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A B S T R A C T

The pervasive spread of microplastics (MPs) and nanoplastics (NPs) has raised significant concerns on their tox-
icity in both aquatic and terrestrial environments. These polymer-based materials have implications for plants,
wildlife and human health, threatening food chain integrity and ultimate ecosystem resilience. An extensive –
and growing – body of literature is available on MP- and NP-associated effects, including in a number of aquatic
biota, with as yet limited reports in terrestrial environments. Effects range from no detectable, or very low level,
biological effects to more severe outcomes such as (but not limited to) increased mortality rates, altered immune
and inflammatory responses, oxidative stress, genetic damage and dysmetabolic changes. A well-established ex-
posure route to MPs and NPs involves ingestion with subsequent incorporation into tissues. MP and NP exposures
have also been found to lead to genetic damage, including effects related to mitotic anomalies, or to transmissible
damage from sperm cells to their offspring, especially in echinoderms. Effects on the proteome, transcriptome and
metabolome warrant ad hoc investigations as these integrated “omics” workflows could provide greater insight
into molecular pathways of effect. Given their different physical structures, chemical identity and presumably
different modes of action, exposure to different types of MPs and NPs may result in different biological effects in
biota, thus comparative investigations of different MPs and NPs are required to ascertain the respective effects.
Furthermore, research on MP and NP should also consider their ability to act as vectors for other toxicants, and
possible outcomes of exposure may even include effects at the community level, thus requiring investigations in
mesocosm models.

© 2021

1. Introduction

Micro- and nano-plastics (MPs and NPs) are novel environmental
contaminants of emerging international interest due to their increas-
ing levels in aquatic and terrestrial environments with demonstrable ef-
fects at numerous biological levels. MP and NP pollution is an emerging
threat to ecosystem health and integrity as reported in earlier reviews
(Ryan et al., 1988; Moore, 2008; Zarfl et al., 2011; Guzzetti et
al., 2018). Beyond the biological effects resulting from exposure and
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uptake of MPs and NPs in the environment, macroscopic plastic debris
represents another environmental threat to biota through impacts on
increased frequency of suffocation, entanglement, and ingestion, espe-
cially in marine wildlife such as birds, sea turtles, marine mammals,
invertebrates and fish (Kühn and Franeker, 2020). These effects are
often translated into impacts on movement, feeding and reproduction,
skin ulcerations and necrosis, and even death (Provencher et al.,
2017, 2018; Rezani et al., 2018; de Souza Machado et al., 2018).
A growing body of literature in recent years has been devoted to under-
standing the biological effects of exposure to MP/NPs in biota, including
spatial and temporal patterns of exposure and effect (see for example:
Alimba and Faggio, 2019; Alimi et al., 2018; Chae and An, 2018,
Chae et al., 2019; Foley et al., 2018; Saleem et al., 2018; Wang
et al., 2018; Ferreira et al., 2019; Rochman et al., 2019;

https://doi.org/10.1016/j.scitotenv.2021.146534
0048-9697/© 2021.
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Wu et al., 2019; Barbosa et al., 2020). The present review aims at
providing a synthesised update on the reported effects from exposure
to MP/NPs in biota, if any, and will outline some knowledge gaps that
could inform future research and monitoring priorities.

As a preliminary step, a comprehensive literature review was under-
taken to extract relevant manuscripts published in the last 10 years us-
ing search terms such as “microplastics” and “nanoplastics” with “toxic-
ity”, “embryo”, “gene”, “growth”, and “oxidative stress”. Databases such
as PubMed, Scopus, Google Scholar and Web of Science were queried.
That search provided a set of peer-reviewed works that were evaluated
against a set of inclusion and exclusion criteria. Studies that reported
MP/NP exposure and uptake with effects (or no effect reported) at the
molecular to the organismal and community levels (about 8% of the
identified studies) were retained for analysis. Studies that did not quan-
tify exposure levels, or doses, or biological effects were not retained for
analysis. Further, quality control and quality assurance data in man-
uscripts needed to include the use of procedural blanks and/or posi-
tive controls, duplicates (or triplicates) and industry-recognised chem-
ical analysis procedures for retention and inclusion in our database.
Presence and absence of effects were noted, as well as the nature and/
or level of reported biological effect, including: impacts on behaviour,
mortality and reproduction, molecular-level effects (such as cytotoxic-
ity, biotransformation enzymes, neurotoxicity, hematological changes,
oxidative stress, immunity, genotoxicity, metabolic changes) and other
organismal-level effects (including physical effects, malformations, etc.).
Any biological effects assessment of plastic pollution should include the
well-known feeding impairment effect due to obstruction of the diges-
tive tract (Besseling et al., 2014, 2015). However, this review is not
aimed at evaluating the effects of macroplastic ingestion, but rather is
focused on other MP- and/or NP-associated biological effects, including
those molecular initiating events.

As shown in Fig. 1, a steady increase in MP-focused reports up to
2020 is evident while studies on NPs have picked up recently with a
greater number of publications in 2019–2020 (It should be noted that
the 2020 data are confined to the first six months of the calendar year
. An extensive body of evidence was accumulated showing a number of
more or less severe effects associated with MP/NP exposures in a num-
ber of different biota including aquatic and terrestrial animals, plants,
bacteria and cell cultures.

Altogether, the present review aims to outline different MP/NP
types, sizes and concentrations tested in the peer-reviewed literature in
order to identify differing size-, type- or concentration-dependent toxic-
ities, allowing us to suggest potentially important biological effect path-
ways among different polymers or different sizes.

Fig. 1. Annual publications on MP- and NP-induced toxicity data.

2. MP ingestion without relevant adverse effects

From the 94 studies identified and retained for analysis, only 15%
(14/94) measured and detected MP ingestion without reporting any ma-
jor resultant biological effect (Table 1). This was the case in some
reports on exposures to either micro-polyethylene (mPE), virgin mi-
cro-polyvinylchloride (mPVC), micro-polyethylene terephthalate
(mPET), or MP mixtures in fish Sparus aurata or sea urchins Tripneustes
gratilla and Paracentrotus lividus which showed microparticle ingestion,
yet without any major effects on embryonic development, growth rates
or stress (Kaposi et al., 2014; Beiras et al., 2018; Beiras and Tato,
2019; Jovanović et al., 2018).

Other studies on crustaceans were conducted using Aristeus antenna-
tus, Daphnia magna, Artemia franciscana, Gammarus fossarum, Gammarus
pulex and Macrobrachium nipponense to test the effects, if any, of MP ex-
posures including mPE, and several other MPs and MP mixtures. The
findings confirmed exposure through ingestion of MPs, yet without any
major discernable adverse effects (Frydkjær et al., 2017; Straub et
al., 2017; Carreras-Colom et al., 2018; Kokalj et al., 2018; We-
ber et al., 2018; Li et al., 2020a). Similar results were reported in
two other studies of MP-associated effects in mussels Dreissena polymor-
pha and Mytilus galloprovincialis which, again, failed to show any rele-
vant adverse outcomes (Magni et al., 2018; Gonçalves et al., 2019).
Rochman et al. (2017) evaluated the effects of four different MPs in
a clam and sturgeon model (Corbicula fluminea and Acipenser transmon-
tanus, respectively), failing to find pertinent adverse outcomes except for
slight bioaccumulation in clams, but a lack thereof in sturgeons. Other
fish species were tested for MP-associated effects using several MP types;
beyond ingestion and bioaccumulation in lower trophic aquatic biota
(i.e. clams), no effects were detected in early life stages or on lipid per-
oxidation (Jovanović et al., 2018; Rainieri et al., 2018).

Altogether, the negative results summarised in Table 1 suggest that
some biota failed to exhibit, or some laboratory bioassays failed to in-
duce detectable MP-associated damage. These lack of effects do not ex-
tend to all biota as demonstrated in the studies presented in Table 2.

3. MP-associated adverse effects in biota

The toxicity of various MP/NPs across different organisms, expressed
through a number of adverse effects, are summarised in Fig. 2 and
Table 2. The top three most commonly observed changes were re-
lated to physical effects, oxidative stress and reproduction. Moreover,
there is a large amount of literature investigating the toxicity of MP/
NPs in aquatic biota, whereas research in terrestrial models (such as hu-
mans and rodents) is currently more limited (Fig. 3). This represents
a significant knowledge gap considering that MPs are present in terres-
trial ecosystems due to accidental loss and poor waste management (de
Souza Machado et al., 2018; Dris et al., 2016). Furthermore, the
toxic effects of PS are more commonly explored with significantly less
attention paid to other MPs/NPs. This clearly indicates the need for fur-
ther targeted investigations based on polymer type as there is a broad
variety of plastic particles present in the environment, including PE,
PET, PVC and PMMA.

It has been reported that exposures to MPs can lead to altered be-
haviour and subsequent impacts on survivorship and mortality rates.
For example, a recent report by Mak et al. (2019) found that ze-
brafish, Danio rerio, exposed to mPE, underwent altered gene expres-
sion (cyp1a and vtg1) and abnormal behaviour. Further, Lei et al.
(2018) provided evidence of MP-associated toxicity in D. rerio and in
a nematode (Caenorhabditis elegans) exposed to five different MPs. In
their study, changes in development, heart rate, swimming activity,
body length and reproduction were pronounced (Lei et al., 2018). Ex
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Table 1
Reports finding limited effects, as ingestion or bioaccumulation, following microplastic ex-
posures, without further organismal or molecular effects.

Authors Test Species
Plastic Type
(Concentration)

Evaluated and
detected effects

Beiras and Tato
(2019)

Paracentrotus
lividus
(echinoderm)

PE (1 to
10 mg/L)

No acute toxicity
- MP is no vector
of a hydrophobic
organic
compound

Beiras et al. (2018) Brachionus
plicatilis
(rotifer)

PE (0.01 to
10 mg/L)

No acute toxicity
at early life
stages

Tigriopus fulvus
(crustacean)

PE (0.01 to
10 mg/L)

No acute toxicity
at early life
stages

Acartia clausi
(crustacean)

PE (1 to
30 mg/L)

No acute toxicity
at early life
stages

Mytilus
galloprovincialis
(mollusc)

PE (20 to
100 mg/L)

No acute toxicity
at early life
stages

Oryzias
melastigma
(fish)

PE (1 to
10 mg)

No acute toxicity
at early life
stages

Carreras-Colom et
al. (2018)

Aristeus
antennatus
(crustacean)

MP mixture Spatial
occurrence of
MP; MP
ingestion

Chen et al. (2017) Danio rerio
(fish)

PS (1 mg/L) Decreased larval
locomotor
activity;
oxidative stress;
decreased body
length;

Frydkjær et al.
(2017)

Daphnia magna
(crustacean)

PE (0.01 to
5 g/L)

PE as a vector
for hydrophobic
organic
compounds;
morphology
affects egestion

Gambardella et al.
(2018)

Vibrio
anguillarum
(bacterium)

PS (0.001 to
10 mg/L)

Decreased
culturability

Gonçalves et al.
(2019)

Mytilus
galloprovincialis

PS (10 to 1000
μspheres/mL)

Decreased MP
filtration;
infiltration in the
digestive tract

Jovanović et al.
(2018)

Sparus aurata
(fish)

PVC; PA; PS;
PE (0.1 g/kg
body mass)

Accumulation in
blood, gut, liver,
muscles

Kokalj et al. (2018) Daphnia magna PE (two facial
cleansers, a
plastic bag, PE
textile fleece)
100 mg/L

Uptake and
tissue
distribution;
feeding
behaviour

Artemia
franciscana
(crustacean)

PE (two facial
cleansers, a
plastic bag, PE
textile fleece)
100 mg/L

Uptake and
tissue
distribution;
feeding
behaviour

Le Bihanic et al.
(2020)

Oryzias
melastigma
(fish)

PE (1 to
10 mg/L)

No effect on
embryonic
development,
unless combined
with
benzo(a)pyrene
or
benzophenone-3

Authors Test Species
Plastic Type
(Concentration)

Evaluated and
detected effects

Magni et al. (2018) Dreissena
polymorpha
(mollusc)

PS (5 × 10 5 to
2 × 10 6

μspheres/mL)

MP uptake; cell
stress, oxidative
damage, genetic
damage

Rainieri et al.
(2018)

Danio rerio low density PE
(2% to 4% of
feed)

Affected organ
homeostasis
(liver, gut,
muscle, brain)

Rochman et al.
(2017)

Acipenser
transmontanus
(fish)

PET, PE, PVC,
PS (0.2 g/mL)

Bioaccumulation;
trophic transfer;
affected
endocrine
function; tissue
morphology

Santana et al. (2018) Perna perna
(mollusc)

PVC (0.125 g/
L)

Ingestion of MP,
effect on
metabolism;
feeding activity

Abbreviations: PS: polystyrene; PE: polyethylene; PET: polyethylene terephthalate; PVC:
polyvinylchloride; MP: microplastic.

posure to virgin and aged MPs was also found to affect behaviour in
Sparus aurata, with fish more active during feeding and bolder in their
interactions with other individuals (Rios-Fustera et al., 2021). In con-
trast, exposure of European bass Dicentrarchus labrax over 90 days to
mPVC (<300 μm) added to feed at concentrations of 0.1% w/w was
not found to result in altered behaviour although caused significant
histopathological alterations in the distal intestine which could with
time affect feeding patterns (Pedà et al., 2016).

Studies in echinoderms (e.g. sea urchin bioassays) reported similar
developmental toxicity in several MP types, including mPE, mPS and
mPVC, and their leachates. In some instances, these leachates displayed
more severe effects compared to mPS alone such as in Paracentrotus
lividus (Martínez-Gómez et al., 2017; Oliviero et al., 2019) and
in the mussel Perna perna (Gandara e Silva et al., 2016), whereas
the opposite effect was detected in Lytechinus variegatus by Nobre et
al. (2015). Other research teams documented decreased larval size in
mPS-exposed P. lividus larvae, along with growth inhibition or develop-
mental defects in other tested aquatic biota (ascidians, insects, corals,
bacteria, microalgae, and rotifers) (Chapron et al., 2018; Messinetti
et al., 2018; Gambardella et al., 2018; Mouchi et al., 2019;
Natarajan et al., 2020; Parenti et al., 2020). In a recent study,
urchin Sphaerechinus granularis displayed significantly increased devel-
opmental defects in pluteus larvae either exposed during embryogenesis
or in the offspring of mPS and mPMMA-exposed sperm (Trifuoggi et
al., 2019). Additionally, cytogenetic anomalies and mitotoxicity were
also observed in S. granularis embryos exposed to these MPs (Trifuoggi
et al., 2019).

These types of physical effects (including developmental defects)
were not constrained to echinoderm models, but were also detected
in crustacean D. magna where growth inhibition was prominent (Mar-
tins and Guilhermino, 2018). In their study, Martins and Guilher-
mino made the remarkable discovery that exposure to these microplas-
tic polymers not only affected parental mortality and growth inhibition,
but these effects were even detectable across four generations of off-
spring, suggesting transmissible damage to the offspring as similarly ob-
served in echinoderms. Growth inhibition was also commonly reported
in crustacean models (Artemia parthenogenetica and Eriocheir sinensis)
along with other related developmental effects such as abnormal ultra-
structures of intestinal epithelial cells and increased number of mito-
chondria and autophagosomes (Wang et al., 2019; Yu et al., 2018).
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Table 2
Studies reporting microplastic and nanoplastic-associated adverse effects in biota.

Authors Test species
Plastic type
(concentration)

Evaluated and
detected effects

Ašmonaite et
al. (2018)

Oncorhynchus
mykiss (fish)

mPS (500–700
particles/fish/day;
226–2411
particles/fish/
day)

Hepatic stress
(oxidative stress;
endocrine regulation
and detoxification)

Auclair et al.
(2020)

Hydra
attenuata
(cnidarian)

nPS (1.25 to
80 mg/L)

Morphological
changes;
bioaccumulation;
oxidative stress;
viscosity changes

Balbi et al.
(2017)

Mytilus
galloprovincialis
(mollusc)

n(NH2-PS) (0.001
to 20 mg/L)

Affected embryonic
development; gene
expression;
antioxidant defense;
autophagy; immune
response

Batel et al.
(2018)

Danio rerio
(fish)

mPE (1.2 to
5 × 10 6

μspheres/L)

Accumulation; BaP
transfer from MP to
tissues; EROD
activity; embryo
morphology

Bergami et al.
(2016)

Artemia
franciscana
(crustacean)

nPS (5 to 10 mg/
L) (COOH- and
NH2-PS)

Increased mortality;
uptake and
adsorption; feeding
behaviour; motility

Bergami et al.
(2017)

Dunaliella
tertiolecta
(algae) Artemia
franciscana

n(COOH- and
NH2-PS) (0.5 to
50 mg/L)

Growth inhibition;
mortality; gene
modulation growth
inhibition; mortality

Bergami et al.
(2019)

Sterechinus
neumayeri
(echinoderm)

n(COOH- and
NH2-PS) (1 to
5 mg/L)

Affected cell
morphology; gene
expression;
oxidative stress;
apoptosis

Brandts et al.
(2018)

Dicentrarchus
labrax (fish)

nPMMA (0.02 to
20 mg/L)

Affected gene
expression of targets
related to lipid
metabolism,
immune system,
liver cell stress

Brun et al.
(2019)

Danio rerio nPS (2 to 100 mg/
L)

Affected cortisol
levels; glucose
metabolism;
swimming
behaviour

Canesi et al.
(2015, 2016)

Mytilus
galloprovincialis

nNH2-PS (1 to
50 mg/L)

Cytotoxicity; cell
functional
parameters

Chen et al.
(2017)

Danio rerio nPS (1 mg/L) Affected larval
locomotor activity;
oxidative stress;
body length

Della Torre et
al. (2014)

Paracentrotus
lividus
(echinoderm)

n(COOH-PS)
(25 mg/L)
n(NH2-PS) (3 mg/
L)

Embryotoxicity;
decreased cell
viability; altered
gene expression

Deng et al.
(2017)

Mus musculus
(rodent)

mPS (0.05 to
0.5 mg/day)

Oxidative stress;
neurotoxic response;
altered energy
metabolism

Ding et al.
(2020)

Oreochromis
niloticus (fish)

nPS (100 to
10,000 mg/L)

Oxidative stress;
CYP enzymes;
neurotoxicity;
metabolomics
changes

Authors Test species
Plastic type
(concentration)

Evaluated and
detected effects

Oreochromis
niloticus

mPS (100 to
10,000 mg/L)

Oxidative stress;
CYP enzymes;
neurotoxicity;
metabolomics
changes

Duan et al.
(2020)

Danio rerio mPS (250 items
μ-PS/50 mL)

Embryotoxicity;
oxidative stress

Danio rerio nPS (2 × 10 4

items μ-PS/50 mL)
Affected embryonic
development;
oxidative stress

Elizalde-
Velázquez et
al. (2020)

Pimephales
promelas

nPS
(intraperitoneal
injection or
ingestion)

Downregulating ncf,
mst1, and c3 gene
expression in liver
and kidney

Espinosa et al.
(2019)

Sparus aurata
(fish)

mPVC (100 to
500 mg/kg feed)

Decreased growth
and immune
activity; stress-
related gene
expression

Gandara e
Silva et al.
(2016)

Perna perna
(mollusc)

mPP (0.5 to 2 mL
pellets)

Impaired
development

González-
Fernández et
al. (2018)

Crassostrea
gigas (mollusc)

n(COOH-PS);
n(NH2-PS) (0.1 to
100 mg/L)

Decreased sperm
motility; oxidative
stress

Granby et al.
(2018)

Dicentrarchus
labrax (fish)

mPE (2% of feed) Decreased growth;
altered gene
expression in the
liver

Greven et al.
(2016)

Pimephales
promelas (fish)

nPC; nPS (0.025
to 0.2 mg/L)

Altered stress
response of immune
system; neutrophil
function

Jeong et al.
(2016)

Brachionus
koreanus
(rotifer)

mPS (0.1 to
20 mg/L)

Reproductive
toxicity; altered
growth rate,
lifespan, body size;
oxidative stress

Jeong et al.
(2017)

Paracyclopina
nana
(crustacean)

mPS; nPS (0.1 to
20 mg/L)

Ingestion; egestion;
oxidative stress;
altered development
and fecundity

Jeong et al.
(2018)

Brachionus
koreanus

nPS (0.1 to
20 mg/L)

Oxidative stress;
altered xenobiotic
resistance, growth
and reproduction

Jin et al.
(2018)

Danio rerio mPS (0.1 to 1 mg/
L)

Gut histopathology;
effects on gut
microbiota; gene
expression

Jin et al.
(2019)

Mus musculus mPS (0.1 to 1 mg/
L)

Gut barrier
dysfunction; bile
acids metabolism
disorder; gene
expression & protein
levels

Kaposi et al.
(2014)

Tripneustes
gratilla
(echinoderm)

mPE (1000 to
300,000 MP/L)

Impaired larval
growth and survival;
MP retention

Karami et al.
(2016)

Clarias
gariepinus
(fish)

mPE (0.05 to
0.5 mg/L) (LD-PE
and
phenanthrene-
loaded PE)

tissue changes;
glycogen stores;
blood biochemistry
changes

Kim et al.
(2019)

Caenorhabditis
elegans
(nematode)

nPS (1 to 10 μg/L) Altered locomotion;
reproduction;
oxidative stress
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Authors Test species
Plastic type
(concentration)

Evaluated and
detected effects

Lee et al.
(2019)

Danio rerio nPS (100 mg/L) Impaired embryo
survival, hatching,
development,
increased Au ion
toxicity

Lei et al.
(2018)

Caenorhabditis
elegans

m(PA, PE, PP,
PVC, PS) (0.05 to
100 mg/L)

Decreased body
length;
reproduction; gut
calcium levels;
oxidative stress

Danio rerio m(PA, PE, PP,
PVC, PS) (0.001 to
10 mg/L)

Survival;
morphological
changes;
histopathological
changes

LeMoine et al.
(2018)

Danio rerio mPE (5 to 20 mg/
L)

Decreased growth;
hatching and oxygen
consumption rates

Li et al.
(2020b)

Corbicula
fluminea
(mollusc)

nPS (0.1 to 5 mg/
L)

Oxidative stress and
damage

Liu et al.
(2019a,
2019b)

Daphnia pulex nPS (0.1 to
400 mg/L)

Oxidative stress;
heat shock proteins

Liu et al.
(2019a,
2019b)

Scenedesmus
obliquus (alga)

n(COOH-PS);
n(NH2-PS) (0.001
to 1 mg/L)

Growth inhibition;
oxidative stress;
mitochondrial
dysfunction

Liu et al.
(2020a,
2020b)

Daphnia pulex nPS (0.1 to 2 mg/
L)

Oxidative stress

Lu et al.
(2016)

Danio rerio mPS (0.02 to
20 mg/L)

Oxidative stress;
metabolomics
change

Luo et al.
(2019a,
2019b)

Mus musculus mPS (0.1 to
1000 mg/L)

Maternal exposure
in gestation; altered
offspring metabolic
parameters

Magara et al.
(2018)

Mytilus edulis mPE (10 5 to 10 6

μspheres/L)
Oxidative stress &
response in gills and
digestive glands

Mak et al.
(2019)

Danio rerio mPE (11 to 1100
μspheres/L)

Behavioural
changes;
neurotoxicity;
changes in gene
expression in liver,
gut and gills

Malafaia et al.
(2020)

Danio rerio mPE (6.2 to
100 mg/L)

Mortality; impaired
hatching success;
morphological
changes;
neurotoxicity

Mao et al.
(2018)

Chlorella
pyrenoidosa
(alga)

mPS (10 to
100 mg/L)

Impaired growth;
photosynthetic
activity; oxidative
stress

Marques-
Santos et al.
(2018)

Paracentrotus
lividus

nNH2-PS (1 to
25 mg/L)

Protein corona
formation; loss of
viability; DNA
damage; affected
multi-xenobiotic
resistance

Martins and
Guilhermino
(2018)

Daphnia magna pristine polymer
(0.1 mg/L)

Transmissible
offspring damage;
altered reproductive
parameters

Authors Test species
Plastic type
(concentration)

Evaluated and
detected effects

Mattsson et al.
(2017)

Scenedesmus
sp. (alga)
Daphnia magna
Carassius
carassius Ciona
robusta
Paracentrotus
lividus

mPS and nPS
(0.05 to 0.15 mg/
L)

Transfer of MP/NP
through the food
chain; neurotoxicity;
behaviour
alterations;
embryotoxicity

Nasser and
Lynch (2016)

Daphnia magna n(COOH-PS);
n(NH2-PS) (0.01
to 1 mg/L)

Interaction of NP
with biomolecules;
altered feeding
behaviour

Nobre et al.
(2015)

Lytechinus
variegatus
(echinoderm)

mPE; MP leachate
(2 to 200 mL
pellets)

Embryotoxicity

Oliviero et al.
(2019)

Paracentrotus
lividus

mPVC (0.3 to
30 mg/L)

Embryotoxicity

Parenti et al.
(2019)

Danio rerio nPS (1 mg/L) Oxidative stress;
protein
carbonylation;
altered swimming
behaviour;

Parenti et al.
(2020)

Bombyx mori 0.5 μm nPS Accumulation in
larval midgut,
malpighian tubules
and hemocytes

Park et al.
(2020)

Mus musculus mPE (0.125 to
2 mg/day/mouse)

Changed body
weight;
hematological and
immune response;
reproduction in
pups: growth rate;
body weight;
hematological
changes

Paul-Pont et
al. (2016)

Mytilus
galloprovincialis

mPS (32 μg/L) Oxidative stress;
altered gene
expression

Pinsino et al.
(2017)

Paracentrotus
lividus

nNH2-PS (3 to
4 mg/L)

Embryotoxicity;
oxidative stress;
altered gene
expression

Pitt et al.
(2018a,
2018b)

Danio rerio nPS (10% of food
by mass)

Oxidative stress;
parental transfer

Poma et al.
(2019)

Human
Fibroblast Line
Hs27

nPS (5 to 75 mg/
L)

Oxidative stress;
DNA damage;

Qi et al.
(2018)

Triticum
aestivum
(wheat)

mPE (1% in soil) Decreased wheat
development, plant
biomass and
chlorophyll content

Qiu et al.
(2020)

Caenorhabditis
elegans

nPS (1 to
1000 μg/L)

Decreased lifespan;
altered locomotion
behaviour; oxidative
stress

Qu et al.
(2018)

Caenorhabditis
elegans

nPS (0.1 to 10 μg/
L)

Gut barrier function;
oxidative stress

Ribeiro et al.
(2017)

Scrobicularia
plana
(mollusc)

mPS (1 mg/L) Oxidative stress and
response;
neurotoxicity; DNA
damage

Rist et al.
(2019)

Mytilus
galloprovincialis

mPS and nPS (0.7
to 1.4 mg/L)

Ingestion, larval
development
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Authors Test species
Plastic type
(concentration)

Evaluated and
detected effects

Rochman et al.
(2017)

Corbicula
fluminea
(mollusc)

m(PET; PE; PVC;
PS) + PCB
(200 g/L)

Bioaccumulation
among polymers;
trophic transfer;
protein expression
for metabolism,
endocrine function

Rubio et al.
(2020)

3 human
leukocytic cell
lines

50 nm nPS Cytotoxicity;
oxidative stress;
genotoxicity

Sarasamma et
al. (2020)

Danio rerio nPS (0.5 to 5 mg/
L)

Neurobehavioral
alterations; tissue
accumulation;
oxidative stress

Sendra et al.
(2019)

Phaeodactylum
tricornutum
(alga)

nPS (0.1 to
50 mg/L)

Decreased growth
population;
oxidative stress;
mitochondrial
dysfunction; DNA
damage

Straub et al.
(2017)

Gammarus
fossarum
(crustacean)

m(PHB and
PMMA) (10 to
100,000 μspheres/
animal)

Ingestion and
egestion; feeding
rate; decreased
growth

Sun et al.
(2018)

Halomonas
alkaliphila
(bacterium)

nPS (20 to
320 mg/L)

Growth inhibition;
oxidative stress

Sussarellu et
al. (2016)

Crassostrea
gigas

mPS (0.023 mg/L) Offspring
development;
hemocytological
parameters; feeding
behaviour/energy
uptake

Tallec et al.
(2018)

Crassostrea
gigas

nPS; nPS-COOH;
nPS-NH2 (0.1 to
25 mg/L)

Altered fertilisation,
embryogenesis,
metamorphosis

Thomas et al.
(2020)

Paracentrotus
lividus

mPS; mPMMA;
MP leachate (0.1
to 10 mg/L)

Spermiotoxicity;
offspring quality
following sperm
exposure; ingestion

Trifuoggi et al.
(2019)

Sphaerechinus
granularis
(echinoderm)

mPS; mPMMA
(0.1 to 50 mg/L)

Embryotoxicity;
offspring quality
following sperm
exposure;
cytogenetic damage
and genotoxicity

van Weert et
al. (2019)

Myriophylum
spicatum
(plants) Elodea
sp

nPS; mPS (0.1 to
10% sediment dry
weight)

Changes in root and
shoot dry weight;
relative growth rate;
shoot:root ratio

Varó et al.
(2019)

Artemia
franciscana

nPS (0.1 to
10 mg/L)

Ingestion/filtration;
larval survival,
development;
oxidative stress

Wan et al.
(2019)

Danio rerio mPS (0.1 to 1 mg/
L)

Abundance/diversity
of microbiome;
inflammatory and
neurotoxic response;
oxidative stress

Wang et al.
(2019)

Artemia
franciscana

mPS (1 to 10,000
μspheres/mL)

Ingestion,
bioaccumulation;
survival; decreased
development;
changes to
ultrastructure of
digestive tract cells

Authors Test species
Plastic type
(concentration)

Evaluated and
detected effects

Wen et al.
(2018)

Symphysodon
aequifasciatus
(fish)

mPS (0.05 to
0.5 mg/L)

Decreased growth;
oxidative stress;
metallothionein
content

Xie et al.
(2020)

Mus musculus mPS (0.01 to
1 mg/day/animal)

Reproductive
toxicity; oxidative
stress

Yu et al.
(2018)

Eriocheir
sinensis
(crustacean)

mPS (0.04 to
40 mg/L)

Decreased growth
rate; increased
markers of liver
damage;
neurotoxicity;
oxidative stress

Zhang et al.
(2019)

Daphnia magna nPS (10 mg/L) (3
types of PS latex
nanoparticles)

Toxicity under
varying particle
surface modification
and solution
chemistry
parameters

Zhang et al.
(2020)

Daphnia magna nPS (1 mg/L) Changed expression
profile of key genes

Zhao et al.
(2019)

Karenia
mikimotoi
(alga)

mPVC (5 to
100 mg/L)

Decreased algal
growth; chlorophyll
content and
photosynthetic
efficiency

Zheng et al.
(2019)

Mus musculus nPS (1 to
30 × 10 − 6 mol/
L)

Oxidative stress;
response to SOD and
deoxyribonucleic
acid

Abbreviations: PS: polystyrene; PE: polyethylene; PET: polyethylene terephthalate; PVC:
polyvinylchloride; PMMA: polymethyl-metacrylate; PC: polycarbonate; PP: polypropylene;
PHB: polyhydroxybutyrate; MP/NP: micro/nanoplastics.

Fig. 2. Summary of MP- and NP-associated adverse effects reported in the available litera-
ture. N = 94 studies retained for analysis. Sum of endpoint is higher than 94 due to some
studies considering more than one possible biological outcome.

Microalgal (Chlorella pyrenoidosa, Karenia mikimotoi, Skeletonema
costatum and Chlorella vulgaris) and plant models (Triticum aestivum and
Cucumis sativus) were tested for adverse effects of MPs in a number of
studies. Biological effects in plant models included reduced photosyn-
thesis and again, growth inhibition following exposures to mPS, mPE or
mPVC (Mao et al., 2018; Zhao et al., 2019; Qi et al., 2018; Zhu et
al., 2019; Hazeem et al., 2020; Li et al., 2020c).

Altogether, the data on MP-associated toxicity, obtained in a num-
ber of biota, support the hypothesis that exposure to MPs can result in
several negative biological outcomes tied to physical development, es-
sential to life and survival.
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Fig. 3. Toxicity associated with different micro-(MP) and nano-(NP) plastics across different groups of species. The numbers at the top of each bar represents the number of studies that
contributed to the observed MP/NP-associated toxicological effect.

4. MP-associated molecular effects

There is a growing body of literature published on the effects of
MP exposures in vertebrate models including mouse, fish and other test
models as shown in Table 2.

Terrestrial mammals (including mice) exposed to mPS underwent a
number of metabolic disorders including altered energy and lipid me-
tabolism, oxidative stress, neurotoxicity, and intestinal barrier dysfunc-
tion (Deng et al., 2017; Jin et al., 2018, 2019). Luo et al. (2019a,
2019b) submitted pregnant and lactating mice to mPS exposures, and
found transmissible damage in their F1 and F2 offspring in terms of al-
tered metabolic parameters including, for example, alterations in serum
triglyceride (TG), total cholesterol (TC), high-density lipoprotein choles-
terol (HDL C) and low-density lipoprotein cholesterol (LDL-C) levels.
In zebrafish D. rerio, MP-induced gut microbiome dysbiosis affected en-
ergy metabolism, glucose metabolism and lipid metabolism (Wan et al.,
2019). The same mechanistic pathway of effect could also be true in ter-
restrial mammals, warranting further investigation.

A series of studies on D. rerio provided some important mechanis-
tic information on MP-associated molecular effects (Table 2). These ef-
fects included dysmetabolic events such as excess expression of proin-
flammatory cytokines, glutathione S-transferase, cytochrome P4501A1
induction, and oxidative stress (Jin et al., 2018; Lei et al., 2018;
Batel et al., 2018; Wan et al., 2019). Other fish models, includ-
ing Clarias gariepinus, D. labrax, Symphysodon aequifasciatus and S. au-
rata, were used to test the effects of MP exposures and yielded simi-
lar results to those obtained in earlier studies in D. rerio, namely in-
crease in proinflammatory markers and oxidative stress response evalu-
ated through the activities of superoxide dismutase and glutathione per-
oxidase enzymes, as well as the over-expression of a number of dysmeta-
bolic markers (Karami et al., 2016; Espinosa et al., 2019; Granby
et al., 2018; Wen et al., 2018; Solomando et al., 2020). In some
cases, these effects were explained as the result of MP exposure that
could lead to covalent binding with DNA or inhibition of DNA syn-
thesis, contributing to genotoxicity and altered gene expression profiles
resulting in altered cell division or DNA replication (Ribeiro et al.,
2017). As a result it has been hypothesised that the oxidative stress
responses in those cases could be a defense mechanism in response
to MP-induced genotoxicity. Other aquatic invertebrate studies in mol-
luscs Scrobicularia plana and Mytilus spp. corroborated these findings by
linking the oxidative stress response to DNA damage and neurotoxicity

(Ribeiro et al., 2017; Paul-Pont et al., 2016; Magara et al., 2018).
Mao et al. (2018) reported that these findings extended to an algal
model (C. pyrenoidosa) suggesting that the effects of MP-induced geno-
toxicity, inflammatory and oxidative stress responses extend beyond the
animal kingdom.

The available literature focuses primarily on mPS, with far fewer re-
ports on the other types of MPs (redox homeostasis, particularly for mPS
and molluscs, was recently reviewed by Trestrail et al., 2020); by con-
sidering the extensive number of different polymer types, much work
needs to be done on testing other MP particles.

5. Impacts of NP-exposure on biota

Unlike the literature focused on MP-associated effects, the currently
available literature on NP-associated effects is almost confined to
nanopolystyrene (nPS), with two exceptions to the best of our knowl-
edge; Brandts et al. (2018) investigated exposure to nPMMA in a
D. labrax, while Greven et al. (2016) determined the impacts of
nano-polycarbonate (nPC) particles in fathead minnow Pimephales
promelas.

Table 2 also summarises the reported effects induced by NPs in a
number of test organisms and cell models, including fish, sea urchins,
crustaceans, bivalves, nematodes, plants, diatoms, bacteria, and human
cell lines (Poma et al., 2019; Xu et al., 2019; Rubio et al., 2020). In
each of the NP-focused studies, biological effects were detected, suggest-
ing that a wide array of organisms are sensitive to NP-exposure to the
same polymer types, at similar concentrations [see, for example, Chen
et al., 2017; Ding et al., 2020; Duan et al., 2020; Sökmen et al.,
2020; Jeong et al., 2017].

nPS-associated toxicity in fish (D. rerio) was for example demon-
strated through developmental abnormalities and maternal transfer to
offspring in a study investigating five different NPs, with biological con-
sequences on heart rate, swimming activity, body length and reproduc-
tion (Pitt et al., 2018a, 2018b). Other studies of nPS-induced ef-
fects in D. rerio found dysmetabolic damage including oxidative stress
(superoxide-dismutase and glutathione peroxidase enzymatic activity),
disrupted glucose metabolism and cortisol levels, and disturbed mem-
brane function (Brun et al., 2019; Parenti et al., 2019; Liu et
al., 2019a, 2019b). Investigations in crustacean D. pulex revealed that
genes involved in metabolism, growth regulation, ROS metabolism, and
sex difference changed after NP exposure (Zhang et al., 2020). Con-
sistently, NPs had significant effects pertaining to development, fecun-
dity, oxidative stress and response compared to larger particle sizes
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(MP) of the respective polymers (Jeong et al., 2016, 2018). It was
suggested that surface charges (cationic vs. anionic) may lead to dif-
ferent uptake and biodistribution, potentially disrupting these physio-
logical processes (Bergami et al., 2016, 2017). A number of other
crustacean studies were conducted to probe NP-induced effects, includ-
ing Daphnia and Artemia. Altogether, these studies found NP-induced
anomalies in protein and gene expression, oxidative damage, and de-
layed larval development, similar to what has been observed in MP ex-
posure studies, but often at lower concentrations (Nasser and Lynch,
2016; Bergami et al., 2016, 2017; Zhang et al., 2019, 2020; Liu
et al., 2018, 2019a, 2019b; Varó et al., 2019; Kelpsiene et al.,
2020). These findings are most likely due to increased distribution of
these smaller plastic polymers in the organisms' tissues.

A report by Della Torre et al. (2014) focused on the comparative
effects of two nPS (with carboxylate and amine–functionalised surfaces)
in the sea urchin P. lividus, and found embryotoxicity in larvae exposed
to NH2-PS, but not to COOH-PS, while both nPS preparations induced
different changes in gene regulation. Other studies focused on nPS-in-
duced damage in sea urchin P. lividus, reporting on a series of dysmeta-
bolic effects including decreased lysosomal membrane stability, modu-
lated protein and gene profile, and affected cellular phagocytosis (Mar-
ques-Santos et al., 2018; Pinsino et al., 2017). These functional ef-
fects were not only reported in echinoderm models, but were also ob-
served in mollusc Crassostrea gigas (González-Fernández et al., 2018).

A set of studies of NP-induced effects in bivalves Crassostrea and
Mytilus resulted in damage to fertilisation, embryogenesis and metamor-
phosis, and oxidative stress (Canesi et al., 2015, 2016; Balbi et al.,
2017; Tallec et al., 2018; González-Fernández et al., 2018; Rist et
al., 2019).

Other studies focused on the nematode C. elegans and on the ro-
tifer Brachionus koreanus; when exposed to nPS, these organisms exhib-
ited oxidative stress and inhibition of multi-drug resistance proteins and
dysregulated gene expression (Qu et al., 2018; Jeong et al., 2018).
Multiple species representing important links in food chains were tested
for mPS and nPS exposure; for example, histopathological changes were
noted in D. rerio liver after treatment with 5 μm PS particles, includ-
ing necrosis, infiltration and presence of lipid droplets in hepatocytes,
in addition to significant changes to the hepatic metabolome (Lu et al.,
2016). Furthermore, lipid accumulation and inflammation were accom-
panied by oxidative stress, as indicated by increased catalase and super-
oxide dismutase activity, after exposure to both 70 nm and 5 μm parti-
cles. In addition, nPS (30–35 nm hydrodynamic diameters) was found
able to penetrate embryo walls in D. rerio and accumulate in the yolk
sac of hatched juveniles, testifying to increased tissue distribution and
impacts deriving from maternal transfer to eggs and/or embryos (Pitt
et al., 2018a). Altogether, nPS induced multiple adverse effects in
the food chains (Mattsson et al., 2017; Chae and An, 2018), in-
cluding on lower trophic levels such as in plants, diatoms and bacteria
(e.g. Myriophyllum spicatum and Elodea sp., Phaeodactylum tricornutum
and Halomonas alkaliphila, respectively) where decreased photosynthe-
sis, growth inhibition and induction of oxidative stress were commonly
reported (Bhattacharya et al., 2010; van Weert et al., 2019; Sendra
et al., 2019; Sun et al., 2018).

6. Knowledge gaps and concluding remarks

The current and growing body of peer-reviewed literature on the ef-
fects of MP and NP pollution raises significant environmental concern
on a global level. The present review evaluated the multiple outcomes
of MP/NP exposures, ranging from a general lack of detectable effects at
the organismal level to strong adverse effects ranging from the sub-cel-
lular to the whole organism level. While broad consensus has yet to
form on the degree of risk, it is increasingly acknowledged that MP/
NPs are materials of concern in the environment and their potential to

cause deleterious effects in biota is clearly an issue which should inform
environmental policy. Their persistence in the environment and toxic-
ity at environmentally relevant levels are concerning. Nevertheless, it
should be recognised that there are still substantial knowledge gaps in
the ever growing MP/NP-toxicity field. An important aspect relates to
the relative toxicities of the different MPs; this question is more cogently
raised for NPs, whose dataset is mostly confined, as yet, to nPS. The im-
balance between the number of studies of nPS and those on the broad
spectrum of other NPs clearly indicates that much work has yet to be
accomplished. Further, gathering such comparative data may help in re-
fining current risk assessment models to establish relative environmen-
tal concern when evaluating MP/NP-associated toxicities in the environ-
ment (e.g. Lithner et al., 2011). These open questions warrant ad hoc
investigations.

Relevant, yet limited information is available concerning MP- and
NP-induced effects in plants, agro-ecosystems and algae, which would
have important implications for their possible impact on food webs (Ng
et al., 2018; Rillig et al., 2019). The bioavailability of plastics for ma-
rine plants should be investigated as well as their accumulation in plant
cells in the marine environment in order to extend the currently scarce
literature (Bhattacharya et al., 2010; Nolte et al., 2017a, 2017b).

The physical shape of MPs encompasses another area of relatively
little study but which may be important as an additional driver of tox-
icity (Jemec et al., 2016). Specifically, most research has focused on
MP/NPs that are broadly spherical in shape. However, the degradation
of plastics in the environment may produce fibres of various aspect ra-
tios or ‘jagged’-edged particles which might not physically or biologi-
cally impact in the same way as spherical particles, for example in terms
of uptake and accumulation in biota or leaching of chemicals (Choi
et al., 2021). Moreover, replacements for traditional plastics such as
biodegradable polymers, though catching the public imagination as a
means to reduce human impact on the environment, also have not been
investigated in sufficient detail, particularly as the polymer degradation
products may themselves form MP fragments and particles and become
available to biota (Senga Green et al., 2016). In addition, while mi-
croparticulate plastics remain the focus of much research, the potential
degradation of polymer-based textiles to also release even finer plastic
fragments and secondary chemicals such as dyes and plasticisers dur-
ing use and laundering has received insufficient attention to date (Dalla
Fontana et al., 2020; Klein et al., 2021).

MP/NPs have most regularly been investigated in isolation from
other contaminants which may be concomitantly present in the envi-
ronment (Rainieri et al., 2018). Recent studies of mPS as a vector
for certain hydrophobic contaminants have shown that interaction be-
tween plastic polymers and pollutants such as PCBs for example ex-
hibit complex behaviour in simulated gut fluid of worms and fish (Mo-
hamed Nor and Koelmans, 2019). MPs may also even act as a vec-
tor for pathogenic fish bacteria (Viršek et al., 2017). Similarly, nPS
showed bioaccumulation in D. rerio by modulating Au toxicity (Lee et
al., 2019). The relatively scarce knowledge in this area and the enor-
mous potential for synergistic, additive or antagonistic effects of pollu-
tants adsorbed on MPs – and presumably NPs - indicates a relatively un-
met need for research to understand the ability of MPs/NPs to act as car-
riers of harmful substances. In addition, impacts deriving from a range
of other multi-stressors concomitantly present including, for example,
engineered nanoparticles and abiotic parameters such as temperature,
UV intensity etc., which may modulate the physico-chemical behaviour
of MP/NPs in the environment and the co-transport of pollutants in or-
ganisms, present a significant risk in terms of potential toxicity (Fer-
reira et al., 2016). However, studies on such aspects remain relatively
limited in number.

Another important knowledge gap to consider stems from the fact
that the overwhelming majority of literature is based on aquatic biota,
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in spite of the fact that MP pollution extends to terrestrial locations (see
for example Dris et al., 2016) such as landfills. This may be regarded
as an under-investigated source of MP and NP contamination (He et al.,
2019) and it will be important in the future to verify the impact of MP/
NP pollution on terrestrial biota, and by extension on human health, due
to potential trophic transfer.

Overall, research on deleterious effects of MP/NPs in biota has fo-
cused to a great degree on specific organisms, with relatively few studies
taking a broader perspective, for example considering trophic transfer
of these materials in simplified food webs. This represents a weak point
in current approaches as the significance of negative biological impacts,
e.g. oxidative stress, energetic deficiencies affecting growth, or transmis-
sible damage to offspring, in organisms has oftentimes not been trans-
lated into a deeper understanding of the wider ecological consequences
at community or ecosystem levels. Furthermore, the tests used for prob-
ing the biological effects of MPs might themselves not be fit for purpose
in every case, and there is inadequate focus on using appropriate con-
trols (Catarino et al., 2019). In terms of widely used biochemical tests,
it is clear that they present only one facet of the toxicological profile of
MP/NPs, and future research in this area will need to focus greater at-
tention on ‘-omics’ approaches which may uncover deeper or more sub-
tle effects on, for example, the transcriptome. This is further highlighted
by the fact that many chemicals that may leach from polymer particles
do not give rise to acute toxicity (most common type of test conducted)
but rather may have low level, though important, chronic effects such as
seen with endocrine disrupting chemicals.

Another important issue is that MP/NPs must be characterised such
that their physical properties can be related to the effects they induce in
biota. In particular, completing the matrix of particle property versus bi-
ological effect may eventually permit read-across, allowing predictions
to be made about the potential effects of new MPs based on the proper-
ties of similar particles already tested. While progress is being made in
this regard, we are still some way from being able to implement the ad-
verse outcome pathway paradigm, relating biological effects at cellular
or sub-cellular level to impacts at the whole organism level which be-
come relevant for risk assessment. Of course, it must be borne in mind
that there are currently important limitations to the analytical chemistry
toolbox in terms of being able to characterise very small polymer parti-
cles, with microparticles of diameter ~ 1 μm typically representing the
lower limit. Thus, characterising polymer particles with diameters in the
nano-scale range, or tracking their transport in biota or uptake in cells
and tissues, remains an enormous challenge which still remains to be
met.

It is clear that significant strides have been made over the past sev-
eral years in understanding the potential threat MP/NPs may present,
and interest in this area as a topic of research is growing rapidly. Even
though there are a number of important aspects outlined herein which
have not received sufficient attention to date, and unaddressed would
hinder further advances in the area, the increasing body of literature in
this field may be viewed as a measure of the scientific community's re-
solve to answer these questions, ultimately relating materials' physical
and chemical properties to an organism's biological response and even-
tually to broader ecological effects.
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