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Abstract: Red orange and lemon extract (RLE) is an anthocyanins-rich dietary supplement that may
influence gastrointestinal bacterial community in ruminants. The aim of the present study was
to investigate the RLE effects on gut microbiota composition in lambs. Twenty-eight lambs were
randomly divided into a control group (CON; n = 14) and an anthocyanin group (ANT; n = 14) and
fed the same diet; additionally, only the ANT received 90 mg/kg live weight of RLE at day. After
lamb slaughter (40 ± 1 days), fecal samples were collected from the rectum and stored at −20 ◦C
until analysis. Analysis of fecal microbiome was carried out by metabarcoding analysis of 16S rRNA.
After reads denoising, sequences were aligned against SILVA rRNA sequence database using MALT,
and taxonomic binning was performed with MEGAN. A significant increase in Firmicutes and
Bacteroidetes and a decrease in Proteobacteria and Actinobacteria was observed in ANT compared to
CON. Moreover, an interesting increase of Lactobacillus and Bifidobacterium genera and a decrease in
Escherichia coli and Salmonella species were detected in ANT compared to CON. Results recommend
that anthocyanin supplementation in lamb diet is able to modulate positively gut microbiota and
may inhibit the growth of some potential pathogenic microorganisms.

Keywords: gut microbiota; lambs; anthocyanins

1. Introduction

Mammals’ gut microbiota affects a wide range of host physiological functions, includ-
ing digestion, stress adaption and immune response regulation [1,2]. Thus, gut microbial
imbalance may cause health disorders in the host [3,4]. Investigation of ruminant gut
microbiota represents a main aspect considering its responsibility for feed digestion but
also its importance in physiological and immune functions [5]. In ruminants, the gastroin-
testinal tract harbors a high-density and -diversity microbiota composed of species and
genera belonging to bacteria, archaea, fungi, ciliate protozoa and viruses (approximately
1011 microbial cells per gram of digesta) [6]. The ruminants’ gut microbiota is composed
of trillions of microorganisms, and is the most complicated microecosystem [7]. Its com-
position is driven by various factors, like host genetic variations, weaning, diets, and
stochastic events [8,9]. It plays a key role in pathogenic Gram-negative bacteria mucosal
immunity, nutrient absorption and intestinal epithelium differentiation [7]. Among these,
weaning plays a pivotal role in the establishment of a functional bacterial community in
young animals. In the postnatal life, from birth to weaning, lambs are defined as functional

Agriculture 2021, 11, 572. https://doi.org/10.3390/agriculture11070572 https://www.mdpi.com/journal/agriculture

https://www.mdpi.com/journal/agriculture
https://www.mdpi.com
https://orcid.org/0000-0002-4751-8478
https://orcid.org/0000-0002-9613-4630
https://orcid.org/0000-0001-7128-8556
https://orcid.org/0000-0001-7798-7710
https://orcid.org/0000-0002-8512-9123
https://orcid.org/0000-0002-5612-1691
https://doi.org/10.3390/agriculture11070572
https://doi.org/10.3390/agriculture11070572
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/agriculture11070572
https://www.mdpi.com/journal/agriculture
https://www.mdpi.com/article/10.3390/agriculture11070572?type=check_update&version=1


Agriculture 2021, 11, 572 2 of 11

monogastric, since they are born without a functional rumen, and the symbiotic ruminal
microbial community is not established until the first months of life [10,11]. In pre-weaned
lamb, milk is the main nourishment, which bypasses the rumen, due to the activation of
the esophageal groove, and undergoes digestion in the abomasum and intestine [11]. The
gut microbial community in 30-days lambs was previously shown to be heterogenous, with
Lactobacillaceae (phylum Firmicutes) being predominant. Some other Firmicutes families
exhibiting a remarkable abundance in the gut were Lachnospiraceae, Clostridiaceae, and
Ruminococcaceae [12]. At weaning, lambs undergo a drastic change in nutrient intake from
milk to a plant-based carbohydrates diet, and this transition phase may lead to sequential
changes within microbial population of intestine [1,13]. It is known that dietary interven-
tions in pre- and post-weaned lambs significantly affect the microbial community structure
and functions, with likely consequences on physiological and practical implications for
animal health [14,15]. These may include the use of plant matrices or plant-derived bioac-
tive compounds as feed supplements, and several efforts have been addressed during the
last decade to exploit agro-industrial by-products in animal diets. Researchers addressed
their interest to phenolic compounds, for their ability to enhance the growth of specific
beneficial bacteria and to exclude certain pathogenic microorganisms at gut level. Dietary
anthocyanins may improve intestinal barrier functionality, enhance host/bacteria interac-
tion, and promote the proliferation of beneficial bacteria such as Bifidobacterium spp. and
Lactobacillus spp. [16]. These bacterial groups, actively involved in anthocyanin catabolism,
exert antimicrobial effects towards pathogens microorganisms, and are usually associated
to health benefit for the host [17,18]. According to Cheng et al. [19], phenolic compounds
from blueberry pomace may contribute to reshaping the structure and diversity of fecal
microbiota community. Moreover, phenolics-rich blueberries extracts had inhibitory effects
on some Gram-positive (Listeria monocytogenes, Bacillus subtilis, and Enterococcus faecalis) and
Gram-negative bacteria (Escherichia coli and Salmonella enterica ser. Typhimurium) [20]. In
pigs supplemented with grape seeds extract, ecological changes in gut microbial population,
with a dramatic increase in Lachnospiraceae, Clostridales, Lactobacillus and Ruminococcacceae,
was recorded [21]. Cranberry and olive by-products were also shown to modulate the
composition of gut microbiota and improve its integrity in broiler chicken [22,23].

Within this framework, our study proposed a metagenomic approach to investigate the
effect of anthocyanin-rich red orange and lemon extracts (RLE) on lamb gut microbiota. Red
orange (Citrus sinensis L.) and lemon (Citrus limon L.) peels are food industry by-products
resulting from mechanical pulp removal and juice extraction [24]. Citrus by-products have
a broad spectrum of application in pharmaceutical, nutraceutical, and food industries [25].
Their inherent chemical composition and the high content in phenolic compounds make
citrus extracts suitable as a supplement in ruminant diets [26,27]. To the best of our
knowledge, information about the effects of RLE on weaning lambs gut microbial ecology
is lacking.

2. Materials and Methods
2.1. Animal Management and Feeding

The experiment was authorized by the Animal Welfare Organization of the University
of Naples Federico II (PG/2019/0028161 of 03/19/2019).

The experimental procedures were carried out at the experimental farm of the Council
for Agricultural Research and Economics, Research Centre of Animal Production and
Aquaculture (CREA-ZA, Bella, PZ, Italy). Twenty-eight Merino male lambs were natural
suckled and, from 25 days of life until slaughtering (40 ± 1 days), they were fed with ad
libitum alfalfa hay (188 g/kg crude protein DM, 322 g/kg crude fiber DM) and starter
(205 g/kg crude protein DM, 18 g/kg fat DM, 250 g/kg crude fiber DM). Feed chemical
composition was determined according to the methods described by Maggiolino et al. [28].
At the start of the present trial, all animals were in good health; no disease was diagnosed
during and at the end of the treatments.



Agriculture 2021, 11, 572 3 of 11

After natural colostrum administration, within 2 h from birth, all lambs were randomly
subdivided into two treatment groups: one group received the RLE (ANT; n = 14), and the
control group (CON; n = 14) did not receive the additive. During their life, until slaughter
(40± 1 days), the lambs were permanently housed indoors. The daily intake was calculated
daily from the unconsumed feed before the next feeding. It was of 65 g/day and 68 g/day
of starter and of 18 g/day and 20 g/day of hay, respectively, for the ANT and CON groups.
Each lamb received 90 mg/kg of live weight of RLE once daily. The supplement was
orally administered to each lamb of the ANT group. It was mixed with water to obtain a
cream [28], which was then administered directly in the mouth using a large syringe. All
animals were weighed every 2 days at the same time (7:00 a.m.) and the correct amount of
RLE that had to be administered to each ANT lamb was quantified.

2.2. Composition of Red Orange and Lemon Extract

The additive (dry powder) was obtained by a patented extraction process (Italian
Patent No. 102017000057761) from red orange and lemon processing wastes. It was created
at CREA—Research Centre for Olive, Fruit and Citrus Crops (CREA-OFA, Acireale, Italy),
for research purposes only. The separation of anthocyanins content was performed as
described by Maggiolino et al. [29]. The RLE chemical composition is shown in Table 1.

Table 1. Red orange and lemon extract (RLE) chemical composition.

Compound [M]+ (m/z) MSn (m/z) Anthocyanin
Relative

Composition
(%) (a)

1 611 449/287 cyanidin 3,5-diglucoside 1.29
2 465 303 delphinidin 3-glucoside 2.67
3 611 287 cyanidin 3-sophoroside 0.41
4 449 287 cyanidin 3-glucoside 39.97
5 595 287 cyanidin 3-rutinoside 1.30
6 479 317 petunidin 3-glucoside 1.59
7 551 465/303 delphinidin 3-(6”-malonyl)glucoside 1.43
8 463 301 peonidin 3-glucoside 2.98
9 565 479/317 petunidin 3-(6”-malonyl)glucoside 1.45

10 535 449/287 cyanidin 3-(6”-malonyl)glucoside 21.76
11 - 271 pelargonidin derivative 1.44
12 549 463/301 peonidin 3-(6”-malonyl)glucoside 13.80
13 - 287 cyanidin derivative 2.39
14 - 301 peonitin derivative 1.82

Total anthocyanins (g CGE/100 g) 2.66 ± 0.01

[M]+ (m/z): mass peak; MSn (m/z): MS fragmentation model; (a) Relative composition of anthocyanins calculated from peak areas recorded
at 520 nm. The total anthocyanin content was expressed as mg of cyanidin 3-glucoside equivalents (CGE) 100 mL−1 and mg CGE 100 g−1

dry weight (DW) for the juice samples.

2.3. Fecal Sampling and Microbiome Analysis

All lambs were slaughtered in a slaughterhouse approved by the European Commu-
nity. Fecal samples were collected soon after stunning and jugulation, before evisceration
procedures, directly from the rectal ampoule using digital rectal retrieval. All samples were
stored immediately at −80 ◦C until analysis.

Fecal samples were subjected to DNA extraction and 16S rRNA sequencing. For 16S
rRNA gene amplicon sequencing, the bacterial V4 regions were amplified from extracted
DNA by using the universal primers 515F (5′-GTGCCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACVSGGGTATCTAAT-3′). The PCR reactions were carried out in triplicates
using Platinum SuperFi DNA Polymerase (Invitrogen, Carlsbad, CA, USA) with the fol-
lowing conditions: 98 ◦C for 30 min, 25 cycles of 98 ◦C for 10 s, 58 ◦C for 20 s and 72 ◦C
for 30 s and a final extension of 72 ◦C for 5 min. Amplified libraries were verified on 2%
agarose gel and PCR products were purified using Agencourt AMPure XP magnetic beads
(Agencourt Bioscience, Beverly, MA, USA). Purified libraries were quantified with Qubit
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dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA, USA) and pooled at a final concentration
of 100 pM. Libraries were sequenced on an Ion S5 Sequencing System (Thermo-Fisher Sci-
entific, Waltham, MA, USA). Quality filtered reads were aligned using MALT (v0.4.1) [30],
against the SILVA rRNA sequence database (SSURef_NR99, release 128). Taxonomic bin-
ning was performed by using MEGAN software [31]. Core microbiome was calculated at
genus level by MEGAN (sample threshold = 80%; class threshold = 1%).

2.4. Statistical Analysis

Statistical comparison of the relative abundance of taxonomic categories was per-
formed using STAMP software [32] by two-sided G-test (w/Yates’ + Fisher’s) with asymp-
tomatic confidence intervals (0.95) and the Benjamini–Hochberg False Discovery Rate
(FDR) method (q-value < 0.05). Rank abundance and alpha and beta diversity indexes
were estimated using Microbiome Analyst [33]. Moreover, principal coordinate analysis
(PCoA) was calculated using the Bray–Curtis index. Hypothesis testing was conducted by
the analysis of molecular variance (AMOVA) test (p < 0.05) [34].

3. Results

A total of 11,757,088 quality-filtered sequences with an average length of 291 bp were
obtained from the 28 fecal samples. The abundance-based coverage estimators (ACE) and
the alpha diversity index Chao1 indicated that the richness of the samples was increased by
anthocyanins supplementation. A similar behavior was observed for Shannon and Simpson
indexes, although less marked between the two groups (Figure S1). Taxonomic assignment
identified a total of 11 different phyla among all fecal samples (Figure 1). Overall, the lamb
fecal microbiota was dominated by the Proteobacteria and Firmicutes phyla, followed by
Actinobacteria and Bacteroidetes.
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Significant differences between groups at phylum level are reported in Figure 2.
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Figure 2. Differences in bacterial abundance at phylum level between the control and anthocyanin groups. The left side of
the graph shows the abundance ratios of different taxa. The middle graph shows the difference in bacterial abundance with
the 95% confidence interval with the respective q-values (q < 0.05). The right table shows the reads percentage assigned for
each taxonomic group.

The ANT group showed a reduced (q < 0.01) presence of Proteobacteria and Acti-
nobacteria and increased (q < 0.01) presence of Firmicutes, Bacteroidetes, Verrucomicrobia,
Candidatus Saccharibacteria and Euryarchaeota quantity. Differences at family level are
reported in Figure 3.
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Figure 3. Differences in bacterial abundance at family level between the control and anthocyanin groups. The left side of
the graph shows the abundance ratios of different taxa. The middle graph shows the difference in bacterial abundance with
the 95% confidence interval with the relative q-values (q < 0.05). The right table shows the reads percentage assigned for
each taxonomic group.

Lambs fed with anthocyanin dietary supplementation showed higher (q < 0.01) quan-
tity of Planococcaceae, Pseudomonadaceae, Moraxellaceae, Bacillaceae, Caulobacteraceae,
Lactobacillaceae and Bifidobacteriaceae families and lower (q < 0.01) quantity of Enterobac-
teriaceae, Sptreptomycetaceae, Ruminococcaceae and Lachnospiraceae. Moreover, the an-



Agriculture 2021, 11, 572 6 of 11

thocyanin addition slightly increased Micrococcaceae, Nocardiaceae, Xanthomonadaceae,
Akkermansiaceae, Clostridiaceae, Promicromonosporaceae, Rhodobacteriaceae, Microbac-
teriaceae, Campylobacteriaceae, Carnobacteriaceae, Dermabacteraceae, Paenibacellaceae,
Preptostreptococcaceae, Rhizobiaceae and Methanobacteriaceae families, reducing the
Bacteroidaceae, Streptococcaceae, Staphylococcaceae, Peptococcaceae and Clostridiales
families (q < 0.01). Figure 4 shows statistical differences between experimental groups at
genus level.
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Figure 4. Differences in bacterial abundance at genus level between the control and anthocyanin groups. The left side of
the graph shows the abundance ratios of different taxa. The middle graph shows the difference in bacterial abundance
with the 95% confidence interval with the q-values (q < 0.05). The right table shows the reads percentage assigned for each
taxonomic group.

Feces of lambs fed with anthocyanins were richer (q < 0.01) in microorganisms belong-
ing to the Acinetobacter, Solibacillus, Paenisporosarcina, Pseudomonas, Brevundimonas, Lacto-
bacillus and Bifidobacterium genera, and poorer (q < 0.01) of those belonging to Psychrobacter,
Streptomyces, Sporosarcina, Enterobacter, Phocaeicola, Lelliottia, Blautia and Bacteroides gen-
era. However, considering the common core microbiota of the control and anthocyanin
groups was composed by Acinetobacter (50%), Psychrobacter (27%), Paenisporosarcina (10%),
Enterobacter (8%) and Lelliottia (4%), as shown in Figure S2. Taking into account the unique
genera identified in the two experimental groups, 14 and 23 unique taxa were detected in
the control and anthocyanin groups, respectively (Table S1).

Principal coordinate analysis at species level showed that the microbial community
profiles were almost similar, although some individuals had a distinct profile (Figure 5).
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Differences at species level were reported in Figure 6.
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Considering the total number of reads assigned at species level, AG recorded higher
(q < 0.05) presence of Methanobrevibacter ruminantium and Bacteroides uniformis, but lower
(q < 0.05) of Escherichia coli, Bacteroides caccae and Salmonella sp. 1681.

4. Discussion

Gut microbiota composition, especially in young ruminant, is very susceptible to
modifications [14,35]. In the present study, a total of 11 different phyla were identified
among all fecal samples. Regardless of the treatment, Proteobacteria and Firmicutes were
the most abundant phyla (about 80% and 15% of the reads respectively), representing over
90% of the total reads, followed by Actinobacteria and Bacteroidetes. These phyla are
predominant in mammal small intestine [36] and in chicken cecum intestine [37], but their
proportion is influenced by multiple factors such as species, diet, age and genotype [38,39].
Similarly, Li et al. [7] reported that these phyla are the most abundant in goats gut micro-
biota, representing over 90% of the taxonomic groups identified; differently, some authors
in lambs [40] and calves [41,42] reported that Firmicutes and Actinobacteria represented
the most abundant phyla, covering about 90% of the groups identified. Particularly for
ruminant, Firmicutes, and in particular Lactobacillus genus, play a pivotal role in fiber and
cellulose degradation [43] and contribute to maintain microflora balance by counteracting
pathogenic invasions [44]. On the contrary, Bacteroidetes degrade sugars and proteins, and
are positively related to immune system effectiveness [45,46]. Differently, Proteobacteria
mainly consists of Gram-negative bacteria and some of them are responsible for important
pathologies, such as diarrhea and malabsorption, affecting the gastrointestinal system [47];
however, the amount of Proteobacteria in small ruminants, as in goat kids, decreased with
increasing age [38]. The relative abundance of Proteobacteria and Firmicutes was 86.4%
and 8.5% in the control group and 80.6% and 14.8% in anthocyanin group, respectively.
Comparable results were obtained from a study conducted on male goats, fed adding
condensed tannins to the diet, where the predominant phyla were Proteobacteria and
Firmicutes, followed by Bacteroidetes [48]. Regardless of the age and feeding system,
Proteobacteria and Firmicutes were detected as the dominant phyla also in goat kids [38].
Anthocyanin supplementation significantly decreased the percentage of Proteobacteria
(−5.8%) and Actinobacteria (−1.4%), and increased, favourably, Firmicutes (+6.3%) and
Bacteroidetes (+0.7%) compared to the control group, which could have positive effects on
intestinal health and growth rates in lambs.

There was a significant reduction in the Enterobacteriaceae population (−9.5%) in the
fecal microbiota of the lambs supplemented with anthocyanins compared to the control
group. Although it is not fully elucidated the anthocyanins mechanism of action in the gut,
it could be that these substances act by inhibiting some microorganism replication, favoring
the replication of some other, probably inducing more availability of some substances
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that may act as prebiotics [49]. Enterobacteriaceae is a large family of Gram-negative
bacteria that includes many commensal bacteria but also many spread pathogens such
as Salmonella, E. coli, Shigella, Yersinia, Proteus [50], which could result in diarrhea, gas-
tritis, vomiting, gastrointestinal ulcers and often death of the animal [47,51]. Although
the Bifidobacteriaceae and Lactobacillaceae families are poorly represented in all samples,
anthocyanin supplementation resulted in an increase in the presence of bacteria belong-
ing to the Lactobacillaceae (+0.5%) and Bifidobacterium (+0.3%) family compared to the
control group.

A total of 27 genera were identified in the fecal samples. Important differences in
composition were observed for the genus level between the groups. The most represented
genera were Psychrobacter (36.5% and 4.5% for the control and anthocyanin group, re-
spectively) and Acinetobacter (21.8% and 50.5% for the control and anthocyanin group,
respectively), representing together more than 50% for both experimental groups. Inter-
estingly, the decrease in Enterobacter and the increase in Bifidobacterium and Lactobacillus
were observed in the anthocyanin group. In fact, both Bifidobacterium and Lactobacillus
are well-known beneficial microbiota [52], also representing spread probiotic matrices
sold on the market [53]. Bifidobacterium has been reported to stimulate the early develop-
ment of gut regulating its microbial homeostasis, inhibiting pathogens and modulating
local and systemic immune responses, improving vitamins production and increasing the
bioconversion of dietary components to active compounds [54]. Lactobacillus has been
linked to immune system improvement in young calves [55]. Some studies reported that
these bacteria in young ruminants are able to increase weight gain and to decrease feed
conversion ratio [56,57], as reported for kids fed with anthocyanins administration by
Salzano et al. [58]. Lactobacillus and Bifidobacterium have an antagonist activity on some
potential pathogens like Salmonella, E. coli and Clostridium perfrigens [59]. Escherichia is a
commensal bacterium in the intestinal microbiota, although some strains are harmless,
while other ones can provoke intestinal diseases, diarrhea and inflammatory events, that
represented the main cause of morbidity and mortality in new-born ruminants [56,60].
The Escherichia coli species and Salmonella spp. bacteria were significantly lower in the
anthocyanin group, showing a positive effect of additive. This is an important result
for the intestinal health of lambs, digestibility and for the growth rate of young animals,
showing a positive effect of anthocyanins administration. Furthermore, a reduction in E.
coli could significantly reduce the risk of transmission of food poisoning from animals to
humans [61]. The low percentage of E. coli in the anthocyanin group could be explained by
the antimicrobial activity of anthocyanins and phenolic compounds [62], but the inhibition
mechanism is not yet fully known [49]. Some studies reported the Bifidobacterium and
Lactobacillus effect in hindering the Escherichia attachment to the epithelial cell surface,
reducing indices of intestinal disease [63,64].

5. Conclusions

The administration of a red orange and lemon extract in suckling lambs induced
changes in their gut microbiota, with a favorable increase of bacteria belonging to the
Firmicutes phylum and Bifidobacterium and Lactobacillus genera and a decrease in potentially
pathogenic bacteria such as E. coli and Salmonella spp. This should be considered as a
potential way for reducing the use of antimicrobial substances, as well as improving
animals’ health and welfare status.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/agriculture11070572/s1, Figure S1: Alpha diversity indexes (ACE, Chao1, Shannon, Simpson)
of bacterial species assigned for anthocyanins and control group, Figure S2: Relative abundance and
taxonomic assignments at genus level of the core microbiota common to the control and anthocyanins
group, Table S1: List of unique taxa detected in control and anthocyanins group.
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