathways or alterna-
tive growth factor signaling pathways [131]. The association of multiple anti-angiogenic
molecules or a combination of anti-angiogenic drugs with other treatment regimens
have been indicated as alternative therapeutic strategies to overcome resistance to anti-
angiogenic therapies. Blocking the recruitment of monocytes-macrophages is another
therapeutic strategy to overcome resistance to an anti-angiogenic therapy. In patients
with solid tumors treated with carlumab, a human anti-CCL2 monoclonal antibody tar-
geting the monocyte chemotactic protein 1 (MCP1), the growth of tumors has been de-
layed [132]. Treatment of pancreatic neuroendocrine tumors with Ang2 and VEGFR-2
blockers decreased Tie2 monocyte infiltration and suppressed revascularization and tumor
progression [133], prompting next-generation anti-angiogenesis (Figure 2) [22,102,134].
The crosstalk between angiogenesis and immune cells explains the efficacy of combining
anti-angiogenic drugs with immune check-point inhibitors. Increased PDL-1 expression
has been observed in sunitinib-treated RCC cell lines and xenografts. Therefore, strategies
targeting the immunosuppressive PD-1/PDL-1 signaling in anti-angiogenesis resistant
tumors are emerging. The PD-1 inhibition via nivolumab monoclonal antibody has been
approved in the treatment of advanced kidney cancer, and sunitinib–nivolumab and
pazopanib–nivolumab combinations have been employed in subjects with metastatic can-
cer. Other strategies of combining immunotherapy and anti-angiogenics are currently
being investigated [135]. Anti-angiogenic treatments are associated with increased local
invasiveness and distant metastasis, as described for the first time in 2009 in the same issue
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of “Cancer Cell” by Ebos et al. [87] and Paez Ribes et al. [86] in different pre-clinical models.
To overcome resistance by targeting increased tumor invasiveness and metastasis, differ-
ent inhibitors of c-Met have been tested in preclinical studies [136,137]. Different factors
are involved in acquired resistance, including decreased drug uptake, expression of new
drug-efflux pumps, drug metabolism, tumor cell proliferation, and apoptotic mechanisms,
therefore warranting further investigations in the field [16,72,138–140].
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More precision and individualized approaches need to be tested in well-designed
clinical trials—a challenge: a new model to the story that represents an archetype in the
paradigm shift of anti-angiogenesis is represented by the immune system and its relation-
ship with the vasculature [22]. Indeed, the immune cells distinguish between friend and foe
by dynamic interactions often offering curative but also risk-associated therapy for many
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malignancies [141]. In preclinical and clinical models, anti-tumor mechanisms convey in
a complex immune processes: the ultimate goal to translate findings into improved diag-
nostics and therapies has been realized while exploring the tumor angiogenesis induced
by cancer-secreted factors/enzymes. A prototype of factors is Galectin-1, particularly
over-expressed in tumor cells, and its expression correlates with malignancy and with
acquisition of a metastatic phenotype [142]. When malignancies produce Galectin-1, it is in
very high concentrations, and in its dimeric form and as a glycogen binding protein, a sugar
binding protein and the binding to sugars on the surface of T-cells and immune cells and
endothelial cells creates an immunosuppressive microenvironment on these cells. Thus,
blocking galectin’s expression holds the promise to increase and unleash T-cell responses
and shrink the tumor, also halting the number of blood vessels that are generated in the
cancer microenvironment [143,144]. Cathepsins are lysosomal enzymes with enhanced
concentration in malignant cells, in response to low oxygen levels and increased lactic acid
concentration within the cancer niche [145,146]. Since the cathepsin and galectins axis may
fuel the vicious cycle of a pro-vasculogenic environment [134], cathepsin/galectin targeting
prompted novel strategies combining anti-angiogenic therapy and immunotherapy, with
the potential to tip the balance of the tumor microenvironment and improve treatment
response [141,147–149].

The major problem with the current use of anti-angiogenic therapies against tumors
is the use of such therapies in the most inappropriate stage of disease. In this context,
different therapeutic combinations may be personalized considering the current stage of
tumor progression. Moreover, if we need to say why the effects of the anti-angiogenic
drugs have been so disappointing so far, this is probably because of their use with a
“carpet bombing” approach rather than using them according to the biology of the tumor.
As recently suggested by Montemagno and Pagés, the better approach might be the
following: “Instead of inhibiting several targets with several drugs, the ideal strategy
relies on the use of one inhibitor targeting multiple hallmarks of cancers, i.e., tumor cell
proliferation/stemness, angiogenesis, chronic inflammation, and immune tolerance.” [150].
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