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Abstract. This paper discusses some properties of solutions to fractional neutral delay dif-
ferential equations. By combining a new weighted norm, the Banach fixed point theorem and
an elegant technique for extending solutions, results on existence, uniqueness, and growth rate
of global solutions under a mild Lipschitz continuous condition of the vector field are first es-
tablished. Be means of the Laplace transform the solution of some delay fractional neutral
differential equations are derived in terms of three-parameter Mittag-Leffler functions; their
stability properties are hence studied by using use Rouché’s theorem to describe the position of
poles of the characteristic polynomials and the final value theorem to detect the asymptotic be-
havior. By means of numerical simulations the theoretical findings on the asymptotic behavior
are verified.

1. Introduction

Delay differential equations play an important role in describing various phenomena in bio-
sciences, chemistry, economics, engineer, and physics. Very ofter, indeed, transport and propa-
gation (of material, energy, or information) in interconnected systems does not happen instanta-
neously but it is affected by some delay which suggests the use of delay differential equations for
modeling these phenomena. For theory, applications and numerical methods of delay differential
equations we refer to [1, 2, 3, 4] and references therein.

Recently, fractional-order systems with delay attracted considerable research attention because
they allows to describe systems in which the rate of change depends not only on the present
and delayed state but also on the whole past memory. In [5], by the final value theorem for
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Laplace transforms, the well-known method of steps, and the Argument principle, the authors
have studied stability of delayed fractional-order differential equations of linear type.

In [6], the authors have obtained general results on the existence, uniqueness and growth rate of
solutions to fractional-order systems with delays based on the Banach fixed point theorem and
a weighted norm. In [7] necessary and sufficient condition for stability have been provided by
studying the location of the eigenvalues of the system matrix. By the linearization method and
generalized Mittag-Leffler functions, in [8, 9] the authors have proved the stability of nonlinear
fractional-order delay systems. Furthermore, using Lyapunov applicant functional, in [10] the
authors also obtained a sufficient condition for stability. In [11], the problem of the correct
initialization of fractional delay differential equations has been investigated.

In delay differential equations of neutral type the derivative of the unknown function appears
with and without delays and therefore their analysis is more involved than in the non-neutral
counterpart. These systems find application in the description of a number of physical systems
and/or phenomena, ranging from the motion of radiation electrons, to population growth, spread
of epidemics, networks with loss-less transmission lines, and others (see, e.g.,[4, 12, 13, 14] and
references therein). To the best of our knowledge, only few works concern with fractional neutral
delay differential equation (FNDDEs) and below we briefly review the main contributions to this
topic.

In [15], based on Krasnoselskii’s fixed point theorem, the authors proved the existence of at
least one solution to a class of FNDDEs with bounded delay. The existence of mild solutions for
a class of abstract fractional neutral integro-differential equations with state-dependent delay
is studied in [16] by the Leray-Schauder alternative fixed point theorem. Recently, in [17] a
new inequality of Halanay type was derived to describe the behavior of solutions of FNDDEs
of Hale type and conditions for contractivity and dissipativity were established as well. In [18]
the investigation concerned the robust stability of a class of FNDDE with uncertainty and input
saturation. Recently, an analysis of finite-time stability for some nonlinear FNDDEs has been
proposed in [19] .

This paper is devoted to discussing some qualitative properties of solutions to FNDDEs. The
paper is organized as follows. In Section 2, we briefly recall some basic notations concerning
fractional derivatives and fractional delay differential equations. In Section 3 we give a result
on the existence and uniqueness of global solutions to FNDDEs and in Section 4 we prove their
exponential boundedness. In Section 5 we derive an explicit representation, based on generalized
three-parameter Mittag-Leffler functions, of solutions of linear FNDDEs. In Section 6 we discuss
in details the stability of two classes of linear FNDDEs and some numerical simulations are
presented in Section 7 to illustrate the main theoretical results obtained in the paper.

2. Preliminaries

In this section we recall some definitions and a result on the integral representation of solutions
of FNDDEs which will be used in the sequel. For 0 < α < 1, [a, b] ⊂ R and a measurable

function x : [a, b]→ R such that
∫ b
a |x(τ)|dτ <∞, the Riemann-Liouville (RL) integral of order

α is defined by

Iαa+x(t) :=
1

Γ(α)

∫ t

a
(t− s)α−1x(s)ds, t ∈ (a, b) ,

where Γ(·) is the Gamma function. The Riemann–Liouville fractional derivative RLDα
a+x of a

integrable function x : [a, b]→ R is defined by

RLDα
a+x(t) = DI1−α

a+ x(t) for almost t ∈ (a, b],

with D = d/dt the usual integer-order derivative. The Caputo fractional derivative CDα
a+x of a

continuous function x : [a, b]→ R is defined as

CDα
a+x(t) := RLDα

a+(x(t)− x(a)) for almost t ∈ (a, b].
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For more details on fractional calculus, we would like to introduce the reader to the monographs
[20, 21, 22] and to the interesting work by G. Vainikko [23]. Let τ and N be arbitrary real
constants such that τ > 0, N 6= 0, and φ ∈ C1

(
[−τ, 0];R

)
be a given function. In this paper we

consider the following FNDDE

(1) CDα
0+

[
x(t) +Nx(t− τ)

]
= f(t, x(t), x(t− τ)), t ≥ 0,

subject to the initial condition

(2) x(t) = φ(t), ∀t ∈ [−τ, 0],

where x : [0,∞)→ R is a unknown function and f : [0,∞)×R×R→ R is continuous. To prove
the existence of solutions to problem (1)–(2), we need to reformulate it into an equivalent delay
integral equation. This is stated in the following lemma.

Lemma 2.1. A function x ∈ C
(
[−τ,∞);R

)
is solution of the problem (1)-(2) on [−τ,∞) if and

only if it is solution of the delay integral equation

(3)

x(t) = φ(0) +Nφ(−τ)−Nx(t− τ)

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, x(s), x(s− τ))ds, ∀t ∈ [0,∞),

and satisfies x(t) = φ(t), ∀t ∈ [−τ, 0].

Proof. The proof of this lemma is similar to the one of [20, Lemma 6.2] (see also [24]) and
therefore it is omitted. �

3. Existence and uniqueness of global solutions of FNDDEs

Let T > 0 be arbitrary and consider, on the finite interval [−τ, T ], the initial value problem

(4)
CDα

0+

[
x(t) +Nx(t− τ)

]
= f(t, x(t), x(t− τ)), t ∈ (0, T ],

x(t) = φ(t), t ∈ [−τ, 0].

Here f : [0, T ]× R× R→ R it is assumed to satisfy the following assumptions:

(A1) f is continuous on [0, T ]× R× R→ R;
(A2) there exists a continuous function L : [0, T ] × R → R≥0 such that for any t ∈ [0, T ],

x, x̂, y ∈ R, it is |f(t, x, y)− f(t, x̂, y)| ≤ L(t, y)|x− x̂|.

By proposing a new weighted norm and modifying the approach in the proof of [6, Theorem 3.1],
we are able to obtain the following result on the existence and uniqueness of a global solution
to (4).

Theorem 3.1. Assume that conditions (A1) and (A2) hold. Then, the FNDDE (4) has a unique
solution on the interval [−τ, T ].

Proof. We first consider the case 0 < T ≤ τ . In this case, the integral representation (3) of the
solution becomes

x(t) = φ(0) +Nφ(−τ)−Nφ(t− τ) +
1

Γ(α)

∫ t

0
(t− s)α−1f(s, x(s), φ(s− τ))ds

for t ∈ [0, T ]. Let β := maxt∈[0,T ] L(t, φ(t− τ)) and λ be a large positive constant which will be
chosen later. On the space C([0, τ ];R), we define the metric

dλ(ξ, ξ̂) := sup
t∈[0,r]

|ξ(t)− ξ̂(t)|
eλt

, ∀ξ, ξ̂ ∈ C([0, τ ];R).
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It is obvious that C([0, r];R) equipped with dλ is complete. We now consider the operator
Tφ : C([0, τ ];R)→ C([0, τ ];R) defined as

(Tφ ξ)(t) := φ(0)+Nφ(−τ)−Nφ(t− τ)

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, ξ(s), φ(s− τ))ds, ∀t ∈ [0, τ ].

For any ξ, ξ̂ ∈ C([0, r];R) and any t ∈ [0, T ] we have

|(Tφ ξ)(t)− (Tφ ξ̂)(t)| ≤
maxs∈[0,t] L(s, φ(s− τ))

Γ(α)

∫ t

0
(t− s)α−1|ξ(s)− ξ̂(s)|ds

≤ eλtβ

Γ(α)

∫ t

0
(t− s)α−1e−λ(t−s) |ξ(s)− ξ̂(s)|

eλs
ds

≤ eλtβ

λα
dλ(ξ, ξ̂)

from which we infer

|(Tφ ξ)(t)− (Tφ ξ̂)(t)|
eλt

≤ β

λα
dλ(ξ, ξ̂), ∀t ∈ [0, T ]

and hence

dλ(Tφ ξ, Tφ ξ̂) ≤
β

λα
dλ(ξ, ξ̂), ∀ξ, ξ̂ ∈ C([0, T ];R).

Take λ > 0 large enough, for example, λα > β. Then, the operator Tφ is contractive on
(C([0, T ];R), dλ). By virtue of Banach fixed point theorem, there exists a unique fixed point
ξ∗τ (·) of Tφ in C([0, T ];R). The proof now follows by putting

ΦT (t, φ) :=

{
φ(t) if t ∈ [−τ, 0],

ξ∗τ (t) if t ∈ [0, T ].

which is clearly the unique solution of the problem (4) on [−τ, T ].

For the case T > τ , by exploiting an approach already proposed in [6], we split the interval
[0, T ] into subintervals [0, τ ] ∪ · · · ∪ [(k − 1)τ, T ], where k ∈ N satisfying 0 ≤ T − kτ < τ . The
existence and uniqueness of solutions to (4) on [−τ, kτ ] will be showed by induction. Assume
that (4) has a unique solution denoted by Φ`τ (·) on [−τ, `τ ] with ` ∈ Z≥0 and 0 ≤ ` < k. On
the space C([`τ, (`+ 1)τ ];R), let

T(`+1)τξ(t) := φ(0) +Nφ(−τ)−NΦ`τ (t− τ)

+
1

Γ(α)

∫ `τ

0
(t− s)α−1f(s,Φ`τ (s),Φ`τ (s− τ))ds

+
1

Γ(α)

∫ t

`τ
(t− s)α−1f(s, ξ(s),Φ`τ (s− τ))ds, t ∈ [`τ, (`+ 1)τ ].

Consider β` := maxt∈[`τ,(`+1)τ ] L(t,Φ`τ (t− τ)). Then,

|(T(`+1)τξ)(t)− (T(`+1)τ ξ̂)(t)| ≤
β`

Γ(α)

∫ t

`τ
(t− s)α−1|ξ(s)− ξ̂(s)|ds

≤ eλtβ`
Γ(α)

∫ t

`τ
(t− s)α−1e−λ(t−s) |ξ(s)− ξ̂(s)|

eλs
ds

≤ eλtβ`
λα

d`,λ(ξ, ξ̂), ∀t ∈ [`τ, (`+ 1)τ ].

Here, d`,λ(ξ, ξ̂) := maxt∈[`τ,(`+1)τ ]
|ξ(t)−ξ̂(t)|

eλt
for any ξ, ξ̂ ∈ C([`τ, (` + 1)τ ];R). If we choose

λ > β
1/α
` the operator T(`+1)τ is contractive on the Banach space (C([`τ, (` + 1)τ ];R), d`,λ).
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Hence, T(`+1)τ has a unique fixed point ξ∗`τ in C([`τ, (`+ 1)τ ];R). Define now the function

Φ(`+1)τ (t) :=

{
Φ`τ (t) if t ∈ [−τ, `τ ],

ξ∗`τ (t) if t ∈ [`τ, (`+ 1)τ ]

which is the unique solution of (4) on [−τ, (` + 1)τ ]. Finally, let Φkτ (·) be the unique solution
to (4) on [−τ, kτ ]. We construct an operator Tf on C([kτ, T ];R) by

Tfξ(t) := φ(0) +Nφ(−τ)−NΦkτ (t− τ)

+
1

Γ(α)

∫ kτ

0
(t− s)α−1f(s,Φkτ (s),Φkτ (s− τ))ds

+
1

Γ(α)

∫ t

kτ
(t− s)α−1f(s, ξ(s),Φkτ (s− τ))ds, t ∈ [kτ, T ].

Since the above estimates Tf has a unique fixed point ξ∗f in C([kτ, T ];R). Therefore, we can
consider

Φ(t, φ) :=

{
Φkτ (t) if t ∈ [−τ, kτ ],

ξ∗f (t) if t ∈ [kτ, T ]

which is the the unique solution of (4) on [−τ, T ] and allows to conclude the proof. �

We observe that Theorem 3.1 provides a generalization of previous results (see, for instance, [25,
Theorem 2.3], [26, Theorem 5.1] and [27, Theorem 3.2]) which applies to the special case N = 0.
A different proof, for problems with a nonlinear neutral term, is instead presented in [28] under
weaker assumptions which, however, ensure existence but not uniqueness.

Corollary 3.2. Consider the system (1)–(2) and assume that the function f satisfies assump-
tions (A1) and (A2) for t ∈ [0,∞). Then, the system has a unique global solution on [−τ,∞).

Proof. We omit the proof since similar to the proof of [6, Corollary 3.2]. �

4. Exponential boundedness of FNDDEs

Let φ ∈ C1([−τ, 0],R) be an arbitrary function. We consider the system

(5)
CDα

0+

[
x(t) +Nx(t− τ)

]
= f(t, x(t), x(t− τ)), t ∈ (0,∞),

x(t) = φ(t), t ∈ [−τ, 0].

for which f is assumed continuous and satisfying the following conditions:

(H1) there exits a positive constant L such that

|f(t, x, y)− f(t, x̂, ŷ)| ≤ L
(
|x− x̂|+ |y − ŷ|

)
, ∀t ≥ 0, ∀x, y, x̂, ŷ ∈ R;

(H2) there exits a positive constant λ such that

sup
t≥0

∫ t
0 (t− s)α−1|f(s, 0, 0)|ds

eλt
<∞.

The following bound for the growth rate of solutions of (5) holds.

Theorem 4.1. Assume that conditions (H1) and (H2) hold. Then, the global solution Φ(·, φ)
on the interval [−τ,∞) of (5) is exponentially bounded.

Proof. Let λ > 0 be the constant satisfying condition (H2). Denote by Cλ([−τ,∞);R) the set
of all continuous functions ξ : [−τ,∞)→ R such that

||ξ||λ := sup
t≥0

ξ∗(t)

exp(λt)
<∞, ξ∗(t) := sup

−τ≤θ≤t
|ξ(θ)|.
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It is immediate that (Cλ([−τ,∞);R); || · ||λ) is a Banach space. On this space we construct the
operator Tφ as follows

(Tφξ)(t) := φ(t), t ∈ [−τ, 0],

(Tφξ)(t) := φ(0) +Nφ(−τ)−Nξ(t− τ)

+
1

Γ(α)

∫ t

0
(t− s)α−1f(s, ξ(s), ξ(s− τ))ds, t ≥ 0.

It is easy to see that Tφξ ∈ C([−τ,∞);R) for any ξ ∈ Cλ([−τ,∞);R) but we will show that for
any ξ ∈ Cλ([−τ,∞);R) it is Tφξ ∈ Cλ([−τ,∞);R) as well. Indeed, let ξ ∈ Cλ([−τ,∞);R) be
arbitrary, for any t ≥ τ , we have

|(Tφξ)(t)| ≤ |φ(0)|+ |N ||φ(−τ)|+ |N ||ξ(t− τ)|

+
1

Γ(α)

∫ t

0
(t− s)α−1|f(s, ξ(s), ξ(s− τ))− f(s, 0, 0)|ds

+
1

Γ(α)

∫ t

0
(t− s)α−1|f(s, 0, 0)|ds

≤ C1 + |N |ξ∗(t) +
L

Γ(α)

∫ t

0
(t− s)α−1(|ξ(s)|+ |ξ(s− τ)|)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1|f(s, 0, 0)|ds.

An immediate consequence is that

|(Tφξ)(t)| ≤ C1 + |N |eλt ξ
∗(t)

eλt
+

2Leλt

Γ(α)

∫ t

0
(t− s)α−1e−λ(t−s) ξ

∗(s)

eλs
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1|f(s, 0, 0)|ds

≤ C1 + |N |eλt||ξ||λ +
2Leλt

λα
||ξ||λ +

1

Γ(α)

∫ t

0
(t− s)α−1|f(s, 0, 0)|ds, ∀t ≥ τ.

and hence for any t ≥ τ it is

(Tφξ)∗(t)
eλt

≤ C1

eλt
+ |N |||ξ||λ +

2L

λα
||ξ||λ +

1

Γ(α)
sup
t≥0

∫ t
0 (t− s)α−1|f(s, 0, 0)|ds

eλt

from which we infer

sup
t≥0

(Tφξ)∗(t)
eλt

<∞.

The next step is to prove that Tφ is a contractive operator on (Cλ([−τ,∞);R); || · ||λ). Let

ξ, ξ̂ ∈ (Cλ([−τ,∞);R); || · ||λ) be arbitrary, we have the following estimates on the intervals
[−τ, 0], [0, τ ] and [τ,∞). When t ∈ [−τ, 0] it is immediate to see that

|(Tφξ)(t)− (Tφξ̂)(t)| = 0

whilst whenever t ∈ [0, τ ] we have

|(Tφξ)(t)− (Tφξ̂)(t)| ≤
L

Γ(α)

∫ t

0
(t− s)α−1(|ξ(s)− ξ̂(s)|+ |ξ(s− τ)− ξ̂(s− τ)|)ds

≤ 2L

Γ(α)

∫ t

0
(t− s)α−1(ξ − ξ̂)∗(s)ds

≤ 2Leλt

Γ(α)

∫ t

0
(t− s)α−1e−λ(t−s) (ξ − ξ̂)∗(s)

eλs
ds

≤ 2Leλt

λα
||ξ − ξ̂||λ.
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Finally, for t ∈ [τ,∞) it is

|(TΦξ)(t)− (TΦξ̂)(t)| ≤ |N ||ξ(t− τ)− ξ̂(t− τ)|

+
L

Γ(α)

∫ t

0
(t− s)α−1(|ξ(s)− ξ̂(s)|+ |ξ(s− τ)− ξ̂(s− τ)|)ds

≤ |N |eλt (ξ − ξ̂)
∗(t− τ)

eλ(t−τ)eλτ
+

2L

Γ(α)

∫ t

0
(t− s)α−1(ξ − ξ̂)∗(s)ds

≤ eλt
|N |
eλτ
||ξ − ξ̂||λ + eλt

2L

λα
||ξ − ξ̂||λ.

Therefore, on the whole interval [−τ,∞) we obtain

|(Tφξ)(t)− (Tφξ̂)(t)| ≤ eλt
(
|N |
eλτ

+
2L

λα

)
||ξ − ξ̂||λ, ∀t ∈ [−τ,∞)

and, consequently,

(Tφξ − Tφξ̂)∗(t) ≤ eλt
(
|N |
eλτ

+
2L

λα

)
||ξ − ξ̂||λ, ∀t ≥ 0.

for which it is

||(Tφξ − Tφξ̂)||λ ≤
(
|N |
eλτ

+
2L

λα

)
||ξ − ξ̂||λ.

Choose λ large enough, i.e. such that

|N |
eλτ

+
2L

λα
< 1,

assures that Tφ is contractive on (Cλ([−τ,∞);R); || · ||λ). The unique fixed point ξ∗ of Tφ is
therefore the unique solution to (5) in Cλ([−τ,∞);R). Moreover, this solution is exponentially
bounded. �

5. Explicit representation of solutions of linear FNDDEs

For a, b,N ∈ R and an arbitrary continuous function φ(t) : [−τ, 0] → R, we now consider the
special case of linear FNDDEs

(6)
CDα

0+

[
x(t) +Nx(t− τ)

]
= ax(t) + bx(t− τ), t ∈ (0, T ]

x(t) = φ(t), t ∈ [−τ, 0]

for which we are interested in providing an explicit representation of the solution. Since assump-
tions (H1) and (H2) introduced in Section 4 are trivially verified, the solution x(t) possesses the
Laplace transform (LT), say X(s), and from well-known results on the LT of the fractional
Caputo derivative we have

L
(
CDα

0 x(r) , s
)

= sαX(s)− sα−1φ(0).

Hence, by taking the LT to both sides of (6), we obtain

(7) sαX(s) +NsαL
(
x(t− τ) , s

)
− sα−1

[
φ(0) +Nφ(−τ)

]
= aX(s) + bL

(
x(t− τ) , s

)
.

We know (see, for instance, [7, Eq (3.2)] or [11, Proposition 4.2]) that

(8) L
(
x(t− τ) , s

)
= e−sτX(s) + e−sτ X̂τ (s), X̂τ (s) =

∫ 0

−τ
e−stφ(t)dt

and, therefore, one immediately obtains(
1− b−Nsα

sα − a
e−sτ

)
X(s) =

sα−1

sα − a
[
φ(0) +Nφ(−τ)

]
+
b−Nsα

sα − a
e−sτ X̂τ (s).
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For sufficiently large |s| the use of the series expansion(
1− b−Nsα

sα − a
e−sτ

)−1
=
∞∑
k=0

(b−Nsα)k

(sα − a)k
e−sτk

leads to

X(s) =
sα−1

sα − a

∞∑
k=0

(b−Nsα)k

(sα − a)k
e−sτk

[
φ(0) +Nφ(−τ)

]
+
∞∑
k=1

(b−Nsα)k

(sα − a)k
e−sτkX̂τ (s)

and, hence, after exploiting standard rules for powers of binomials

(b−Nsα)k =
k∑
`=0

(
k

`

)
(−1)`N `bk−`sα`

we obtain the following representation of the LT of the solution of the linear FNDDE (6)

(9)

X(s) =

∞∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα+α`−1

(sα − a)k+1
e−sτk

[
φ(0) +Nφ(−τ)

]
+
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`

(sα − a)k
e−sτkX̂τ (s)

An explicit representation of the solution of (6) in the time domain can be obtained by inversion
of the LT (9) only once the initial function φ(t) has been specified. The following preliminary
results are however necessary.

Let α > 0 and β, γ ∈ R be some parameters, and consider the three-parameter Mittag-Leffler
function (also known as the Prabhakar function) [29, 30]

Eγα,β(z) =
1

Γ(γ)

∞∑
j=0

Γ(γ + j)zj

j!Γ(αj + β)
,

for which, when t ≥ 0 and a is any real or complex value, we have the following result concerning
the LT

(10) L
(
eγα,β(t; a) , s

)
=

sαγ−β

(sα − a)γ
, eγα,β(t; a) := tβ−1Eγα,β(atα),

for Re(s) > 0 and |s| > |a|
1
α . Furthermore, whenever τ ≥ 0 it is a basic fact in the theory of LT

(see, for instance, [31, Theorem 1.31]) that

(11) L−1

(
sαγ−β

(sα − a)γ
e−sp , s

)
=

{
eγα,β(t− τ ; a) t ≥ τ
0 t < τ

We are now able to provide an explicit representation of the solution of linear FNDDEs for some
instances of the initial function φ(t). In the following, for any real value x, with bxc we will
denote the greatest integer less or equal to x.

Proposition 5.1. If φ(t) = x0, ∀t ∈ [−τ, 0], the exact solution of the linear FNDDE (6) is

x(t) =

bt/τc∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`ek+1

α,α(k−`)+1(t− τk; a)(1 +N)x0

−
bt/τc∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+1(t− τk; a)x0

+

bt/τc+1∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+1(t− τk + τ ; a)x0.
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Proof. Since φ(t) = x0, ∀t ∈ [−τ, 0], it is immediate to compute

X̂τ (s) = −1

s

(
1− esτ

)
x0

and, hence, the LT X(s) obtained in (9) becomes

X(s) =
∞∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα+α`−1

(sα − a)k+1
e−sτk(1 +N)x0

−
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−1

(sα − a)k
e−sτkx0

+
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−1

(sα − a)k
e−sτ(k−1)x0.

The proof now follows after recognizing the presence, in each summation, of the LT (10) of the
three-parameter Mittag-Leffler (ML) function, applying Eq. (11), and, for any t, truncating
each summation at the maximum index k such that t ≥ τk (first and second summation) or
t ≥ τ(k − 1) (third summation). �

Proposition 5.2. If φ(t) = x0 +mt, ∀t ∈ [−τ, 0], the exact solution of the linear FNDDE (6) is

x(t) =

bt/τc∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`ek+1

α,α(k−`)+1(t− τk; a)
[
x0 +Nφ(−τ)

]
−
bt/τc∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+1(t− τk; a)x0

+

bt/τc+1∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+1(t− τk + τ ; a)φ(−τ)

−
bt/τc∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+2(t− τk; a)m

+

bt/τc+1∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`ekα,α(k−`)+2(t− τk + τ ; a)m.

Proof. When φ(t) = x0 +mt, t ∈ [−τ, 0], a standard computation allows to evaluate

X̂τ (s) =

∫ 0

−τ
e−stφ(t)dt = −1

s

(
1− esτ

)
x0 +m

[
− 1

s2
− τ

s
esτ +

1

s2
esτ
]

= −1

s
x0 +

1

s
esτφ(−τ)− 1

s2
m+

1

s2
esτm
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and, after inserting the above expression for X̂τ (s) in the formula (9) for the LT of the solution
of (6), we obtain

X(s) =
∞∑
k=0

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα+α`−1

(sα − a)k+1
e−sτk

(
x0 +Nφ(−τ)

)
−
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−1

(sα − a)k
e−sτkx0

+
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−1

(sα − a)k
e−sτ(k−1)φ(−τ)

−
∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−2

(sα − a)k
e−sτkm

+

∞∑
k=1

k∑
`=0

(
k

`

)
(−1)`N `bk−`

sα`−2

(sα − a)k
e−sτ(k−1)m

and the proof is concluded in the same way as the proof of Proposition 5.1. �

The above explicit representations of exact solutions is of interest since it allows to accurately
evaluate the solutions of linear FNDDEs once a procedure for the computation of the three-
parameter ML functions ekα,β(t; a) is available. To this purpose the method devised in [32]

to compute k-th order derivatives E
(k)
α,β(z) of the two-parameter ML function Eα,β(z) can be

exploited since three-parameter ML functions are related to derivatives of two-parameter ML

functions by the relationship Ekα,β(z) = E
(k)
α,β−αk+α(z)/(k − 1)!.

Anyway, this approach does not seems suitable for computation on intervals of large size since it
could require the evaluation of a considerable number of three-parameter ML functions. More-
over, a specific explicit representation of the exact solution must be derived in dependence of
the selected initial function φ(t). For this reason, in the Section devoted to present numerical
simulations we will derive a specific numerical scheme.

6. Asymptotic behavior of solutions of linear FNDDEs

This section is devoted to discuss the asymptotic behavior of solutions to linear FNDDEs (6).
We will focus on two different cases, namely when a < 0, b = 0 and when a < 0, 0 < |b| < |a|.

6.1. Case (C1): a < 0, b = 0. In this case, the linear FNDDE becomes

(12) CDα
0+

[
x(t) +Nx(t− τ)

]
= ax(t), t ≥ 0,

and, thanks to (7) and (8), the LT X(s) of the solution x(t) is

X(s) =
sα−1(φ(0) +Nφ(−τ))−Nsαe−sτ

∫ 0
−τ e−suφ(u)du

sα +Nsαe−sτ − a
.(13)

To investigate the asymptotic behavior of x(t) it is necessary to locate possible poles of X(s) in
the complex plane. Denote the denominator of X(s) by

Q(s) := sα +Nsαe−sτ − a.

Due to the fact that X(s) has just a single pole at the origin in addition to zeros of Q(s), we
can restrict ourselves to study the roots of the equation Q(s) = 0.

Lemma 6.1. Let a < 0. The following statements hold:

(i) if |N | ≤ 1, then Q(s) = 0 has no roots in the closed right half plane {z ∈ C : <(z) ≥ 0};
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(ii) if |N | > 1, then Q(s) = 0 has at least one root in the open right half plane {z ∈ C :
<(z) > 0}.

Proof. (i) Since Q(0) 6= 0, the equation Q(s) = 0 is equivalent to

1 +Ne−τs = as−α, s 6= 0.(14)

We will show that (14) has no root in {z ∈ C : <(z) ≥ 0}. Indeed, on the contrary, assume that
(14) has a root s0 6= 0 with <(s0) ≥ 0. Note that 1 +Ne−τs0 ∈ D1 := {z ∈ C : |z− (−1)| ≤ |N |}
and as−α0 ∈ D2 := {z ∈ C : | arg (z)| ≤ απ

2 }. Furthermore, for |N | ≤ 1, two domains D1 and D2

intersect at most one point at the origin which implies a contradiction.

(ii) To prove this point, we only have to show that the Eq. (14) has at last one root in the open
right half plane {z ∈ C : <(z) > 0}. To this purpose consider the functions f(s) := 1 + Ne−sτ

and g(s) := −as−α and N > 1 (the case N < −1 is proved in a similar way). It is easy to

see that sk := logN
τ + i (2k+1)π

τ , k ∈ Z, are roots of the equation f(s) = 0. Let R be a positive
constant and define C := C1 ∪ C2 ∪ C3 ∪ C4, where

C1 :=

{
z ∈ C : z = s1 + iR,

logN

2τ
≤ s1 ≤

3 logN

2τ

}
,

C2 :=

{
z ∈ C : z =

3 logN

2τ
+ is2, R ≤ s2 ≤ R+

2π

τ

}
,

C3 :=

{
z ∈ C : z = s1 + i(R+

2π

τ
),

logN

2τ
≤ s1 ≤

3 logN

2τ

}
,

C4 :=

{
z ∈ C : z =

logN

2τ
+ is2, R ≤ s2 ≤ R+

2π

τ

}
.

For s ∈ C we we obtain the estimates

|f(s)| > 1− N

e−τR
>

1

2
, for R large enough,

|g(s)| ≤ |a|
Rα
→ 0 as R→∞.

and, therefore, by choosing R sufficiently large, it is

|f(s)| > |g(s)|, ∀s ∈ C.

Since f(s) has at least one zero in the domain D bounded by C, by Rouché’s theorem (see, e.g.,
[2, Theorem 12.2, p. 398]) there is at least one zero point of Q(s) = f(s) + g(s) in D and hence
in {z ∈ C : <(z) > 0} which allows to conclude the proof. �

We are now in a position to state the main result for the case (C1).

Theorem 6.2. Let a < 0 and consider the linear FNDDE (12). The following statements hold:

(i) if |N | ≤ 1, then the solution of (12) is asymptotically stable;
(ii) if |N | > 1, then the solution of (12) is unstable.

Proof. (i) As shown above, the LT X(s) of the solution x(t) of (12) does not have any poles in
the closed right half-plane {s ∈ C : <(s) ≥ 0} except for a simple pole at the origin. Hence,
since from (13) it is lims→0 sX(s) = 0, by the final value theorem for LT [20, Theorem D. 13, p.
232], we have

lim
t→∞

x(t) = lim
s→0

sX(s) = 0

which implies that (12) is asymptotically stable.
(ii) The proof of this part follows since the LT X(s) has at least one pole in the open right
half-plane of the complex domain. �
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Remark 6.3. We have not considered the case a = 0 since it is trivial. Whenever a > 0, Q(s) has
at least one root in the open right half plane {z ∈ C : <(z) > 0} for any N and τ ≥ 0 but the
location of possible other roots depends on a, N and τ and requires a more in-depth analysis;
we think however that this analysis is not necessary since the presence of a root of Q(s) in the
open right half plane {z ∈ C : <(z) > 0} makes unstable the solution of the linear FNDDE (12).

6.2. Case (C2): a < 0, 0 < |b| < |a|. The linear FNDDE is now

(15) CDα
0+

[
x(t) +Nx(t− τ)

]
= ax(t) + bx(t− τ), t ≥ 0,

and, by exploiting again (7) and (8), the LT X(s) of the solution x(t) is

(16) X(s) =
sα−1(φ(0) +Nφ(−τ)) + (b−Nsα)e−sτ

∫ 0
−τ e−suφ(u)du

sα +Nsαe−sτ − a− be−τs
.

It is easy to see that s = 0 is only a simple pole of X(s). We now put

P (s) := sα +Nsαe−sτ − a− be−τs

and by the following lemma we provide information about location of zero points of P .

Lemma 6.4. Assume that a < 0 and 0 < |b| < |a|.

(i) If |N | ≤ 1, then P (s) = 0 has no roots in the closed right half-plane {s ∈ C : <(s) ≥ 0}.
(ii) If |N | > 1, then P (s) = 0 has at least one root in the open right half-plane {s ∈ C :
<(s) > 0}.

Proof. (i) Denote D1 := {z ∈ C : <(z) ≥ 0}. Since P (0) 6= 0, there exists a small enough ε > 0
such that P (s) 6= 0 in the ball B := {s ∈ C : |s| ≤ ε}. On the other hand, for s ∈ D1 it is

|P (s)| ≥ |s|α(1− |N |)− (|a|+ |b|)→∞, as |s| → ∞.

Thus, there is R > 0 such that P (s) 6= 0 for all s ∈ D1 ∩ {z ∈ C : |z| ≥ R}. Denote C1 := {z ∈
C : z = ε(cosϕ+ i sinϕ), −π/2 ≤ ϕ ≤ π/2}, C3 := {z ∈ C : z = R(cosϕ+ i sinϕ), −π/2 ≤ ϕ ≤
π/2)}, C2 := {z ∈ C : z = r(cosπ/2− i sinπ/2} and C4 := {z ∈ C : z = r(cosπ/2 + i sinπ/2)}.
Put f(s) := sα−a, g(s) := Nsαe−sτ − be−τs. On C1 and C3, let s = s1 + is2 = r(cosϕ+ i sinϕ),
where s1 > 0, r = ε or r = R and ϕ ∈ [−π/2, π/2]. We have

f(s) = sα − a = rα cos(αϕ)− a+ irα sin(αϕ),

g(s) = Nrαeiαϕe−τ(s1+is2) − be−τ(s1+is2)

= Nrαe−τs1 cos(αϕ− τs2)− be−τs1 cos(τs2) + i
[
Nrαe−τs1 sin(αϕ− τs2) + be−τs1 sin(τs2)

]
and hence

|f(s)|2 = r2α + a2 − 2arα cos(αϕ),(17)

|g(s)|2 = N2r2αe−2τs1 + b2e−2τs1 − 2bNrαe−2τs1 cos(αϕ).(18)

From (17), (18) and the assumptions that s1 ≥ 0, |N | ≤ 1 and |b| < |a|, we see that

(19) |f(s)| > |g(s)| on C1 and C3.

Now, we will compare |f | and |g| on C4. For any s ∈ C4, we describe s = ir = r(cosπ/2 +
i sinπ/2), where r ∈ [ε,R]. By a simple computation, we obtain the estimates

|f(s)|2 = r2α + a2 − 2arα cos
απ

2
,

|g(s)|2 = N2r2α + b2 − 2Nrαb cos
απ

2
≤ N2r2α + b2 + 2|N |rα|b| cos

απ

2
,

which imply that

(20) |f(s)| > |g(s)| on C4.
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Similarly, on C2, we also have

|f(s)| > |g(s)|

and, together with (19), (20), we obtain

(21) |f(s)| > |g(s)| on C := C1 ∪ C2 ∪ C3 ∪ C4.

From (21), by Rouché’s theorem, P has no zero in the domain D bounded by the contour C
defined as above. Thus, P has no zero point in the closed right half-plane of the complex plane.
(ii) As in the proof of Lemma 6.1 (ii), we only need to show that the following equation has at
least one root in the open right half-plane {z ∈ C : <(z) > 0}:

(22) 1 +Ne−τs − a

sα
− be−τs

sα
= 0.

To do this, we set f(s) := 1 + Ne−τs and g(s) := − a
sα −

be−τs

sα . Take the contour C as in the
proof of Lemma 6.1 (ii) with a large enough R > 0. It is known that f has one zero in the
domain bounded by C and f(s) 6= 0 on this contour. On the other hand |g(s)| → 0 as |s| → ∞
with s ∈ {z ∈ C : <(z) > 0}. Thus, for sufficiently large R we have

|g(s)| < min
s∈C
|f(s)| ≤ |f(s)| for all s ∈ C,

which together with Rouché’s theorem imply that (22) has one root in the domain bounded by
C, namely the equation P (s) = 0 has at least one root in {z ∈ C : <(z) > 0}, thus allowing to
complete the proof. �

Based on Lemma 6.4 and arguments as in the proof of Theorem 6.2, we obtain the following
result.

Theorem 6.5. Let a < 0, 0 < |b| < |a| and consider the linear FNDDE (15). The following
statements hold:

• (i) if |N | ≤ 1, then the solution of (15) is asymptotically stable;
• (ii) if |N | > 1, then the solution of (15) is unstable.

Remark 6.6. Studying different combinations of the parameters a and b with respect to those
considered in Lemma 6.4 and Theorem 6.5 appears more challenging and it would require a
more involved analysis. We just observe that when a + b > 0 there is at least one root of P (·)
in the open right half plane {z ∈ C : <(z) > 0} for any N and τ ≥ 0 and hence equation (15) is
unstable for every N and τ ≥ 0. In the remaining cases, the stability property of this equation
depends on all parameters a, b, N and τ .

More detailed information about the asymptotic behavior of solutions of the linear FNDDE (6),
under conditions for which they turn out asymptotically stable, can be obtained thanks to the
representations of the exact solutions in terms of Prabhakar functions given in Propositions 5.1
and 5.2. Indeed we know (see, for instance, [33, 34]) that when 0 < α ≤ 1, a < 0 and k ≥ 1 the
asymptotic behaviour of the generalized Prbahakar function ekα,β(t; a) is given by

ekα,β(t; a) =
(−1)k

Γ(k)

∞∑
j=0

Γ(j + k)a−(j+k)

j!Γ(β − α(j + k))
tβ−α(k+j)−1, t→∞.

Therefore asymptotically stable solutions of the linear FNDDE (6) possesses algebraic expansions
as t→∞, a common feature of stable fractional-order systems (see, for instance, [35, 36, 37, 38]
for non-delayed equations or [39, 40, 9] for fractional-order delayed equations).
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7. Numerical simulations

With the aim of verifying the theoretical findings on the asymptotic behavior of solutions of
linear FNDDEs, we consider here a numerical scheme based on the application of a standard
product-integration (PI) rule of rectangular rule to the integral representation (3). Methods of
this kind are widely employed to solve fractional differential equations (see, for instance [41])
and they can be easily adapted to solve FNDDEs as well.

Let h > 0 and consider an equispaced grid tn = nh, n = 0, 1, . . . , thanks to which the integral
in (3) can be rewritten in a piece-wise way

x(tn) = φ(0) +Nφ(−τ)−Nx(tn − τ)

+
1

Γ(α)

n−1∑
k=0

∫ tk+1

tk

(tn − s)α−1f(s, x(s), x(s− τ))ds.

The vector field f(s, x(s), x(s − τ)) is hence approximated, in each interval [tk, tk+1], by the
constant values assumed in one of the endpoints of [tk, tk+1]. For stability reasons, and avoid to
introduce instability due to the numerical scheme, we prefer to device an implicit method and
adopt the approximation f(s, x(s), x(s− τ)) ≈ f(tk+1, x(tk+1), x(tk+1− τ)), s ∈ [tk, tk+1]. After
integrating in an exact way each integral we obtain the approximations xn ≈ x(tn) given by

xn = φ(0) +Nφ(−τ)−Nx(tn − τ) + hα
n∑
k=1

b
(α)
n−kf(tk, xk, xk−τ/h),

where convolution weights b
(α)
n are defined by b

(α)
n = ((n+1)α−nα)/Γ(α+1). The approximation

xk−τ/h of x(tk − τ) is obtained by interpolation of the two closest available approximations of
the solution when tk − τ is not a grid point or when it does not belong to [−τ, 0]. First-degree
polynomial interpolation is clearly sufficient to preserve the first-order convergence of the PI
rule. Finally, Newton-Raphson iterations are used to determine xn from the above implicit
scheme when f is nonlinear.

We now apply the above scheme to present some numerical examples illustrating the main results
proposed in this paper.

Example 7.1. Consider the equation

CD0.7
0+

[
x(t) + x(t− 1)

]
= −5x(t), t > 0(23)

x(·) ∈ C([−1, 0];R)

which from the theory of Subsection 6.1 is expected to present asymptotically stable solutions.
In Figure 1, we show the numerical simulation of the trajectory Φ(·, φ) of the solution to (23)
with the initial condition φ(t) = 0.2 on [−1, 0] which clearly show a stable behavior.

Example 7.2. Consider the equation

CD0.7
0+

[
x(t)− 1.5x(t− 1)

]
= −5x(t), t > 0(24)

x(·) ∈ C([−1, 0];R).

Since |N | > 1, we expect unstable solutions for Eq. (24). Indeed, as we can see from Figure
2, where it is depicted the trajectory of the solution Φ(·, φ) when φ(t) = 0.2 on [−1, 0], the
numerical simulation confirms the theoretical expectation.

Example 7.3. Consider now the equation

CD0.7
0+

[
x(t) + 0.5x(t− 1)

]
= −5x(t) + 0.5x(t− 1), t > 0(25)

x(·) ∈ C([−1, 0];R)

whose stability properties are studied in Subsection 6.2. As shown in Theorem 6.5 (i), this the
solution of this equation is asymptotically stable. In Figure 3 it is presented the trajectory of
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Figure 1. Trajectory of the solution Φ(·, φ) to system (23) when φ(t) = 0.2 on [−1, 0].
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Figure 2. Trajectory of the solution Φ(·, φ) to system (24) when φ(t) = 0.2 on [−1, 0].
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Figure 3. Trajectory of the solution Φ(·, φ) to system (25) when φ(t) = 0.2 on [−1, 0].

the solution Φ(·, φ) to (25) with the initial condition φ(t) = 0.2 on [−1, 0] which clearly appears
to be stable as predicted from theory.

Example 7.4. We finally consider the equation

CD0.7
0+

[
x(t) + 1.5x(t− 1)

]
= −5x(t) + 0.5x(t− 1), t > 0(26)

x(·) ∈ C([−1, 0];R).
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Figure 4. Trajectory of the solution Φ(·, φ) to system (26) when φ(t) = 0.2 on [−1, 0].

in which the presence of the neutral coefficient N > 1.5 suggests an unstable behavior as shown in
Theorem 6.5 (ii). Indeed, also in this case, the simulation of the trajectory of the corresponding
solution Φ(·, φ) to (26), with the same initial condition φ(t) = 0.2 on [−1, 0], confirms the
theoretical findings (see Figure 4).
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