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Abstract: A straightforward approach to new polycyclic heterocycles, 1H-benzo[4,5]imidazo[1,2-
c][1,3]oxazin-1-ones, is presented. It is based on the ZnCl2-promoted deprotective 6-endo-dig het-
erocyclization of N-Boc-2-alkynylbenzimidazoles under mild conditions (CH2Cl2, 40 ◦C for 3 h).
The zinc center plays a dual role, as it promotes Boc deprotection (with formation of the tert-butyl
carbocation, which can be trapped by substrates bearing a nucleophilic group) and activates the
triple bond toward intramolecular nucleophilic attack by the carbamate group. The structure of
representative products has been confirmed by X-ray diffraction analysis.

Keywords: alkynes; annulation; benzimidazoxazinones; heterocycles; polycyclic heterocycles; hete-
rocyclization; zinc

1. Introduction

The development of efficient methods for the synthesis of high value added polycyclic
heterocyclic derivatives by metal-promoted annulation of acyclic precursors is one of the
most important area of research in heterocyclic chemistry [1–5]. Polycyclic heterocyclic
systems, in fact, are largely present as fundamental cores in natural products and in
biologically active compounds [6–11], and the possibility to obtain them by a simple
cyclization process starting from readily available substrates is particularly attractive [1–5].

Among acyclic substrates able to undergo a metal-promoted cyclization to give a poly-
cyclic heterocycle, functionalized alkynes bearing a suitably placed heteronucleophile play
a major role, as the triple bond can be easily electrophilically activated by a suitable metal
species thus promoting the cyclization by intramolecular nucleophilic attack [1–5]. Usually,
processes like these are promoted by costly metals (mainly gold [12–19], palladium [20–23],
rhodium [24–26], platinum [27–29], and, occasionally, ruthenium [30]), while the use of less
expensive metal species, such as cobalt [31], nickel [32], copper [33–36], zinc [37–40], and
silver [41,42] compounds, has been scantly reported in the literature, and applied to a limited
number of examples.

In this work, we report on the use of very simple and inexpensive ZnCl2 as a promoter
for the efficient deprotective heterocyclization of N-Boc-2-alkynylbenzimidazoles 1, to give
access to novel polycyclic heterocycles, that are, 1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-
1-ones 2 (Scheme 1). It is worth mentioning in this context that the cyclization of O-Boc
propargyl alcohols to give 4H-1,3-dioxin-2-ones and/or 4-alkylidene-1,3-dioxolan-2-ones

Molecules 2021, 26, 2318. https://doi.org/10.3390/molecules26082318 https://www.mdpi.com/journal/molecules

https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-4292-7560
https://orcid.org/0000-0001-8132-2893
https://orcid.org/0000-0003-4582-1489
https://doi.org/10.3390/molecules26082318
https://doi.org/10.3390/molecules26082318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/molecules26082318
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules26082318?type=check_update&version=1


Molecules 2021, 26, 2318 2 of 14

has been previously reported to occur with mercuric triflate as the catalyst [43]. It is also
important to note that some excellent reviews on Zn-catalyzed reactions have appeared in
the recent literature [44–48].
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Scheme 1. This work: ZnCl2-assisted heterocyclization of N-Boc-alkynylbenzimidazoles 1 to benzim-
idazoxaxinones 2.

2. Results and Discussion

It is well known that zinc (II) compounds are able to promote Boc deprotection [49–54].
In particular, an excess of ZnBr2 has been successfully employed for the deprotection of N-
Boc secondary amines [52] as well as of tert-butyl esters [53,54]. Considering the importance
of developing new approaches to the synthesis of polycyclic heterocycles by heterocycliza-
tion processes promoted by non-noble and inexpensive metal species, we have explored
the possibility to access new polycyclic heterocycles, that are 1H-benzo[4,5]imidazo[1,2-
c][1,3]oxazin-1-ones 2, starting from readily available N-Boc-2-alkynylbenzimidazoles
1, by Zn(II)-assisted deprotective heterocyclization (Scheme 1). According to our ratio-
nale, the zinc center should play a double role, that is, to promote deprotection to give a
carbamate species A (with elimination of isobutene and H+ from the ensuing tert-butyl
carbocation [52–54]) and then assist a 6-endo-dig heterocyclization by intramolecular nu-
cleophilic attack of the free carbamate group of species B (in equilibrium with A) on the
triple bond activated by coordination to Zn2+ (with the zinc center stabilized by chelation
by the benzimidazole nitrogen). This would lead to organizinc intermediate C, whose
protonolysis would then afford the polycyclic heterocycles 2 (Scheme 2; zinc counteranions
have been omitted for clarity).
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Scheme 2. Mechanistic hypothesis for the formation of polycyclic heterocycles 2 by Zn2+-mediated sequential deprotection -
6-endo-dig heterocyclization of N-Boc-alkynylbenzimidazoles 1.

The first experiments were performed using N-Boc-2-(hex-1-in-1-yl)-1H-benzo[d]im
idazole 1a as substrate (R1 = H, R2 = Bu) (prepared by alkynylation of N-Boc-2-bromo-
1H-benzo[d]imidazole, see the Supplementary Materials for details), which was allowed
to react in CH2Cl2 as the solvent at room temperature in the presence of ZnBr2 (1 equiv).
Under these conditions, after 3 h reaction time, substrate conversion was 51%, while
the desired 3-butyl-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2a was isolated in
25% yield. The structure of 2a was unequivocally confirmed by XRD analysis (see the
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Supplementary Materials for XRD data). The X-ray structure of 2a, shown in Figure 1,
confirmed that the heterocyclization process at intermediate B level occurred in a 6-endo-
dig fashion (with closure to a 6-membered ring) rather than in the possible alternative
5-exo-dig fashion (with closure to a five-membered ring).
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Figure 1. Molecular structure of 3-butyl-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2a. Color
legend: carbon (light grey), hydrogen (white), oxygen (red), nitrogen (blue) (CCDC 2050576).

In spite of the low yield, this initial result was encouraging, since it confirmed the
validity of our work hypothesis and the possibility to synthesize novel polycyclic hete-
rocycles with a very simple approach and using an inexpensive promoter. In order to
improve the reaction performance, and achieve a higher 2a yield, we then changed some
operative parameters (Table 1, entries 2–9). Practically no reaction occurred by changing
the solvent to MeOH (Table 1, entry 2), while only traces of 2a were detected in acetone
(Table 1, entry 3). Lowering the amount of ZnBr2 significantly suppressed the reaction
(Table 1, entry 4). On the other hand, the use of 1.5 or 2 equiv of ZnBr2 was beneficial, 2a
being formed in ca. 70% isolated yield (Table 1, entries 5 and 6, respectively). Better results
with respect to the parent reaction (Table 1, entry 1) were also obtained by increasing the
1a concentration from 0.5 (Table 1, entry 1) to 1 mmol/mL of CH2Cl2 (Table 1, entry 7),
while more diluted conditions led to a lower 2a yield (Table 1, entry 8). Predictably, a faster
reaction was observed at 40 ◦C rather than 25 ◦C, with a higher yield of 2a (Table 1, entry
9) with respect to the initial experiment (Table 1, entry 1). Under the optimized conditions
(40 ◦C in CH2Cl2 in the presence of 1.5 equiv of ZnBr2, with a substrate concentration of
1 mmol per mL of solvent), 2a could be finally obtained in a yield as high as 79% (Table 1,
entry 10).

Very interestingly, the reaction was also successful using ZnCl2 (Table 1, entry 11) or
ZnI2 (Table 1, entry 12), the best results in terms of 2a yield being obtained with ZnCl2
(82%, Table 1, entry 11). This result, associated with the lower cost of ZnCl2, made ZnCl2
the promoter of choice for realizing the transformation of 1a into benzimidazoxazinone
2a and for the subsequent extension to other differently substituted substrates (Table 2).
Thus, to assess the generality of the reaction, various N-Boc-alkynylbenzimidazoles 1
(bearing different R1 and R2 groups; prepared as detailed in the Supplementary Materials)
were subjected to the optimized reaction conditions with ZnCl2 as the promoter (Table 2,
entries 2–15).
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Table 1. ZnX2-promoted deprotective heterocyclization of N-Boc-2-(hex-1-in-1-yl)-1H-benzo[d]imidazole 1a under different
conditions a.
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a All reactions were carried out in CH2Cl2 (1 mmol of 1 per mL of solvent) at 40 °C for 3 h. b Isolated yield based on starting 
1. c The reaction led also to 2-(hex-1-yn-1-yl)-6-nitro-1H-benzo[d]imidazole 3f in 20% isolated yield. d The reaction led also 
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As can be seen from Table 2, entries 2–5, excellent results were obtained with substrates
still with R2 = Bu and bearing either electron-donating (methyl or methoxy; yields of the
corresponding products 2b–d were 76–83%, Table 2, entries 2–4) or electron-withdrawing
chlorine substituents (yield of 2e = 77%, Table 2, entry 5) on the aromatic ring. On the
other hand, inferior results were observed with substrates 1f and 1g, bearing a strong
electron-withdrawing nitro substituent (yields of 2f and 2g were 45% and 30%, Table 2,
entries 6 and 7, respectively). With these substrates, complete Boc removal competed with
heterocyclization, as confirmed by the formation of not negligible amounts of deprotected
compounds 3f and 3g (20% and 31%, respectively, Table 2, entries 6 and 7) (Scheme 3), not
observed in other cases. Clearly, the formation of these byproducts from substrates 1f and
1g is due to the diminished nucleophilicity of the carbamate intermediate B (Scheme 2)
caused by the strong electron-withdrawing effect of the nitro group, which makes de-
carboxylation to compete with cyclization. The structures of products 2c and 2f were
confirmed by XRD analysis (see the Supplementary Materials for XRD data). The X-ray
structures of 2c and 2f, shown in Figures 2 and 3, respectively, allowed to unequivocally
establish the positions of the methoxy and nitro substituents in regioisomeric substrates
1c/1d and 1f/1g, respectively (as 2c must be formed from 1c and 2f from 1f).
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High yields of the corresponding benzimidazoxazinones were obtained by changing
the alkyl substituent on the triple bond R2 to octyl (yield of 2h, 85%; Table 2, entry 8),
isopentyl (yield of 2i, 82%; Table 2, entry 9), or phenethyl (yield of 2j, 80%; Table 2, entry
10), while a slightly lower yield was observed with R2 = cyclohexylmethyl (yield of 2k,
70%; Table 2, entry 11). The use of a substrate with the triple bond conjugated with an
alkenyl group, as in N-Boc-2-(cyclohex-1-en-1-ylethynyl)-1H-benzo[d]imidazole 1l, led to a
satisfactory yield of the corresponding polycyclic heterocycle 2l (66%; Table 2, entry 12).

The method also worked nicely with substrates bearing a functionalized alkyl chain of
the triple bond, as shown by the results obtained with a methoxymethyl (yield of 2m, 60%;
Table 2, entry 13) or a 2-(methoxycarbonyl) ethyl (yield of 2n, 74%; Table 2, entry 14) group.
Interestingly in the case of N-Boc-4-(1H-benzo[d]imidazol-2-yl) but-3-yn-1-ol 1o, bearing a
2-hydroxyethyl group on the triple bond, the tert-butyl group was incorporated into the
final product to give 3-(2-(tert-butoxy)ethyl)-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one
2o’ (66% yield; Table 1, entry 15). This is clearly due to the trapping of the tert-butyl
carbocation, ensuing from deprotection, by the nucleophilic hydroxyl group, as shown in
Scheme 4.
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3. Materials and Methods
3.1. General Experimental Methods

Melting points were measured with a Leitz Laborlux 12 POL polarizing optical micro-
scope (Leitz Italia GmbH/Srl, Lana(BZ), Italy) and are uncorrected. 1H NMR and 13C NMR
spectra were recorded at 25 ◦C in CDCl3 or DMSO-d6 at 300 MHz or 500 MHz and 75 or
125 MHz, respectively, with Me4Si as internal standard, using Bruker DPX Avance 300 and
Bruker DPX Avance 500 NMR spectrometers (Brucker Italia s.r.l., Milano, Italy); chemical
shifts (δ) and coupling constants (J) are given in ppm and in Hz, respectively. IR spectra
were taken with a JASCO FT-IR 4200 spectrometer (Jasco Europe s.r.l., Cremella, Lecco,
Italy). All reactions were analyzed by TLC on silica gel 60 F254 and by GC-MS using a
Shimadzu QP-2010 GC–MS apparatus (Smimadzu Italia s.r.l., Milano, Italy) at 70 eV ioniza-
tion voltage equipped with a 95% methyl polysiloxane–5% phenyl polysiloxane capillary
column (30 m × 0.25 mm, 0.25 µm). Column chromatography was performed on silica
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gel 60 (Merck, 70–230 mesh; Merck Life Science s.r.l., Milano, Italy). Evaporation refers
to the removal of solvent under reduced pressure. The HRMS spectra were taken on an
Agilent 1260 Infinity UHD accurate-mass Q-TOF mass spectrometer (Agilent Technologies
Italia s.p.a. Cernusco sul Naviglio, Milano, Italy), equipped with an electrospray ion source
(ESI) operated in dual ion mode. Ten microliters of the sample solutions (CH3OH) were
introduced by continuous infusion at a flow rate of 200 L min−1 with the aid of a syringe
pump. Experimental conditions were performed as follows: capillary voltage, 4000 V;
nebulizer pressure, 20 psi; flow rate of drying gas, 10 L/min; temperature of sheath gas,
325 ◦C; flow rate of sheath gas, 10 L/min; skimmer voltage, 60 V; OCT1 RF Vpp, 750 V;
fragmentor voltage, 170 V. The spectra data were recorded in the m/z range of 100–1000 Da
in a centroid pattern of full-scan MS analysis mode. The MS/MS data of the selected
compounds were obtained by regulating diverse collision energy (18–45 eV).

3.2. Preparation of Substrates 1

Substrates were prepared and characterized as described in the Supplementary Materials.

3.3. General Procedure for the Synthesis of Benzimidazoxazinone Derivatives 2

See Table 2 for reference. A Schlenk flask was charged under nitrogen with the N-
Boc-2-alkynylbenzimidazole 1 (1 mmol) (1a: 298 mg; 1b: 326 mg; 1c: 328 mg; 1d: 328 mg;
1e: 367 mg; 1f: 343 mg; 1g: 343 mg; 1h: 354 mg; 1i: 312 mg; 1j: 346 mg; 1k: 338 mg;
1l: 322 mg; 1m, 286 mg; 1n: 328 mg; 1o: 286 mg), anhydrous CH2Cl2 (1 mL), and ZnCl2
(204 mg, 1.5 mmol). The reaction mixture was heated at 40 ◦C and then allowed to stir
at this temperature for 3 h. After cooling, the reaction mixture was diluted with CH2Cl2
(5 mL) and water (5 mL) (for 2a-1, 2n, and 2o’). Alternatively, after cooling, the solvent was
evaporated, and water (20 mL) was added to the residue (for 2m). Phases were separated
the aqueous phase was washed with CH2Cl2 (5 mL), and the combined organic phases
were dried with Na2SO4. After filtration and evaporation of the solvent, the product
was purified by column chromatography on silica gel using hexane/AcOEt (8:2, v/v) as
the eluent (for 2a-1l, 2n, and 2o’). For the purification of 2m, the suspension obtained as
seen above was filtered, the precipitate washed with water (3 × 5 mL) and then purified
by column chromatography on silica gel using hexane/AcOEt (8:2, v/v) as eluent. With
substrates 1f and 1g, the reaction also led to the formation of deprotected products 3f and
3g, respectively (Scheme 3) (order of elution: 3f followed by 2f; 2g followed by 3g).

3.3.1. 3-Butyl-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2a

Yield: 198 mg, starting from 298 mg of 1a (82%) (Table 2, entry 1). Colorless solid, mp:
92–94 ◦C; IR (KBr): v = 1759 (s), 1667 (m), 1551 (w), 1450 (w), 1366 (s), 1096 (m), 972 (w), 849
(w), 748 (m) cm−1; 1H NMR (300 MHz, CDCl3) δ = 8.24–8.13 (m, 1 H, aromatic), 7.82–7.73
(m, 1 H, aromatic), 7.52–7.36 (m, 2 H, aromatic), 6.50 (s, 1 H, H-4), 2.61 (t, J = 7.3, 2 H,
=CCH2), 1.75 (quint, J = 7.3, 2 H, CH2CH2CH3), 1.46 (hexuplet, J = 7.3, 2 H, CH2CH3),
0.98 (t, J = 7.3, 3 H, CH3); 13C NMR (75 MHz, CDCl3): δ = 162.9, 147.4, 144.1, 129.3, 126.3,
124.9, 119.7, 114.6, 96.6, 32.8, 28.4, 22.1, 13.7; GC/MS = 242 (M+, 100), 227 (2), 213 (3), 200
(42), 185 (31), 171 (6), 158 (43); 144 (4), 130 (12); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C14H15N2O2

+ 243.1128; Found: 243.1132.

3.3.2. 3-Butyl-7,8-dimethyl-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2b

Yield: 208 mg, starting from 326 mg of 1b (77%) (Table 2, entry 2). Colorless solid, mp:
133–137 ◦C; IR (KBr): v = 1768 (s), 1667 (m), 1558 (w), 1450 (m), 1381 (s), 1111 (w), 741 (w)
cm−1; 1H NMR (300 MHz, CDCl3): δ = 7.92 (s, 1 H, H-6 or H-9), 7.48 (s, 1 H, H-9 or H-6),
6.44 (s, 1 H, H-4), 2.59 (t, J = 7.5, 2 H, =CCH2), 2.40 (s, 3 H, CH3 at C-7 or C-8), 2.38 (s, 3 H,
CH3 at C-8 or C-7), 1.72 (quint, J = 7.5, 2 H, CH2CH2CH3), 1.44 (hexuplet, J = 7.5, 2 H,
CH2CH3), 0.98 (t, J = 7.5, 3 H, CH3); 13C NMR (75 MHz, CDCl3): δ = 162.0, 146.6, 144.2,
142.5, 135.3, 134.3, 127.6, 119.8, 114.7, 96.7, 32.8, 28.5, 22.1, 20.4, 13.7; GC/MS = 270 (M+,
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100); 255 (3), 228 (29), 213 (24), 199 (5), 186 (19), 172 (3), 158 (6), 143 (1), 130 (2), 118 (8);
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C16H19N2O2

+ 271.1441; Found: 271.1446.

3.3.3. 3-Butyl-8-methoxy-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2c

Yield: 207 mg, starting from 328 mg of 1c (76%) (Table 2, entry 3). Colorless solid, mp:
96–99 ◦C; IR (KBr): v = 1767 (s), 1667 (m), 1489 (m), 1443 (w), 1366 (m), 1281 (m), 1204 (w),
1026 (w), 818 (m) cm−1; 1H NMR (500 MHz, CDCl3) δ = 7.70 (d, J = 2.5, 1 H, H-9), 7.63 (d,
J = 8.8, 1 H, H-6), 7.06 (dd, J = 8.8, 2.5, 1 H, H-7), 6.46–6.44 (m, 1 H, H-4), 2.60 (t, J = 7.5, 2 H,
=CCH2), 1.72 (quint, J = 7.5, 2 H, CH2CH2CH3), 1.45 (hexuplet, J = 7.5, 2 H, CH2CH3), 0.98
(t, J = 7.5, 3 H, CH3); 13C NMR (125 MHz, CDCl3): δ = 161.7, 158.0, 146.3, 144.4, 138.3, 130.2,
120.2, 115.5, 98.3, 96.8, 56.0, 32.8, 28.5, 22.1, 13.7; GC/MS: m/z = 272 (M+, 100), 257 (17), 229
(29), 215 (22), 187 (14); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H17N2O3

+ 273.1234;
Found: 273.1237.

3.3.4. 3-Butyl-7-methoxy-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2d

Yield: 226 mg, starting from 328 mg of 1d (83%) (Table 2, entry 4) Colorless solid, mp:
93–97 ◦C; IR (KBr): v = 1760 (s), 1659 (m), 1558 (w), 1489 (m), 1435 (w), 1366 (m), 1281 (m),
1150 (m), 1103 (m) cm−1; 1H NMR (500 MHz, CDCl3) δ = 8.06 (d, J = 8.9, 1 H, H-9), 7.24 (s,
br, 1 H, H-6), 7.06–7.00 (m, 1 H, H-8), 6.50–6.47 (m, 1 H, H-4), 2.61 (t, J = 7.5, 2 H, =CCH2),
1.73 (quint, J = 7.5, 2 H, CH2CH2CH3), 1.45 (hexuplet, J = 7.5, 2 H, CH2CH3), 0.98 (t, J = 7.5,
3 H, CH3); 13C NMR (125 MHz, CDCl3): δ = 162.7, 158.9, 148.0, 145.5, 144.0, 123.5, 114.9,
113.8, 102.7, 96.6, 55.8, 32.8, 28.5, 22.1, 13.7; GC/MS: m/z = 272 (M+, 100), 230 (20), 215 (15),
199 (11), 188 (19); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H17N2O3

+ 273.1234; Found:
273.1242.

3.3.5. 3-Butyl-7,8-dichloro-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2e

Yield: 240 mg, starting from 367 mg of 1e (77%) (Table 2, entry 5). Colorless solid, mp:
143–147 ◦C. IR (KBr): v = 1775 (s), 1667 (m), 1543 (w), 1435 (w), 1350 (m), 1134 (w),
1096 (m) cm−1; 1H NMR (500 MHz, DMSO-d6) δ = 8.18 (s, 1 H, H-6 or H-9), 8.07 (s, 1
H, H-9 or H-6), 6.91 (s, 1 H, H-4), 2.63 (t, J = 7.4, 2 H, =CCH2), 1.65 (quint, J = 7.4, 2 H,
=CCH2CH2), 1.40 (hexuplet, J = 7.4, 2 H, CH2CH3), 0.93 (t, J = 7.4, 3 H, CH3); 13C NMR
(125 MHz, DMSO-d6): δ = 163.9, 150.0, 143.5, 128.7, 128.3, 126.3, 120.5, 114.9, 96.3, 31.8, 27.9,
21.3, 13.5; GC/MS = 312 [(M + 2)+, 61], 310 (M+, 100), 268 (25), 253 (22), 226 (31), 202 (6);
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C14H13Cl2N2O2

+ 311.0349; Found: 311.0348.

3.3.6. 3-Butyl-8-nitro-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2f

Yield: 129 mg, starting from 343 mg of 1f (45%) (Table 2, entry 6). Colorless solid, mp:
165–168 ◦C; IR (KBr): v = 1775 (s), 1659 (m), 1543 (w), 1520 (m), 1343 (m), 748 (w) cm−1; 1H
NMR (300 MHz, CDCl3) δ = 9.05 (d, J = 1.9, 1 H, H-9), 8.39 (dd, J = 8.8, 1.9, 1 H, H-7), 7.83
(d, J = 8.8, 1 H, H-6), 6.63 (s, 1 H, H-4), 2.70 (t, J = 7.4, 2 H, =CCH2), 1.76 (quint, J = 7.4, 2 H,
CH2CH2CH3), 1.49 (hexuplet, J = 7.4, 2 H, CH2CH3), 1.00 (t, J = 7.4, 3 H, CH3); 13C NMR
(75 MHz, CDCl3): δ = 165.6, 151.5, 148.6, 144.7, 143.2, 129.0, 122.1, 119.8, 111.0, 96.6, 33.1,
28.4, 22.1, 13.7; GC/MS: m/z = 287 (M+, 100), 257 (11), 245 (49), 230 (27), 203 (23), 184 (16);
HRMS (ESI-TOF) m/z: [M + Na + MeOH]+ Calcd for C15H17N3O5Na+ 342.1060; Found:
342.1064.

3.3.7. 3-Butyl-7-nitro-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2g

Yield: 86 mg, starting from 343 mg of 1g (30%) (Table 2, entry 7). Yellow solid, mp:
144–147 ◦C; IR (KBr): 1775 (s), 1667 (m), 1520 (s), 1350 (s), 1173 (w), 1119 (w), 934 (w),
833 (m), 741 (m) cm−1; 1H NMR (300 MHz, CDCl3) δ = 8.62 (s, 1 H, H-6), 8.38–8.30 (m,
2 H, H-8 + H-9), 6.60 (s, 1 H, H-4), 2.68 (t, J = 7.4, 2 H, =CCH2), 1.76 (quint, J = 7.4, 2 H,
CH2CH2CH3), 1.49 (hexuplet, J = 7.4, 2 H, CH2CH3), 1.00 (t, J = 7.4, 3 H, CH3); 13C NMR
(75 MHz, DMSO-d6): δ = 164.7, 150.1, 146.4, 144.2, 143.5, 133.5, 120.2, 115.8, 114.7, 96.5, 33.0,
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28.4, 22.1, 13.7; GC/MS: m/z = 287 (M+, 100), 245 (50), 230 (29), 203 (31), 184 (13); HRMS
(ESI-TOF) m/z: [M + Na + MeOH]+ Calcd for C15H17N3O5Na+ 342.1060; Found: 342.1064.

3.3.8. 3-Octyl-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2h

Yield: 254 mg, starting from 354 mg of 1h (85%) (Table 2, entry 8). Colorless solid, mp:
90–94 ◦C; IR (KBr): v = 1759 (s), 1667 (m), 1551 (m), 1396 (m), 1373 (m), 1134 (m), 1103
(m), 964 (w), 756 (m) cm−1; 1H NMR (300 MHz, CDCl3): δ = 8.24–8.17 (m, 1 H, aromatic),
7.83–7.75 (m, 1 H, aromatic), 7.50–7.39 (m, 2 H, aromatic), 6.70 (s, 1 H, H-4), 2.62 (t, J = 7.6, 2
H, =CCH2), 1.74 (quint, J = 7.6, 2 H, =CCH2CH2), 1.48–1.18 [m, 10 H, (CH2)5CH3], 0.89 (t,
J = 7.0, 3 H, CH3); 13C NMR (75 MHz, CDCl3): δ = 163.4, 147.8, 143.9, 143.5, 129.1, 126.4,
125.1, 119.5, 114.6, 96.4, 33.2, 31.8, 29.2, 29.1, 28.9, 26.4, 22.6, 14.1; GC/MS = 298 (M+, 85),
283 (2), 269 (4), 255 (5), 239 (5), 225 (14), 213 (100), 200 (87), 185 (40), 171 (11), 158 (61), 130
(20); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H23N2O2

+ 299.1754; Found: 299.1757.

3.3.9. 3-Isopentyl-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2i

Yield: 210 mg, starting from 312 mg of 1i (82%) (Table 2, entry 9). Colorless solid, mp:
102–104◦C; IR (KBr): v = 1751 (s), 1667 (m), 1551 (w), 1451 (w), 1366 (s), 1134 (m), 1103
(m), 964 (w), 849 (w), 748 (m) cm−1; 1H NMR (300 MHz, CDCl3): δ = 8.21–8.15 (m, 1 H,
aromatic), 7.77–7.72 (m, 1 H, aromatic), 7.50–7.37 (m, 2 H, aromatic), 6.48 (s, 1 H, H-4),
2.65–2.55 (m, 2 H, =CCH2), 1.73–1.56 (m, 3 H, CH2CH), 0.96 (d, J = 6.2, 6 H, 2 CH3); 13C
NMR (75 MHz, CDCl3): δ = 163.1, 147.4, 144.11, 144.03, 129.3, 126.2, 124.9, 119.7, 114.5, 96.5,
35.3, 31.1, 27.6, 22.3; GC/MS = 256 (M+, 100), 241 (6), 227 (2), 214 (10), 200 (56), 185 (25),
171 (5), 158 (61), 143 (4), 130 (14); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C15H17N2O2

+

257.1285; Found: 257.1286.

3.3.10. 3-Phenethyl-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2j

Yield: 232 mg, starting from 346 mg of 1j (80%) (Table 2, entry 10). Colorless solid, mp:
159–162 ◦C; IR (KBr): v = 1767 (s), 1667 (m), 1558 (w), 1451 (w), 1360 (s), 1103 (m), 988 (m),
864 (m), 756 (s), 694 (s) cm−1; 1H NMR (300 MHz, CDCl3): δ = 8.25–8.17 (m, 1 H, aromatic),
7.81–7.72 (m, 1 H, aromatic), 7.53–7.40 (m, 2 H aromatic), 7.35–7.13 (m, 5 H, Ph), 6.45 (s, 1 H,
H-4), 3.06 (dist t, J = 7.6, 2 H, CH2), 2.92 (dist, J = 7.6, 2 H, CH2); 13C NMR (75 MHz, CDCl3):
δ = 161.4, 147.1, 144.0, 143.9, 139.2, 129.3, 128.7, 128.2, 126.7, 126.3, 125.0, 119.8, 114.6, 97.3,
34.8, 32.5; GC/MS = 290 (M+, 34), 245 (1), 199 (7), 185 (2), 155 (5), 129 (3), 102 (4), 91 (100);
HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C18H15N2O2

+ 291.1128; Found: 291.1126.

3.3.11. 3-(Cyclohexylmethyl)-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2k

Yield: 197 mg, starting from 338 mg of 1k (70%) (Table 2, entry 11). Colorless solid, mp:
135–138◦C; IR (KBr): v = 1767 (s), 1667 (m), 1559 (w), 1451 (w), 1389 (m), 1366 (m), 1096 (w),
964 (w), 748 (m) cm−1; 1H NMR (500 MHz, CDCl3) δ = 8.21 (d, J = 7.7, 1 H, aromatic), 7.77
(d, J = 8.1, 1 H, aromatic), 7.52–7.40 (m, 2 H, aromatic), 6.49 (s, 1 H, H-4), 2.48 (d, J = 7.0, 2 H,
=CCH2), 1.93–1.62 (m, 6 H, cyclohexyl), 1.39–0.96 (m, 5 H, cyclohexyl); 13C NMR (125 MHz,
CDCl3): δ = 161.6, 147.3, 144.2, 129.4, 126.3, 124.9, 119.8, 114.6, 97.7, 41.0, 35.8, 33.0, 26.2,
26.0; GC/MS: m/z = 282 (M+, 67), 200 (100), 156 (24), 129 (5); HRMS (ESI-TOF) m/z: [M +
H]+ Calcd for C17H19N2O2

+ 283.1441; Found: 283.1448.

3.3.12. 3-(Cyclohex-1-en-1-yl)-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2l

Yield: 176 mg, starting from 322 mg of 1l (66%) (Table 2, entry 12). Colorless solid, mp:
191–195 ◦C; IR (KBr): v = 1767 (s), 1636 (m), 1420 (w), 1366 (m), 1281 (w), 1180 (w), 1111
(m), 1026 (w), 833 (w), 748 (m) cm−1; 1H NMR (300 MHz, CDCl3) δ = 8.24–8.16 (m, 1 H,
aromatic), 7.81–7.71 (m, 1 H, aromatic), 7.53–7.39 (m, 2 H, aromatic), 7.00–6.90 (m, 1 H,
=CH), 6.55 (s, 1 H, H-4), 2.40–2.24 (m, 4 H, cyclohexenyl), 1.86–1.74 (m, 2 H, cyclohexenyl),
1.74–1.62 (m, 2 H, cyclohexenyl); 13C NMR (75 MHz, CDCl3): δ = 157.7, 148.1, 144.5, 143.6,
134.0, 129.5, 127.1, 126.2, 124.9, 119.6, 114.5, 92.8, 25.9, 23.9, 22.0, 21.5; GC/MS = 266
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(M+, 100), 237 (7), 221 (23), 185 (26), 157 (9); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C16H15N2O2

+ 267.1128; Found: 267.1129.

3.3.13. 3-(Methoxymethyl)-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2m

Yield: 138 mg, starting from 286 mg of 1m (60%) (Table 2, entry 13). Yellow solid, mp:
122–125◦C; IR (KBr): v = 1751 (s), 1667 (m), 1558 (m), 1443 (m), 1381 (s), 1173 (m), 1103
(s), 957 (w), 748 (s) cm−1; 1H NMR (500 MHz, CDCl3) δ = 8.23–8.18 (m, 1 H, aromatic),
7.82–7.75 (m, 1 H, aromatic), 7.53–7.43 (m, 2 H, aromatic), 6.81–6.78 (m, 1 H, H-4), 4.35 (s,
2 H, CH2OCH3), 3.53 (s, 3 H, OCH3); 13C NMR (125 MHz, CDCl3): δ = 158.2, 146.8, 144.1,
143.5, 129.4, 126.4, 125.3, 120.0, 114.6, 97.2, 69.6, 59.4; GC/MS: m/z = 230 (M+, 89), 199 (5),
185 (100), 171 (10), 157 (48), 129 (8); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C12H11N2O3

+

231.0764; Found: 231.0768.

3.3.14. Methyl 3-(1-oxo-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-3-yl)propanoate 2n

Yield: 201 mg, starting from 328 mg of 1n (74%) (Table 2, entry 14). Colorless solid, mp:
189–193◦C; IR (KBr): v = 1767 (s), 1736 (s), 1667 (m), 1435 (w), 1366 (w), 1173 (m), 996
(m), 895 (w), 841 (w), 772 (m) cm−1; 1H NMR (500 MHz, CDCl3) δ = 8.19 (d, J = 7.7, 1 H,
aromatic), 7.77 (d, J = 8.1, 1 H, aromatic), 7.51–7.41 (m, 2 H, aromatic), 6.58 (s, 1 H, H-4), 3.72
(s, 3 H, CO2CH3), 2.97 (t, J = 7.2, 2 H, =CCH2), 2.79 (t, J = 7.2, 2 H, CH2CO2CH3); 13C NMR
(125 MHz, CDCl3): δ = 171.8, 160.4, 147.0, 144.1, 143.7, 126.4, 125.2, 119.9, 114.6, 97.5, 52.1,
30.5, 28.4; GC/MS: m/z = 272 (M+, 61), 243 (15), 212 (100), 199 (35), 185 (33), 169 (20), 157
(35); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for C14H13N2O4

+ 273.0870; Found: 273.0874.

3.3.15. 3-(2-(tert-Butoxy)ethyl)-1H-benzo[4,5]imidazo[1,2-c][1,3]oxazin-1-one 2o’

Yield: 189 mg, starting from 286 mg of 1o (66%) (Table 2, entry 15). Colorless solid, mp:
189–193◦C; IR (KBr): v = 1774 (s), 1666 (m), 1551 (w), 1389 (w), 1366 (m), 1204 (w), 1111
(w), 1080 (m), 756 (m) cm−1; 1H NMR (500 MHz, CDCl3) δ = 8.25–8.21 (m, 1 H, aromatic),
7.82–7.77 (m, 1 H, aromatic), 7.52–7.42 (m, 2 H, aromatic), 6.65 (dist t, J = 0.8, 1 H, H-4),
3.73 (t, J = 6.1, 2 H, CH2Ot-Bu), 2.83 (td, J = 6.1, 0.8, 2 H, =CCH2), 1.20 (s, 9 H,); 13C NMR
(125 MHz, CDCl3): δ = 160.5, 147.4, 144.2, 144.0, 129.4, 126.3, 125.0, 119.8, 114.6, 98.0, 73.5,
57.7, 34.5, 27.4; GC/MS: m/z = 286 (M+, 21), 213 (12), 200 (100), 171 (16), 156 (22); HRMS
(ESI-TOF) m/z: [M + H]+ Calcd for C16H19N2O3

+ 287.1390; Found: 287.1395.

3.3.16. 2-(Hex-1-yn-1-yl)-6-nitro-1H-benzo[d]imidazole 3f

Yield: 49 mg, starting from 343 mg of 1f (20%) (Table 2, entry 6). Colorless solid, mp: 138–
140 ◦C; IR (KBr): v = 2230 (w), 1520 (s), 1474 (w), 1435 (w), 1343 (s), 1065 (w), 818 (m) cm−1;
1H NMR (500 MHz, DMSO-d6): δ = 8.41 (s, br, 1 H, H-3), 8.14 (dd, J = 8.9, 2.2, 1 H, H-5), 7.69
(d, J = 8.9, 1 H, H-4), 2.58 (t, J = 7.2, 2 H, ≡CCH2), 1.60 (quint, J = 7.2, 2 H, CH2CH2CH3),
1.49 (hexuplet, J = 7.2, 2 H, CH2CH3), 0.95 (t, J = 7.2, 3 H, CH3) (Note: the NH signal was
incorporated into the broad HOD signal at 3.49 ppm); 13C NMR (125 MHz, DMSO-d6):
δ = 143.1, 139.6, 118.3, 114.3 (br), 95.8, 71.6, 29.5, 21.4, 18.1, 13.3; GC/MS: m/z = 243 (M+,
100), 228 (48), 214 (73), 201 (93), 182 (41), 168 (54), 155 (57), 127 (27); HRMS (ESI-TOF) m/z:
[M + H]+ Calcd for C13H14N3O2

+ 244.1081; Found: 244.1081.

3.3.17. 2-(Hex-1-yn-1-yl)-5-nitro-1H-benzo[d]imidazole 3g

Yield: 75 mg, starting from 343 mg of 1g (31%) (Table 2, entry 7). Yellow solid, mp:
145–148 ◦C; IR (KBr): v = 2237 (w), 1520 (s), 1474 (w), 1435 (w), 1366 (w), 1342 (s), 1065 (m),
818 (m), 741 (m) cm−1; 1H NMR (500 MHz, CDCl3): δ = 8.75 (s, 1 H, H-4), 8.29 (d, J = 8.8,
1 H, H-6), 7.83 (d, J = 8.8, 1 H, H-7), 2.48 (t, J = 7.3, 2 H, ≡CCH2), 1.50 (quint, J = 7.3, 2 H,
CH2CH2CH3), 1.33 (hexuplet, J = 7.3, 2 H, CH2CH3), 0.78 (t, J = 7.3, 3 H, CH3) (Note: the
NH signal was too broad to be detected); 13C NMR (125 MHz, CDCl3): δ = 144.4, 140.4,
119.2, 115.1 (br), 112.6 (br), 98.2, 71.0, 29.9, 22.0, 19.1, 13.4; GC/MS: m/z = 243 (M+, 100), 228
(44), 214 (71), 201 (96), 182 (40), 168 (54), 155 (56); HRMS (ESI-TOF) m/z: [M + H]+ Calcd for
C13H14N3O2

+ 244.1081; Found: 244.1082.
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4. Conclusions

In conclusion, we have reported that simple and inexpensive ZnCl2 is able to promote
the heterocyclization of N-Boc-2-alkynylbenzimidazoles under mild conditions (40 ◦C in
CH2Cl2 for 3h), giving access to new polycyclic heterocycles, 1H-benzo[4,5]imidazo[1,2-
c][1,3]oxazin-1-ones. While in the previous literature ZnCl2 was reported to promote
complete N-Boc deprotection with elimination of isobutene and CO2, in the present process
it assisted the 6-endo-dig heterocyclization of the carbamate intermediate with incorporation
of the carbamate group into the final polyheterocyclic derivative. ZnCl2 thus played a dual
role, by promoting the Boc deprotection of the substrate with elimination of the tert-butyl
carbonation (which could be trapped by substrates bearing a nucleophilic group) and
activating the triple bond toward the intramolecular nucleophilic attack by the carbamate
moiety. The benzimidazoxazinone derivatives have been obtained in moderate to high
yields starting from differently substituted substrates, and the structure of representative
products has been confirmed by X-ray diffraction analysis.

Supplementary Materials: The following are available online. Preparation and characterization of
N-Boc-2-alkynylbenzimidazole substrates 1a–1o, X-ray crystallographic data for products 2a, 2c, and
2f, Copies of HRMS, 1H NMR, and 13CNMR spectra.
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