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Reviewer#1, Concern # 1:  

The Topic of this paper is interesting. However, the main contribution of the paper should be Clearer, e.g. 
Compare the results with existing techniques, in terms of both accuracy/sensitivity and computation 
complexity. The Author should try to clearly demonstrate the contributions of their work and the 
effectiveness of the proposed method. 
 
Author response:  In Section 1 we have now clarified the contribution of the paper. As for the comparison 
with existing state-of-the-art techniques (namely, Isolation Forest, Local Outlier Factor and One Class SVM), 
it is already reported on the paper, in terms of Accuracy, Precision, Recall (a.k.a. sensitivity) and F1-Score in  
Figures 5-8 for synthetic datasets. As detailed on the paper, computing such measures on the real dataset is 
not feasible since the ground truth is not available. However, in Section IV.C and Figures 9-14, we carry out 
a qualitative analysis, emphasizing the capability of our method to avoid false positives and to predict 
clearly correct changes, not detected by competitor systems. We agree with the reviewer about the lack of 
a comparison in terms of running times in the previous version of the paper.  

Author action: We updated the manuscript by clarifying the contribution of the paper In Section 1. 
Moreover, we reported a comparison between ECHAD and all the competitors also in terms of the running 
times (see Section IV.C). For the sake of completeness, we also reported some comments about the 
theoretical computational complexity of ECHAD at the end of Section III. 

 

 

Reviewer#1, Concern # 2:  

what is the meaning of this abbreviation ECHAD. 
 

Author response:  We thank the reviewer for pointing out that this information was missing on the paper. 
ECHAD stands for “Embedding-based CHAnge Detection”.  

Author action: We updated the manuscript by reporting the meaning of the acronym ECHAD in the first 
occurrence in the Abstract (page 1) and in the Introduction (page 2).  

 

 

 

Reviewer#1, Concern # 3:  

What is the meaning of MPAP 
Author response:  We thank the reviewer for pointing out that this information was missing on the paper. 
The time series shown in Figure 1 are examples of typical features observed in a power grid. MPAP is 
actually the acronym of “Media Potenza Apparente Trifase” (in Italian), that corresponds to “Average 
Three-Phase Electric Power” (in English). The real-world dataset was provided by e-distribuzione S.p.A. (an 
Italian company), that reported the (abbreviated) name of such a variable in Italian.  

Author action: We updated the manuscript by changing the name of the variable shown in Figure 1, 

reporting their full name in English. 
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Reviewer#1, Concern # 4:  

There is not enough explanation about the obtain parameters which have been used in Figures (11-14). I 
would had expected a more thorough discussion here. 

 
Author response:  Figures 11-14 refer to the results obtained by the competitor systems (namely, Isolation 
Forest, Local Outlier Factor and One Class SVM). In the previous version of the paper, we reported that we 
adopted the default values suggested in their respective papers, but we agree with the reviewer about the 
need to explicitly report the parameter values used in our experiments to guarantee the self-consistency of 
the experimental evaluation. 

Author action: We updated the manuscript by explicitly reporting the parameters used for competitor 
systems (see Section IV.B). 

 

Reviewer#1, Concern # 5:  

However, it is not clear how the ECHAD was trained to perform detection multivariate time series in smart 
grids. 

 

Author response:  The method learned by ECHAD is actually represented by Di  and Di that are the mean 

and the standard deviation, respectively, of the Euclidean distance between an instance and its p nearest 
neighbors at time i, in the reduced K-dimensional feature space obtained through an embedding method 

(see Figure 2). Indeed, Di is used to compute the decision threshold Ti (see Equation 6) that, together with 

the value of Di  , is used to decide whether a new observation can be classified as a change or not, 

according to Equation 7. Note that the initial feature space is M-dimensional, where each feature 
represents a time series. Therefore, an input training matrix Wi ∈ RNi×M represents M different time series, 
each consisting of Ni time points (see the beginning of Section III.A). The detection of changes is performed 
using the whole set of features altogether (i.e., on multivariate time series), using Equations 7 (for a single 
instance) and 8 (for a window). 

We agree with the reviewer on the fact that some aspects needed to be clarified on the paper.  

Author action: We updated the manuscript by clarifying how Di  and Di are computed. In particular, in 

Section III.B of the revised manuscript, we added Equation 5 and some explanatory text that clarify how 
they are computed. Moreover, we clarified that the detection of changes exploits the whole set of features 
altogether and, therefore, identifies changes on multivariate time series (see the beginning of Section III.A). 

 

Reviewer#1, Concern # 6:  

A comparison with other techniques in terms of accuracy and sensitivity is not presented. 

 
Author response:  We apologize for the possible confusion. As we mentioned in the response to Concern 
#1, a quantitative comparison with existing state-of-the-art techniques (namely, Isolation Forest, Local 
Outlier Factor and One Class SVM) is already reported on the paper, in terms of Accuracy, Precision, Recall 
(a.k.a. sensitivity) and F1-Score in Figures 5-8 for synthetic datasets and in terms of a qualitative evaluation 
for real datasets. 

Author action: We updated the manuscript by reporting a comparison between ECHAD and all the 
competitors in terms of Precision, Recall, F1 Score and Accuracy and running times on synthetic datasets, 
and in terms of a qualitative evaluation and running times for the real dataset (see Section IV.C).  
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Reviewer#1, Concern # 7:  

the references need updates 
 

Author response:  We appreciate the reviewer’s comment. As suggested, we performed an additional 
literature review and identified some additional relevant works that deserved to be mentioned. 

 
Author action: We updated the manuscript by mentioning and referencing additional relevant articles 
concerning the identification of anomalies and changes in power grids in Section II. The added references 
do not resort to the one-class learning setting but are still relevant for the task at hand. 

 

 

Reviewer#2, Concern # 1:  

The experimental setup needs to be clarified in more detail. 

 
Author response:  In the previous version of the paper, we reported the parameter configuration for 
ECHAD and we briefly mentioned that we adopted the default values for competitor methods. We agree 
with the reviewer that this choice lacked clarity in the experimental setup. In the new version of the paper, 
we explicitly report the parameter values used in our experiments for all method considered, in order to 
guarantee the self-consistency of the experimental evaluation. 

 

Author action: We updated the manuscript by explicitly reporting the experimental setup and the values of 
the parameters used for all methods, including competitor systems (see Section IV.B). 

 
 

Reviewer#2, Concern # 2:  

The reason for shortlisting the three reference method should be explained more clearly. 
 
Author response:  Thank you for the interesting comment. Our analysis of the literature reveals that one-

class classification methods appear the most suitable class of approaches to address the task of interest in 

our study. This choice is motivated by the lack of availability of positively labeled data representing change 

points. In particular, one-class classification methods offer the flexibility to learn a model from an initial 

data distribution and are able to flag data that significantly differ from the learned distribution. In our 

experiments, we choose three competitor methods in this class of methods (One-class SVM, Isolation 

Forest, Local Outlier Factor) which are widely adopted in recent literature in a variety of domains, and are 

shown to provide highly accurate predictions. 

 

Author action: We updated the manuscript by clarifying our rationale behind the choice of the competitor 
methods used in the experiments. In the new version of the paper, this discussion is incorporated in 
Section IV.B. 
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Reviewer#2, Concern # 3:  

The manuscript needs a review of grammar. e.g.  
Page 3 line 27 column 1- Only one class of instances is actually know... and column 2 line 29. 
 

Author response:  We corrected the language issues highlighted by the reviewer. Moreover, we performed 
a proofreading iteration taking advantage of the support of a native English speaker. The new version of 
the manuscript was modified by the authors to incorporate his remarks. 

 
Author action: We updated the manuscript by correcting the language issues highlighted by the reviewer, 
in addition to other minor issues. These parts are highlighted in the new version of the manuscript. 

 

 

Reviewer#3, Concern # 1:  

In experimental analysis the authors stated that ECHAD is actually more accurate, since its robustness to 
false detection is not due to a generally higher conservatives is not sufficient to observe the behavior of our 
system in real scenarios. Need more justification for this statement. Valid justifications of experimental 
results are required. 
 

Author response: Thank you for the interesting comment. In the paper, a quantitative comparison of 
ECHAD with respect to existing state-of-the-art techniques (namely, Isolation Forest, Local Outlier Factor 
and One Class SVM) is reported in terms of Accuracy, Precision, Recall (also known as sensitivity) and F1-
Score in Figures 5-8 for synthetic datasets. These results show that the competitors that achieve high 
precision are strongly conservative, with the result of losing some relevant changes. On the contrary, such a 
phenomenon is not observed on the results returned by ECHAD, which leads to strong results in terms of 
both Precision and Recall. 

As detailed on the paper, computing such measures on the real dataset is not feasible since the ground 
truth is not available. However, one important observation from our qualitative analysis is that, in addition 
to being more conservative than competitor methods (i.e., ECHAD avoids false positives), it also predicts 
clearly correct changes, that are not detected by the other methods. In the new version of the paper, we 
better present our qualitative results and emphasize this capability presented by ECHAD.  

 
Author action: We updated the manuscript by improving the discussion in Section IV.C, related to Figures 
9-14. Specifically, we emphasized the capability of ECHAD to avoid false positives and to predict clearly 
correct changes, not detected by competitor systems. We describe in qualitative terms two scenarios 
identified by ECHAD. In the former, a change in the offset indicates that the power grid is not working 
properly. In the latter, ECHAD identifies a scenario with a possible phase difference between voltage and 
current. Both these relevant scenarios were missed by all the competitor systems. 

 

 

 

Note: References suggested by reviewers should only be added if it is relevant to the article and makes it 
more complete. Excessive cases of recommending non-relevant articles should be reported to 
ieeeaccesseic@ieee.org 
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ECHAD: embedding-based change
detection from multivariate time series in
smart grids
MICHELANGELO CECI1,3,4, ROBERTO CORIZZO2 (Member, IEEE), NATHALIE JAPKOWICZ2,
PAOLO MIGNONE1,4 and GIANVITO PIO1,4
1Department of Computer Science, University of Bari Aldo Moro, Via Orabona, 4, 70125 Bari (BA), Italy (e-mail: name.surname@uniba.it)
2Department of Computer Science, American University, 4400 Massachusetts Ave NW, Washington, DC 20016, United States (e-mail: rcorizzo@american.edu,
japkowic@american.edu)
3Dept. of Knowledge Technologies, Jožef Stefan Institute, Ljubljana, 1000, Slovenia
4Big Data Laboratory - National Interuniversity Consortium for Informatics (CINI), Roma, Italy

Corresponding author: Michelangelo Ceci (e-mail: michelancelo.ceci@uniba.it).

ABSTRACT Smart grids are power grids where clients may actively participate in energy production,
storage and distribution. Smart grid management raises several challenges, including the possible changes
and evolutions in terms of energy consumption and production, that must be taken into account in order
to properly regulate the energy distribution. In this context, machine learning methods can be fruitfully
adopted to support the analysis and to predict the behavior of smart grids, by exploiting the large amount of
streaming data generated by sensor networks. In this paper, we propose a novel change detection method,
called ECHAD (Embedding-based CHAnge Detection), that leverages embedding techniques, one-class
learning, and a dynamic detection approach that incrementally updates the learned model to reflect the
new data distribution. Our experiments show that ECHAD achieves optimal performances on synthetic data
representing challenging scenarios. Moreover, a qualitative analysis of the results obtained on real data of a
real power grid reveals the quality of the change detection of ECHAD. Specifically, a comparison with state-
of-the-art approaches shows the ability of ECHAD in identifying additional relevant changes, not detected
by competitors, avoiding false positive detections.

INDEX TERMS Change detection algorithms, smart grids, one-class learning, neural networks, embedding

I. INTRODUCTION

POWER grids are complex systems consisting of gen-
eration, transmission, and distribution infrastructures.

They represent an important evolution of power grids, where
clients are not necessarily passive consumers but have the
opportunity to actively participating in the grid, by produc-
ing energy from renewable sources and by storing energy
through batteries or alternative systems.

One of the most relevant challenges in the context of
smart grids is represented by possible changes and evolu-
tions in terms of consumption and production, also due to
the influence of some uncontrollable factors. In particular,
the production of energy from renewable sources is inher-
ently characterized by instability issues due, for example, to
weather conditions. This uncertainty may negatively impact
the performance of analytical tools used in power grids for
scheduling, planning and regulation purposes.

Additional sources of changes in power grids include

variations in the power load as well as the need to adequate
the infrastructure to new scenarios (e.g., the installation of
car charging stations), that may cause a significant increase
of the concurrent consumption of energy, as well as changes
in the voltage measured on specific network components.

In this context, machine learning methods can provide
significant support in analyzing, optimizing and predicting
the behavior of such complex systems, by exploiting the large
amount of streaming data generated by sensor networks.
Moreover, being able to detect changes from streaming data
related to multiple variables (i.e., multivariate time series -
see Figure 1) can enable the system to provide prompt alerts
that can suggest maintenance activities in a timely manner.

However, the identification of such changes and evolutions
in smart grids poses three main challenges:
• sparse and isolated observed peaks should not affect

the detection of changes, namely, the system should be
robust to possible outliers;
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Ceci et al.: ECHAD: embedding-based change detection from multivariate time series in smart grids

FIGURE 1. A graphical representation of multiple time series corresponding to
real data possibly observed in a power grid.

• the amount of available labelled examples is very poor;
• multivariate time series, consisting of a huge number of

observed variables, may introduce collinearity phenom-
ena [1] due to possible variable correlation, that may
compromise the detection accuracy.

Such challenges make the direct application of classical
supervised methods unfeasible, and even semi-supervised
methods may appear inadequate due to the strongly un-
balancing between the amount of labelled and unlabelled
examples. Moreover, in some novel real-world scenarios
like that of smart grids, critical conditions or changes have
rarely (sometimes never) been observed. Such a situation
suggests that the most proper way to tackle this problem is
the adoption of approaches able to model the standard/regular
scenario and to evaluate the presence of changes according to
the coherence with such a model.

In this context, approaches based on one-class learning
[2]–[6] find their natural application, since the built model is
fitted on one scenario (the regular one) and can subsequently
be exploited to detect changes.

Following this line of research, in this paper we propose
ECHAD (Embedding-based CHAnge Detection), a novel un-
supervised change detection method able to analyze stream-
ing data generated by sensors located in smart grids. ECHAD
leverages embedding techniques and a one-class learning
approach. The former allow us to extract a new feature space
that better represents the inherently complex content of mul-
tivariate time series data for the subsequent learning task, also
mitigating the collinearity phenomena by incorporating latent
interactions among features. The latter (i.e., the proposed
one-class learning approach) allows us to analyze data in an
unsupervised manner, using only explicit knowledge of the

standard/regular behavior of power grids. Finally, ECHAD
adopts a novel change detection approach which identifies
changes and updates the model accordingly, in order to reflect
the new data distribution.

The major contribution of the work can be summarized as
follows:
• An investigation of the possible benefits provided by an

innovative method that synergically combines embed-
ding techniques and a novel one-class learning approach
for tackling the change detection task in multivariate
time series data;

• A novel strategy to dynamically adapt the model when
changes are detected, in the presence of a concept drift;

• A comprehensive experimental evaluation of the pro-
posed ECHAD, including its parametrization;

• Empirical comparison with state-of-the-art methods on
both synthetic and real-world datasets related to power
grids.

The rest of the paper is organized as follows. In Section
II we discuss the work related to this paper, from both appli-
cation and methodological point of views; in Section III we
describe in detail our proposed method ECHAD; in Section
IV, we describe the results obtained on both synthetic and
real-world datasets, showing the competitiveness of ECHAD
with respect to state-of-the-art methods; finally, in Section
V, we draw some conclusions regarding the applicability of
ECHAD as a powerful tool in analytical tasks for smart grids,
and outline possible future works.

II. BACKGROUND
Several machine learning approaches have been proposed in
the literature to support analytical tasks in the energy field.
Among them, significant efforts have been devoted to the
forecasting of the energy produced by plants in smart grids
[7]–[11]. Solving this task is particularly important to support
grid power balancing, especially when the energy is produced
by renewable sources. At the same time, accurate predictions
of the energy produced at a specific time horizon may be
useful for other scenarios, such as the optimization of energy
trading operations [12], [13].

Recently, research activities have been directed towards
approaches for the simultaneous forecasting of the energy
produced in multiple plants, mainly exploiting time series
analysis [7], autoregressive (AR) models [8], predictive clus-
tering models [9], artificial neural networks (ANNs) [10], or
SVM classifiers [11]. Recent studies [10], [14]–[18] have
also investigated the possible exploitation of spatial and
temporal autocorrelation phenomena to improve forecasting
accuracy. For example, in [17], the authors exploit geo-
distributed weather observations in the neighborhood of wind
plants, while in [14], the authors extract statistical indica-
tors that model the spatio-temporal autocorrelation between
plants for each descriptive feature.

The common aspect among these solutions consists of the
possible exploitation of additional factors, including tempo-
ral and spatial closeness among multiple plants, as well as
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Ceci et al.: ECHAD: embedding-based change detection from multivariate time series in smart grids

external uncontrollable factors (e.g., measured or predicted
weather conditions). The main motivations for taking into
account these additional factors come from the possible
simultaneous changes and evolutions of the behavior that can
be observed in plants working in similar conditions (e.g.,
spatially closed and subject to similar weather conditions).
These motivations also justify the need to detect and model
changes in the distribution of some variables (also known as
concept drift [19] [20] in the literature), that may be fruitfully
exploited to timely predict changes in similar/related plants.

The focus of the present paper is specifically in this area
of research. In particular, we propose a method to detect
changes in time series, possibly coming from sensors. As in-
troduced in Section I, our approach works in an unsupervised
setting and models the standard/regular scenario to properly
detect changes in the data distribution.

In this context, existing methods mostly rely on the one-
class learning setting. Alternative methods are based on
Long-Short Term Memory neural networks [21], Empirical
Mode Decomposition [22], Symbolic Dynamic Filtering [23]
and the Margin Setting Algorithm [24], although they focus
primarily on the detection of anomalies and attacks in the
smart grid, rather than generic changes.

One-class learning was first proposed in [25] and sub-
sequently studied in [26] and [27]. Differently than binary
(or multi-class) classification approaches, that learn to dis-
criminate between positive and negative examples (or among
multiple classes), one-class learning methods focus on mod-
eling one single class of examples and identify whether
unseen examples belong to the learned class or not. A similar
rationale has found application also in outlier detection [28],
novelty detection [29] and positive-unlabelled learning [30]
approaches.

It is important to mention that, in classical supervised set-
tings, standard (binary or multi-class) classification methods
easily outperform one-class learning approaches in discrim-
inating among the possible classes [31]. However, there are
specific scenarios in which one-class learning approaches are
the most appropriate, or even the only applicable solutions.
Such scenarios include situations in which:
• Only one class of instances is actually known, while

other possible classes are not known a-priori.
• The dataset at hand is strongly unbalanced. In this case,

most standard approaches may be biased towards the
majority class.

• The goal is explicitly to detect rare, particular situations.
When the task under consideration is the detection of
changes, as in the specific application domain considered
in this paper, the stable/regular situation is strongly over-
represented in the available dataset, and only a small fraction
of instances representing the changes is actually available.
This aspect confirms that the adoption of a one-class learning
approach is the most suitable solution.

In the literature, several one-class classification methods
have been proposed. Among them, it is worth mentioning
One-Class SVM [2], [32]–[35], Isolation Forest [3], [36],

[37], One-Class Local Outlier Factor (LOF) [4], [38], [39]
and approaches based on autoencoders [5], [6].

One-Class SVM [2], [32] is an unsupervised learning
algorithm that learns a decision function for the detection of
changes. One-Class SVM learns such a function exclusively
from instances of a single class and classifies new instances
as similar or different to the training set. One recognized
limitation of this approach is the possibility to deal with
high-dimensional data, and its sensitivity to the presence of
outliers in training data [40].

LOF [4] measures the local density deviation of a given
instance concerning its neighbors. In particular, the LOF
score of an instance is computed as the ratio of the average
local density of its k-nearest neighbors, and its own local
density. Instances appearing similar to the training data dis-
tribution are expected to exhibit a local density similar to
that of its neighbors. On the contrary, instances representing
a change in the distribution are expected to show a much
smaller local density. However, when this locality property
is not present/satisfied in the application domain at hand, the
performance of these methods may be compromised.

Isolation Forest [3] is a tree-based method that isolates
instances that appear different than the training data distri-
bution. The algorithm recursively partitions the sample of
instances by randomly selecting a feature and a split value.
Instances that require a small number of splits to be isolated
in leaf nodes are more likely to represent changes or outliers
with respect to the training data distribution. Isolation Forest
shows a low time complexity and low memory requirements.
However, high-dimensional data may affect their detection
performance. Moreover, its decision boundaries are limited
to vertical and horizontal shapes.

Approaches based on autoencoders learn the data dis-
tribution of one-class data through special kinds of neural
networks. Subsequently, the learned distribution is exploited
to determine whether new instances belong to the same
known distribution or differ from it significantly. They offer
the opportunity to learn non-linear relationships in the data,
by exploiting non-linear activation functions in the hidden
layers. However, existing approaches [5], [6], [16] are mostly
focused on identifying point anomalies, and do not address
the problem of identifying changes in the data distribution,
which is the main focus of this study.

Relevant surveys presenting one-class classification meth-
ods include [41], [42], and [43], whereas surveys discussing
anomaly or outlier detection methods that include one-class
classification can be found in [44] and [45].

Compared with such existing approaches, ECHAD has the
advantage to properly deal with possible collinearity issues of
multi-variate time series, thanks to the embedding approach
adopted, and to the capability of dynamically adapting the
model when changes are detected, in the presence of a
concept drift.
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FIGURE 2. A graphical representation of the proposed method implemented
in ECHAD

III. THE METHOD ECHAD
In this section, we describe our novel approach ECHAD,
an embedding-based change detection algorithm that is able
to detect changes in time series data generated by smart
grids. We stress that the peculiarity of our approach is the
combination of an embedding solution with a one-class learn-
ing method that is able to dynamically update the learned
model. These aspects allow ECHAD to analyze complex and
dynamic multivariate time series and to identify changes in
the data distribution, leveraging exclusively the knowledge
of the standard/regular behavior of the smart grid.

ECHAD consists of two main phases, namely i) learning
an embedding model from historical time series data falling
into a specific interval (time window); ii) detecting changes
on newly observed data, using a streaming test-and-retrain
workflow. A graphical overview of the general workflow
followed by ECHAD is depicted in Figure 2, while in the
following subsections, we explain its main phases in detail.

A. LEARNING EMBEDDING MODELS
Let Wi be a time window consisting of M time series, cor-
responding to M features measured over Ni time points. In
this phase, we learn a reduced, latent, K-dimensional feature
space, with K � M . More formally, the time series data
of the time window can be represented as a matrix Wi ∈
RNi×M , and the goal is to learn a function γi: RM → RK ,
that maps each M -dimensional time point of a time series

to the reduced, K-dimensional feature space. The function,
although learned from the time window Wi, can naturally be
applied to other, also unseen, time points in order to project
their features into the reduced feature space.

To perform this step, any approach to identify a reduced
feature space can be plugged into our system. In this pa-
per, we consider the classical Principal Component Analysis
(PCA) [46] and the more recent Stacked Auto-encoders [47],
[48], for which we provide some details in the following.

PCA is one of the most popularly known dimensionality
reduction technique, which effectiveness has been shown in
several scientific fields, ranging from chemistry to geology
[49]–[51]. Specifically, PCA estimates the correlation among
the variables and extracts a reduced set of features that are
as much as (linearly) uncorrelated as possible. This transfor-
mation is performed such that each extracted feature, called
principal component, explains the largest possible amount of
data variance, with the constraint of being orthogonal to all
the previously extracted features. In this way, PCA extracts
a reduced representation of the data, that explains a given
overall percentage of data variance, possibly discarding the
noise. Formally, given the input matrix Wi ∈ RN×M , PCA
computes the covariance matrix C ∈ RM×M , from which
it extracts the first K eigenvectors, associated to the largest
eigenvalues, obtaining the matrix Zi ∈ RM×K . The matrix
Zi can finally be used to compute the embedding of a new
time point w ∈ RM as follows:

γi(w) = ZTi · w (1)

While PCA properly deals with collinearity problems thanks
to the orthogonality of the extracted features, its main limita-
tion is in its ability to catch only linear dependencies among
variables. Such a limitation also defines one of the strong
points of an alternative approach that has recently been pro-
posed in the literature, namely stacked auto-encoders. They
are special kinds of neural networks, whose main purpose
is to reconstruct a given data distribution with the lowest
possible reconstruction error. The dimensionality reduction is
achieved by exploiting bottleneck features extracted at their
hidden layers [52].

Thanks to the stacked structure, each layer represents data
at a different abstraction level. For example, in the domain
of images, the first layer may represent edges, while deeper
levels may represent contours or corners of objects.

More formally, an auto-encoder aims at learning two func-
tions, namely the encoding function e : RM → RK and the
decoding function d : RK → RM , such that:

〈ei(·), di(·)〉 = arg min
〈ei(·),di(·)〉

‖Wi − di(ei(Wi))‖2 (2)

It is noteworthy that the encoding function e can be directly
used as an embedding function for new time points w ∈ RM ,
namely:

γi(w) = ei(w) (3)

As previously mentioned, auto-encoders are potentially able
to catch non-linear relationships among features. This is
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achievable by adopting non-linear functions as activation
functions in their hidden layer. On the other hand, there is
no guarantee on the orthogonality of the extracted features,
since they are identified on the basis of the reconstruction
error. Therefore, collinearity issues may still be present in
the reduced space.

B. CHANGE DETECTION
Let Wi ∈ RNi×M be the time window currently designated
to train the model. After exploiting it to learn the embedding
function γi, we compute W ′i ∈ RNi×K by applying γi to
each time series in Wi. More formally:

W ′i = Γi(Wi) =


γi(Wi[1, ∗])
γi(Wi[2, ∗])

...
γi(Wi[Ni, ∗])

 (4)

where Wi[j, ∗] represents the whole j-th row (i.e., the j-th
time series) of the matrix Wi. Intuitively, Γi(·) represents the
learned model valid at time i.

Then, we use W ′i to compute Di and σDi, which are
the mean and the standard deviation, respectively, of the
Euclidean distance between an instance and its p nearest
neighbors, in the reduced K-dimensional feature space.
Formally, let: x ∈ RK be a training instance belonging to
Ni and Neigh(x) be the set of the p nearest neighbors of
x. Then:

Di =
1

p

∑
q∈Neigh(x)

eucl_dist(x, q)

σDi =

√√√√1

p

∑
q∈Neigh(x)

(eucl_dist(x, q)−Di)
2

(5)

where eucl_dist(a, b) is the Euclidean distance between a
and b. Di and σDi allow us to estimate the data distribution,
and to define a threshold Ti that is exploited to detect if
future observations deviate significantly from the current data
distribution. The threshold Ti is calculated using a τ -sigma
rule as follows:

Ti = τ · σDi (6)

where τ is a user-defined parameter.
When new data arrive, belonging to a new time window

Wi+1 ∈ RNi+1×M , we compute W ′i+1 by exploiting the
previously learned embedding function. Formally, following
Equation (4), we compute W ′i+1 as W ′i+1 = Γi(Wi+1).

Using W ′i+1, for each time series (i.e., row of the matrix)
w ∈ W ′i+1

1, we compute Dw
i+1 that is the mean of the

Euclidean distance between w and its p-nearest neighbors.

1Here w is a time series of the window, namely a row of the matrix.

Using such a measure, we consider an instance w as a change
(or not) when the following function is 1 (or 0):

c(w) =

{
1 if (Dw

i+1 > Di + Ti) ∨ (Dw
i+1 < Di − Ti)

0 otherwise
(7)

It is noteworthy that such a change is defined at an instance
level. Considering it as the final output of our detection
approach would lead to being highly sensitive to outliers and
spurious peaks. To overcome this issue, we work at the level
of time window, and consider it, i.e. the window, as a change
if more than a given ratio cr of instances are detected as a
change. Formally:

C(Wi+1) =


1 if

 ∑
w∈Wi+1

c(w)

 > (Ni+1 · cr)

0 otherwise

(8)

Independently of the output of C(Wi+1), ECHAD adapts the
model representing the data distribution of regular scenarios,
leading to a new threshold Ti+1. In particular, if a change is
not detected, the embedding function is updated considering
a merged time window Wi ∪ Wi+1. Note that, following
the mixed windows model [53], Wi can be either the single
window preceding Wi+1, or a wider window obtained by
merging multiple previous windows, when no change was
detected (see Figure 3). On the contrary, if a change is
detected, previous windows are discarded and the embedding
function is re-learned from scratch only from Wi+1.

This strategy allows ECHAD to simultaneously be robust
to the presence of outliers and to properly adapt to new data
distributions for proper detection of subsequent changes.

A final remark regards the computational complex-
ity of ECHAD. This can be easily computed by
summing up the complexity of the embedding phase
(O(Ni ·M2 +M3) for PCA and O(Ni ·M2) for au-
toencoders), the complexity of identifying the p neigh-
bors for each instance (O(Ni · logNi), assuming to use
a tree-based structure), and the complexity of comput-
ing Di, σDi and Ti (O(p ·K ·Ni), according to Equation
5). Therefore, the overall time complexity of ECHAD is
O(Ni ·M2 +M3 +Ni · logNi + p ·K ·Ni) for the variant
based on PCA and O(Ni ·M2 +Ni · logNi + p ·K ·Ni)
for the variant based on autoencoders. If we assume that
M2 > logNi and M2 > p ·K, we have that the total time
complexity is as follows: O(Ni ·M2 +M3) for the variant
based on PCA and O(Ni ·M2) for the variant based on
autoencoders.

IV. EXPERIMENTS
In this section, we present the experiment for the evaluation
of ECHAD. First, we introduce the adopted datasets and the
experimental setting, together with the considered state-of-
the-art competitor systems. Finally, we show and discuss the
obtained results.
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t

t

No change detected
Training window extended

Change detected
Retraining from the last window

FIGURE 3. A graphical representation of the adopted mixed windows model.
The schema shows the evolution of the training (green) and testing (yellow)
windows over time. When no changes are detected, the training window is
extended over time (see the top part of the figure). When a change is
detected, the last testing window becomes the new training window (see the
bottom part of the figure).

A. DATASETS

We performed experiments with five different datasets. The
first four datasets are synthetically generated and represent
different change detection scenarios that are relevant to
power grids. The fifth dataset consists of real-time series
observed in a real power grid and allows us to observe the
behavior of our system in real scenarios.

The synthetic datasets have been generated by considering
5 multivariate (20 variables) Gaussian distribution of 2, 500
time points, with µ ∈ {10, 20, 35, 80, 110} and a varying
standard deviation σ ∈ {5, 8, 10, 12}. The four resulting
datasets represent an increasing level of complexity. Indeed,
datasets with a low standard deviation (i.e., σ ∈ {5, 8})
are visibly characterized by narrow Gaussian curves (see
Figure 4 (a) and (b)), which potentially facilitate the change
detection task due to the weak overlap among them. On
the contrary, datasets with a larger standard deviation (i.e.,
σ ∈ {10, 12}) are characterized by wider Gaussian curves
(see Figure 4 (c) and (d)), which reasonably lead to a higher
difficulty in the change detection task due to the significant
overlap among the Gaussian curves.

The real-world dataset has been provided in the context
of the project “ComESto - Community Energy Storage”
(http://www.comesto.eu/) for the Italian energy distribution
network, that is managed by e-distribuzione S.p.A. The data
consist of 200 variables measured by sensors located into
medium voltage/low voltage (MV/LV) transformer rooms,
related to 131,374 time points falling in the period from
November 1, 2019 to December 19, 2019.

σ = 5

σ = 8

σ = 10

σ = 12

FIGURE 4. A graphical representation of the synthetic datasets, with different
values of the standard deviation σ.

B. EXPERIMENTAL SETUP

As discussed in Section II, the most suitable class of ap-
proaches to address the task of interest in our study is that
of one-class classification methods. Indeed, they offer the
flexibility to learn a model from an initial (regular) data dis-
tribution and are able to flag data that significantly differ from
the learned distribution. For this reason, in order to evaluate
the performance obtained by ECHAD, in our experiments we
considered three state-of-the-art competitor methods falling
in this class, namely One-Class SVM [2], [33]–[35], Isolation
Forest [3], [36], [37], and LOF [4], [38], [39], which are
widely adopted in the recent literature, and are shown to
provide highly accurate predictions.

After a preliminary evaluation, their parameters were set to
the values suggested in their respective papers. In particular,
for Isolation Forest, we set: the number of base estima-
tors in the ensemble n_estimators = 100; the contamina-
tion of the dataset, i.e., the proportion of expected outliers,
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contamination = 10%; the number of features to draw at
random for each base estimator max_features = M , i.e.,
the whole set of features. For LOF, we set: the number of
neighbors to use for k-neighbors queries n_neighbors = 2;
Minkowski measure as distance measure. For One-Class
SVM, we set: the coefficient of the Radial Basis Function
(RBF) kernel gamma = 0.1.

As regards ECHAD, for the autoencoder we used the
LBFGS optimizer, with the objective of minimizing the
reconstruction error on training data. We set the maximum
number of training epochs to 500 and the minimum reduction
of the training error between two subsequent epochs, used
as early stopping criterion for the learning phase, equal to
10e−5. The number of hidden layers of the auto-encoder
architecture is set to 3, which leads to an architecture of 5
total layers that takes input data and performs two stages of
encoding and decoding. After preliminary experiments, we
set other parameter values as follows:

• The number of neighbors considered for the identifica-
tion of the k-nearest neighbors has been set to p = 100;

• The dimensionality of the reduced embedding space has
been set to K = 5;

• A window is considered to represent a change if it
contains at least 70% of data instances identified as a
change, namely (cr = 0.7);

• τ = 1, which means that an instance is considered as
a change if it differs from the mean observed in the
training window of at least σDi (see Equation (6));

For the synthetic datasets, the size of the testing window
has been set to Ni+1 ∈ {25, 50, 75}, while the size of the
first training window has been set to the double of the size
of the testing window, namely N1 = 50, N1 = 100 and
N1 = 150, respectively. For the real dataset, considering the
larger amount of data points, we considered Ni+1 = 190
(approximately 1.5 hours) and N1 = 750 (approximately 6
hours). These ranges of values have been suggested by the
domain experts, participating in the project.

For the synthetic datasets, where the ground truth is
known, the performances of the considered systems have
been evaluated in terms of Precision, Recall, F-Score and
Accuracy, while for the real dataset, the performances have
been evaluated from a qualitative point of view, involving an
expert in the evaluation.

C. RESULTS AND DISCUSSION
The results on the synthetic datasets show that ECHAD com-
bined with PCA (denoted as ECHAD-PCA) achieved the best
results by catching correctly all the windows representing
changes (see Figures 5 - 8). ECHAD combined with autoen-
coders (denoted as ECHAD-AUTOENC) returned some false
detections only in the configuration presenting the largest
window size (i.e., N1 = 150 and Ni+1 = 75). This result
depends on the challenging scenario of catching a change
in data with a large training window, that presents multiple
heterogeneous data distributions (see Figure 4). However, in

a real setting, training the model on a single data distribution
is a reasonable assumption that limits the occurrence of false
positives. Under this condition, the method correctly identi-
fies changes and is re-trained using the new data distribution.

Comparing the results with those obtained by competitors,
it is clear that in most cases, ECHAD outperforms them us-
ing both embedding-based models (PCA and autoencoders).
Moreover, the initial intuition about the low difficulty in
detecting changes on the first dataset (σ = 5) is confirmed,
since it consists of four non-overlapped and narrow Gaussian
curves. On the other hand, when the dataset presents over-
lapping and large Gaussian curves (i.e., σ ∈ {8, 10, 12}),
the task became harder and induced the competitors to worse
results. Going into detail, we can observe that ECHAD-PCA
achieved an F1-score equal to 1.0 in all the situations, while
different competitors acted differently in terms Precision and
Recall. In particular, we can observe that all the methods
achieved a precision of 1.0, meaning that they did not pro-
duce false positive detections, but the measured Recall is very
low in some cases (see OneClass SVM and LOF).

This means that such a high precision was achieved
through a strongly conservative strategy, that led to losing
some relevant changes. On the contrary, such a phenomenon
is not observed on the results returned by ECHAD, which led
to strong results in terms of both Precision and Recall.

A comparison in terms of running times revealed that
ECHAD was able to complete every single run on average in
6 minutes; OneClass SVM required on average 2.5 seconds;
LOF required on average 5 seconds; Isolation Forest required
on average 6.5 minutes. Although OneClass SVM and LOF
show significantly lower running times than ECHAD and
Isolation Forest, their results, as already shown in Figures 5-
8, are much worse. Note that ECHAD simultaneously shows
higher Precision, Recall, F1 Score and Accuracy, and lower
running times with respect to Isolation Forest that, in these
experiments, appears to be the strongest competitor.

As regards the analysis of the real dataset, a quantitative
evaluation was actually not feasible, due to the lack of the
ground truth. In this case, we show a graphic representation
of the time windows that ECHAD correctly identified as
changes, that were missed by all competitor methods. We
focus on two time series that are well known to be char-
acterized by changes in power grids, namely, three-phase
offset angle and three-phase total reactive power. The first
time series is considered important since a change in the
offset (ideally, the offset should be close to 120 degrees)
indicates that the network is not working properly. Whereas,
the second time series indicates a possible phase difference
between voltage and current. These results correspond to
real scenarios of changes in a power grid and, therefore,
are highly important to detect, in order to provide alerts and
trigger timely maintenance activities.
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W1 = 150,Wi+1 = 75

W1 = 100,Wi+1 = 50

W1 = 50,Wi+1 = 25

FIGURE 5. F1 Score, Accuracy, Precision, and Recall measured on the first
synthetic datasets (σ = 5).

W1 = 150,Wi+1 = 75

W1 = 100,Wi+1 = 50

W1 = 50,Wi+1 = 25

FIGURE 6. F1 Score, Accuracy, Precision, and Recall measured on the
second synthetic datasets (σ = 8).

W1 = 150,Wi+1 = 75

W1 = 100,Wi+1 = 50

W1 = 50,Wi+1 = 25

FIGURE 7. F1 Score, Accuracy, Precision, and Recall measured on the third
synthetic datasets (σ = 10).

W1 = 150,Wi+1 = 75

W1 = 100,Wi+1 = 50

W1 = 50,Wi+1 = 25

FIGURE 8. F1 Score, Accuracy, Precision, and Recall measured on the fourth
synthetic datasets (σ = 12).
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FIGURE 9. Examples of time windows representing a change (in green),
identified by ECHAD but not by Isolation Forest and LOF for three-phase offset
angle.

FIGURE 10. Examples of time windows representing a change (in green),
identified by ECHAD but not by Isolation Forest and LOF for three-phase total
reactive power.
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FIGURE 11. Examples of false positive detections (in red) returned by
Isolation Forest, that were not returned by ECHAD, for three-phase offset
angle.

FIGURE 12. Examples of false positive detections (in red) returned by
Isolation Forest, that were not returned by ECHAD, for three-phase total
reactive power.
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FIGURE 13. Examples of false positive detections (in red) returned by LOF,
that were not returned by ECHAD, for three-phase offset angle.

FIGURE 14. Examples of false positive detections (in red) returned by LOF,
that were not returned by ECHAD, for three-phase total reactive power.
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Since ECHAD-PCA achieved the best results on synthetic
datasets, we considered this variant for the analysis of real
data. In Figures 9 and 10, we graphically emphasize in green
the windows that appear to be correctly flagged as changes
by ECHAD, that were missed by the competitors. Such situ-
ations clearly represent false negatives for the competitors.

On the other hand, in Figure 11-12 and 13-14, we empha-
size in red the time windows that appear to be incorrectly
flagged as changes by Isolation Forest and LOF, respectively,
that were correctly considered by ECHAD as stationary.
These cases clearly represent false positives for competitor
approaches. As concerns One-Class SVM, we do not report
the results since it appeared to be too sensitive, with the effect
of identifying many changes (and high false positive rate).

Although we cannot compute specific performance metrics
on the real dataset due to the lack of ground truth, we can
note that, out of a total of 687 windows, ECHAD detected 77
windows as a change, Isolation Forest detected 87 windows,
LOF detected 77 windows and One-Class SVM detected
all the 687 windows. Such results may lead to observe that
ECHAD is more conservative than competitors. However, it
is noteworthy that it also correctly identified several changes
that were ignored by competitors (see Figures 9 and 10).
This means that ECHAD is actually more accurate, since
its robustness to false detections is not due to a generally
higher conservativeness. This is also confirmed by the pre-
vious analysis of synthetic data (see Figures 5-8), where we
observed that being conservative is not a sufficient condition
that systematically leads to high-quality change detection.

The obtained results confirm our initial intuitions: The
proposed method ECHAD, thanks to the adopted embedding
approach and to the dynamic update of the model, is able to
correctly detect changes in time series generated by sensors
located in smart grids and to properly adapt the model
according to such changes, limiting the number of false
positives and providing high-quality detections that were not
identified by competitors and that, according to a manual
visual inspection by the experts, appear to be realistic.

A comparative analysis in terms of running times shows
analogous phenomena to those observed on synthetic
datasets. In particular, ECHAD required an average of 9 min-
utes; One-Class SVM required an average of 6 seconds; LOF
required an average of 3 minutes; Isolation Forest required an
average of 8.5 minutes. In conclusion, ECHAD outperformed
Isolation Forest in terms of accuracy with similar running
times, while the other competitors, even if showed lower
running times, obtained significantly worse performances in
terms of accuracy.

V. CONCLUSION
In this paper, we proposed ECHAD, a novel unsupervised
change detection method able to analyze streaming data
generated by sensors located in smart grids. The embedding
techniques we implemented in ECHAD allow us to extract
and exploit a new feature space that better represents the
inherent complexity of multivariate time series, also mitigat-

ing collinearity phenomena and catching latent interactions
among features. On the other hand, the proposed one-class
learning approach, supported by a novel change evaluation
method and a dynamic strategy to update the model, allow
ECHAD to identify changes accurately.

Our experimental evaluation showed that, compared to
three state-of-the-art methods, ECHAD achieves optimal
change detection performance on synthetic data, also in
challenging scenarios that present a high degree of over-
lap between evolving data distributions. Moreover, ECHAD
showed high-quality results on real data observed in a real
power grid. In particular, it detected several changes in the
data, that were qualitatively confirmed and that were not
detected by competitors. On the other hand, contrary to the
competitors, ECHAD was robust to false positive detections.

As future work, we plan to integrate some existing tech-
niques tailored for modeling time series, such as Long Short
Term Memory (LSTM) neural networks, due to their capa-
bility of being well-suited for sequential data. In addition,
we aim to deeply assess the influence of the parameters on
the results, and to generalize our method for solving change
detection tasks with time series data in other application
domains.
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ABSTRACT Smart grids are power grids where clients may actively participate in energy production,
storage and distribution. Smart grid management raises several challenges, including the possible changes
and evolutions in terms of energy consumption and production, that must be taken into account in order
to properly regulate the energy distribution. In this context, machine learning methods can be fruitfully
adopted to support the analysis and to predict the behavior of smart grids, by exploiting the large amount of
streaming data generated by sensor networks. In this paper, we propose a novel change detection method,
called ECHAD (Embedding-based CHAnge Detection), that leverages embedding techniques, one-class
learning, and a dynamic detection approach that incrementally updates the learned model to reflect the
new data distribution. Our experiments show that ECHAD achieves optimal performances on synthetic data
representing challenging scenarios. Moreover, a qualitative analysis of the results obtained on real data of a
real power grid reveals the quality of the change detection of ECHAD. Specifically, a comparison with state-
of-the-art approaches shows the ability of ECHAD in identifying additional relevant changes, not detected
by competitors, avoiding false positive detections.

INDEX TERMS Change detection algorithms, smart grids, one-class learning, neural networks, embedding

I. INTRODUCTION

POWER grids are complex systems consisting of gen-
eration, transmission, and distribution infrastructures.

They represent an important evolution of power grids, where
clients are not necessarily passive consumers but have the
opportunity to actively participating in the grid, by produc-
ing energy from renewable sources and by storing energy
through batteries or alternative systems.

One of the most relevant challenges in the context of
smart grids is represented by possible changes and evolu-
tions in terms of consumption and production, also due to
the influence of some uncontrollable factors. In particular,
the production of energy from renewable sources is inher-
ently characterized by instability issues due, for example, to
weather conditions. This uncertainty may negatively impact
the performance of analytical tools used in power grids for
scheduling, planning and regulation purposes.

Additional sources of changes in power grids include

variations in the power load as well as the need to adequate
the infrastructure to new scenarios (e.g., the installation of
car charging stations), that may cause a significant increase
of the concurrent consumption of energy, as well as changes
in the voltage measured on specific network components.

In this context, machine learning methods can provide
significant support in analyzing, optimizing and predicting
the behavior of such complex systems, by exploiting the large
amount of streaming data generated by sensor networks.
Moreover, being able to detect changes from streaming data
related to multiple variables (i.e., multivariate time series -
see Figure 1) can enable the system to provide prompt alerts
that can suggest maintenance activities in a timely manner.

However, the identification of such changes and evolutions
in smart grids poses three main challenges:
• sparse and isolated observed peaks should not affect

the detection of changes, namely, the system should be
robust to possible outliers;
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FIGURE 1. A graphical representation of multiple time series corresponding to
real data possibly observed in a power grid.

• the amount of available labelled examples is very poor;
• multivariate time series, consisting of a huge number of

observed variables, may introduce collinearity phenom-
ena [1] due to possible variable correlation, that may
compromise the detection accuracy.

Such challenges make the direct application of classical
supervised methods unfeasible, and even semi-supervised
methods may appear inadequate due to the strongly un-
balancing between the amount of labelled and unlabelled
examples. Moreover, in some novel real-world scenarios
like that of smart grids, critical conditions or changes have
rarely (sometimes never) been observed. Such a situation
suggests that the most proper way to tackle this problem is
the adoption of approaches able to model the standard/regular
scenario and to evaluate the presence of changes according to
the coherence with such a model.

In this context, approaches based on one-class learning
[2]–[6] find their natural application, since the built model is
fitted on one scenario (the regular one) and can subsequently
be exploited to detect changes.

Following this line of research, in this paper we propose
ECHAD (Embedding-based CHAnge Detection), a novel un-
supervised change detection method able to analyze stream-
ing data generated by sensors located in smart grids. ECHAD
leverages embedding techniques and a one-class learning
approach. The former allow us to extract a new feature space
that better represents the inherently complex content of mul-
tivariate time series data for the subsequent learning task, also
mitigating the collinearity phenomena by incorporating latent
interactions among features. The latter (i.e., the proposed
one-class learning approach) allows us to analyze data in an
unsupervised manner, using only explicit knowledge of the

standard/regular behavior of power grids. Finally, ECHAD
adopts a novel change detection approach which identifies
changes and updates the model accordingly, in order to reflect
the new data distribution.

The major contribution of the work can be summarized as
follows:
• An investigation of the possible benefits provided by an

innovative method that synergically combines embed-
ding techniques and a novel one-class learning approach
for tackling the change detection task in multivariate
time series data;

• A novel strategy to dynamically adapt the model when
changes are detected, in the presence of a concept drift;

• A comprehensive experimental evaluation of the pro-
posed ECHAD, including its parametrization;

• Empirical comparison with state-of-the-art methods on
both synthetic and real-world datasets related to power
grids.

The rest of the paper is organized as follows. In Section
II we discuss the work related to this paper, from both appli-
cation and methodological point of views; in Section III we
describe in detail our proposed method ECHAD; in Section
IV, we describe the results obtained on both synthetic and
real-world datasets, showing the competitiveness of ECHAD
with respect to state-of-the-art methods; finally, in Section
V, we draw some conclusions regarding the applicability of
ECHAD as a powerful tool in analytical tasks for smart grids,
and outline possible future works.

II. BACKGROUND
Several machine learning approaches have been proposed in
the literature to support analytical tasks in the energy field.
Among them, significant efforts have been devoted to the
forecasting of the energy produced by plants in smart grids
[7]–[11]. Solving this task is particularly important to support
grid power balancing, especially when the energy is produced
by renewable sources. At the same time, accurate predictions
of the energy produced at a specific time horizon may be
useful for other scenarios, such as the optimization of energy
trading operations [12], [13].

Recently, research activities have been directed towards
approaches for the simultaneous forecasting of the energy
produced in multiple plants, mainly exploiting time series
analysis [7], autoregressive (AR) models [8], predictive clus-
tering models [9], artificial neural networks (ANNs) [10], or
SVM classifiers [11]. Recent studies [10], [14]–[18] have
also investigated the possible exploitation of spatial and
temporal autocorrelation phenomena to improve forecasting
accuracy. For example, in [17], the authors exploit geo-
distributed weather observations in the neighborhood of wind
plants, while in [14], the authors extract statistical indica-
tors that model the spatio-temporal autocorrelation between
plants for each descriptive feature.

The common aspect among these solutions consists of the
possible exploitation of additional factors, including tempo-
ral and spatial closeness among multiple plants, as well as

2 VOLUME 4, 2016

Page 21 of 33

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Ceci et al.: ECHAD: embedding-based change detection from multivariate time series in smart grids

external uncontrollable factors (e.g., measured or predicted
weather conditions). The main motivations for taking into
account these additional factors come from the possible
simultaneous changes and evolutions of the behavior that can
be observed in plants working in similar conditions (e.g.,
spatially closed and subject to similar weather conditions).
These motivations also justify the need to detect and model
changes in the distribution of some variables (also known as
concept drift [19] [20] in the literature), that may be fruitfully
exploited to timely predict changes in similar/related plants.

The focus of the present paper is specifically in this area
of research. In particular, we propose a method to detect
changes in time series, possibly coming from sensors. As in-
troduced in Section I, our approach works in an unsupervised
setting and models the standard/regular scenario to properly
detect changes in the data distribution.

In this context, existing methods mostly rely on the one-
class learning setting. Alternative methods are based on
Long-Short Term Memory neural networks [21], Empirical
Mode Decomposition [22], Symbolic Dynamic Filtering [23]
and the Margin Setting Algorithm [24], although they focus
primarily on the detection of anomalies and attacks in the
smart grid, rather than generic changes.

One-class learning was first proposed in [25] and sub-
sequently studied in [26] and [27]. Differently than binary
(or multi-class) classification approaches, that learn to dis-
criminate between positive and negative examples (or among
multiple classes), one-class learning methods focus on mod-
eling one single class of examples and identify whether
unseen examples belong to the learned class or not. A similar
rationale has found application also in outlier detection [28],
novelty detection [29] and positive-unlabelled learning [30]
approaches.

It is important to mention that, in classical supervised set-
tings, standard (binary or multi-class) classification methods
easily outperform one-class learning approaches in discrim-
inating among the possible classes [31]. However, there are
specific scenarios in which one-class learning approaches are
the most appropriate, or even the only applicable solutions.
Such scenarios include situations in which:
• Only one class of instances is actually known, while

other possible classes are not known a-priori.
• The dataset at hand is strongly unbalanced. In this case,

most standard approaches may be biased towards the
majority class.

• The goal is explicitly to detect rare, particular situations.
When the task under consideration is the detection of
changes, as in the specific application domain considered
in this paper, the stable/regular situation is strongly over-
represented in the available dataset, and only a small fraction
of instances representing the changes is actually available.
This aspect confirms that the adoption of a one-class learning
approach is the most suitable solution.

In the literature, several one-class classification methods
have been proposed. Among them, it is worth mentioning
One-Class SVM [2], [32]–[35], Isolation Forest [3], [36],

[37], One-Class Local Outlier Factor (LOF) [4], [38], [39]
and approaches based on autoencoders [5], [6].

One-Class SVM [2], [32] is an unsupervised learning
algorithm that learns a decision function for the detection of
changes. One-Class SVM learns such a function exclusively
from instances of a single class and classifies new instances
as similar or different to the training set. One recognized
limitation of this approach is the possibility to deal with
high-dimensional data, and its sensitivity to the presence of
outliers in training data [40].

LOF [4] measures the local density deviation of a given
instance concerning its neighbors. In particular, the LOF
score of an instance is computed as the ratio of the average
local density of its k-nearest neighbors, and its own local
density. Instances appearing similar to the training data dis-
tribution are expected to exhibit a local density similar to
that of its neighbors. On the contrary, instances representing
a change in the distribution are expected to show a much
smaller local density. However, when this locality property
is not present/satisfied in the application domain at hand, the
performance of these methods may be compromised.

Isolation Forest [3] is a tree-based method that isolates
instances that appear different than the training data distri-
bution. The algorithm recursively partitions the sample of
instances by randomly selecting a feature and a split value.
Instances that require a small number of splits to be isolated
in leaf nodes are more likely to represent changes or outliers
with respect to the training data distribution. Isolation Forest
shows a low time complexity and low memory requirements.
However, high-dimensional data may affect their detection
performance. Moreover, its decision boundaries are limited
to vertical and horizontal shapes.

Approaches based on autoencoders learn the data dis-
tribution of one-class data through special kinds of neural
networks. Subsequently, the learned distribution is exploited
to determine whether new instances belong to the same
known distribution or differ from it significantly. They offer
the opportunity to learn non-linear relationships in the data,
by exploiting non-linear activation functions in the hidden
layers. However, existing approaches [5], [6], [16] are mostly
focused on identifying point anomalies, and do not address
the problem of identifying changes in the data distribution,
which is the main focus of this study.

Relevant surveys presenting one-class classification meth-
ods include [41], [42], and [43], whereas surveys discussing
anomaly or outlier detection methods that include one-class
classification can be found in [44] and [45].

Compared with such existing approaches, ECHAD has the
advantage to properly deal with possible collinearity issues of
multi-variate time series, thanks to the embedding approach
adopted, and to the capability of dynamically adapting the
model when changes are detected, in the presence of a
concept drift.

VOLUME 4, 2016 3

Page 22 of 33

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Ceci et al.: ECHAD: embedding-based change detection from multivariate time series in smart grids

Embedding method
train

Training 
Stage

Detection 
Stage

Embedded
Data

encode
Embedded

Data

Embedding
Statistics

Change
Evaluation

yes no

retrain

Wi

Wi+1

Wi'

Wi'

encode
Embedding function

Embedding function

FIGURE 2. A graphical representation of the proposed method implemented
in ECHAD

III. THE METHOD ECHAD
In this section, we describe our novel approach ECHAD,
an embedding-based change detection algorithm that is able
to detect changes in time series data generated by smart
grids. We stress that the peculiarity of our approach is the
combination of an embedding solution with a one-class learn-
ing method that is able to dynamically update the learned
model. These aspects allow ECHAD to analyze complex and
dynamic multivariate time series and to identify changes in
the data distribution, leveraging exclusively the knowledge
of the standard/regular behavior of the smart grid.

ECHAD consists of two main phases, namely i) learning
an embedding model from historical time series data falling
into a specific interval (time window); ii) detecting changes
on newly observed data, using a streaming test-and-retrain
workflow. A graphical overview of the general workflow
followed by ECHAD is depicted in Figure 2, while in the
following subsections, we explain its main phases in detail.

A. LEARNING EMBEDDING MODELS
Let Wi be a time window consisting of M time series,
corresponding to M features measured over Ni time points.
In this phase, we learn a reduced, latent, K-dimensional
feature space, with K � M . More formally, the time series
data of the time window can be represented as a matrix
Wi ∈ RNi×M , and the goal is to learn a function γi:
RM → RK , that maps each M -dimensional time point of

a time series to the reduced, K-dimensional feature space.
The function, although learned from the time window Wi,
can naturally be applied to other, also unseen, time points in
order to project their features into the reduced feature space.

To perform this step, any approach to identify a reduced
feature space can be plugged into our system. In this pa-
per, we consider the classical Principal Component Analysis
(PCA) [46] and the more recent Stacked Auto-encoders [47],
[48], for which we provide some details in the following.

PCA is one of the most popularly known dimensionality
reduction technique, which effectiveness has been shown in
several scientific fields, ranging from chemistry to geology
[49]–[51]. Specifically, PCA estimates the correlation among
the variables and extracts a reduced set of features that are
as much as (linearly) uncorrelated as possible. This transfor-
mation is performed such that each extracted feature, called
principal component, explains the largest possible amount of
data variance, with the constraint of being orthogonal to all
the previously extracted features. In this way, PCA extracts
a reduced representation of the data, that explains a given
overall percentage of data variance, possibly discarding the
noise. Formally, given the input matrix Wi ∈ RN×M , PCA
computes the covariance matrix C ∈ RM×M , from which
it extracts the first K eigenvectors, associated to the largest
eigenvalues, obtaining the matrix Zi ∈ RM×K . The matrix
Zi can finally be used to compute the embedding of a new
time point w ∈ RM as follows:

γi(w) = ZTi · w (1)

While PCA properly deals with collinearity problems thanks
to the orthogonality of the extracted features, its main limita-
tion is in its ability to catch only linear dependencies among
variables. Such a limitation also defines one of the strong
points of an alternative approach that has recently been pro-
posed in the literature, namely stacked auto-encoders. They
are special kinds of neural networks, whose main purpose
is to reconstruct a given data distribution with the lowest
possible reconstruction error. The dimensionality reduction is
achieved by exploiting bottleneck features extracted at their
hidden layers [52].

Thanks to the stacked structure, each layer represents data
at a different abstraction level. For example, in the domain
of images, the first layer may represent edges, while deeper
levels may represent contours or corners of objects.

More formally, an auto-encoder aims at learning two func-
tions, namely the encoding function e : RM → RK and the
decoding function d : RK → RM , such that:

〈ei(·), di(·)〉 = arg min
〈ei(·),di(·)〉

‖Wi − di(ei(Wi))‖2 (2)

It is noteworthy that the encoding function e can be directly
used as an embedding function for new time points w ∈ RM ,
namely:

γi(w) = ei(w) (3)

As previously mentioned, auto-encoders are potentially able
to catch non-linear relationships among features. This is
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achievable by adopting non-linear functions as activation
functions in their hidden layer. On the other hand, there is
no guarantee on the orthogonality of the extracted features,
since they are identified on the basis of the reconstruction
error. Therefore, collinearity issues may still be present in
the reduced space.

B. CHANGE DETECTION
Let Wi ∈ RNi×M be the time window currently designated
to train the model. After exploiting it to learn the embedding
function γi, we compute W ′i ∈ RNi×K by applying γi to
each time series in Wi. More formally:

W ′i = Γi(Wi) =


γi(Wi[1, ∗])
γi(Wi[2, ∗])

...
γi(Wi[Ni, ∗])

 (4)

where Wi[j, ∗] represents the whole j-th row (i.e., the j-th
time series) of the matrix Wi. Intuitively, Γi(·) represents the
learned model valid at time i.

Then, we use W ′i to compute Di and σDi, which are
the mean and the standard deviation, respectively, of the
Euclidean distance between an instance and its p nearest
neighbors, in the reduced K-dimensional feature space. For-
mally, let: x ∈ RK be a training instance belonging toNi and
Neigh(x) be the set of the p nearest neighbors of x. Then:

Di =
1

p

∑
q∈Neigh(x)

eucl_dist(x, q)

σDi =

√√√√1

p

∑
q∈Neigh(x)

(eucl_dist(x, q)−Di)
2

(5)

where eucl_dist(a, b) is the Euclidean distance between a
and b. Di and σDi allow us to estimate the data distribution,
and to define a threshold Ti that is exploited to detect if
future observations deviate significantly from the current data
distribution. The threshold Ti is calculated using a τ -sigma
rule as follows:

Ti = τ · σDi (6)

where τ is a user-defined parameter.
When new data arrive, belonging to a new time window

Wi+1 ∈ RNi+1×M , we compute W ′i+1 by exploiting the
previously learned embedding function. Formally, following
Equation (4), we compute W ′i+1 as W ′i+1 = Γi(Wi+1).

Using W ′i+1, for each time series (i.e., row of the matrix)
w ∈ W ′i+1

1, we compute Dw
i+1 that is the mean of the

Euclidean distance between w and its p-nearest neighbors.
Using such a measure, we consider an instance w as a change
(or not) when the following function is 1 (or 0):

c(w) =

{
1 if (Dw

i+1 > Di + Ti) ∨ (Dw
i+1 < Di − Ti)

0 otherwise
(7)

1Here w is a time series of the window, namely a row of the matrix.

It is noteworthy that such a change is defined at an instance
level. Considering it as the final output of our detection
approach would lead to being highly sensitive to outliers and
spurious peaks. To overcome this issue, we work at the level
of time window, and consider it, i.e. the window, as a change
if more than a given ratio cr of instances are detected as a
change. Formally:

C(Wi+1) =


1 if

 ∑
w∈Wi+1

c(w)

 > (Ni+1 · cr)

0 otherwise

(8)

Independently of the output of C(Wi+1), ECHAD adapts the
model representing the data distribution of regular scenarios,
leading to a new threshold Ti+1. In particular, if a change is
not detected, the embedding function is updated considering
a merged time window Wi ∪ Wi+1. Note that, following
the mixed windows model [53], Wi can be either the single
window preceding Wi+1, or a wider window obtained by
merging multiple previous windows, when no change was
detected (see Figure 3). On the contrary, if a change is
detected, previous windows are discarded and the embedding
function is re-learned from scratch only from Wi+1.

This strategy allows ECHAD to simultaneously be robust
to the presence of outliers and to properly adapt to new data
distributions for proper detection of subsequent changes.

A final remark regards the computational complexity of
ECHAD. This can be easily computed by summing up the
complexity of the embedding phase (O(Ni ·M2 + M3) for
PCA and O(Ni ·M2) for autoencoders), the complexity of
identifying the p neighbors for each instance (O(Ni · logNi),
assuming to use a tree-based structure), and the complexity
of computing Di, σDi and Ti (O(p · K · Ni), according
to Equation 5). Therefore, the overall time complexity of
ECHAD isO(Ni ·M2 +M3 +Ni · logNi+p ·K ·Ni) for the
variant based on PCA andO(Ni ·M2+Ni ·logNi+p·K ·Ni)
for the variant based on autoencoders. If we assume that
M2 > logNi and M2 > p · K, we have that the total
time complexity is as follows: O(Ni · M2 + M3) for the
variant based on PCA and O(Ni ·M2) for the variant based
on autoencoders.

IV. EXPERIMENTS
In this section, we present the experiment for the evaluation
of ECHAD. First, we introduce the adopted datasets and the
experimental setting, together with the considered state-of-
the-art competitor systems. Finally, we show and discuss the
obtained results.

A. DATASETS
We performed experiments with five different datasets. The
first four datasets are synthetically generated and represent
different change detection scenarios that are relevant to
power grids. The fifth dataset consists of real-time series
observed in a real power grid and allows us to observe the
behavior of our system in real scenarios.
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t

t

No change detected
Training window extended

Change detected
Retraining from the last window

FIGURE 3. A graphical representation of the adopted mixed windows model.
The schema shows the evolution of the training (green) and testing (yellow)
windows over time. When no changes are detected, the training window is
extended over time (see the top part of the figure). When a change is
detected, the last testing window becomes the new training window (see the
bottom part of the figure).

The synthetic datasets have been generated by considering
5 multivariate (20 variables) Gaussian distribution of 2, 500
time points, with µ ∈ {10, 20, 35, 80, 110} and a varying
standard deviation σ ∈ {5, 8, 10, 12}. The four resulting
datasets represent an increasing level of complexity. Indeed,
datasets with a low standard deviation (i.e., σ ∈ {5, 8})
are visibly characterized by narrow Gaussian curves (see
Figure 4 (a) and (b)), which potentially facilitate the change
detection task due to the weak overlap among them. On
the contrary, datasets with a larger standard deviation (i.e.,
σ ∈ {10, 12}) are characterized by wider Gaussian curves
(see Figure 4 (c) and (d)), which reasonably lead to a higher
difficulty in the change detection task due to the significant
overlap among the Gaussian curves.

The real-world dataset has been provided in the context
of the project “ComESto - Community Energy Storage”
(http://www.comesto.eu/) for the Italian energy distribution
network, that is managed by e-distribuzione S.p.A. The data
consist of 200 variables measured by sensors located into
medium voltage/low voltage (MV/LV) transformer rooms,
related to 131,374 time points falling in the period from
November 1, 2019 to December 19, 2019.

B. EXPERIMENTAL SETUP
As discussed in Section II, the most suitable class of ap-
proaches to address the task of interest in our study is that
of one-class classification methods. Indeed, they offer the
flexibility to learn a model from an initial (regular) data dis-
tribution and are able to flag data that significantly differ from

σ = 5

σ = 8

σ = 10

σ = 12

FIGURE 4. A graphical representation of the synthetic datasets, with different
values of the standard deviation σ.

the learned distribution. For this reason, in order to evaluate
the performance obtained by ECHAD, in our experiments we
considered three state-of-the-art competitor methods falling
in this class, namely One-Class SVM [2], [33]–[35], Isolation
Forest [3], [36], [37], and LOF [4], [38], [39], which are
widely adopted in the recent literature, and are shown to
provide highly accurate predictions.

After a preliminary evaluation, their parameters were set to
the values suggested in their respective papers. In particular,
for Isolation Forest, we set: the number of base estimators
in the ensemble n_estimators = 100; the contamina-
tion of the dataset, i.e., the proportion of expected outliers,
contamination = 10%; the number of features to draw at
random for each base estimator max_features = M , i.e.,
the whole set of features. For LOF, we set: the number of
neighbors to use for k-neighbors queries n_neighbors = 2;
Minkowski measure as distance measure. For One-Class
SVM, we set: the coefficient of the Radial Basis Function
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(RBF) kernel gamma = 0.1.
As regards ECHAD, for the autoencoder we used the

LBFGS optimizer, with the objective of minimizing the
reconstruction error on training data. We set the maximum
number of training epochs to 500 and the minimum reduction
of the training error between two subsequent epochs, used
as early stopping criterion for the learning phase, equal to
10e−5. The number of hidden layers of the auto-encoder
architecture is set to 3, which leads to an architecture of 5
total layers that takes input data and performs two stages of
encoding and decoding. After preliminary experiments, we
set other parameter values as follows:
• The number of neighbors considered for the identifica-

tion of the k-nearest neighbors has been set to p = 100;
• The dimensionality of the reduced embedding space has

been set to K = 5;
• A window is considered to represent a change if it

contains at least 70% of data instances identified as a
change, namely (cr = 0.7);

• τ = 1, which means that an instance is considered as
a change if it differs from the mean observed in the
training window of at least σDi (see Equation (6));

For the synthetic datasets, the size of the testing window
has been set to Ni+1 ∈ {25, 50, 75}, while the size of the
first training window has been set to the double of the size
of the testing window, namely N1 = 50, N1 = 100 and
N1 = 150, respectively. For the real dataset, considering the
larger amount of data points, we considered Ni+1 = 190
(approximately 1.5 hours) and N1 = 750 (approximately 6
hours). These ranges of values have been suggested by the
domain experts, participating in the project.

For the synthetic datasets, where the ground truth is
known, the performances of the considered systems have
been evaluated in terms of Precision, Recall, F-Score and
Accuracy, while for the real dataset, the performances have
been evaluated from a qualitative point of view, involving an
expert in the evaluation.

C. RESULTS AND DISCUSSION
The results on the synthetic datasets show that ECHAD com-
bined with PCA (denoted as ECHAD-PCA) achieved the best
results by catching correctly all the windows representing
changes (see Figures 5 - 8). ECHAD combined with autoen-
coders (denoted as ECHAD-AUTOENC) returned some false
detections only in the configuration presenting the largest
window size (i.e., N1 = 150 and Ni+1 = 75). This result
depends on the challenging scenario of catching a change
in data with a large training window, that presents multiple
heterogeneous data distributions (see Figure 4). However, in
a real setting, training the model on a single data distribution
is a reasonable assumption that limits the occurrence of false
positives. Under this condition, the method correctly identi-
fies changes and is re-trained using the new data distribution.

Comparing the results with those obtained by competitors,
it is clear that in most cases, ECHAD outperforms them us-
ing both embedding-based models (PCA and autoencoders).

Moreover, the initial intuition about the low difficulty in
detecting changes on the first dataset (σ = 5) is confirmed,
since it consists of four non-overlapped and narrow Gaussian
curves. On the other hand, when the dataset presents over-
lapping and large Gaussian curves (i.e., σ ∈ {8, 10, 12}),
the task became harder and induced the competitors to worse
results. Going into detail, we can observe that ECHAD-PCA
achieved an F1-score equal to 1.0 in all the situations, while
different competitors acted differently in terms Precision and
Recall. In particular, we can observe that all the methods
achieved a precision of 1.0, meaning that they did not pro-
duce false positive detections, but the measured Recall is very
low in some cases (see OneClass SVM and LOF).

This means that such a high precision was achieved
through a strongly conservative strategy, that led to losing
some relevant changes. On the contrary, such a phenomenon
is not observed on the results returned by ECHAD, which led
to strong results in terms of both Precision and Recall.

A comparison in terms of running times revealed that
ECHAD was able to complete every single run on average in
6 minutes; OneClass SVM required on average 2.5 seconds;
LOF required on average 5 seconds; Isolation Forest required
on average 6.5 minutes. Although OneClass SVM and LOF
show significantly lower running times than ECHAD and
Isolation Forest, their results, as already shown in Figures 5-
8, are much worse. Note that ECHAD simultaneously shows
higher Precision, Recall, F1 Score and Accuracy, and lower
running times with respect to Isolation Forest that, in these
experiments, appears to be the strongest competitor.

As regards the analysis of the real dataset, a quantitative
evaluation was actually not feasible, due to the lack of the
ground truth. In this case, we show a graphic representation
of the time windows that ECHAD correctly identified as
changes, that were missed by all competitor methods. We
focus on two time series that are well known to be char-
acterized by changes in power grids, namely, three-phase
offset angle and three-phase total reactive power. The first
time series is considered important since a change in the
offset (ideally, the offset should be close to 120 degrees)
indicates that the network is not working properly. Whereas,
the second time series indicates a possible phase difference
between voltage and current. These results correspond to
real scenarios of changes in a power grid and, therefore,
are highly important to detect, in order to provide alerts and
trigger timely maintenance activities.

Since ECHAD-PCA achieved the best results on synthetic
datasets, we considered this variant for the analysis of real
data. In Figures 9 and 10, we graphically emphasize in green
the windows that appear to be correctly flagged as changes
by ECHAD, that were missed by the competitors. Such situ-
ations clearly represent false negatives for the competitors.
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W1 = 150,Wi+1 = 75

W1 = 100,Wi+1 = 50

W1 = 50,Wi+1 = 25

FIGURE 5. F1 Score, Accuracy, Precision, and Recall measured on the first
synthetic datasets (σ = 5).

W1 = 150,Wi+1 = 75

W1 = 100,Wi+1 = 50

W1 = 50,Wi+1 = 25

FIGURE 6. F1 Score, Accuracy, Precision, and Recall measured on the
second synthetic datasets (σ = 8).

W1 = 150,Wi+1 = 75

W1 = 100,Wi+1 = 50

W1 = 50,Wi+1 = 25

FIGURE 7. F1 Score, Accuracy, Precision, and Recall measured on the third
synthetic datasets (σ = 10).

W1 = 150,Wi+1 = 75

W1 = 100,Wi+1 = 50

W1 = 50,Wi+1 = 25

FIGURE 8. F1 Score, Accuracy, Precision, and Recall measured on the fourth
synthetic datasets (σ = 12).
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FIGURE 9. Examples of time windows representing a change (in green),
identified by ECHAD but not by Isolation Forest and LOF for three-phase offset
angle.

FIGURE 10. Examples of time windows representing a change (in green),
identified by ECHAD but not by Isolation Forest and LOF for three-phase total
reactive power.
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FIGURE 11. Examples of false positive detections (in red) returned by
Isolation Forest, that were not returned by ECHAD, for three-phase offset
angle.

FIGURE 12. Examples of false positive detections (in red) returned by
Isolation Forest, that were not returned by ECHAD, for three-phase total
reactive power.
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FIGURE 13. Examples of false positive detections (in red) returned by LOF,
that were not returned by ECHAD, for three-phase offset angle.

FIGURE 14. Examples of false positive detections (in red) returned by LOF,
that were not returned by ECHAD, for three-phase total reactive power.

VOLUME 4, 2016 11

Page 30 of 33

For Review Only

IEEE Access

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Ceci et al.: ECHAD: embedding-based change detection from multivariate time series in smart grids

On the other hand, in Figure 11-12 and 13-14, we empha-
size in red the time windows that appear to be incorrectly
flagged as changes by Isolation Forest and LOF, respectively,
that were correctly considered by ECHAD as stationary.
These cases clearly represent false positives for competitor
approaches. As concerns One-Class SVM, we do not report
the results since it appeared to be too sensitive, with the effect
of identifying many changes (and high false positive rate).

Although we cannot compute specific performance metrics
on the real dataset due to the lack of ground truth, we can
note that, out of a total of 687 windows, ECHAD detected 77
windows as a change, Isolation Forest detected 87 windows,
LOF detected 77 windows and One-Class SVM detected
all the 687 windows. Such results may lead to observe that
ECHAD is more conservative than competitors. However, it
is noteworthy that it also correctly identified several changes
that were ignored by competitors (see Figures 9 and 10).
This means that ECHAD is actually more accurate, since
its robustness to false detections is not due to a generally
higher conservativeness. This is also confirmed by the pre-
vious analysis of synthetic data (see Figures 5-8), where we
observed that being conservative is not a sufficient condition
that systematically leads to high-quality change detection.

The obtained results confirm our initial intuitions: The
proposed method ECHAD, thanks to the adopted embedding
approach and to the dynamic update of the model, is able to
correctly detect changes in time series generated by sensors
located in smart grids and to properly adapt the model
according to such changes, limiting the number of false
positives and providing high-quality detections that were not
identified by competitors and that, according to a manual
visual inspection by the experts, appear to be realistic.

A comparative analysis in terms of running times shows
analogous phenomena to those observed on synthetic
datasets. In particular, ECHAD required an average of 9 min-
utes; One-Class SVM required an average of 6 seconds; LOF
required an average of 3 minutes; Isolation Forest required an
average of 8.5 minutes. In conclusion, ECHAD outperformed
Isolation Forest in terms of accuracy with similar running
times, while the other competitors, even if showed lower
running times, obtained significantly worse performances in
terms of accuracy.

V. CONCLUSION
In this paper, we proposed ECHAD, a novel unsupervised
change detection method able to analyze streaming data
generated by sensors located in smart grids. The embedding
techniques we implemented in ECHAD allow us to extract
and exploit a new feature space that better represents the
inherent complexity of multivariate time series, also mitigat-
ing collinearity phenomena and catching latent interactions
among features. On the other hand, the proposed one-class
learning approach, supported by a novel change evaluation
method and a dynamic strategy to update the model, allow
ECHAD to identify changes accurately.

Our experimental evaluation showed that, compared to

three state-of-the-art methods, ECHAD achieves optimal
change detection performance on synthetic data, also in
challenging scenarios that present a high degree of over-
lap between evolving data distributions. Moreover, ECHAD
showed high-quality results on real data observed in a real
power grid. In particular, it detected several changes in the
data, that were qualitatively confirmed and that were not
detected by competitors. On the other hand, contrary to the
competitors, ECHAD was robust to false positive detections.

As future work, we plan to integrate some existing tech-
niques tailored for modeling time series, such as Long Short
Term Memory (LSTM) neural networks, due to their capa-
bility of being well-suited for sequential data. In addition,
we aim to deeply assess the influence of the parameters on
the results, and to generalize our method for solving change
detection tasks with time series data in other application
domains.
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