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• The site-specific management of Xylella
infection involves the use of different
monitoring tools.

• A data fusion approach was defined
which effectively combines heteroge-
neous multi-source data.

• The approach is based on non-
parametric multivariate geostatistics
and provides a probabilistic map of
infection risk.

• Joint analysis of data with different spa-
tial resolution involves the problem of
“change of support”.

• The phenomenon of Xylella infection is
essentially punctual and all measure-
ments should be carried out at a very
fine scale.
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Xylella fastidiosa is one of the most destructive plant pathogenic bacteria worldwide, affecting more than 500
plant species. In Apulia region (southeastern Italy), X. fastidiosa subsp. pauca (Xfp) is responsible for a severe dis-
ease, the olive quick decline syndrome (OQDS), spreading epidemically andwith dramatic impact on the agricul-
ture, the landscape, the tourism, and the cultural heritage of this region. An early detection of the infected plants
would hinder the rapid spread of the disease. The main objective of this paper was to define a geostatistical ap-
proach of data fusion, which combines remote (radiometric), and proximal (geophysical) sensor data and visual
inspections with plant diagnostic tests, to provide probabilistic maps of Xfp infection risk. The study site was an
olive grove located at Oria (province of Brindisi, Italy), where at the time of monitoring (September 2017) only
few plants showed initial symptoms of the disease. The measurements included: 1) acquisitions of reflected
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PCR
Polygon cokriging
Probability kriging
Radiometric data
electromagnetic radiation with UAV (Unmanned Aerial Vehicle) equippedwith a multi-spectral camera; 2) geo-
physical surveys on the trunks of 49 plants with Ground Penetrating Radar (GPR); 3) disease severity rating, by
visual inspection of the proportion of canopywith symptoms; 4) qPCR (real time-quantitative Polymerase Chain
Reaction) data from tests on 61plants. The datawere submitted to a set of processing techniques to define a “data
fusion” procedure, based on non-parametric multivariate geostatistics. The approach allowed marking those
areas where the risk of infection was higher, and identifying the possible infection entry routes into the field.
The probability map of infection risk could be used as an effective tool for a preventive action and for a better or-
ganization of the monitoring plans.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The olive quick decline syndrome (OQDS) is a devastating vascular
disease caused by Xylella fastidiosa subsp. pauca (Xfp), a rod-shaped,
Gram-negative, and quarantine bacteria for the European Union. The
bacterium is naturally transmitted by insect vectors of the family
Aphrophoridae, which feed on the xylem of host plants. As a xylem-
limited bacterium, Xfp clogs the vessels, thus causing rapid dieback of
shoots, twigs and branches, and leading to death of the tree. Leaf tips
and margins turn dark yellow to brown, tissue discoloration then
spreads inward, leading to necrosis of the blade. Symptoms usually
progress in severity from the older to the younger leaves on a branch;
leaf symptoms may be localized to a single limb or sector of the tree,
ormay extend to thewhole canopy. Xylematic vessels of the affected or-
gans (twigs, branches, and trunks) show discolorations. Dark streaks
and brown stains occur in the sapwood and in the vascular cambium.
The disease appeared few years ago, in a grove located near the city of
Gallipoli, on the Ionian coast of the Salento peninsula (Apulia region,
south-east Italy), and spread fast towards the North, in the provinces
of Brindisi and Taranto (Saponari et al., 2013). To date, Xfp spread on
more than 40% of the Apulian territory, covering an area with more
than 20 million of olive trees (Saponari et al., 2019). This has resulted
in very serious losses to oliviculture, one of the main productive sectors
of Apulia, with a remarkable impact on environment, landscape protec-
tion, and cultural heritage of that territory. Subsequently, the disease
has also been reported in France (Menton), and in Spain (Balearic
Islands and community of Madrid), the latter being the world's leading
olive producer country, with approximately 2.7million hectares of olive
trees, 55% of its cultivated area (European Parliament, November 2019).
Considering the global olive cultivated area in the EU, projections of fu-
ture economic impact in affected countries reach billions of Euros
(Schneider et al., 2020). Being a quarantine pathogen for the EU terri-
tory, control measures are under the coordination and responsibility
of the Phytosanitary Authorities, and to date they rely on containment
and mitigation measures, such as monitoring, sampling, diagnostic
tests, removal of infected trees, and vector control interventions
(Saponari et al., 2019; www.emergenzaxylella.it). Moreover, there is
not yet unequivocally accepted cure against this lethal bacterium, and
a serious risk exists that the bacterium spread throughout the whole
Europe, particularly the countries of the Mediterranean Basin
(Schneider et al., 2020). Furthermore, climate change seems to trigger
environmental conditions that are particularly favorable to the spread
of the bacterium in themost important olive growing areas of theMed-
iterraneanBasin (Bosso et al., 2016). Best practices to control thedisease
should then focus on early detection of infection, preferably before the
symptoms of the disease are visible, so that decisions on preventive ac-
tions can bemade in a timely manner. However, for the effectiveness of
such actions it is necessary that the diagnosis is based on an investiga-
tion at a very fine spatial scale, even within a single plant, and covers
large extensions. Field surveys have already been extensively used in
the past for pest detection but they are destructive, labor-intensive,
time consuming, and unsuitable for large-scale spatial and temporal
monitoring. Furthermore, as stated in a recent document prepared by
European Food Safety Authority (EFSA) at the request of the European
Commission, about specific guidelines for the survey of Xylella
fastidiosa (TECHNICAL REPORT, APPROVED: 27 May 2020, doi:https://
doi.org/10.2903/sp.efsa.2020.EN-1873), Xylella fastidiosa is known to
exhibit a long asymptomatic period (in olive trees even longer than
one year).

Therefore, if surveys rely on visual inspection only, X. fastidiosa-
infected trees might escape when the plants are asymptomatic, or
might be detected at an advanced stage of the disease, when the plants
already served as source of the inoculum for the infection of the adja-
cent trees.

Remote Sensingwas used extensively to detect and evaluate the dis-
ease severity for different crops and comprehensive reviews are avail-
able (e.g., Barton, 2012; Jackson et al., 1993; Sankaran et al., 2010;
West et al., 2003; Zhang et al., 2019; Calderón et al., 2013; Mahlein
et al., 2012; Gold et al., 2020).

Satellite remote sensing was also widely used for the detection of
plant water stress (Kogan, 1995; Seguin et al., 1991), which is a phe-
nomenon strongly related to OQDS, by utilizing visible and near in-
frared (VNIR) (Ghulam et al., 2008), thermal infrared (Anderson
et al., 2012; Han et al., 2016; Sagan et al., 2019), and microwave
bands (Chakraborty et al., 2016; Steele-Dunne et al., 2017). How-
ever, current satellite platforms have various limitations if their
data are applied for early detection of plant disease, or more gener-
ally, for crop physiology monitoring, mainly due to too coarse spatial
resolution and/or insufficient revisit frequency (Sagan et al., 2019).
An effective campaign to contain the epidemic spread of the bacte-
rium, may require monitoring even on a daily basis regardless of
weather conditions, such as cloudiness and rain, which can affect
the quality of the radiometric signal. Moreover, in order to reduce
the presence of mixed pixels, that blend soil, plant and possible
other objects, it is necessary to operate with moderate resolution
satellites, such as Lansat-8 and Sentinel-2. They might have a suffi-
cient spatial resolution, but have a revisit time of 5–16 days, too
long for the early detection of plant disease stress not yet visible
with naked eye (asymptomatic plants). Lack of early detection may
cause the disease to evolve in stages where it is impossible to recover
the plant, or at least to contain the spread of the pathogen, thus caus-
ing large-scale epidemic disease.

UAV may be a beneficial solution if very fine scale plant monitoring
is to be used to detect disease in asymptomatic plants or at a very early
stage of infection (Maimaitijiang et al., 2020). Over the last few years
UAVs or drones have become one of theworld'smost talked about tech-
nologies. The UAV technology is born not to replace themanned aircraft
or satellites acquisitions but to give support with its large of advantages
to the more traditional remote-sensing methods.

UAV can collect images under cloud cover at very high resolution
and with much more detail than satellite images. UAV is easy to use
and can operate almost autonomously. In addition, there is currently a
growing number of fairly friendly and inexpensive programs of data
processing. The versatility of drones provides many different avenues
for improving upon existing agricultural processes, including i) soil
and field analysis (e.g., Paredes et al., 2017; Allred et al., 2018), ii) crop
monitoring (e.g., Zheng et al., 2016), iii) irrigation (e.g., Santesteban
et al., 2017), iv) crop spraying (e.g., Faical et al., 2014; Dai et al., 2018),

http://www.emergenzaxylella.it
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v) aerial seeding (e.g., Buters et al., 2019; Andrio, 2019), and last but not
least, vi) health assessment (e.g. Kerkech et al., 2018).

However, the use of one sensor or type of vegetation measurement
might be of limited value to obtain information on the health status of
a plant, due to the multiple processes and complex interactions that
take place at the onset of the bacterium infection. Various sensor
methods have been used and assessed individually as alternative diag-
nostic tools (Berdugo et al., 2014), but the future challenge is to combine
multi-source information into a more effective indicator of Xylella
occurrence.

Recently GPR was used for detection and measurement of internal
defects and reconstruction of the internal structure for tree trunks, espe-
cially of old and rare trees (Fu et al., 2014; Wen et al., 2016; Li et al.,
2018; Barone and Ferrara, 2019). GPR uses the principle of scattering
of electromagnetic wave, which propagates through the medium and
is reflected from an object. The velocity of the scattered signal is mostly
determined by the permittivity of the material, which is influenced by
water content and density. Therefore, the sensor response, convoluted
over space – time at plant scale, could be used as an indicator of the arid-
ity conditions of the trunks.

Multiple sensing data could be then advantageously used as auxil-
iary information, to supplement sparsely sampled data of a laboratory
variable for assessing bacterium infection risk, with a view to planning
some preventive action of plant recovery. This process of fusing hetero-
geneous spatial data can be done statistically by defining a specific indi-
cator of plant infection, and developing amethodology for appropriately
weighting and combining it with a set of auxiliary information, assumed
as relevant to the process of interest, in order to improve the accuracy of
risk prediction (Zovko et al., 2018; Shaddad et al., 2020). Risk assess-
ment consists in observing the occurrence of infection, and predicting
it at un-sampled locations with an estimated level of uncertainity. A
probabilistic approach is preferred because risk assessment is generally
based on the estimation of variables, which are subject to great uncer-
tainty (Castrignanò et al., 2008), due to the extremely random nature
of the disease spread and the unavoidable limitation of sampling.

Non-parametric geostatistics is a set of statistical techniques that put
as priority the modelling of uncertainty (Journel, 2011; Goovaerts,
1997). More specifically, modelling the probability of occurrence at
any unsampled location is related to the proportion and location of
the neighbouring data where the same phenomenon occurs. A non-
parametric approach, called probability kriging, was proposed by
Journel (2011), which is based on cokriging estimator and uses all avail-
able information from all different attributes to improve the prediction
of probability of occurrence. Geostatistics allows also to solve the crucial
problem called “the change of support”, that arises when two or more
variables with different support have to be integrated in a way that per-
mits valid inferences. The term “support” in geostatistics is associated to
size, shape and spatial orientation of the unit region which themeasure
applies to (Guthrie and Olea, 1991). Many of the statistical solutions to
this problemwere developed by Matheron (1963) in block (co)kriging,
which probability kriging is related to, but there is presently a lack of ef-
fective applications in the field of plant infection.

In the light of the above considerations, the main objective of this
paper was to describe and apply a novel risk assessment method,
based onmultivariate non-parametric geostatistics, which combines re-
mote (radiometric) and proximal (geophysical) sensor data with visual
inspection data and plant diagnostic tests, to provide probabilistic maps
of Xfp infection in olive trees, that can actually support containment of
this pathogen.

2. Materials and methods

2.1. Study site

In order to deal with the spread of OQDS in southern Apulia, and
based on the Commission Implementing Decision (EU) 2015/789, the
regional Phytosanitary Authority delimited three different areas:
1) the infected zone, including the area where the disease had been di-
agnosed initially; 2) the containment zone, including the last 20 Km to-
wards North of the infected zone, where in some cases, the eradication
of olive trees is established; 3) the buffer zone, i.e. the outermost area
(about 30 Km from the infected zone), which is not yet contaminated,
and where the aim is to avoid contamination.

The study site was a commercial, centenarian, olive grove (cv.
Ogliarola Salentina) located at Oria (province of Brindisi, south-
eastern Italy), and placed between the infected and the containment
zones at the time of monitoring (September 2017). The experimental
field was chosen because the monitoring of both healthy and infected
plants over time was possible without the infected plants were cut
down. At the beginning of data collection, only few centenarian olive
plants showed initial symptoms of the disease (wilted shoots).

2.2. Monitoring network and data

The measurements included:

1) Acquisition of reflected electromagnetic radiation with UAV.

The aerial surveys were conducted using a DJI Mavic Pro drone: a
very light quadcopter equipped with on-board Global Navigation Satel-
lite System (GNSS) and able to perform programmed missions over
waypoints routes. A custompayload traywas designed to carry themul-
tispectral sensor (Parrot Sequoia) on the bottom part of the UAV, and
Sequoia's Sunshine Sensor, that integrates also an InertialMeasurement
Unit (IMU) a Magnetometer and a Global Positioning System (GPS), on
the top part. Parrot Sequoia camera captures high resolution RGB im-
ages (16 Megapixel) and four narrowband spectral images in green
(550 ± 20 nm), red (660 ± 20 nm), red-edge (735 ± 5 nm) and near
infrared (790 ± 20 nm) spectral bands at a resolution of 1.2 Megapixel.
This type of sensor, although limited in the number of bands and spec-
tral resolution, represents a good cost-effective solution and is also
widely used in precision agriculture applications.

The data collection flight was planned on September 20, 2017, at
70 m height, with a theoretical resulting Ground Sampling Distance
(GSD) of 6.6 cm/pixel.

Flight mission was programmed using Mission Planner software: a
simple grid pattern with both 80% frontal and lateral overlap was de-
signed to optimize photogrammetric data collection. The mission was
then uploaded to Litchi ground-station controller software on an An-
droid smartphone connected to UAV remote controller.

In order to increase absolute geospatial accuracy of maps generated
with Structure-from-Motion (SfM) software, a ground survey was con-
ducted over 10 ground control points in cross-format of approximately
50 cm × 50 cm size, distributed equally in the experimental area. The
coordinates of these targets were measured with a Leica GPS1200,
dual-frequency in real-timekinematic (RTK)mode,with sub centimeter
precision.

The dataset consisted in 288 aerial shoots for each multispectral
band, for a total of 1152 images and two additional shots (before and
after every flight) at the radiometric calibration target that was pro-
vided with Sequoia camera.

Images elaboration was performed using Pix4d Mapper Pro soft-
ware, that uses SfM techniques for the reconstruction of the scene
(Nex and Remondino, 2014) on the basis of a large number of over-
lapped photos.

2) Geophysical surveys.
The surveys were carried out with a GPR on the trunks of 49

plants among the 61 trees of the groove. Those excluded showed
trunks so irregular and cracked that it was impossible to investigate.
The device was positioned in contact with the bark of the trunk, and
moved along a longitudinal path from top (branch) to bottom (tree
base), which was chosen because it was the flattest, uniform and
free of apparent discontinuities (bulges or voids along the trunks).



Fig. 1. Flow chart of semi-automatic extraction UAV polygon data.
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Given the very irregular shape of the trunks of centenarian olive
trees, it was not possible to adopt a single criterion for investigating
the plants. This means that it was possible to use neither the same
height above ground for the starting point, nor the same height
above ground for the stopping point nor the same orientation for
all the radar profiles. Very simply the best route was chosen, which
was sometimes the only one possible. The surveys were carried out
using the Noggin 500 radar (Sensor&Software Inc.), with the techni-
cal characteristics reported in Table S1 (supplementary material).

To obtain good quality in the recordings, the parameters associated
with duration, depth of investigation, wave speed and impulse energy
were set in advance (Table S1, supplementary material).

Pre-processing of datawas performedusing the following procedures:

• SETTING TIME ZERO: since the acquisition starts before the radar
pulse is emitted, the zero of time must be set. This is identified on
thebasis of the arrival of the air radarwavemoving from the transmit-
ting antenna to the receiver: 0.5 ns before the arrival, because the dis-
tance between the antennas was 0.15 m.

• DEWOWING:Wow is a very low frequency noise present in radar re-
cordings. It occurs because of saturation of the recording instrument's
electronicswith the large amplitudes of the air and direct radarwaves.
ResidualMean Filter implemented thewow removal, where themean
value of the surrounding filter point samples was subtracted. It works
as High Pass Filter. A previous spectral analysis was performed to
choose the frequencies to be removed below the specified High Pass
Frequency.

• FILTERING: Frequency filteringwas performedwithGaussianmethod,
using the central frequency of the device (500MHz), awidth of 1.5 oc-
taves (0.75 octaves on both sides of the spectrum), and 70 points in
the time-domain operator, with constant phase spectrum and a
parzen smoothing (Sheriff, 2002; Parzen, 1962; Percival and
Walden, 1993).

• FK FILTERING: A two-dimensional FK filters both temporal and spatial
frequencies and is typically used to remove coherent noise. A FK ve-
locity filter (pie-slice filter) was used, both in positive and negative
K-space, for removing both the air waves reflections (about 0.30 m/
ns), due to the trunks and branches of the olive trees, and reflections
due to localized defects in the trunks, with velocity lower than
0.12 m/ns.

The above four procedures were performed with GRADIX software
(Interpex Ltd.).

• ENVELOPE: it was used to calculate the instantaneous amplitude of
the radar signal and was performed with Hilbert Transform method,
which enhances the reflection strength of the radar energy; it was
performed with EKKO 42 software (Sensors & Software).

3) A visual rating of the canopy showing disease symptoms (leaf
scorching, chlorotic discoloration of the canopy portion) was also car-
ried performed at the same date of the UAV flight.

The proportion of symptomatic canopy was estimated at each of the
four cardinal sites sides of the tree.

4) PCRmolecular tests (binary data: healthy, infected)were done on
61 plants at the same date of the UAV flight to detect the presence of in-
fection. The detection of the presence of X.f., was carried out using the
molecular methods allowed by the current phytosanitary regulations
(PCR-end point for a qualitative result (healthy/infected) and real-
time PCR (qPCR) for a quantitative measure of the bacterial DNA in
the tissues examined (Rodrigues et al., 2003; Francis et al., 2006). The
continuous measurements of qPCR (quantitative Polymerase Chain Re-
action) were repeated in March 2018 to evaluate the progress of
infection.

Portion (1 g) of hardwood cuttings were surface disinfected and
used to extract Total Nucleic Acid (TNA) following a standard CTAB-
based procedure (Loconsole et al., 2014). Aliquots of 2.0 μL of TNA
were tested in triplicate by quantitative real-time PCR (qPCR) in
25.0 μL of final reaction volume, according to the protocol of Harper
et al. (2010), and using a CFX96 Touch Real-Time PCR apparatus
(Biorad, Hercules, CA, USA). As positive controls, DNA from a pure cul-
ture of X. fastidiosa subsp. pauca ST53 growing on buffered charcoal
yeast-extract agarized medium (BCYE) was used (Saponari et al.,
2017). Data about Xfp level occurring in the tested plants was expressed
as concentration of the bacterial DNA (ng μl−1) determined by interpo-
lating the mean value of the cycle threshold (Ct) with the standard
curve from a serial dilution (10–10−7 ng μl−1) of pure bacterial DNA.
Ct values ≥38 were considered negative.
2.3. Data analysis

The processing of the multi-source data included different steps.

2.3.1. Automatic extraction of canopy polygons from UAV data
The flowchart of methodology is showed into Fig. 1.
The processing and the subsequent analyses of images to extract the

information about the delimitation of olive trees crowns have been car-
ried out using the ENVI 5.1 software. The open source software QGIS has
been used to define each polygon structure of vector data.

1) Layer stacking
The images have been first stacked; in this way all UAV bands have

been merged into a single multispectral image. In order to do that it is
required that the images have to have the same extent (number of
rows and number of columns). In other words, it is needed that all im-
ages/bands have the same spatial resolution to be able to perform
layer stacking.

2) Colours composition
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The stack of different bands of the electromagnetic spectrum have
been displayed on the computer screen as coloured pictures. For multi-
spectral images any spectral bandwas associated with the visualization
colours to favour a more accurate photointerpretation process, that is
the best extraction of specific information about objects properties,
such as stress and vigour of vegetation. In this regard, to emphasize
the state of the plant (specifically the foliage of the olive trees) the fol-
lowing false colour composition has been applied: Red → Red, Red
Edge → Green, Green → Blue.

3) Supervised classification
The processing core was the supervised classification. The following

procedure has been used to select thematic information:

– Training samples

To select thematic information, the set of ground cover types (infor-
mation class) intowhich the image had to be segmented, was firstly de-
cided. Then, the prototype pixels (training samples) were assigned to
the selected classes. For this study three classes, that were taken from
different but sufficiently homogeneous areas of the same image, were
identified as training classes: soil, canopy and shadow. In order to take
the variability of the classes into account and avoid transition areas be-
tween the classes with mixed pixels (Campbell and Wynne, 2011), it
was necessary to select a sufficient number of training pixels (minimum
150 pixels per class). In this way, a properly representative sample of
each class was obtained.

– Maximum likelihood

The training datawere used to estimate the parameters of thepartic-
ular classifier algorithm. Themaximum likelihood with Gaussianmodel
has been applied as decision rule. As result a thematicmap, inwhich the
required classes appeared, has been produced.

– Morphological filter

To preserve the geometric structure of the image objects, a morpho-
logical filter, based on closing operator (Nixon and Aguado, 2012), was
applied. This operator type has the function of modifying the geometry
features of the signal, removing small holes inside the polygon. A mor-
phological convolution is applied to the signal with a structuring ele-
ment, which is another set of simpler shape and size (Diggle and
Serra, 1983; Lantuéjoul and Serra, 1982; Sternberg, 1983; Maragos,
2009).

– Conversion raster to vector

The smoothed datawere converted from a labelled raster image into
vector data format (such as ESRI Shapefile format). This step was indis-
pensable for later spatial analysis.

4) Exporting to GIS software
Each closed polygon representing one plant was imported into GIS

environment and an editing procedure was applied to generate a
multipolygon product. These processes allowed to modify the vertices
of the selected geometry, to fill eventual holes in the polygon and to
cut part of the geometry. The extracted 61polygons (Fig. S1 supplemen-
tary material) were marked with numbers representing each olive tree,
which were used for all (radiometric, geophysical, visual and labora-
tory) types of measurements. In order to georeference the trees, the
gravity centre coordinates were assigned to them.

2.3.2. Geostatistical interpolation of trunk radar data
The 2D spatial-temporal trunk data acquired with GPR, after

pre-processing, were submitted to geostatistical procedures to provide a
spatial temporalmapof the radar signal (IP). As theGPRdata showed sen-
sible departure from normal distribution, they were previously trans-
formed into Gaussian equivalents through Gaussian anamorphosis,
using a truncated series of Hermite polynomials (Castrignanò et al.,
2017). After that a directional experimental variogram was calculated
along the horizontal-temporal direction and the vertical-spatial direction
(oriented from the groundupwards), towhich a theoreticalmathematical
model was fitted. Finally ordinary kriging was applied for interpolations
and the estimates were then back-transformed to the raw data of each
plant for display.

2.3.3. Change of support
The collected multi-source data had different supports: i) UAV pixel

size of 0.07 m × 0.07 m; ii) trunk radar data: approximately
0.01 m × 1 ns; iii) visual inspection and laboratory data as point data
at plant level, before jointly analyzing them, it was necessary to refer
them to the same support using polygon kriging (Diacono et al., 2014;
Landrum et al., 2016). Polygon (co)kriging procedure was used to pro-
vide the expected value and standard deviation of the study variables
for each plant (polygon) of the olive grove. Polygon (co)kriging tech-
nique is an extension of block (co)kriging (Goovaerts, 1997) using a
special neighborhood. It estimates the expected value of a variable
over an irregular shape (i.e., the polygon of each plant canopy) and its
standard deviation. The polygon is first discretized in regular cells ʋi,
after that the procedure is quite similar to that of block kriging, except
for the calculation of the average co-variance function (Kαν) for each
polygon ν, which is calculated as a weighted discrete summation:

Kαυ ¼ 1
∑iωi

XN

i¼1

ωiKαci ð1Þ

where each weight ωi corresponds to the surface of intersection be-
tween the cell νi centered in the point ci and the polygon ν, α is a data
point, and Kαci is the covariance function calculated at each point ci.

Therefore UAV and radar data had to be previously transformed to
aerial data at plant level using polygon kriging (Fig. 2). For UAV data,
the polygons were those previously extracted for each plant from the
raster images; whereas a single rectangular polygon with dimensions
7 ns × 1.50 m was used for the radar data. The size was determined
by the time of signal propagation across the trunk before it was signifi-
cantly attenuated bymultiple backscattering, and by the average length
of the surveyed trunk profile.

2.3.4. Geostatistical multi-source data fusion for probabilistic mapping of
infection risk

Once all the eleven: laboratory (Indicator), visual (N, E, S,W sectors),
radiometric (Green, Red, Rededge, NIR bands), geophysical (IP and its
standard deviation, std_IP) variables were reduced to the same support
(plant), they were jointly submitted to the multivariate geostatistical
approach of data fusion.

The proposed geostatistical method is based on a simple binary
transformation, whereby each datum of the PCR measurement, as-
sumed as criteria to evaluate infection risk, is transformed into an indi-
cator, i.e. a binary value coded as 0 for healthy plant or 1 for infected
plant (Shaddad et al., 2020).

The unknown value of indicator in an unsampled point can be esti-
mated as a weighted average of the neighbouring indicator data using
indicator kriging (IK) (Goovaerts, 1997). However, IK uses only the in-
formation extracted from PCR analyses rather than all the information
gathered relating to the process of bacterium infection. Probability
Kriging (PK) (Journel, 2011) is an enhancement of indicator kriging, be-
cause it uses both secondary information (visual, UAV, radar data) and
the primary variable (indicator information from PCR measurements)
at each sampled plant location xα in a multivariate approach, called
co-indicator kriging. In our case, the target variable is a binary variable
with values of either 0 or 1, whereas the covariates (multi-type moni-
toring data) are continuous numerical variables. Due to the large differ-
ences between the units of measurement of secondary variables and
those of indicator variables, cokriging systemmay suffer from instability



Fig. 2. Flow chart of polygon kriging outputs.

Fig. 3. Drone rededge image of the olive tree canopies.

6 A. Castrignanò et al. / Science of the Total Environment 752 (2021) 141814
problems during resolution. Therefore, further data transforming is
required.

Since indicator data i(xα) are valued either 0 or 1, it is necessary to
first transform the auxiliary variables z(xα) to the range [0 to 1] through
relative rank order transform (Journel, 2011):

k xαð Þ ¼ r xαð Þ
N

ð2Þ

where r(xα)ϵ(1,N) is the rank of the datum z(xα), when data are ranked
in increasing order, and N the total number of sample locations.

To apply PK approach, it is required fitting a linear model of
coregionalization (LMC) (Wackernagel, 1995; Castrignanò et al., 2017)
to the whole set of experimental semivariograms including both direct
semivariograms of indicator and rank-order transformed variables,
and cross-semivariograms between each pair of variables, regardless
of its type (indicator or rank) (Shaddad et al., 2020).

PK is then the ordinary co-kriging of the indicator transform i(xα)
and the rank-order transform k(xα) of each secondary variable. The
probability kriging estimate i ∗(x0) at each unsampled point x0 is given
by:

i� x0ð Þ ¼
Xn1

α¼1

λα x0ð Þi x0ð Þ þ
Xnb

j¼1

Xn j

α¼1

να; j x0ð Þkj xαð Þ ð3Þ

where n1 and nj are the number of observations of indicator and rank-
order transformed variable j within the neighborhood of x0, respec-
tively; nb is the number of secondary variables to take into account.
The weights λα(x0) and να, j(x0) are obtained by solving the ordinary
co-kriging system (Wackernagel, 1995).

In our study n1 and nj are the same (isotopic case), but that is not the
case with heterotopic cokriging or when auxiliary information is
exhaustively recorded on a grid (in proximal and remote sensing)
(Castrignanò et al., 2009).

It is of paramount importance underlining that the Eq. (3) does not
give the expected (mean) value of the indicator but the estimated con-
ditional probability of infection occurrence by using all both binary and
numerical available information (Journel, 2011). The Eq. (3) can be ex-
tended to any type of auxiliary information including subsoil and nom-
inal variables after transforming the latter to indicator/dummyvariables
(Goovaerts, 1997).

3. Results

3.1. Drone data

In Fig. 3 the image of the raw drone data in the red-edge band is
shown as an example. This band was chosen because, as widely reported
in the literature (Horler et al., 1983; Sims and Gamon, 2002; Thenkabail
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et al., 2011; Stellacci et al., 2016), its reflectivity is indicative of the healthy
conditions of the plant. The onset of any type of stress causes in fact a shift
of the rededge towards the redwith a lowering of the reflectivity.What is
evident from the figure is an extreme variability at a very fine, centimeter
scale, so it does not seemobvious to classify the tree according to only one
level of severity. Thiswould then cast doubt on the usefulness of assigning
a single severity/stress class to the whole plant. However, it was made
necessary by the subsequent data fusion analysis since the laboratory
analyses were referred to plant scale.

The same type of mathematical model, consisting of an isotropic
model with two structures: a nugget effect and a spherical model with
range of 5.24m,was used for all the four bands,whereas the parameters
(nugget effect, partial sill) varied for the individual bands. The mathe-
matical type of model was chosen after cross-validation because it
was better than others to represent the short-range variation of the can-
opy. The value of the range was instead estimated by producing a
Fig. 4. (a) The expected value of the reflectivity of the four drone bands calculatedwith polygon
perturbation with 100 simulations until convergence was reached, de-
fined by the threshold value of the mean quadratic error set at 10−6.

The estimated value reflects the average size of the tree, indicating
that there is a significant spatial correlation only between the pixels of
the same plant, while the between-plant correlation is practically zero
or not significant. This might be interpreted as indicative of the extreme
stochasticity of the process related to the transmission of infection from
a tree to another.

Fig. 4a shows the expected reflectivity values of the 4 bands convo-
luted at plant level. Although the images are characterized by great
between-plant variability, it is possible to notice that the reflectivity
values are consistently lower for the plants of the southern edge and
the north-west corner, which would indicate a lower vegetative luxuri-
ance. In contrast, the highest reflectivity values are generally found in
the central part of the field, where the plants showed less evidence of
desiccation as verified by visual inspection.
kriging at plant level, and (b) the standard deviations of the expected values, respectively.



Fig. 5. Example directional variogram (dot) with fitted model (line) of GPR data: spatial
(red line) and temporal (green line) variograms. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Differently, Fig. 4b displays the within-plant variation values (stan-
dard deviations) for the single trees related to the reflectivity of the 4
bands. Although also in this case the differences between the single
trees are evident, a greater congruence among these maps can be
noted than among those of the expected values (Fig. 4a). In fact, it is ev-
ident there is a tendency to lower values in the west half of the field
than in the east half. This means that the plants in the eastern half pres-
ent a greater degree of intrinsic tree variabilitywith the various portions
of the same canopy having a different degree of vegetative vigour,
which may be related to a different local health status though within
the same plant.

3.2. GPR data

Since the GPR data showed significant deviations from the normal
distribution, to facilitate fitting of the variogrammodel, they were sub-
mitted to a normalizing transformation using a series of Hermite poly-
nomials truncated to the first 100 terms.
Fig. 6. Example spatial-temp
The Gaussian transformed data were used to calculate the direc-
tional variogram to which an anisotropic model with different ranges
in spatial and temporal directions was fitted. As in the case of the
drone data, a singlemathematical type of anisotropicmodel was chosen
including three main structures: nugget effect, an exponential model
and a k- Bessel model. In this case, however, all the parameters of the
model: nugget effect, partial sills, parameter of k-Bessel model and
ranges were estimated for each tree.

In Fig. 5 the variogram model fitted to the experimental directional
variogram is shown as an example. The red curve represents the spatial
component, whereas the green one represents the temporal compo-
nent. The temporal variogram is not upper bounded because it repre-
sents a non-stationary process in time, due to the multiple
backscattering, which causes the electro-magnetic signal to be
extinguished by attenuation.

In Fig. 6 a 2D space-timemapof theGPR signal energy is shown as an
example. As can be seen, the signal appears reinforced after about
6–7 ns, time probably taken by the signal to reach the opposite end of
the trunk. It is for this reason that the Gaussian transformed GPR data
were convoluted over this time distance with polygon kriging. We
also notice a vertical alternating of zones in the map with different sig-
nal energy. Recalling that the intensity of the reflected signal is propor-
tional to the gradient of the dielectric properties of themedium, we can
interpret the zones with higher intensity as those characterized by the
presence of voids/cavities or with lower water content. The variegated
succession of zones with different energy is indicative of the complex
trunk morphology of these centenarian olive trees.

In Fig. S2a (supplementary material) the expected values of GPR
data convoluted at plant level are shown using symbols of size propor-
tional to value. It is difficult indeed to discover any regularity, since the
degree of desiccation of the trunk seems to be randomly distributed.
Some particularly dried trunks appear along the edges of the field. The
previous considerations for Fig. 8a apply essentially also for Fig. S2b
(supplementarymaterial) of the standard deviations, but with a certain
prevalence of treeswith internally irregular trunks (large standard devi-
ation) along the southern and north-western edges.

Indeed, there is a certain degree of consistency between the drone
images (Fig. 4a) and the geophysical images (Fig. S2a), which encour-
ages the use of data fusion techniques of heterogeneous apparently in-
compatible data, to extract useful indications in the fight against
infection.

The same type of graphical representation was used to show the re-
sults of the visual investigations of the proportion of dried foliage in the
4 sides of the tree. They reveal that only 5 plants appear more wilted in
oral map of GPR signal.
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the northern direction (in the S\\W corner, in the middle and in the
eastern edge) (Fig. S3a, supplementary material). This result is con-
firmed also for the east quadrant, even if in this case more plants
show intermediate wilting values (Fig. S3b supplementary material).
Themap for the south quadrant is very similar to that of the north quad-
rant (Fig. S3c supplementary material) and the map for the west quad-
rant (Fig. S3d supplementary material) confirms the high degree of
desiccation observed for some plants at the eastern edge of the field.
However, a difference can be seen in the west map compared to the
others: the presence of a plant at the north-west corner that does not
appear equally desiccated in the other directions N, E and S.

3.3. Laboratory binary data

The binary (healthy - infected) results of the laboratory analyses
(Fig. 7) confirm the presence of the bacterium for the plants with a
high degree of desiccation at the NW and SW corners and eastern
side. However, in contrast to the previous maps, in which the degree
of foliage desiccation appears essentially randomly distributed, labora-
torymeasurements show a clear grouping of infected plants in the east-
ern part of the field. This suggests that the entry of the insect vectoring
Xfp occurred from this part of the field, and probably also from the NW
and SW corners.

3.4. Multi-source data fusion: probability map of infection risk

An isotropic linear model of co-regionalisation (LMC) was fitted to
the set of direct and cross- variograms of the selected 11 variables,
consisting of three spatial structures: a nugget effect, a spherical
model with range of 40m; a k-Bessel model with range of 60m and pa-
rameter equal to 1.5. Each spatial component (nugget effect, short
range, and long-range structures) explains a percentage of the total var-
iance of 25%, 32%, 43%, respectively. The spatialmodel then appearswell
structured with a prevalence of the auto-correlated components (at
short and long range) over the uncorrelated error (nugget effect). How-
ever, from the graph of the theoretical variograms fitted to the experi-
mental ones (Fig. S4 supplementary material) we notice great
dispersion of the experimental points, and low spatial correlation be-
tween the indicator and all the auxiliary variables (cross-variograms
in the first column on the left of the variogrammatrix of Fig. S4 supple-
mentary material). The strength of the spatial correlation is evaluated
by the distance between the model and the dashed line (Fig. S4
Fig. 7. Base map of binary laboratory data of Xylella infection.
supplementary material), which represents the condition of intrinsic
correlation or maximum correlation (Wackernagel, 1995).

From the visual inspection of the cross-variograms in Fig. S4
(supplementarymaterial) it is also possible to deduce interesting spatial
relations between the auxiliary variables: a general positive correlation
exists in the visual variables between them, and in the radiometric ones
between them, in particular NIR with rededge and green with rededge
and red. Differently, geophysical variables do not appear correlated
with any of the other variables, probably because of their extreme ran-
domness. Finally, we notice the different shape of the indicator's
variogram compared to that of the other variables: being not upper
bounded is indicative of a non-steady but evolving process, as one
might unfortunately expect.

The spatial dependence model (LMC) was verified through a cross-
validation test resulting for the prediction of the indicator variable in
themean and standard deviation of the standardised error by cokriging
standard deviation of −0.0064 and 1.1, quite close to 0 and 1, respec-
tively. In addition, the correlation between the residuals and the esti-
mates is 0.083. The model is then unbiased, without systematic errors
and sufficiently accurate.

Fig. 8a shows the probability map of the disease occurrence. It is ev-
ident how the bacterium through the vector insect has entered from the
eastern field edge, and is probably spreading in the E-Wdirection. How-
ever, there are two other outbreaks at the NW and SW corners from
which the bacterium might also spread.

To follow the progression of the disease leaf samples were taken
6months later in March 2018 and analysed in the laboratory by quanti-
tative real-time Polymerase Chain Reaction.

The amount of XfpDNAwas representedwith proportional symbols,
and superimposed on the probability map in Fig. 8b. As can clearly be
seen after only 6 months, practically all plants were infected, even
those located in the central area of the field with an estimated very
low probability of infection at the time of the early survey.

These results highlight the extreme rapidity and stochasticity of the
spread of the disease and the need for prompt and preventive action
with containment measures mainly on infected but asymptomatic
plants.

4. Discussion

The previous results of multi-source data processing have showed
that the visual evidence confirmed, albeit with a much greater degree
of approximation, what was observed with the drone data: the wither-
ing process spread essentially randomly even within the same plant,
making it really difficult to discover preferential lines of diffusion of
the disease. Drone monitoring has revealed that olive trees (both in-
fected and not) are characterized by great variability, coexisting on the
same tree parts of the foliage with different vigour.

Moreover, as it results from directional variograms of radiometric
data (not shown), spatial variationwas essentially isotropic without ev-
ident anisotropies along preferential directions of disease propagation
even within the same plant.

Although also other researchers (Hornero et al., 2020) have ob-
served the extreme spatio-temporal variability of the infection spread-
ing, influenced by numerous endogenous and exogenous factors to
the plant, this type of study is still in its infancy and needs further
investigation.

To make even more complex the interpretation of the experimental
data, in discovering significant relationships between the occurrence of
the disease and various external factors, is also the lack of strong spatial
correlation between the infection indicator and the selected auxiliary
variables, as evidenced by cross-variograms (Fig. S4 supplementaryma-
terial). Indeed this lack of spatial correlation might be interpreted also
as a scale effect, which means the effect due to the change of support
that occurs when variables with different spatial resolution are com-
bined. It is well known that statistical relationships between geo-



Fig. 8. (a) Probability map of Xylella fastidiosa subsp. pauca infection. (b) Base map of qPCR measurements in March 2018 superimposed on the probability map.
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referenced variables are spatially dependent (King, 2013), i.e. they are
affected by spatial scale of survey. Therefore, since the infection by Xfp
is an essentially punctual event, it would be necessary that all the mea-
surements were carried out at a very fine scale. The scale of the whole
plant of laboratory measurements would then seem too coarse and
should possibly be reduced, even at leaf scale, in order to identify prob-
able relationships with the much more densely recorded radiometric
variables. We believe that these relationships between the radiometric
data and the occurrence and severity of the infection exist aswas tested
by previous experimental evidences indicating that the presence of the
bacterium actually causes some alterations in the radiometric response
of the olive leaf at well-defined wavelengths (Zarco-Tejada et al., 2018;
Hornero et al., 2020; Poblete et al., 2020).

We realize that reducing the scale of laboratory measurement en-
tails the resolution of considerable practical problems, including finan-
cial ones, since such measurements are still quite expensive.

However, it is highly to be hoped that research in sensing and statis-
tics will develop to such an extent that the presence of the bacterium
can be detected early, even in plants that do not show any symptoms
of the disease. To this regard, the results of research applied to
hyperspectral sensors is very promising (Poblete et al., 2020).

In light of all above considerationswe can conclude that at present it
is not easy to predict the spatial and the temporal evolution of the diffu-
sion of Xfp infection. There is currently a lack of quantitative assessment
of important epidemiological parameters useful for risk analysis and in-
fectionmanagement, such as transmission rates, duration of the asymp-
tomatic period or until the plant has dried out and died completely
(White et al., 2020).
5. Conclusions

The site-specific management of Xfp infections involves the use of
different monitoring tools, which can be a powerful aid in containing
the bacterium. With the production of big data from modern technol-
ogy, proximal or remote sensor outputs can be used as auxiliary vari-
ables, to supplement information on infection from the primary
variable. The latter, resulting frommeasurements carried out in the lab-
oratorywith serological ormolecular techniques on plant samples, is for
obvious reasons limited. It is therefore necessary to define an effective
“data fusion” approach (Dusadeerungsikul et al., 2020; Castrignanò
and Buttafuoco, 2020) that combines different types of data in a statis-
tically sound way, in order to obtain a robust estimate. The main objec-
tive of this work was to define a “data fusion” procedure, which
effectively combines the geo-referenced outputs of various (geophysical
and radiometric remote) sensors with point measurements on the
ground, for the production of probabilistic maps of infection risk. The
approach relies mostly on non-parametric multivariate geostatistics.
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The joint analysis ofmulti-source data poses the crucial problem, un-
fortunately not yet fully investigated in the scientific literature, of
change of support. The future challenge of research will be to define
new experimental protocols in which greater spatial congruence be-
tween the laboratory measurements and the ones provided by modern
proximal and remote monitoring sensors is achieved.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.141814.
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