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A B S T R A C T   

This review focuses on the synthesis of hydrogel networks using thiomers such as thiolated hyaluronic acid, 
chitosan, cyclodextrin, poly(ethylene glycol) and dextran that are cross-linked via their thiol substructures. 
Thiomers have been widely investigated as matrix of hydrogels due to the high reactivity of these sulfhydryl 
moieties. They are well known for their in situ gelling properties due to the formation of inter- and intra-chain 
disulfide bonds. Furthermore, as thiol groups on the polymeric backbone of thiomers cannot only react with each 
other but also with different other functional groups, several “click” methods such as thiol-ene/yne, Michael type 
addition and thiol-epoxy reactions have been developed within the last decades to fabricate thiomer hydrogels. 
These hydrogels are meanwhile used as scaffolds for tissue engineering, regenerative medicine, diagnostics and 
as matrix for drug and protein delivery.   

1. Introduction 

In the late 1990s thiolated polymers have entered the life science 
arena as a new type of synthetic polymers [1,2]. They are biocompatible 
polymers with free and exposed thiol groups on the surface of the 
polymeric backbone, covalently attached by different synthetic routes. 
They mimic in many ways endogenous polymers such as proteins that 
also exhibit thiol substructures because of cysteine subdomains [3,4]. 

Thiolated polymers have been intensively studied for their versatile 
features. Due to their thiol groups these polymers can, on the one hand, 
form disulfide bonds in particular with cysteine-rich proteins such as 
mucins or keratins providing a firm adhesion to numerous biological 
surface [5,6]. These thiol groups are, on the other hand, also beneficial 
in order to provide a cross-linking via disulfide bonds within their own 
structure forming stable three-dimensional hydrophilic networks [7]. In 
addition, these thiol groups can be used as highly reactive anchor for 
various cross-linking agents. 

Their use as scaffolds for tissue engineering, regenerative medicine, 
matrix for drug and protein delivery and cellular immobilization was 
pioneered in the early 2000s when apart from proteins that can be 
regarded as endogenous thiolated polymers, first synthetic thiolated 

polymers such as thiolated chitosan came into use [8]. In the following it 
turned out that more or less all kind of hydrophilic natural polymers 
such as hyaluronic acid, gelatin, chitosan, heparin and alginate, semi- 
synthetic polymers such as cellulose derivates and synthetic polymers 
such as polyethylenglycole and polyvinylalchol can be thiolated and 
used as hydrogel matrix [9,10]. 

In contrast to physical hydrogels that are formed by non-covalent 
bonds such as ionic and hydrophobic interactions as well as hydrogen 
bonding exhibiting insufficient mechanical strength and structural sta-
bility depending on changing environmental conditions such as pH, ion 
concentration and temperature, thiolated polymeric hydrogels can form 
stable networks. They allow the incorporation of degradable functional 
groups in order to release drugs from the matrix [11–13]. 

The different methods for the thiolation of these polymers have been 
summarized in various recent reviews [3,9]. There are numerous co-
valent cross-linking methods such as different “click” reactions like free 
azide-alkene cycloaddition, thiol-ene, thiol-yne, Diels-Alder, Schiff base 
and thiol-disulfide exchange reactions for thiomers available [14–19]. 
Moreover, utilizing this huge toolbox, the number of resulting hydrogels 
is sheer countless and a great variety of cross-linked hydrogels based on 
thiomers can be generated providing special properties for all kind of 
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demands. 
This review summarizes different strategies for chemically cross- 

linked hydrogels based on thiomers as well as their potential biomed-
ical applications. 

2. Reaction of thiol groups for hydrogel cross-linking 

Generally, thiol groups can react via two types of mechanisms: either 
nucleophilic or radical mediated reactions. 

An overview about the different cross-linking reactions is provided in 
Fig. 1. 

The most important nucleophilic reactions used to create a covalent 
network based on thiomers are thiol-disulfide exchange reactions, thiol- 
epoxy reactions and thiol Michael additions, involving thiolate anions as 
reactive species that are formed in presence of a base deprotonating thiol 
groups [20,21]. 

The velocity of cross-linking of thiomers can be controlled by the 
reactivity of thiol groups, which is influenced by their pKa and pH value 
of the environment. The lower the pKa value of thiol groups is, the 
higher is the concentration of thiolate anion at physiological pH. The 
pKa of thiols depends on the chemical structure of the sulphydryl ligand 
attached to the polymeric backbone [3]. 

Besides, the main radical reactions are thermal or photo-initiated 
such as thiol-ene/yne “click” reactions, involving a thiyl radical in 
presence of an initiator [22]. 

Although nucleophilic and radical thiol-ene reactions are well known 
since many decades, they came into use for the cross-linking of thiomers 
just a few years ago, while thiol-disulfide exchange and oxidative re-
actions have been applied since the discovery of thiomers in the late 
1990s. 

2.1. Oxidative disulfide bond formation 

The likely most obvious way to cross-link thiomers is based on the 
oxidative formation of disulfide bonds. This cross-linking mechanism 
mimics the cross-linking of proteins like mucus glycoproteins in order to 
generate a firm and stable hydrogel on the surface of mucosal mem-
branes by the formation of disulfide bridges between cysteine-rich 
subdomains. Same counts for hair keratins being extensively cross- 
linked via disulfide bonds. The advantage of this type of cross-linking 
lies in its simplicity, reversibility and high cytocompatibility. 

Hydrogel networks formed by disulfide bonds can be cleaved easily 
in a reductive environment or in presence of free thiols such as gluta-
thione (GSH) and dithiothreitol (DTT). Such redox-responsive hydrogels 
find numerous applications in biomedicine. Introducing reducible di-
sulfide bonds into hydrogels can provide a controlled and targeted drug 
release. Disulfide bonds are stable in the systemic circulation, but can be 
reduced in a reductive environment like the cytoplasm. The different 

concentrations of GSH in the oxidizing extracellular space and in body 
fluids (2 μM) and in the reductive intercellular space (0.5–10 mM) 
guarantee a redox gradient useful for drug release [23,24]. 

The most common strategy to form disulfide bonds is by oxidation of 
free thiols by oxygen being available in most body fluids and aqueous 
media or by the addition of oxidizing agents. Despite the simplicity of 
this method, it has its limitations including the difficulty to control the 
reaction and the long gelation times. Furthermore, oxidizing agents can 
damage therapeutic molecules being incorporated into hydrogels. For 
these reasons, thiol-disulfide exchange reactions are often preferred. A 
lot of parameters influence the formation of disulfide bonds like pH, 
pKa, presence of oxidizing agents and structural parameters of polymers 
such as chain length and chain flexibility. As the process depends on the 
amount of thiolate anions, cross-linking can be controlled by changing 
pH and modifying pKa value of thiol moieties. For example, to improve 
the formation of disulfide bonds, in a recent paper, Varghese and his co- 
workers demonstrated that the reaction could be accelerated by intro-
ducing an electron-withdrawing substituent at the β-position of thiols in 
order to reduce thiol pKa. This can promote a higher formation of thi-
olate anions and consequently a faster formation of disulfide cross- 
linked network. The authors developed a hydrogel based on hyaluron-
ic acid functionalized with cysteine (pKa=7) that forms cross-linkages at 
physiological pH, without the use of catalysts, within 3.5 min due to the 
presence of the electron-withdrawing groups as in cysteine [25]. The 
process of disulfide cross-linking can also be accelerated by oxidizing 
agents like hydrogen peroxide, ammonium carbamate peroxide, peri-
odate and enzymes like peroxidase [26]. 

To evaluate the formation of disulfide bonds, both thiol content and 
dynamic viscosity can be controlled. The increase in viscosity is attrib-
uted to the formation of disulfide bonds and it was demonstrated by 
several authors that the more oxidizing agent is added the higher is the 
dynamic viscosity [27]. In 2009, a modified chitosan with thioglycolic 
acid was reported as a cationic in situ gelling system via oxidation re-
actions. Due to the addition of periodate, for example, a 10,000-fold 
increase in viscosity was observed due to the formation of inter- and 
intra-chain disulfide bonds within a few minutes [26]. Furthermore, 
increasing the degree of thiolation can improve the in situ gelling 
properties as more disulfide bonds can be formed [28]. 

In parallel to the increase of viscosity there is a decrease of free thiol 
groups due to the formation of disulfide bonds that can be followed 
using Ellman’s test widely used for its simplicity and reliable results. As 
intermolecular disulfide linkages influence viscoelastic properties of 
thiolated polymers an evaluation of storage modulus G’ and loss 
modulus G" can be useful to monitor the formation of cross-linked 
hydrogels [29]. 

An overview of representative examples of hydrogels generated by 
oxidative disulfide bond formation is provided in Table 1. 

Fig. 1. Overview of cross-linking reactions involving thiols groups.  

Table 1 
Example of hydrogels generated by disulfide bond formation.  

Thiomers Application Ref. 

Hyaluronic acid-SH Cell and drug delivery 
Corneal wound healing 
Cartilage tissue engineering 

[25,53–55] 
[58–60,] 
[63] 

Chitosan-SH Controlled drug release and tissue 
engineering 
Cartilage tissue engineering 
Scaffold for cells 
Protein delivery system 
Bone tissue engineering 

[26,75] 
[81] 
[82] 
[83–85] 
[86] 

Gelatin-SH Scaffold for cells 
Adhesive material 

[125] 
[130] 

Collagen-SH Scaffold for cells [129] 
Alginate-SH Wound healing system 

Scaffold for cells 
[146] 
[147] 

Polygalacturonic acid- 
SH 

Drug carrier [148]  
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2.2. Thiol-disulfide exchange reactions 

Thiol-disulfide exchange is an alternative strategy to form disulfide 
bonds. This is a nucleophilic and reversible substitution reaction used by 
nature to form disulfide bonds without the need of oxygen or other 
oxidizing adjuvants. The reaction contains three reversible steps: first, a 
thiolate anion is formed, subsequently this thiolate anion attacks a sulfur 
atom of the disulfide via SN2 reaction and finally the formed thiolate 
anion is protonated as illustrated in Fig. 2 [21]. The rate of thiol- 
disulfide exchange reaction is inversely dependent on the pKa of the 
sulfhydryl ligand, as the thiolate anion is more nucleophilic than the 
thiol group [30]. 

The use of reactive pyridyl-disulfide compounds strongly improves 
the rate of the exchange reaction at neutral conditions. As 2-mercapto-
pyridine is considerably toxic, analogous such as mercaptonicotinic 
acid and mercaptonicotine amide are mainly used to increase the reac-
tivity of thiol groups, due to the electron withdrawing effect of π system 
of the pyridine [31]. In recent years, many authors used 2-mercaptoni-
cotinic acid, in its dimeric form, to protect thiol groups [32–34]. 
Moreover, as S-protected thiomers do not cross-link during storage even 
in aqueous solution, they exhibit a high storage stability [35]. In addi-
tion, S-protected thiomers show in situ gelling properties on mucosal 
membranes. Here the cross-linking is triggered by thiol exchange re-
actions with mucin glycoproteins. 

By the addition of dimers of mercaptopyridine analogues to thiomers 
their thiol groups can also be S-protected [36]. As it turned out difficult 
to entirely S-protect thiol groups on the polymer and even just a few 
remaining free thiol groups can already initiate the cross-linking reac-
tion, more recently other coupling techniques came into use. In partic-
ular, the formation of S-protected ligands by the reaction of dimers of 
mercaptopyridine analogues with sulfhydryl ligands such as cysteine or 
thioglycolic acid followed by isolation and covalent attachment to the 
polymer backbone came into use [37,38]. 

Recently, we investigated cross-linking properties of S-protected 
hyaluronic acid (HA) in order to obtain hydrogel for 3D cells scaffold. S- 
protected HA was stable towards oxidation guaranteeing stability during 
storage. The S-protected thiomers could undergo thiol-disulfide ex-
change reactions in the presence of free thiols, as for example endoge-
nous thiol groups provided by mucus glycoproteins or in presence of N- 
acetylcysteine. To demonstrate the in situ gelation process, S-protected 
HA was mixed with mucus, which offers cysteine subdomains with free 
thiol groups that can react with the disulfide bonds on the thiomer 
backbone. Dynamic viscosity increased also in presence of N-acetyl 
cysteine. Owing to its good biocompatibility the hydrogel can be used as 
scaffold for 3D cell entrapment [39]. 

2.3. Thiol-ene reactions 

More recently, thiol-ene reactions came into use to cross-link thio-
mers to alkenes in order to form stable hydrogels. They are considered 
“clickable” because of their high efficiency and selectivity. These re-
actions can take place under mild conditions in aqueous media with no- 

toxic byproducts. Thiol-ene reactions occur by two different types of 
mechanism: through a nucleophilic thiol-type Michael addition and a 
radically mediated thiol-ene reaction [40]. 

An overview of representative examples for hydrogels formed by 
Michael-type addition reactions and photo-initiated thiol-ene reactions 
is provided in Table 2. 

2.3.1. Michael additions 
The thiol Michael addition reaction takes place in presence of a small 

amount of catalysts like common bases such as triethylamine. It is a 

Fig. 2. Mechanism thiol-disulfide exchange reactions.  

Table 2 
Examples of hydrogels generated by thiol-ene reactions.  

Thiomer Other constituent Application Ref. 

Hyaluronic 
acid-SH 

Hyaluronic acid- 
methacrylated 
Hyaluronic acid- 
acrylate 
PEG-vinyl sulfone 
PEG-diacrylate 

Protein delivery 
system  

Scaffold for cells 
Cartilage tissue 
engineering 
Wound healing system 
Bone regeneration 

[58]  

[66] 
[42] 
[61] 
[64] 

Chitosan-SH Chitosan- 
maleimide 
PEG-diacrylate   

PPO-PEO-PPO 
Acryloyl- 
β-Cyclodextrin 

Wound healing system 
Injectable hydrogels 
for tissue engineering 
Protein delivery 
system 
Tissue engineering 
application 
Drug delivery system 
(diclofenac) 

[79] 
[77]  

[78] 
[80] 
[87] 

β-Cyclodextrin- 
(SH)7 

HP-β-cyclodextrin- 
maleimide 
PEG-maleimide 
PEG-diallyl 
PEG-norbornene 
Dex-maleimide 

Drug delivery system 
(curcumin) 
Drug delivery system 
Drug delivery system 
(puerarin) 
Drug delivery system 
(curcumin) 
Drug delivery system 
(retinoic acid) 
Light responsive 
hydrogels 

[97] 
[94] 
[99] 
[101] 
[95,96] 
[98] 

PEG-SH PEG-acrylate 
PEG-maleimide  

PEG-vinyl sulfone  

Dextran-vinyl 
sulfone  

Gelatin- 
norbornene 
Gelatin- 
methacrylamide 

Protein delivery 
system 
Scaffold for cells 
Drug delivery system 
(Avastin ™) 
Protein delivery 
system and tissue 
engineering 
application 
Protein delivery 
system 
Tissue engineering 
application 
Scaffold for cells 
Tissue engineering 
application 

[103] 
[104] 
[105] 
[106,107]  

[117] 
[118] 
[119] 
[120] 

Gelatin-SH Gelatin-acrylate 
Gelatin- 
methacrylate 
PEG-diacrylate 

Corneal wound 
healing 
Surgical sealant 
Injectable hydrogel for 
intracerebral 
hemorrhage 
Scaffold for cells 

[136] 
[126] 
[127]  

[132,133,135] 

Collagen-SH PEG-maleimide Scaffold for cells [131] 
Dextran-SH PEG-acrylate  

Pluronic-vinyl 
sulfone 

Protein delivery 
system 
Tissue engineering 
application 
Tissue engineering 
application 

[140] 
[142] 
[141] 

Heparin-SH PEG-diacrylate 
Hyaluronic acid- 
methacrylated 

Scaffold for cells 
Scaffold for cells 

[143] 
[144]  
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nucleophilic addition of a thiol, which is the Michael donor, on an ole-
fine conjugated with electron withdrawing group, which is the Michael 
acceptor [20,21]. Typical examples for Michael acceptors are mal-
eimide, acrylate, methacrylate and vinyl sulfone [41,42]. The order of 
reactivity is presented in Fig. 3. 

A base catalyses the formation of a thiolate anion, which acts as 
nucleophile with the electrophile β‑carbon of the double bond of the 
alkene to form an anion intermediate. As illustrated in Fig. 4 this carb-
anion can in a second step withdraw a proton from the conjugate to 
generate the thiol-Michael addition product. 

The reaction continues until one of the reactives is consumed. These 
kinds of reactions are attractive for injectable hydrogel, for therapeutic 
protein delivery and cell delivery. For instance, an injectable hydrogel 
based on thiolated hyaluronic acid and PEG modified with vinyl sulfone 
moieties was evaluated for the delivery of chondrocytes useful for 
cartilage repair [42]. 

2.3.2. Radical thiol-ene reactions 
Thiol-ene reactions can also be mediated by a radical mechanism 

initiated thermally or photochemically. To initiate the thiol-ene reaction 
thermal initiators generating radicals or cations upon exposure to heat 
or photo-initiators can be used. Photo-initiated thiol-ene reactions are 
frequently used for the synthesis of hydrogel networks in the biomedical 
field [43]. 

Solutions containing the polymeric precursors with photo-reactive 
groups and a low amount of radical initiator are prepared and subse-
quently irradiated by UV or visible light to generate a reactive thiyl 
radical by photochemical cleavage. The most commonly used photo-
chemical initiators are acetophenone compounds such as 2,2-dime-
thoxy-2-phenyl acetophenone (DMPA), type I photo-initiator like 
Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate 
(LAP), which are able to trigger the reaction under UV light, or type II 
photo initiator such as Eosyn-Y, which forms radicals under visible light 
[44]. After initiation, the reaction proceeds through the attack of the 
thiyl radical on the alkene to form a new carbon radical. This carbon 
radical reacts with another thiol substrate so that a thioether and a new 
thiyl radical are formed. The latter ones allow the propagation step to 
continue the cycle as shown in Fig. 5. Important differences were found 
for the reactivity of terminal olefine bonds and internal ones: terminal 
double bonds have a higher reactivity compared to internal double 
bonds. 

The most often used photo-chemically initiated reaction is that one 
with norbornene as alkene moiety. It is a stable strained cyclohexane 
ring with a methylene bridge that reacts with thiol groups [45]. Nor-
bornene exhibits a very high reactivity towards thiol-ene reactions as 
illustrated in Fig. 6 [46]. 

2.4. Thiol-yne reactions 

In more recent years, also thiol-yne reactions have found numerous 
applications for cross-linking [47,48]. Thiol-yne reactions are similar to 
the thiol-ene reactions, but the main difference is the stoichiometry of 
the reaction. Each alkyne group reacts with two thiol groups since a 
vinylene sulfide intermediate is initially formed. The reaction can be 
mediated either by radical or nucleophilic mechanisms highlighted in 
Fig. 7. Theoretically, thiol-yne reactions result in higher cross-linking 
density of polymer networks than thiol-ene reactions. 

Since UV-initiated reactions, using a photo-initiator, can be cytotoxic 
due to the release of free radicals, nucleophilic thiol-yne reaction are 
preferred [47]. 

2.5. Thiol-epoxy reactions 

Recently, the nucleophilic thiol-epoxy reaction has been introduced 
as synthetic method to form hydrogel networks. This is a SN2 reaction 
that proceeds through a ring-opening step. 

Firstly, a base withdraws the proton of the thiol group generating a 
more nucleophilic thiolate anion. Subsequently, the thiolate anion 

Fig. 3. Order of reactivity of common substrate for thiol Michael-type addi-
tion reaction. 

Fig. 4. Mechanism thiol Michael-type addition reactions.  

Fig. 5. Mechanism photo-initiated thiol-ene reactions.  

Fig. 6. Mechanism photo-initiated thiol-norbornene reactions.  
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attacks the less hindered site of the epoxide units to generate an alkoxide 
that is then protonated by the conjugated acid having been formed 
previously. 

This reaction shown in Fig. 8 offers the great advantage that the free 
secondary hydroxyl group on the polymeric backbone can be easily 
functionalized, for example, in an ester moiety [49]. 

3. Thiolated hyaluronic acid 

Hyaluronic acid (HA) is a biodegradable polysaccharide consisting of 
repeating disaccharide units of β-(1,4)-D-glucuronic acid and β-(1,3)-N- 
acetyl-D-glucosamine. It is present in connective tissue as a major 
component of extracellular matrix and can be metabolized via enzy-
matic hydrolysis by hyaluronidase (HAase). Because of its high 
biocompatibility and biodegradability it has been widely used in the 
biomedical and pharmaceutical field for drug delivery, for tissue engi-
neering and in regenerative medicine [50]. Moreover, it can also induce 
cell proliferation, wound healing and angiogenesis. Several HA-based 
hydrogels have been investigated in the recent years due to the facile 
modification of the functional groups exposed on the polymer that can 
be involved in cross-linking reactions [51]. 

The attachment of free thiol groups on the polymeric backbone 
provides an increase in mucoadhesive and in situ gelling properties [52]. 

3.1. Thiolated hyaluronic acid cross-linking 

In the early 2000s, a thiolated hyaluronic based hydrogel obtained 
via air oxidation and subsequent oxidation by hydrogen peroxide was 
for the first time described by Prestwich et al. [53]. Hyaluronic acid 
chains can be cross-linked by disulfide bridges, either by a thiol-disulfide 
exchange reaction or by oxidation reactions. Both methods have been 
widely investigated by several research groups in order to create in situ 
gelling hydrogels without the use of any cross-linking agent or adjuvant 
[54,55]. 

Several biocompatible cross-linked hydrogels based on HA have been 
prepared also by thiol-ene reaction either by a nucleophilic mechanism, 
especially by Michael addition reactions with vinyl sulfone or acrylates, 
and by radical initiated reactions [42]. 

Thiol-yne reactions are also used for hydrogel formation. Recently, 
an example of this synthetic method is reported about an injectable 

hydrogel for knee defects composed of thiolated hyaluronic acid and 
alkyne-functionalized PEG. Moreover alginate was added to improve 
mechanical properties since it can be ionically cross-linked in presence 
of Ca2+ [56]. 

3.2. Thiolated hyaluronic acid hydrogel applications 

Hydrogels based on cross-linked hyaluronic acid gained by disulfide 
bond formation or thiol-ene reactions have been widely investigated for 
ophthalmic use since gelation time is important for this route of 
administration [57,58]. A shorter gelation time is preferred to avoid the 
loss of drug from ocular surface. 

A veterinary eye drop formulation based on thiolated carboxymethyl 
hyaluronic acid (CMHA) was developed in order to heal corneal wound, 
to support cell and drug delivery and to guarantee local lubrification. 
These hydrogels have been tested on dogs and cats and wound healing 
occurred between 7 and 13 days. To enhance ocular wound healing a 
combination of HA hydrogel and growth factors can be used to stimulate 
migration and proliferation of cells. Moreover, HA-based hydrogel can 
be used for the delivery of antibiotics [59]. 

The thiolated CMHA cross-linked by disulfide bonds by air oxidation 
was also tested on corneal epithelial abrasion on rabbits. The hydrogel 
turned out to be a promising treatment of non-infectious corneal injuries 
compared to hydrogels based on unmodified hyaluronic acid as a sig-
nificant improvement was demonstrated after 48 h post-injury [60]. 

Thiolated CMHA has also been investigated for the treatment of in-
juries on skin in various models animal such as rats, dogs and horses. The 
cross-linked thiolated HA-based hydrogel showed enhanced wound 
healing and reduced wound closure time in all tested species [61]. 

Thiolated hyaluronic acid-based hydrogels have also been developed 
as injectable matrix to heal articular cartilage defects and bone defects. 
These systems are usually in a sol-state before the administration that 
can undergo gelation under physiological conditions after injection. 
They can be injected in liquid form avoiding surgical implantation into 
tissue with minimal invasiveness [62]. A recent in vivo study on the 
implantation of hyaluronan thiomer hydrogels demonstrated an 
enhanced cartilage regeneration of a defect induced into the medial 
femoral condyle or the trochlear groove on rabbits [63]. Moreover, 
Glycosil ™ a hydrogel containing thiolated HA was evaluated as carrier 
for the release of bone morphogenetic protein-2 (BMP-2) implanted on 
rats’ hind limbs in order to enhance bone formation also with a low dose 
of BMP-2. The hydrogel characterized by a low initial burst release 
followed by a sustained release of the protein showed a high ability of 
bone regeneration and formation [64]. 

Another study based on a disulfide cross-linked hydrogel was 
developed by Wang et al., who synthesized a cross-linked network that 
consists of hyaluronic acid and PEGs, using a thiol-disulfide exchange 
reaction that proceeded faster than auto-oxidation of thiols. 

The network was formed between pyridyl-disulfide functionalized 
hyaluronic acid (HA-PD) and a dithiol-PEG as cross-linker as illustrated 
in Fig. 9. During the exchange reaction a subproduct, the pyridine-2- 
thione was released. In this way the hydrogel formation was moni-
tored quantitatively by UV spectroscopy. This biocompatible injectable 
HA-based hydrogel can be used for protein delivery and cell encapsu-
lation [65]. 

Another injectable hydrogel was designed recently by Zhang et al.. It 
consisted of HA-acrylate and thiolated-HA that was cross-linked both via 
thiol-ene reaction between the thiol groups and the acrylate moieties 
and disulfide bond formation of remaining free thiols. The double 
network provided a higher stability of the hydrogel. In vitro studies 
demonstrated the cytocompatibility of the hydrogel and results of in 
vivo studies in mice demonstrated the possibility of the hydrogel to be 
applied for cell delivery in postoperative anti-adhesion tissue [66]. 

Fig. 7. Mechanism photo-initiated thiol-yne reactions.  

Fig. 8. Mechanism thiol-epoxy reactions.  
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4. Thiolated chitosan 

Another thiolated polymer that has been investigated for its cross- 
linking properties is chitosan. It is a natural polycationic copolymer 
consisting of β-(1,4)-D-glucosamine and β-(1,4)-N-acetyl-D-glucosamine 
units being obtained by a partial deacetylation of chitin, the most 
common polysaccharide present in exoskeletons of insects, crustaceans 
and the cell walls of fungi. Pure chitosan cannot chemically cross-link 
but modified chitosans can and are widely used as matrix for hydro-
gels due to their high biocompatibility and degradability [67,68]. In 
particular, thiolated chitosans show high mucoadhesive properties due 
to the formation of disulfide bonds with mucus glycoproteins on 
mucosal surfaces and in situ gelation due to the formation of inter- and 
intra-chain disulfide bonds. Thiolated chitosans have been widely used 
as drug carrier to improve vaginal, nasal and ocular delivery providing a 
prolonged residence time on mucosal membranes [69,70]. Moreover, 
since chitosan is a cationic polymer and the mucus layer is negatively 
charged, the adhesion of thiolated chitosan is enhanced by ionic in-
teractions. Chitosan based hydrogels were used for tissue engineering, 
wound healing and tissue regeneration as the polymer can mimic the 
extracellular matrix due to the presence of glucosamines being con-
verted into glycosaminoglycans in vivo [71,72]. 

4.1. Thiolated chitosan cross-linking 

Thiolated chitosan displays high mucoadhesive and in situ gelling 
properties due to the formation of inter- and intra-chain disulfide bonds 
[73]. The in-situ gelation is a good strategy for the administration of 
several drugs and tissue regeneration because the sol-gel transition oc-
curs under physiological conditions [74]. 

Hydrogels based on modified chitosan using N-acetyl-cysteine (CS- 
NAC) were investigated as matrix for protein delivery and as scaffolds 
for tissue engineering [75,76]. 

The newly emerged thiol-ene click reactions like Michael type 
addition reactions are often used to create hydrogel networks based on 
chitosan. It can cross-link in situ, for instance, with poly (ethylene gly-
col) diacrylate (PEG-DA) very rapidly under physiological conditions. 
This reaction is faster compared to the spontaneous oxidization of thiol 
groups [77,78]. Moreover, thiol groups grafted on chitosan can easily 
react with maleimide moieties [79,80]. 

4.2. Thiolated chitosan hydrogel applications 

Recently, hydrogels based on CS-NAC and silk fibroin were devel-
oped to obtain a dual network with enhanced strength, stiffness and 
elasticity as support for chondrocytes used in cartilage tissue engineer-
ing. Silk fibroin is a natural polymer which can create the first network 
by tyrosine cross-linked linkages providing a higher elasticity to the gels, 
while the second network is provided by disulfide bond formation 
within thiolated chitosan [81]. 

Another in situ gelable double network was developed by Chen et al.. 
The research group focused on a cross-linked hydrogel by a Shiff-base 
reaction and disulfide bond formation between an oxidised dextran 
and a thiolated chitosan. The thiolated chitosan displayed both amino 
and thiol group substructures allowing the formation of a dual cross- 
linked network. The double network provides high stability of the 
hydrogel towards degradation because of a higher degree of cross- 
linking. Dermal fibroblasts were loaded into the hydrogel matrix and 
in vitro studies indicated that the hydrogel is biocompatible and non- 
cytotoxic. In vivo experiments were conducted by subdermal injection 
in mice demonstrating the safety of the hydrogel [82]. 

Injectable thermo-sensitive hydrogels based on thiolated chitosan 
have been widely investigated as protein delivery systems prepared by 
the combination of physical and chemical cross-linking. These thermo- 
sensitive hydrogels are based on thiolated chitosan and beta- 
glycerophosphate (β-GP). These systems are aqueous solutions at room 
temperature and can be transformed into a gel at physiological tem-
perature after injection due to the formation of physical interactions 
such as electrostatic and hydrogen interactions between the polyols 
β-GP and chitosan. Moreover, the presence of free thiol groups immo-
bilized on the polymeric backbone guaranteed higher cross-linking 
density, higher mechanical strength, higher durability and lower cyto-
toxicity due to the formation of disulfide bonds providing chemical 
cross-linking [83]. Injectable thermo-sensitive chitosan-based hydrogels 
have been investigated also as wound dressing system for the delivery 
and the release of Histatin-1 (Hst-1), a human peptide that is able to 
enhance wound healing stimulating cell adhesion, migration and 
angiogenesis. The Hst-1 peptide was incorporated in the matrix due to 
the formation of hydrogen bonds. The hydrogel can be considered a 
promising system due to the higher migration and a good angiogenesis 
stimulation confirmed by in vivo studies on wound in mice since after 7 
days around the 84% of the surface of the defect was covered by new 
epithelial cells [84]. 

A novel in situ thermo-sensitive hydrogel was developed by Feng 
et al. based on thiolated chitosan, hydroxyapatite and β-GP in order to 
guarantee a sustained release of proteins incorporated by thiol-disulfide 
exchange reactions in the hydrogel’s matrix [85]. The same system was 
also investigated as delivery system for the release of the peptide BMP-2 
for potential application in the treatment of bone defects [86]. 

Furthermore, a thiolated chitosan grafted with PEG was cross-linked 
with acryloyl-β-cyclodextrin by a Michael type reaction in presence of a 
catalytic amount of triethylamine in order to obtain a drug delivery 
system for the anti-inflammatory drug diclofenac as host molecule in 
cyclodextrins cavity [87]. Thiolated chitosan-based hydrogels cross- 
linked with CDs have also been developed via thiol-yne reactions. An 
alkylated β-cyclodextrins was cross-linked with thiolated chitosan under 
physiological conditions to obtain a sustained drug delivery system for 
the treatment of solid tumors [88]. 

5. Thiolated cyclodextrin 

Cyclodextrins are cyclic oligosaccharides, composed of 6, 7 or 8 D- 
(+)-glucopyranose units (α, β and γ respectively) linked by 1–4 glyco-
sidic bonds. They are produced from starch by Bacillus macerans amylase 
or glucosidase. The interior cavity is relatively hydrophobic because of 
the CH2 groups of glucose units, while the cavity entrances are hydro-
philic because of primary and secondary hydroxyl groups. Thiolated CDs 

Fig. 9. Synthesis of hyaluronic acid-based hydrogel via thiol-disulfide ex-
change reaction cross-linking PEG-dithiol and HA-PD. 
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are attractive as drug delivery systems, especially because of their 
mucoadhesive properties. 

As they do not just cross-link, but also form inclusion complexes with 
hydrophobic drugs due to their hydrophobic cavity, they are an inter-
esting tool for the formation of hydrogels with poorly soluble drugs 
[89–91]. 

5.1. Thiolated cyclodextrin cross-linking 

Thiolated cyclodextrins show an in-situ gelling behaviour due to the 
formation of inter- and intra-molecular disulfide bonds when being 
exposed to free thiol groups such as cysteine substructures of mucus 
glycoproteins. Rheological studies showed an increase of dynamic vis-
cosity and an increase in G’ due to the formation of a network between 
the polymer and mucus. The viscosity of thiolated γ-CD in presence of 
mucus showed an increase up to 1.5-fold; furthermore, S-protected γ-CD 
showed a 1.6-fold increase [34]. In addition, analysis on per-6-thiolated 
cyclodextrin and tetradeca-thiolated cyclodextrin demonstrated a 
higher increase in viscosity due to a higher degree of thiolation of the 
polymer. A mixture of a per-6-thiolated α-cyclodextrin and mucus, for 
instance, showed a 5.8-fold increase compared to the unmodified 
polymer [92]. Furthermore, the tetradeca thiolated cyclodextrin showed 
a 7.6-fold increase [93]. These studies provide evidence for the forma-
tion of disulfide bonds between the thiolated CDs and mucus. Apart from 
mucus glycoproteins, thiolated cyclodextrins can cross-link with various 
polymers via different methods of cross-linking in order to obtained 
hydrogels. Cyclodextrins have been frequently used in thiol-maleimide 
reactions. They act as cross-linker for the formation of hydrogels 
network guaranteeing also an enhanced drug delivery of hydrophobic 
drugs [94–97]. 

5.2. Thiolated cyclodextrin hydrogel applications 

Dextran-based hydrogels were explored as matrix for sustained de-
livery and release of proteins using thiolated cyclodextrins as cross- 
linkers developing UV light responsive systems. The payload of this 
hydrogel can be released under light stimulus being useful for a targeted 
drug release. Dextran-maleimide was cross-linked with thiolated β-CD 
being complexed with trans-azobenzene (AB). The complexes dissociate 
after the isomerization of AB from trans to cis under UV light because 
cis-AB does not interact with CD. In this way the hydrogel turned into a 
solution. Green fluorescent protein (GFP) was used as model protein 
entrapped in the supramolecular gel and 40% of loaded protein was 
released after 60 min under UV irradiation [98]. 

Thiolated cyclodextrins were also involved in photo-initiated thiol- 
ene reactions with diallyl-PEG as illustrated in Fig. 10. The highest 
payload puerarin, a drug used in the treatment of glaucoma, was ach-
ieved in hydrogels with the smallest chain length of PEG, due to the 
lowest hydrophilicity of the hydrogel and with the highest ratio of 

cyclodextrin. Drug release was sustained although an initial burst 
release was observed [99]. 

The same authors focused also on a thermo-responsive hydrogel for 
controlled release of puerarin using thermo-responsive polymers as poly 
(N-isopropylacrylamide) and thiolated cyclodextrins to carry the drug. 

[100]. 
Another example for a thiol-ene reaction is reported by Shih and co- 

workers, who described the preparation of two types of photo-clickable 
hydrogels using a multi-arm PEG-SH with β-CD-allyl ether and β-CD-SH 
with PEG-norbornene (PEG-NB), as shown in Fig. 11, loaded with cur-
cumin, as anti-inflammatory and anti-cancer drug. The synthesis via 
thiol-norbornene reaction provided a faster gelation kinetics being six 
times faster than the thiol-allyl ether reaction. Both hydrogels demon-
strated a high drug loading efficiency and a sustained drug release 
[101]. 

6. Thiolated poly (ethylene glycol) 

Polyethylene glycols are widely used as cross-linkers for hydrogels, 
although they are per se non-reactive requiring an appropriate func-
tionalization. PEG-based hydrogels are used for a variety of biomedical 
applications, including matrices for controlled release of biomolecules, 
as scaffolds for regenerative medicine for example as support for cells 
involved in cartilage and bone regeneration and for wound healing 
applications [102]. 

6.1. Thiolated poly (ethylene glycol) cross-linking 

For the formation of PEG-based hydrogels thiol-ene reactions are 
favoured. Although acrylates are the most used electrophile involved in 
Michael-type addition reactions [103], maleimides [104,105] and vinyl 
sulfones [106,107] have also attracted the attention of many research 
groups. Furthermore, thiol-ene photopolymerization induced by UV 
light was recently presented as a novel method for hydrogel formation 
for the encapsulation of cells and proteins [108]. 

Recently, thiol-yne reactions became one of the most attractive 
synthetic methods since they provide high density cross-linked networks 
[109]. The nucleophilic thiol-yne click reaction was used as illustrated 
in Fig. 12 to generate a robust PEG-based hydrogel using PEG precursors 
functionalized either with alkyne and thiol terminal groups allowing the 
reaction to take place under physiological conditions without the need 
of an external catalyst. 

[110,111]. 
Residual functional groups still available on the surface of the 

hydrogel can be further cross-linked or post-functionalized. Unreacted 
alkyne moieties, for example, can be functionalized via nucleophilic 
thiol–yne addition with antimicrobial agents containing thiol groups 
[112]. 

Other efficient methods available for the synthesis of PEG-based 

Fig. 10. Synthesis of hydrogel via photo-initiated thiol-ene reaction cross-linking diallyl-PEG and β-CD-(SH)7. Adapted from Arslan et al. [99]  
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hydrogels are the nucleophilic thiol-epoxy reactions [49,113] and thiol- 
halide reactions. The latter are well known in polymeric synthetic pro-
cesses, but they are not widely investigated for the design of hydrogels. 
Nevertheless, in a recent work, Troung et al. applied this reaction to 
develop a PEG-based hydrogel formed by the reaction between a PEG 
functionalized with halide and a PEG with thiol groups at physiological 
conditions. The polymer chain terminals can be functionalized with 
hydrolysable ester groups or non-hydrolysable amide groups. Hydrogels 
based on PEG-amide-I and PEG-SH were stable for over 60 days due to 
the presence of non-hydrolysable groups. The resulting hydrogel showed 
high cytocompatibility in vitro within 24 h [114]. 

Recently, Hua and co-workers developed a new cross-linking method 
for hydrogels by mixing oxidised dextran with a 4-arm-PEG-SH. The 
cross-linked network is formed by hemithioacetal bonds, which can be 
dissociated easily within 5 h in PBS. To stabilize the hydrogel, acrylate 
moieties were added to oxidised dextran in order to obtain an irre-
versible Michael addition reaction. Thiol groups involved in thiol- 
aldehyde network reacted with Michael acceptor to form a thioether 
bond in order to increase the stability. Recombinant human bone 
morphogenic protein-2 was incorporated in the polymeric network to 
improve osteogenesis process in rabbit’s bone with defects [115,116]. 

6.2. Thiolated poly (ethylene glycol) hydrogel applications 

Thiolated PEG was used as cross-linker by the reaction with mal-
eimide moieties grafted on PEG in order to form an in situ gelling 
hydrogel showing sustained release of avastin up to 14 days used as 
ocular delivery system for the treatment of intraocular neo-
vascularization diseases [105]. Multifunctional thiolated-PEGs can also 
be used as cross-linkers for dextrans with pendent vinyl sulfone groups 
that are able to react with thiol groups by Michael type addition [117]. 
Subsequent release studies on these degradable dextran-based hydrogels 
demonstrated a controlled and sustained release of proteins like 
immunoglobulin, lysozyme and basic fibroblast growth factor [118]. 
Moreover, photo-induced thiol-ene reactions have been investigated. 
For example, a gelatin-based hydrogel was formed using multifunctional 
thiolated PEG as cross-linker. The latter cross-linked with modified 
gelatin with norbornene moieties by thiol–ene photoclick chemistry 
forming a hydrogel that could be useful in tissue engineering and 
regenerative medicine as scaffold for cells [119]. For the same purpose, 
Daniele et al. focused on a double interpenetrating and stable hydrogel 
based on methacrylated-gelatin, thiolated-PEG and tetraalkynated-PEG 
by thiol-yne and thiol-ene reactions [120]. Interpenetrating network 
hydrogels are formed by the interpenetration of natural and synthetic 
hydrogels have been designed in order to improve properties of thiol- 
yne networks by the addition of a secondary network. To improve 

self-healing properties and stretchability of the hydrogels several natu-
ral polymers were added like alginate, chitosan, heparin and gelatin. 
The resulting systems can be used as biomaterials for their ability to 
mimic the native extracellular matrix allowing cell growth and prolif-
eration [121]. 

PEGs-based hydrogels for tissue engineering applications were 
developed by Dove et al. via thiol-epoxy reaction to incorporate human 
mesenchymal stem cells (hMSCs) that can be used to regenerate tissues 
such as bone, cartilage, fat and supporting cell differentiation. In addi-
tion, a pro-osteogenic siNoggin was loaded into the hydrogels and the 
result showed that a pro-osteogenic siRNA significantly enhanced the 
osteogenic differentiation of human mesenchymal stem cells [122]. 

7. Thiolated proteins 

As gelatin, collagen and elastin are components of extracellular 
matrix (ECM), they can mimic the ECM. These proteins are widely used 
for various tissue engineering and drug delivery applications due to their 
biocompatibility, degradability and non-immunogenicity. Various 
gelatin and collagen-based hydrogels had been explored for 3D cell 
entrapment [123] and elastin-like polypeptides had been used as 
injectable hydrogels for depot formulations [124]. 

7.1. Thiolated gelatin and collagen cross-linking 

Gelatin based hydrogels were formed by a disulfide cross-linked 
network via oxidation due to the presence of hydrogen peroxide and 
by physical interaction between gelatin chains [125]. Nevertheless, 
thiol-ene reactions are favoured for the formation of gelatin based 
hydrogels and several Michael type addition reactions have been 
developed for this purpose [126,127]. Another way explored to obtain 
gelatin based hydrogels is the thiol-yne reaction with alkyne groups 
immobilized on Pluronic providing a higher degree of cross-linking and 
a slower gelation time [128]. 

7.2. Thiolated gelatin and collagen hydrogel applications 

Both thiolated collagen and thiolated gelatin have been investigated 
to create hydrogels by disulfide bond formation as scaffold for cells or as 
promising adhesive biomaterials used for wound healing [129,130]. 
Thiolated collagen was also investigated by Samanta and co-workers to 
form injectable hydrogels for cell delivery by Michael type addition 
reaction based on thiolated collagen and PEG-maleimide. This hydrogel 
showed high self-healing properties [131]. 

Furthermore, thiolated gelatin can be cross-linked with PEG- 
diacrylate via Michael addition to create a delivery system for cells 

Fig. 11. Schematic synthesis of hydrogel via radical thiol-allylether reaction and via thiol-norbornene reaction.  

Fig. 12. Synthesis of chitosan based hydrogel via Micheal-type addition reaction cross-linking thiolated chitosan and maleimide functionalized chitosan.  
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like murine adipose derived stem cells [132] and mesenchymal stromal 
stem cells, which are able to secrete cytokines and growth factors for the 
treatment of acute or chronic injuries or illnesses [133]. Several gelatin 
based hydrogels serving as scaffold for cells were also obtain by a photo- 
initiated thiol- ene reaction [134]. Gelatin can be modified and used to 
produce an entirely gelatin based hydrogel or it can be firstly modified 
with bifunctional PEG as linker and then with cysteine and subsequently 
added to PEG-diacrylate to initiate the cross-linking by a thiol-ene re-
action under UV light in presence of Irgacure 2959 as photo-initiator. 
This hydrogel compared with simple physically incorporated gelatin 
hydrogels showed higher swelling properties, viscoelasticity and an 
improved support, attachment, adhesion and proliferation of cells 
[135]. 

Another injectable and photocurable gelatin-based hydrogel was 
recently prepared for corneal injuries repair. The hydrogel consisted of 
acrylated-gelatin and thiolated-gelatin cross-linked by a photo-initiated 
thiol-ene reaction using Irgacure 2959 as photo-initiator as shown in 
Fig. 13. 

The resulting hydrogel had a high transparency being required for 
ocular hydrogels in order to avoid blurred vision. The hydrogel was 
shown to be degraded in presence of collagenase, which is present in the 
tear fluid and its cytocompatibility was demonstrated both in vitro and 
in vivo. In vivo studies in rabbits demonstrated a faster re-epithelization 
of corneal wound in less than three days and no edema, inflammation, 
increase in intraocular pressure or any other kind of damage [136]. 

7.3. Thiolated elastin-like polypeptides 

In order to obtain elastin with a high degree of thiolation recombi-
nant elastin-like polypeptides with multiple periodic cysteine residues 
(cELP) were designed. These polypeptides were shown to form ther-
mally responsive hydrogels that display rapid gelation under physio-
logically relevant, mild oxidative conditions via intermolecular 
disulphide bond formation [137]. As peptide and protein drugs such as 
anti-HIV peptides or antigens are released from these crosslinked cELP 
hydrogels in a sustained manner [124,138,139], such injectable in situ 
crosslinking hydrogels will likely find numerous applications in drug 
delivery. 

8. Other thiomers 

8.1. Thiolated dextran 

Dextran-based hydrogels have been studied extensively for 
biomedical applications, for drug delivery and tissue engineering. The 
hydroxyl groups on the polymeric backbone of this polysaccharide can 
be easily modified in order to obtain a cross-linked network. 

In a study of Zhong and co-workers thiolated-dextran (dex-SH) was 
cross-linked with PEG tetra-acrylate (PEG-4-Acr) or with a dextran vinyl 
sulfone conjugate (dex-VS). 

Under the same conditions dex-SH with dex-VS undergo faster 
gelation compared to dex-SH and PEG-4- Acr confirming the higher 
reactivity of the vinyl sulfone group towards Michael type addition 
compared to the acrylate group. 

The same authors reported in another study about the preparation of 
a dex-VS/PEG-SH hydrogel with the limitation of fast degradation under 
physiological conditions. In comparison, hydrogels formed by dex-SH/ 
dex-VS and dex-SH/PEG-4-Acr exhibit a degradation time ranging 
from 3 to more than 21 weeks being advantageous for a prolonged 
release of proteins or for tissue engineering of cartilage [140]. 

Another thiolated dextran-based hydrogel was obtained by Michael 
addition between a thiolated dextran and Pluronic functionalized with 
either vinyl sulfone and acrylate. It is well known that VS reacts faster 
with thiol groups compared to acrylate moieties. The hydrogel was 
thermo-responsive due to the presence of Pluronic and stable up to 13 
days. In vitro studies showed a high cytocompatibility of the hydrogel 
since cells encapsulated into the hydrogel showed a comparatively high 
viability [141]. 

The same approach was used by Jukes et al. to create a hydrogel for 
cartilage repair based on thiolated dextran and tetra-acrylated poly-
ethylene glycol. In order to guarantee an efficient formation of cartilage 
tissue the authors investigated the influence of the degree of substitution 
(DS) on the degradation of the hydrogel. Hydrogels with a lower DS 
were degraded in 17–22 days, whereas hydrogels with a high DS were 
degraded slowly [142]. 

8.2. Thiolated heparin 

Heparin is an anionic polysaccharide composed of repeating di-
saccharides of (1–4)-linked glucosamine and uronic acid residues being 
well known for its anticoagulant properties. Chemically cross-linked 
heparin-based hydrogels have been used for a variety of biomedical 
applications such as for the encapsulation of cells and for tissue 
engineering. 

This hydrogel was obtained by a thiol Michael-type addition, 
involving Hep-SH and PEG diacrylate (PEG-DA). Studies on cell viability 
demonstrated the high cytocompatibility of this system [143]. 

In another study a heparin hyaluronic acid hydrogel for stem cells 
delivery was formed via thiol-ene reaction trigged by visible light using 
Eosin Y as photo-initiator. Thiolated heparin cross-linked with hyal-
uronic acid modified with methacrylate by this radical reaction. Adipose 
derived stem cells were loaded into the hydrogel showing a higher 
proliferation and adhesion compared to heparin-PEG hydrogel [144]. 

8.3. Thiolated alginate 

Alginate is an anionic polymer derived from brown algae made up of 
β-D-mannuronic acid and α-L-gluronic acid residues linked by 1,4-glyco-
sidic linkages. It has widely investigated for several biomedical appli-
cations like drug delivery, wound healing and tissue engineering 
application due to its biocompatibility and no-toxicity. It is well known 
for its ability to form an ionic cross-linked network in presence of Ca2+

[145]. 
A thiolated alginate-based hydrogel was investigated as haemostatic 

material by Meidong et al. The in situ formed hydrogel was created by a 

Fig. 13. Synthesis of gelatin based hydrogel via photo-initiated thiol-ene re-
action cross-linking thiolated gelatin and acrylated gelatin. Adapted from Li 
et al. [136] 
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disulfide bond formation by oxygen available in aqueous solution be-
tween the free thiol groups on the polymeric backbone. To demonstrate 
cytocompatibility of the hydrogel human liver cells were loaded into the 
hydrogel and more than 85% of cells were still viable after 5 days. In 
order to demonstrate the ability of the hydrogel to reduce haemostatic 
time in vivo experiments were performed on amputated rat’s tail. The 
time of haemostasis was reduced from 8.26 min to 3.24 min compared to 
dry calcium alginate and the hydrogel absorb a large quantity of blood 
[146]. 

Yin and co-workers investigated another disulfide cross-linked 
hydrogel based of thiolated alginate as scaffold for tissue engineering. 
This hydrogel was stable up to 14 days in aqueous solution and its sta-
bility depended on the degree of thiolation going hand in hand with the 
degree of cross-linking. To improve mechanical properties a composite 
alginate-chitosan hydrogel was prepared. Chitosan guaranteed the for-
mation of a more stable hydrogel due to the additional ionic interactions 
between the amino groups of chitosan and carboxyl group of alginates. 
Moreover, the addition of chitosan improved also cell adhesion and 
proliferation [147]. 

8.4. Thiolated polygalacturonic acid 

Polygalacturonic acid is a polysaccharide obtain from the demethy-
lation of pectin. It consists of repeating of α-1,4-D-galacturonic acid 
units. Thiolated PGA has been investigated by Peng et al. as matrix for 
hydrogels forming by disulfide bonds by air oxidation at pH over 8.5. 
Rosmarinic acid was loaded into the hydrogel as an anti-inflammatory 
drug and this hydrogel can be used to avoid postsurgical adhesion. In 
vitro and in vivo studies demonstrated high cytocompatibility [148]. 

8.5. Thiolated glycogen 

Glycogen is a natural polysaccharide dendrimer based on glucose 
residues linked by (1–4)-α-glucose with branches every 7–11 residues 
that are joined by (1–6)-α-glucose. Thanks to its dendritic nanostructure 
it can be used as a drug transport system ensuring a prolonged release 
and low toxicity, also because of its good biodegradability and 
biocompatibility characteristics. Glycogen is often used in drug delivery 
at the mucosal level even if it shows relatively poor mucoadhesive 
properties, resulting in a too short mucosal residence time for many 
applications. To overcome this deficiency, thiolated moieties have 
recently been introduced, resulting in improved mucoadhesive proper-
ties without losing its biocompatibility. The interaction mechanism of 
the thiolated glycogen is due to an oxidation process and thiol/disulfide 
exchange reactions between the reactive thiol groups of the polymer and 
cysteine-rich subdomains of mucus glycoproteins [149,150]. Mucoad-
hesive thiolated glycogen can improve the contact time with mucosal 
membranes resulting in a raised drug concentration at the absorption 
site and consequently enhanced drug bioavailability. 

9. Conclusion 

Since two decades thiolated polymers have attracted the attention of 
many research groups. Due to the covalent attachment of thiol groups on 
the polymeric backbone numerous properties can be improved. The 
immobilization of thiol groups on polymeric excipients interacting with 
cysteine-rich subdomains of mucus glycoproteins and keratins provides 
higher adhesive properties. Exploiting the high reactivity of thiols 
groups, thiomers have also been widely investigated for their high in situ 
gelling properties via several chemically cross-linking methods. Here, 
we explored different thiolated polymers including hyaluronic acid, 
chitosan, cyclodextrins, poly (ethylene glycol), gelatin and dextran used 
as matrix and cross-linker agents for the synthesis of three-dimensional 
cross-linked networks. Thiolated polymer based hydrogels are prom-
ising systems because of their high biocompatibility and simplicity of 
cross-linking. 

The main intent of this review is to provide an overview of the most 
significant progress made in the design of in situ formed hydrogels and 
their applications. Covalently cross-linked hydrogels based on thiomers 
can be synthetized via several synthetic routes such as disulfide bond 
formation by oxidation, thiol-disulfide exchange reactions and the more 
recent “click” chemistry including Michael-type addition reactions, 
thiol-ene and -yne reactions. Thiomers have been extensively used as 
matrix and cross-linkers for hydrogels in biomedical applications espe-
cially as scaffold for cells, as injectable materials in tissue regeneration, 
as wound healing systems and as drug and protein delivery systems. 
Despite the great progress in this field, it is still necessary to further focus 
on the commercialization of these systems in order to improve quality of 
life. 
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