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1  |  INTRODUC TION

Balancing selection is a selective process that generates and main-
tains genetic diversity within populations, as firstly proposed 
by (Dobzhansky, (1951)). Many diverse mechanisms of balancing 

selection have been described (Charlesworth, 2006). Overdominance 
(or heterozygote advantage) occurs when heterozygote individu-
als at one locus have higher fitness than homozygotes. In sexually 
antagonistic selection, different alleles at the same locus have op-
posite effects in the two sexes creating a balanced polymorphism 
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Abstract
Balancing selection is an important adaptive mechanism underpinning a wide range of 
phenotypes. Despite its relevance, the detection of recent balancing selection from 
genomic data is challenging as its signatures are qualitatively similar to those left by 
ongoing positive selection. In this study, we developed and implemented two deep 
neural networks and tested their performance to predict loci under recent selection, 
either due to balancing selection or incomplete sweep, from population genomic data. 
Specifically, we generated forward-in-time simulations to train and test an artificial 
neural network (ANN) and a convolutional neural network (CNN). ANN received as 
input multiple summary statistics calculated on the locus of interest, while CNN was 
applied directly on the matrix of haplotypes. We found that both architectures have 
high accuracy to identify loci under recent selection. CNN generally outperformed 
ANN to distinguish between signals of balancing selection and incomplete sweep and 
was less affected by incorrect training data. We deployed both trained networks on 
neutral genomic regions in European populations and demonstrated a lower false-
positive rate for CNN than ANN. We finally deployed CNN within the MEFV gene re-
gion and identified several common variants predicted to be under incomplete sweep 
in a European population. Notably, two of these variants are functional changes and 
could modulate susceptibility to familial Mediterranean fever, possibly as a conse-
quence of past adaptation to pathogens. In conclusion, deep neural networks were 
able to characterize signals of selection on intermediate frequency variants, an analy-
sis currently inaccessible by commonly used strategies.
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at the population level. In negative frequency-dependent selection, 
rare alleles have a fitness advantage. Finally, spatially and temporally 
varying selection creates a scenario where different alleles are ad-
vantageous in different environments.

Until 2006, the general consensus was that only few loci in the 
human genome have been targets of balancing selection (Asthana 
et al., 2005; Bubb et al., 2006). Since then, the availability of large-
scale population genomics data and the development of ad hoc sta-
tistical tests contributed to the current view that balancing selection 
is a widespread adaptive mechanism underlying a broad spectrum of 
features in the genetic architecture of phenotypes (Key et al., (2014); 
Llaurens et al., 2017).

In humans, balancing selection is responsible for shaping the 
diversity of genes involved in the adaptive and innate immune re-
sponse (Andrés et al., 2009); DeGiorgio et al., 2014; Ferrer-Admetlla 
et al., 2008; Meyer et al., 2006), metabolism (Fumagalli et al., 2019) 
and other processes (Bitarello et al., 2018). Notably, variants tar-
geted by pathogen-driven balancing selection have been found to 
be associated with susceptibility to several autoimmune diseases 
(Fumagalli et al., 2011). Therefore, by elucidating the genomic sig-
nals of balancing selection we have the ability to identify common 
alleles with critical functional consequences. For instance, balancing 
selection has been hypothesized to maintain a common variant in 
an angiotensin-converting enzyme (Cagliani, Fumagalli, Riva, Pozzoli, 
Comi, et al., 2010) which has been recently associated with increased 
susceptibility to SARS-CoV-2 (Delanghe et al., 2020).

Several methods to identify targets of balancing selection have 
been proposed (Fijarczyk & Babik, 2015). Genomic signatures of 
balancing selection have been detected by testing for an excess of 
heterozygous genotypes (Fumagalli et al., 2009a), a local increase in 
genetic diversity (Cagliani, Fumagalli, Riva, Pozzoli, Fracassetti, et al., 
2010) and polymorphisms (Soni et al., 2021), a shift in the site fre-
quency spectrum towards common frequencies (Andrés et al., 2009; 
Bitarello et al., 2018; Siewert & Voight, 2017), a population genetic 
differentiation lower or higher than expected under neutral evolu-
tion (Cagliani et al., 2008), presence of trans-species polymorphism 
(Leffler et al., 2013; Teixeira et al., 2015), by explicitly modelling the 
patterns of polymorphisms and substitutions (Cheng & DeGiorgio, 
2020; DeGiorgio et al., 2014), and by correlating allele frequencies 
with environmental variables (Fumagalli et al., 2009b).

The application of such methods to large-scale human popu-
lation genomic data has enabled the characterization of targets of 
long-term balancing selection (i.e. selection that predates the time 
to the most recent common ancestor in a species) in humans and 
their association to several diseases (Cagliani et al., 2008; Siewert 
& Voight, 2017). Nevertheless, all these studies contributed little to 
the understanding of the role of balancing selection in recent human 
evolution, despite short-term or transient balancing selection being 
predicted to be a common phenomenon in nature (Sellis et al., 2011). 
Recent balancing selection leaves traces that are almost indistin-
guishable from those left by recent positive selection (Fijarczyk 
& Babik, 2015), with beneficial alleles segregating at intermediate 
frequency in contemporary genomes in both cases (Charlesworth, 

2006). Additionally, even when signatures of balancing selection are 
identified, the underlying evolutionary mechanism (e.g. overdomi-
nance or negative frequency-dependent selection) is often unknown 
(Llaurens et al., 2017). As such, current methods have only limited 
power to identify and characterize signatures of recent balancing 
selection in the human genome.

A promising solution to address this issue is provided by super-
vised machine learning (ML) which has been recently introduced in 
population genetics and successfully applied for evolutionary infer-
ences (Schrider & Kern, 2018). For instance, several ML methods 
have been proposed and successfully applied to population genetic 
data to predict and classify neutral and selective events on genomic 
loci (Kern & Schrider, 2018; Lin et al., 2011; Mughal & DeGiorgio, 
2019; Pavlidis et al., 2010; Ronen et al., 2013; Schrider & Kern, 2016; 
Sugden et al., 2018). Deep learning is a class of ML algorithms based 
on artificial neural networks (ANNs) which comprise nodes in multi-
ple layers connecting features (input) and responses (output) (Lecun 
et al., 2015). ANNs have the potential to be used in population ge-
netics to estimate parameters from genomic data using multiple 
summary statistics as input (Sheehan & Song, 2016).

Notably, deep learning algorithms can effectively learn which 
features (i.e. measurable properties of the data) are sufficient for the 
prediction (Krizhevsky et al., 2012; Lecun et al., 2015). Despite deep 
learning in population genetics being in its infancy, several studies 
have already introduced the use of convolutional neural networks 
(CNNs) to full population genomic data with convolutional layers au-
tomatically extracting informative features (Chan et al., 2018; Flagel 
et al., 2019; Sanchez et al., 2020; Torada et al., 2019; Xue et al., 
2021). A convolution layer is comprised of several weight matrices 
that slide across the input image and perform a matrix convolutional 
to produce image matrices (Jiuxiang et al., 2018; Lecun et al., 1998). 
Recent reviews provide more detailed information on convolutional 
neural networks in population genetic inference (Flagel et al., 2019; 
Sanchez et al., 2020).

In this study, we aimed at developing and implementing deep 
neural networks to predict loci at intermediate allele frequency 
(i.e. between 40% and 60%) under natural selection (Test 1). By 
doing so, our goal is also to distinguish between signals of incom-
plete sweep (e.g. ongoing positive selection) and signals of bal-
ancing selection (Test 2), either due to overdominance or negative 
frequency-dependent selection. As mentioned above, these two 
types of selection are different biologically but leave similar signa-
tures in genomes, making their discernment particularly challenging. 
Specifically, we compared the predictive power between ANNs (i.e. 
based on summary statistics) and CNNs (i.e. based on full population 
genomic data) to perform such classification.

Finally, we deployed the trained deep neural networks on pop-
ulation genomic data to identify and characterize signals of natural 
selection acting on the MEFV gene. Mutations in the MEFV gene 
cause familial Mediterranean fever (FMF), an autoinflammatory dis-
ease with recurrent episodes of fever, abdominal, joint and chest 
pain, with gradual development of nephropathic amyloidosis (kidney 
failure) in some cases (Touitou, 2001). FMF is highly prevalent in 
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populations of Mediterranean origin (Touitou, 2001), and the 3' ter-
minal region of the MEFV gene has been hypothesized to be under 
balancing selection due to overdominance in some European popu-
lations (Fumagalli et al., 2009a). Recently, causative mutations in the 
MEFV gene have been reported as target of recent positive selection 
in the Turkish population as they confer resistance to Yersinia pestis 
(Park et al., 2020). By applying our deep neural networks on a large 
sample size of genomic data, we sought to establish which type of 
natural selection has been acting on MEFV with regard to suscepti-
bility to FMF.

2  |  MATERIAL S AND METHODS

2.1  |  Simulations of population genomic data

We performed extensive simulations both to assess the predictive 
power of summary statistics and to train deep neural networks. 
We generated synthetic population genomic data using SLiM 3.2, a 
forward-in-time genetic simulation software (Haller & Messer, 2019). 
We simulated four different scenarios: neutrality (NE), incomplete 
sweep (IS), overdominance (OD) and negative frequency-dependent 
selection (FD). A locus under balancing selection (BS) was consid-
ered to be under either OD or FD. All simulations were conditioned 
on a previously proposed demographic model for European popu-
lations (Jouganous et al., 2017) with a mutation rate of 1.44e−8, a 
generation time of 29 years and a recombination rate sampled from 
a normal distribution with mean 1e–8 and standard deviation 1e–9. 
Further details on the simulation model employed are available in 
Table S1 (Gravel et al., 2011).

For simulating scenarios of natural selection, we generated loci 
of 50 kbp (base pairs) with the selected variant at the centre of the 
simulated sequence. We assumed a model of selection on a de novo 
mutation. For illustrative purposes of this study, the selected mu-
tation was introduced in the European population at 21 different 
times, ranging from 40 k to 20 kya (Figure S1). We classified these 
times into three categories: recent (20 k to 26 kya), medium (27 k to 
33 kya) and old (34 k to 40 kya) selection.

To mimic the effect of a selected variant at intermediate fre-
quency, we conditioned the final (i.e. contemporary) allele fre-
quencies to be between 40% and 60% in the sample. If the final 
frequency of the selected allele was not within this range, the simu-
lation restarted at the generation where the selected variant was in-
troduced. For each selection scenario and time of onset of selection, 
we chose selection coefficients and parameters which maximized 
the probability of the final allele frequency being between 40% and 
60% (Table S2). At the end of the simulations, we sampled 198 chro-
mosomes (i.e. haploid individuals) to match the sample size of CEU 
(Central European) individuals in the 1000 Genomes Project (1000 
Genomes Project Consortium, 2015).

In the neutral scenario, no selected variant was introduced. 
Instead, we generated data with a neutral variant at the centre of 

the sequence with a frequency between 40% and 60%. To achieve 
this, we (i) simulated a larger region of 500 kbp under neutral evo-
lution, (ii) sampled 198 chromosomes, (iii) identified a variant with a 
frequency between 40% and 60%, and (iv) trimmed the large region 
to obtain a 50 kbp locus (Figure S2).

2.2  |  Calculation of summary statistics and 
genomic images

We processed the simulated genomic data to be received as input to 
deep neural networks (i.e. both ANN and CNN). For ANN, we sum-
marized each genomic sequence as a vector of all potentially inform-
ative summary statistics. Additionally, we divided each simulated 
50 kbp sequence into two sub-regions: (i) proximal to the selection 
site (20–30 kbp) and (ii) distal from the selected site (0–20 kbp +30–
50 kbp) (Figure S3), similarly to previous studies (Peter et al., 2012; 
Sheehan & Song, 2016). For each region, we calculated 32 summary 
statistics. The main statistics are as follows: nucleotide diversity π 
(Nei & Li, 1979), Watterson's estimator θ (Watterson, 1975), Tajima's 
D (Tajima, 1993), linkage disequilibrium (LD) r2 (Hill & Robertson, 
1968), Kelly's Zns (Kelly, 1997), Fu and Li's F* and D* (Fu & Li, 1993), 
H1, H12, H123, H2/H1 (Garud et al., 2015), iHS (Voight et al., 2006), 
EHH (Sabeti et al., 2002), Zeng et al.'s E (Zeng et al., 2006), Fay and 
Wu's H (Fay & Wu, 2000), nSL (Ferrer-Admetlla et al., 2014), NCD1 
(Bitarello et al., 2018), raggedness index (Harpending, 1994), ob-
served and expected heterozygosity, haplotype diversity, number of 
unique haplotypes and number of singletons. Finally, we included 
some derivatives of these main statistics, such as mean, median and 
maximum values of mean pairwise distances calculated for all chro-
mosome pairs in a simulation (Figure S3, Table S3). All summary sta-
tistics were calculated using scikit-allel library (https://github.com/
cggh/sciki​t-allel) and then scaled using the StandardScaler function 
from sklearn library (Pedregosa et al., 2011). All scaled summary sta-
tistics were considered as input features to the ANN.

For CNN, we created images from the alignment of sampled hap-
lotypes, similar to previous studies (Chan et al., 2018; Flagel et al., 
2019; Torada et al., 2019)). In this data representation, each row of 
the image is a sampled haplotype (i.e. individual chromosome) and 
each column corresponds to a specific segregating site. The colour 
coding indicates if a variant is derived or ancestral, or any other po-
larization of alleles (e.g. major/minor, reference/alternate). To disen-
tangle the effect of random sorting of sampled haplotypes (Torada 
et al., 2019), we reordered rows of images as follows: (i) sampled 
haplotypes are divided into two groups based on the presence or 
absence of the targeted allele, (ii) haplotypes within each of the two 
groups are sorted separately based on haplotype frequency, (iii) the 
two sorted groups are combined to obtain the final reordered image. 
Lastly, to take into account the different dimensions of simulated 
loci, we resized images into 128 × 128 pixels (Torada et al., 2019) 
using the Image module from Pillow package (https://pypi.org/proje​
ct/Pillow).

https://github.com/cggh/scikit-allel
https://github.com/cggh/scikit-allel
https://pypi.org/project/Pillow
https://pypi.org/project/Pillow
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2.3  |  Implementation and training of 
neural networks

Both ANN and CNN models were implemented in Python using Keras 
library with Tensorflow backend (Chollet, 2015). ANN model comprises 
one input, three hidden and one output fully connected (i.e. dense) 
layers. Similar to a previous study (Sheehan & Song, 2016), the hid-
den layers consist of 20, 20 and 10 neurons, respectively, all with a 
Rectified Linear Units (ReLU) activation function. The output layer, 
which performs the binary classification, consists of a single neuron 
with a sigmoid (i.e. logistic) activation function. To control for overfit-
ting, in addition to batch normalization, we used a dropout rate of 0.5 
and L2 weight decay of 0.005 across all but the output layers. Models 
were optimized using the Adam optimizer with a batch size of 64 and a 
learning rate of 0.005 (Kingma & Ba, 2014; Ruder, 2017).

The CNN model consisted of three sets of 2D convolution lay-
ers, each followed by a batch normalization layer and ReLU activation 
layer. A max-pooling layer was also applied after the first two con-
volution layers. All convolutional layers consisting of 32 filters had a 
kernel size of 3 x 3, applied at stride 1. The size of the pooling layers 
was 2 x 2, which were applied at stride 2. The convolutional layers 
were followed by a flatten layer, which transforms a two-dimensional 
feature matrix into a vector. Finally, we used a fully connected layer 
consisting of 128 units that uses the flattened feature vector as an 
input, followed by an output layer. Again, we used ReLU activation 
function on the output from the fully connected layer and the sig-
moid function for the output layer. We performed extensive hyper-
parameter tuning on training data over 25 epochs to optimize values 
of learning rate (Figure S4), number of units per layer (Figure S5), L2 
regularization (Figure S6), dropout rates (Figure S7), batch normaliza-
tion (Figure S8), image reshaping (Figure S9), to maximize accuracy 
for predicting loci under incomplete sweep or balancing selection 
(Test 2). A complete list of all hyper-parameter values used in the 
CNN model is available in Table S4. Further, we performed data aug-
mentation during the training of CNN models by randomly flipping 
images horizontally (Figure S10) using the ImageDataGenerator func-
tion from Keras (Chollet et al., 2015). Similarly, we performed hyper-
parameter tuning for ANN on 40 k training samples over 25 epochs to 
optimize values of learning rate (Figure S11), dropout and L2 weight 
decay (Figure S12), scaling (Figure S13), architecture (Figure S14), to 
maximize accuracy for predicting loci under incomplete sweep or bal-
ancing selection (Test 2).

We performed 480,000 simulations in total for training all deep 
neural networks. Each single model employed 80,000 simulated 
data samples, 64,000 of them for training and the remaining 16,000 
for validation. All models were trained for 50 epochs each. Testing 
was performed on approximately 16,000 data samples. We trained 
both ANN and CNN to perform two classification tasks: predict loci 
under natural selection vs. neutral evolution (Test 1) and predict loci 
under balancing selection vs. incomplete sweep (Test 2). The predic-
tive power of ANN and CNN for each test was quantified with a con-
fusion matrix, where each row represents the instances of true class 
and each column the corresponding number of predicted instances.

2.4  |  Prediction of natural selection from 
genomic data

We deployed the trained networks on phased population genomic 
data from the 1000 Genomes Project for the CEU population (1000 
Genomes Project Consortium, 2015). We filtered all non-biallelic po-
sitions and selected all variants with a frequency between 40% and 
60% in CEU populations within the MEFV gene region. We retrieved 
41 such variants and, for each one, generated a haplotype matrix 
(Torada et al., 2019) of 50 kbp surrounding the putative target vari-
ant. We calculated summary statistics (for ANN) and generated im-
ages (for CNN) for each variant by applying the same pipeline used 
for training the networks. Test 2 was performed only on variants pre-
dicted to be under selection for Test 1. Genomic annotations were 
obtained using the EnsDb. Hsapiens.v75 package in R (Rainer, 2017), 
and Gviz package was used for visualization (Hahne et al., 2016). We 
also employed the same procedure on data from 99 randomly sam-
pled individuals of Tuscans in Italy (TSI) from 1000 Genomes Project 
(1000 Genomes Project Consortium, 2015).

We further deployed the trained networks on genomic regions hy-
pothesized to be neutrally evolving. We extracted two putative neutral 
regions (chr16: 62,852,764–62,944,210 and chr16: 63,651,950–
63,684,341) predicted by the NRE Tool (Arbiza et al., 2012) which was 
run with default parameters for a large region proximal to MEFV gene 
on chromosome 16. We identified a total of 42 biallelic variants with 
intermediate allele frequency and applied the same procedure afore-
mentioned to predict signals of selection using both trained networks.

2.5  |  Software availability

A Python package called BaSe (Balancing Selection) that implements 
deep neural networks (both ANN and CNN) for the detection of se-
lection and for discerning between incomplete sweep and balancing 
selection is available at https://github.com/ulasi​sik/balan​cing-selec​
tion. Data visualizations were performed in R, using ggplot2 (Wickham, 
2016), ggpubr (Kassambara, 2020) and pheatmap (Kolde, 2018) librar-
ies. All remaining analyses were performed in Python.

3  |  RESULTS

3.1  |  Summary statistics are not sufficient to 
discriminate between balancing selection and 
incomplete sweep

Our first aim was to test whether commonly used summary statistics 
were sufficient to discriminate between loci under neutrality and natu-
ral selection, the latter comprising both incomplete sweep and balanc-
ing selection (Test 1). We calculated a total of 64 different summary 
statistics and compared their distributions calculated on simulated loci 
under either neutrality or selection, with the targeted allele at inter-
mediate frequency (between 40% and 60%) in the centre of the region 

https://github.com/ulasisik/balancing-selection
https://github.com/ulasisik/balancing-selection
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(Figure S15). Figure 1 (upper panel a) shows a subset of these compari-
sons and indicates that the distribution of several summary statistics 
under neutral evolution or natural selection is statistically different. 
Therefore, these summary statistics can be used to predict loci under 
natural selection. This effect is particularly notable for haplotype-
based summary statistics (Figure 1, upper left panel a), and it is consist-
ent across all times of onset of selection (recent, medium and old), in 
line with the effect of recent selection on patterns of LD.

Next, we tested whether summary statistics were able to distinguish 
between loci under incomplete sweep and balancing selection (Test 2), 
and, again, we compared their distributions (Figure S16). Figure 1 (lower 
panel b) shows the same subset of comparisons. These results suggest 
that only few summary statistics can discern genomic patterns created 
by incomplete sweep from those created by balancing selection, and 
only marginally. This deficiency is particularly severe for allele frequency-
based summary statistics and for medium to old times of selection onset.

F I G U R E  1  Distribution of a subset of summary statistics calculated on simulated loci under either neutral evolution or natural selection 
at different times of onset (recent, medium or old). Panel (a) shows the comparison between neutral evolution and natural selection (either 
ongoing positive selection or balancing selection). Panel (b) shows the comparison between incomplete sweep and balancing selection. 
Left panels group summary statistics based on haplotype diversity, while right panels group summary statistics based on allele frequency. 
Comparisons which are statistically significant (two-sided two-sample Mann–Whitney U-test) are depicted with *(p < 0.05), **(p < 0.01), 
***(p < 0.001), otherwise are depicted with n.s. (not significant)
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3.2  |  Convolutional neural network has higher 
prediction accuracy than ANN to distinguish between 
incomplete sweep and balancing selection

As summary statistics do not have power to discriminate between 
incomplete sweep and balancing selection if considered individu-
ally, we then tested whether their predictive power increased when 
jointly integrated. Thus, we implemented a deep ANN which re-
ceives as input all calculated summary statistics (Sheehan & Song, 
2016) and predicts whether a given locus is under either neutrality 

or natural selection, either due to an incomplete sweep or balancing 
selection (Test 1). We compared the predictive accuracy of ANN to 
an approach based on convolutional layers, in the form of a CNN 
applied to full population genomic data as an alignment of sampled 
haplotypes (Torada et al., 2019).

Figure 2 illustrates the performance of ANN and CNN to predict 
loci under different classes of evolution. The upper panel (a) on the 
left side shows the training loss and accuracy over epochs for classi-
fying a locus under either neutral evolution (NE) or selection (S, Test 
1). CNN showed a high loss and lower accuracy during the first few 

F I G U R E  2  Performance of ANN (orange) and CNN (blue) to predict loci under selection (Test 1, upper panel a.) and to distinguish 
between incomplete sweep and balancing selection (Test 2, lower panel b.). For each category of time of onset of selection (recent, medium, 
old), training loss and accuracy (low-to-high gradient coloured in white-to-blue scale) over epochs are shown on the left side, while confusion 
matrices are shown on the right side. Different classes to predict are neutrality (NE), selection (S), incomplete sweep (IS), balancing selection 
(BS)
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epochs, but both methods reached qualitatively similar levels of loss 
and accuracy after approximately ten epochs. Confusion matrices 
on testing data (top panel a on the right side of Figure 2) indicate 
similar predictive power for ANN and CNN. Recent selective events 
were more likely to be correctly classified than older events. For 
instance, we observed that the false-negative rate of identifying a 
gene under old selection is 9% for ANN and 14% for CNN, whereas 
it was 4% for ANN and 1% for CNN in case of recent selection (i.e. 
20 kya).

The lower panel (b) of Figure 2 on the left side illustrates train-
ing loss and accuracy over epochs for classifying a locus under 
either incomplete sweep (IS) or balancing selection (BS, Test 2). 
The results recapitulated what was previously observed on the 
higher loss during the first few epochs for CNN. However, for this 
classification task, CNN exhibited a consistently higher predic-
tion accuracy than ANN across all epochs. This observation was 
confirmed when investigating the confusion matrices calculated 
on testing data (Figure 2, right side of lower panel b). CNN con-
sistently outperformed ANN for predicting loci under incomplete 
sweep or balancing selection, although the overall accuracy was 
lower than the one obtained for Test 1. For instance, we observed 
a false-negative rate of identifying a locus under old balancing 
selection of 32% for ANN and 22% for CNN, and 29% for ANN 
and 16% for CNN in case of recent selection. Again, recent selec-
tive events were more likely to be correctly classified than older 
events. However, we should stress that ANN will achieve bet-
ter performance (and possibly similar prediction accuracy to the 
CNN) if a larger number of informative statistics are given as input. 
Overall, CNN had high power to identify loci under selection and 
substantial power to distinguish between incomplete sweep and 
balancing selection, two modes of evolution that leave extremely 
similar genomic patterns.

3.3  |  Convolutional neural network is more robust 
than ANN to misspecified training data

The training of a neural network for population genetic inferences 
is conditional on a demographic and selection model to generate 
genomic data under different evolutionary scenarios. Therefore, we 
tested the robustness of both ANN and CNN to misspecified evolu-
tionary parameters during training. Specifically, we used the already 
generated synthetic data and calculated the prediction accuracy for 
identifying loci under selection (Test 1) and for distinguishing be-
tween incomplete sweep and balancing selection (Test 2) when both 
ANN and CNN were trained on a specific time of onset of selection 
(recent, medium, old) but tested on a different value. By doing so, we 
were able to quantify any drop in accuracy when the training data 
did not reflect the underlying true evolutionary model.

Figure 3 shows the prediction accuracy for both tests (Test 1 
and Test 2, on columns) and networks (ANN and CNN, on rows) for 
all possible pairs of time of onset of selection between training and 
testing data. Numbers on the antidiagonal represent accuracy values 
when the model used for both training and testing was the same. 
Numbers outside the antidiagonal indicate accuracy values when 
the models employed for training and testing differed. We observed 
a marginal decline in accuracy when using incorrect training data for 
Test 1 for both networks which performed similarly. These results 
were confirmed when investigating all corresponding confusion ma-
trices (Figure S17). For Test 2, the drop in accuracy when employing 
a different model for training was more evident than for Test 1, al-
though CNN outperformed ANN in most scenarios (Figure 3, Figure 
S18).

To further test the robustness of our inferences to a misspec-
ified model, we tested both architectures trained on a European 
population to simulated data generated from a demographic model 

F I G U R E  3  Prediction accuracy (low-
to-high gradient coloured in white-to-blue 
scale) for classifying loci under different 
evolutionary events (Test 1 and Test 2, on 
columns) and methods (ANN and CNN, 
on rows) for all pairs of classes for time 
of onset of selection between training 
(y-axis) and testing data (x-axis). The 
antidiagonal shows accuracy values when 
the model used for both training and 
testing is the same, while accuracy values 
outside the antidiagonal are obtained 
when the models employed for training 
and testing differ
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of African and East Asian populations (Jouganous et al., 2017). 
Accuracy values for Test 1 are marginally affected by a misspeci-
fied demographic model (Figures S19 and S20), while we observed 
a slightly more pronounced decrease in performance for Test 2 
(Figures S19 and S20).

3.4  |  Convolutional neural network identifies 
signatures of recent natural selection in MEFV gene

We deployed the trained networks, both ANN and CNN, on genomic 
data for the MEFV gene from CEU population from the 1000 
Genomes Project (1000 Genomes Project Consortium, 2015). MEFV 
gene has been previously associated with both balancing selection 
(Fumagalli et al., 2009a) and ongoing positive selection (Park et al., 
2020). Here we tested whether MEFV gene has been targeted by 
natural selection and, if so, whether by balancing selection or in-
complete sweep.

To assess the false-positive rate, we extracted flanking genomic 
regions to MEFV predicted to be under neutral evolution (Arbiza 
et al., 2012) and deployed both ANN and CNN algorithms on all in-
termediate frequency variants. We expected the networks not to 
predict signals of selection within these control neutral regions. 
ANN predicted 23 out of 42 sites to be under selection regardless 
of the time of onset of selection (Figure S21). Therefore, we decided 
not to use the ANN algorithm for inferences on the MEFV gene, as 
it showed a high false-positive rate when applied to putative neutral 
genomic regions. In contrast, CNN provided strong support for 39 
out of 42 sites to be under neutral evolution, with only three sites 
possibly predicted to be under selection regardless of the time of 
onset (Figure S22).

Next, we aimed to identify signals of natural selection and 
deployed the trained CNN within the MEFV genomic region of 
European samples (CEU) from the 1000 Genomes Project database 
(1000 Genomes Project Consortium, 2015). We observed a large 
proportion of sites with intermediate allele frequency predicted to 
be under natural selection (Test 1) regardless of the time of onset of 
selection (Figure 4, upper panel). All sites under selection were pre-
dicted to be under incomplete sweep rather than balancing selection 
(Figure 4, second panel from top).

Sites predicted to be under selection (or in LD with the target of 
selection) encompass a haplotype block spanning from intron 2 to 
3' UTR (untranslated region, Figure S23). Most of these variants are 
possibly functionally silent as they lay within introns or represent 
synonymous substitutions (Figure 4, third to fifth panels from top). 
However, two mutations within this region represent either missense 
(rs1231123, rs1231122) or stop-gained (rs1231122) substitutions, 
depending on the corresponding isoform. The predicted signals of 
selection in the MEFV gene were confirmed when deploying the 
trained network to genomic data from TSI samples (1000 Genomes 
Project Consortium, 2015), another European population (Figure 
S24). However, the results obtained using TSI population showed a 
higher false-positive rate when deployed to neutral genomic regions 

(Figure S25) than the ones obtained using CEU population, possibly 
because the network was trained on simulated data conditional on 
a demographic model inferred for the CEU population. In fact, 7, 14 
and 10 out of 38 neutral sites were predicted to be under selection 
with recent, medium and old time of onset, respectively, using TSI 
population. In contrast, 3, 13 and 9 out of 42 neutral sites were la-
belled as targets of selection with recent, medium and old time of 
onset, respectively, using CEU population.

4  |  DISCUSSION

In this study, we demonstrated the utility of deep learning to iden-
tify genomic signals of recent natural selection on intermediate 
frequency variants. We showed that algorithms based on either 
summary statistics (i.e. ANN) or full genomic data (i.e. CNN) had 
comparably high power to infer selective regimes (Figure 2) and ex-
hibit lower false-positive and false-negative rates than commonly 
used neutrality tests (Figure S26). However, CNN had higher accu-
racy to distinguish between loci under balancing selection and in-
complete sweep (Figure 2), it was generally more robust to incorrect 
training data (Figure 3), and it had a lower false-positive rate when 
deployed on neutral genomic regions than ANN (Figures S21 and 
S22). Finally, we illustrated the applicability of deep neural networks 
to detect and characterize signals of natural selection on common 
variants within the MEFV gene region (Figure 4).

Our results on the high predictive power offered by deep learn-
ing, and specifically by convolutional neural networks, to detect 
signals of natural selection expand previous findings (Chan et al., 
2018; Flagel et al., 2019; Sanchez et al., 2020; Torada et al., 2019) 
to cases where the beneficial allele is at intermediate frequency. 
CNN outperformed ANN to distinguish between incomplete sweep 
and balancing selection, although, in our analyses, its training was 
slower by a factor of 300. In fact, CNN had more than 4 million pa-
rameters to estimate, in contrast to ANN which had approximately 
2,000. Additionally, ANN received as input informative features (i.e. 
summary statistics) while convolutional filters in the CNN learned 
the optimal features from the raw data while training. In machine 
learning, the design of such features had been a major part of infor-
mation engineering. As an illustration, in the field of computer vi-
sion, the ‘features’ used for many practical algorithms until the early 
2000s consisted of hand-engineered gradient estimators (Shen & 
Bai, 2006), typically at multiple spatial scales (Gauch, 1999; Lowe, 
1999), applied to images (arrays of pixels). The observation that fea-
tures emerge within a deep network has been repeated in different 
domains. Therefore, we envisage that a novel area of research will 
focus on extracting informative features from trained networks for 
population genetic inference, possibly by analysing activation or sa-
liency maps (Bahdanau et al., 2015). It is important to note that ANN 
will achieve higher performance with the inclusion of additional 
summary statistics not considered herein.

This study also contributes to ongoing efforts to design architec-
ture and devise training techniques for deep learning algorithms in 
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population genetics (Sanchez et al., 2020). Resizing images to smaller 
dimensions appeared to reduce overfitting and learning time (Figure 
S9) and could be considered a complementary strategy to approaches 
based on cropping or padding (Flagel et al., 2019). The strategy to 

separately sort rows based on the presence or absence of the puta-
tive target variant is an alternative solution to adopt more general, 
but computational expensive, architectures based on exchangeable 
neural networks (Chan et al., 2018; Sanchez et al., 2020). We also 

F I G U R E  4  Prediction of sites under natural selection (Test 1, upper panel) or balancing selection vs. incomplete sweep (Test 2, second 
panel from top) on intermediate frequency variants in the MEFV gene for a European population. For each tested variant, the predicted 
functional impact across all isoforms is reported (counts of functional consequences on third panel, genomic location on fourth panel and 
transcripts on fifth panel from the top)
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explored the applicability of forward-in-time simulations to train 
deep neural networks for population genetics and the usefulness of 
data augmentation (Figure S10) to reduce the computational time 
required to generate synthetic training data. The use of forward-in-
time simulations should generate more realistic synthetic population 
genomic data and model more complex evolutionary scenarios than 
by using coalescent simulations. In any case, as suggested in this 
study (Figures S21 and S22), false-positive and false-negative rates 
should be assessed by deploying trained networks on loci previously 
identified as targets of selection or neutrally evolving. Further re-
search on the design of neural networks for population genetics is in 
need, for instance by maximizing the prediction accuracy over a grid 
of hyperparameters (e.g. number of units and layers) using Neural 
Architecture Search (Wistuba et al., 2019).

We show that deep neural networks achieved higher prediction 
power to differentiate between the effects of neutral evolution, 
balancing selection and incomplete sweep for variants segregating 
at intermediate frequency (Figure 2) than commonly used summary 
statistics (Figure 1). However, the accuracy to distinguish between 
incomplete sweep and balancing selection using CNN ranges from 
72% to 80% depending on the time of onset of the selection, with 
more recent events (around 20  kya) more accurately classified 
(Figure 3). While this accuracy is far higher than that achieved using 
summary statistics, higher accuracy could be achieved by employing 
a larger training data set, by using more extensive hyper-parameter 
tuning and architecture search, and by treating overdominance and 
negative frequency-dependent selection as separate prediction cat-
egories. In fact, future extensions of this study will include testing 
to distinguish between overdominance and negative frequency-
dependent selection once a variant is predicted to be under bal-
ancing selection. It is likely that a different CNN architecture and 
training data is needed for this purpose as, for instance, information 
on heterozygosity (not considered herein given the simulation strat-
egy) will likely emerge as an important feature. Additionally, a wider 
spectrum of times of the onset of selection should be considered to 
assess the power to predict balancing selection at different evolu-
tionary scenarios. Finally, the CNN herein proposed requires fully 
resolved haplotypes with no missing data. Furthermore, we argue 
that such approach should be locus-specific as the network needs 
to be trained with the local characteristics of the region of interest 
(e.g. recombination rate). Therefore, this CNN is more suitable to be 
deployed to deep resequencing data on single loci of interest rather 
than to genome-wide low-coverage sequencing data. In the latter 
case, we argue that an ANN receiving as input statistical estimates 
of summary statistics from genotype likelihoods (Korneliussen et al., 
2013) might be a valuable alternative. Nevertheless, the effect of 
data uncertainty should be further explored.

The analyses on the MEFV gene performed herein complement 
previous findings (Schaner et al., 2001) to suggest that this gene has 
been subjected to different evolutionary forces. The MEFV gene en-
codes for the Pyrin protein which plays an important role in inflam-
matory processes (Schnappauf et al., 2019). Five different functional 
domains have been identified within the Pyrin protein. The PYD 

domain (aa 1–92) is present in at least 20 human proteins involved 
in inflammatory pathways. However, in the analyses we performed 
the PYD domain seems to have neutrally evolved. The Pyrin central 
region hosts three domains: a bZIP domain (aa 266–280), a B-box 
domain (aa 370–412) and a coiled-coil domain (CC, aa 420–440). The 
role of these three domains has not been thoroughly elucidated and 
few FMF-causing variants localize to Pyrin's central region (Je Wook 
et al., 2007; Stella et al., 2019). Nevertheless, from our data this cen-
tral region is apparently under recent selection (Figure 4) or is in LD 
with beneficial alleles (Figure S23). Similarly, the B30.2 domain (also 
known as PRY/SPRY domain), which is encoded by the MEFV exon 
10 where most of the FMF-causing variants cluster (Accetturo et al., 
2020), shows the same genetic patterns of ongoing selection.

A recent study demonstrated that the FMF-associated variants 
M694V, M680I and V726A, all localizing to the B30.2 region, de-
crease the binding of Yersinia pestis virulence factor YopM (Park 
et al., 2020). Further, the authors provided evidence that M694V 
and V726A variants were subject to recent positive selection in a 
cohort of Turkish individuals. Finally, FMF knock-in mice demon-
strated survival advantage compared to wild-type mice. Thus, these 
experimental evidences suggest that mutations in the human Pyrin 
may have conferred resistance to Yersinia pestis (Park et al., 2020). 
However, the possibility that other pathogens could have concurred 
in conferring a selective advantage cannot be ruled out. Indeed, con-
trary to previous claims of overdominance acting on MEFV (Fumagalli 
et al., 2009a), our new results and Park et al's study suggest that the 
selection on human Pyrin is directional and either recent or possibly 
still ongoing. In fact, the frequency of M694V and V726A kept rising 
(Park et al., 2020) although no plague outbreaks rose to the scale of 
a pandemic after the 17th century.

The population sample we analysed in this study is different 
from the Turkish cohort investigated by Park et al which overlaps 
significantly with one of the plague outbreak sites. Nevertheless, 
even in the different population sample we analysed, the data pre-
sented herein suggest signals of recent selection on the human 
Pyrin. While our computational predictions are unable to identify 
the causal variant, it is possible to hypothesize that Pyrin, spe-
cifically its B30.2 region, could confer resistance to a broader 
range of pathogens including those causing more recent pan-
demics. Likewise, we cannot rule out more complex evolution-
ary scenarios, with MEFV being subjected to long-term balancing 
selection and recent positive selection on standing variation. A 
comprehensive picture of ongoing selection signatures in MEFV 
could be achieved by deploying deep neural networks trained on 
variants segregating at low or high frequency and to a wide range 
of Mediterranean populations. Finally, additional power to char-
acterize recent selection in MEFV could be gained by integrating 
data from ancient genomes (Dehasque et al., 2020) as this would 
be particularly suitable to relate adaptation to past epidemics to 
current pathogenic threats (Patin, 2020).

In this study, we demonstrated how deep learning and, in par-
ticular, convolutional neural networks were able to perform predic-
tions currently inaccessible by commonly used strategies based on 
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summary statistics. In particular, we showed that deep neural net-
works can differentiate between signals of incomplete sweep and 
balancing selection, despite the two evolutionary events leaving 
qualitatively similar patterns of genetic variation. Furthermore, our 
application to detect signals of selection on FMF-associated alleles 
highlighted the importance of a population genetic approach to un-
derstand the molecular basis of susceptibility and/or resistance to 
infectious diseases.
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