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Abstract

Alzheimer’s disease (AD) is the most common type of dementia and affects millions of peo-

ple worldwide. Since complex diseases are often the result of combinations of gene interac-

tions, microarray data and gene co-expression analysis can provide tools for addressing

complexity. Our study aimed to find groups of interacting genes that are relevant in the

development of AD. In this perspective, we implemented a method proposed in a previous

work to detect gene communities linked to AD. Our strategy combined co-expression net-

work analysis with the study of Shannon entropy of the betweenness. We analyzed the pub-

licly available GSE1297 dataset, achieved from the GEO database in NCBI, containing

hippocampal gene expression of 9 control and 22 AD human subjects. Co-expressed genes

were clustered into different communities. Two communities of interest (composed by 72

and 39 genes) were found by calculating the correlation coefficient between communities

and clinical features. The detected communities resulted stable, replicated on two indepen-

dent datasets and mostly enriched in pathways closely associated with neuro-degenative

diseases. A comparison between our findings and other module detection techniques

showed that the detected communities were more related to AD phenotype. Lastly, the hub

genes within the two communities of interest were identified by means of a centrality analy-

sis and a bootstrap procedure. The communities of the hub genes presented even stronger

correlation with clinical features. These findings and further explorations on the detected

genes could shed light on the genetic aspects related with physiological aspects of Alzhei-

mer’s disease.

Introduction

Alzheimer’s disease (AD) is the most common type of dementia in aging population (up to

the 70% of dementia’s cases) [1]. The World Alzheimer Report 2016 affirmed that 47 million

people are affected by dementia and it is expected that over 131 million people will develop

dementia by 2050 [2]. Pathological processes are involved in AD such as intraneuronal for-

mation of NeuroFibrillary Tangles (NFTs) [3, 4], abnormal β-amyloid production [5–8],
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extracellular deposition of senile plaques, early loss of synapses [9], oxidative stress [10, 11],

and inflammation [8, 12–14]. To date, the pathogenesis of AD remains largely unknown and

there is no cure for this disease, but treatment can still help in reducing symptoms and pro-

viding a better quality of life [15]. Converging evidence suggests that complex diseases result

from association of several interacting genes possibly merging in molecular process. This

suggests the existence of genetic communities that may be relevant for AD. Hence, recogni-

tion of the genetic basis of the disease is absolutely required to understand the biology of

AD and to discover novel pharmacological treatments. In particular, the study of specific

gene communities could facilitate the identification of therapeutic targets or candidate

biomarkers.

In this work, we investigated gene expression data from a “publicly accessible microarray

database obtained from AD and control human hippocampus” to detect gene communities

relevant for AD. In this context, we implemented a gene co-expression network analysis

addressed to formalize and integrate information related to multiple genes. In this approach,

we modeled data through a network whose edges model the correlation between gene expres-

sions and genes are the nodes of the graph [16]. Several methods have been proposed to inves-

tigate gene co-expression networks [17–19]. For example Weighted Gene Co-expression

Network Analysis (WGCNA) has become widely adopted to provide a network identification

based on the correlation of gene expression of a microarray database [20]. In particular,

WGCNA can be used for identifying clusters of co-expressed genes with highly correlated

expression (communities). In this work we implemented a hard threshold analysis and a com-

munity detection method, proposed in a previous work [21] and used in an international com-

petition [22], based on the study of information content of the network. In the original paper

[21] we employed this procedure on gene expression data linked to schizophrenia, now we

applied the method to AD data. We identified 127 gene communities; two of them resulted sig-

nificantly correlated with Mini Mental State Examination (MMSE) and NFT value. We veri-

fied that the two communities are stable and mostly replicated on two independent datasets.

We also compared the proposed method, in addition to WGCNA, to three traditional cluster-

ing methods and three network reconstruction techniques. We performed a gene set enrich-

ment analysis and a study to identify the hub genes of the two communities of interest

applying centrality metrics and a bootstrap procedure. The communities of the found hub

genes appear highly correlated with AD phenotype, and they could represent targets for a

future AD therapy.

1 Materials and methods

In this work we analyzed data achieved from the GEO database in NCBI (Gene Expression

Omnibus, https://www.ncbi.nlm.nih.gov/geo/). The data entry number of database is

GSE1297. This dataset was developed from the work of Blalock [14] and contains hippocampal

gene expression of 31 human subjects: 9 control and 22 AD. Clinical data as the severity of the

disease, NFT value, Braak stage, MMSE score, sex, age, and Post-Mortem Interval (PMI) values

are also included in the GSE1297 dataset. Data analysis procedure is summarized in Fig 1 and

it consists of five main steps:

1. firstly, the normalized data was downloaded and a preprocessing analysis was implemented

to combine expression values of multiple probes for one gene and to select genes with larger

standard deviations. Secondly, correlation measures were used to construct the co-

expressed gene network;
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Fig 1. Flowchart of the methodology. After a preprocessing analysis, we implemented a community detection procedure based on hard threshold

analysis and information theory proposed in a previous work [21]. We conduced a correlation analysis between gene communities and MMSE value

Shannon entropy approach reveals relevant genes in Alzheimer’s disease
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2. a hard threshold analysis was performed to compute the best threshold value, by using an

information theory-based approach. Once the best threshold has been chosen, a commu-

nity detection method was performed;

3. Person’s correlation analysis between gene communities and clinical features (MMSE,

NFT) was performed and communities of interest were identified; gene set enrichment

analysis on communities of interest was applied and the hub genes of these modules were

identified;

4. on the co-expressed gene network built in the step 1, community identification procedures

by means of seven module detection algorithms were applied. Hence, correlation between

gene communities and clinical features (MMSE, NFT) was computed. A comparison with

results of our method was proposed;

5. steps 1 and 2 of the pipeline was repeated on two independent datasets to validate the pro-

posed community detection method.

In the point 5 of the pipeline we analyzed hippocampal data of two other databases of GEO:

GSE48350 and GSE29378. Both datasets contains gene expression of 38 and 16 control, 18 and

17 AD human subjects respectively.

1.1 Preprocessing data analysis

We downloaded the normalized data containing expression values of 22, 283 probes. The

probes without corresponding annotation information were removed. In case of multiple

probes for the same gene, probe with high Median Absolute Deviation (MAD) values was

retained for further analysis. We chose MAD because it is a measure of dispersion, robust to

outliers [23]. After the previous filtering, the standard deviation of the remaining gene expres-

sions was calculated and values were sorted in decreasing order. Finally, we applied a selection

criterion on the standard deviation to get a compromise between maximizing the information

contained in gene expression data and minimizing the number of genes.

1.2 Correlation measures for a network of co-expressed genes

The network of co-expressed genes was built considering gene selected through the prepro-

cessing procedure as nodes and analyzing their expressions for N = 31 subjects under investi-

gation. In particular, given genes i and j, with expressions on the cohort {ia}a = 1,. . .,N and

{jb}b = 1,. . .,N respectively, we computed the absolute value [24]:

dij ¼ jrijj ð1Þ

where rij is the Pearson’s pairwise correlation:

rij ¼
PN

a¼1
ðia � �iÞ

PN
b¼1
ðjb � �jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

a¼1
ðia � �iÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

b¼1
ðjb � �jÞ2

q ð2Þ

with �i and �j mean values of the two expression distributions. The result is adjacency matrix C,

and NFT score. We repeated the analysis through different community detection techniques and we proposed a comparison with our method.

Subsequently a gene set enrichment analysis and a hub gene study have been conduced. At last, we validated our procedure on two independent

datasets.

https://doi.org/10.1371/journal.pone.0226190.g001
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in which each elements cij = f(dij) is a function of the correlation between expressions of genes

i and j and characterizes the strength of the corresponding link in the network. Usually, two

different thresholding methods to elaborate this matrix are considered: the soft and the hard

thresholding. In the latter approach, the elements of C are defined as:

cij ¼ signumðdij; thÞ ¼
1 if jdijj � th

0 if jdijj < th

8
<

:
ð3Þ

where th is the selected threshold value. In this work, links were introduced in the network of

co-expressed genes by means of a hard thresholding procedure [21], and the optimal threshold

values was selected through information theory.

1.3 Information entropy based on betweenness to select the best threshold

value

Betweenness bi is a network centrality measure that evaluates the role of a node in connecting

other pairs of nodes. For a complex network with M nodes the betweenness of the node i is

defined as:

bi ¼
XM

j;k;j6¼k

njkðiÞ
njk

ð4Þ

where njk indicates the number of geodesics between node j and k, and njk(i) is the number of

geodesics between the same genes, passing through node i. A geodesic between two nodes j
and k is defined as the shortest path connecting them. Analyzing Eq 4 it is evident that

betweenness has a crucial importance for graph characterization [25–27].

We implemented the method described in [21] and used in an international competition

[22] to select the best threshold value with a hard threshold procedure based on information

entropy [28] of the co-expression network betweenness. For a complex network with M nodes

we defined the entropy based on betweenness as:

Hbet ¼ �
XM

i¼1

bilog2½bi� ð5Þ

where bi is the betweenness of the i-th node defined by Eq 4. Since a system with maximum

entropy value represents a system with maximum information content [29], we computed the

entropy based on betweenness for the network of co-expressed genes, varying threshold values,

and we chose the threshold value that maximized Eq 5.

1.4 Community detection through Fast Greedy algorithm

Once the best threshold was fixed, we applied the Fast Greedy [30] algorithm to split the whole

network in communities. Fast Greedy is based on greedy optimization and it characterizes the

community structure through the modularity. Modularity is based on the number of intra-

community and inter-community links [31–35] and it allows the comparison of different par-

titions of the network. The modularity of a given partition is represented by the number of

edges falling within groups minus the expected number in an equivalent random network. In

particular we used the Fast Greedy algorithm described in [36]. Briefly, this method optimizes

the modularity using three data structures:

• the matrix of modularity variation ΔQij between communities i and j;
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• a max-heap H composed of the largest element of each row of ΔQij and of the labels, related

to the communities i and j;

• an ordinary vector array which contains the sums of the elements of each row of the matrix

eij. This matrix is the fraction of edges that joins vertices in community i to vertices in com-

munity j [36].

The use of max-heap H, which organizes the data in the form of binary trees, allows to

update the matrix eij faster than the Newman’s algorithm reported in [32]. In the present

work, through an iterative procedure, we only selected communities that contained at least 3

and a maximum of 100 genes. Thus we referred to the concept of community, which was used

in other international community detection studies as the DREAM challenge [22]. We imple-

mented the hard threshold procedure described in the previous section, first on the whole net-

work and then on all communities with more than 100 genes. As a matter of fact, communities

comprising hundreds of genes are often too populated to gain meaningful biological insights

[37].

1.5 Correlation analysis of gene modules with clinical phenotype

The association, between the communities found in the step 2 of the pipeline and clinical phe-

notype, was investigated by means of Pearson’s correlation analysis. In particular, we com-

puted the correlation of the module eigengene (first principal component, PC1, of the

community) of each community with AD clinical features (MMSE, NFT). In other words, we

synthetized the biological information of each community in one eigengene using principal

component analysis [38–40]. Fig 2 shows a schematic view of the correlation procedure

implemented.

To verify the robustness of significant correlations we implemented a procedure in which

random subsets of 10 genes are removed from the communities of interest before to compute

the first principal component. We repeated this procedure 100 times and for each sampling we

calculated correlations with the clinical features through the method described in this section.

1.6 Gene set enrichment analysis

Only for the communities significantly correlated to clinical phenotype, we performed a gene

set enrichment analysis using GSEA [41] web-tool. Through this tool we evaluated the overlap

of the communities found in the step 3 of the pipeline, with the Molecular Signatures Database

(MSigDB) [42]. Hence, we computed an estimate of the statistical significance to highlight

common processes, pathways, and underlying biological themes. The overlap was measured

by means of the hypergeometric distribution and p-value < 0.05 was considered to be signifi-

cant enrichment. We applied a correction of hypergeometric p-value by means of multiple

hypothesis testing according to Benjamini and Hochberg [43].

1.7 Hub genes identification

For the hub gene identification, the genes belonging to the communities found in the step 3

were analyzed using Kleinberg’s centrality score (Kcs) [44]. The score of the vertices are

defined as the principal eigenvector of CCT where C is the adjacency matrix. In this work we

considered hub of a community genes with a Kcs> 0.8 (the maximum value of Kcs is 1). To

confirm the robustness of this selection criterion we implemented a bootstrap procedure [45,

46]. The data sample with 31 subjects was resampled 100 times and for each re-sampling we

repeated the step 2 of the pipeline. For each resampling we computed the overlap between the

found communities and we verified if hub genes of a given community were clusterized

Shannon entropy approach reveals relevant genes in Alzheimer’s disease
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together. In this way we also verified the existence of a pivotal and robust module of genes

more connected to AD. To quantify the overlap between two different communities we esti-

mated the overlap coefficient CO [47]. It is defined as the maximum intersection between the

target community and communities obtained by a different process (or a different dataset)

divided by the smaller of the size of the two sets:

COðQt;QiÞ ¼
maxðQt \ QiÞ

minðjQtj; jQijÞ
ð6Þ

where Qt is the target community; i is an index between 1 and the number of communities

obtained by a different process and Qi is the related community.

Fig 2. Schematic view of the correlation procedure between module eigengene and clinical features. After the community detection procedure, we computed the

module eigengene (first principal component, PC1, of the community) for each found community. Then we implemented a Pearson’s correlation analysis between

PC1 and clinical features (MMSE and NFT).

https://doi.org/10.1371/journal.pone.0226190.g002
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1.8 Identification of gene communities through WGCNA algorithm

We applied WGCNA algorithm to the co-expressed gene network built in the step 2 of the

pipeline and compared the outcome with results obtained by means of our procedure. At first,

in order to assess the similarity of the gene expression profiles, the Pearson’s correlation coeffi-

cient was calculated through Eq 2. Hence, the adjacency matrix C was obtained by applying a

soft thresholding procedure [17]:

cij ¼ powerðdij; bÞ ¼ ðdijÞ
b

ð7Þ

where β� 1.

Zhang B and Horvath S. in [20] also proposed an another type of soft adjacency function,

the sigmoid function:

cij ¼ sigmoidðdij; a;mÞ ¼
1

1þ e� aðdij � mÞ
ð8Þ

where α and μ are parameters to set. WGCNA uses hierarchical clustering to identify gene

communities and their respective colors. In this work, different communities were detected

using dynamic tree cut method, which is based on conversion of the adjacency matrix to a

topology overlay matrix (TOM) and cluster analysis. Finally, we computed the correlation of

the module eigengene of each module detected by WGCNA with AD clinical features by

means of the procedure described in the section 1.5.

1.9 Identification of gene communities through traditional clustering

methods

We compared results obtained though our procedure with findings of traditional clustering

strategies as: agglomerative hierarchical clustering, Fuzzy c-means, and affinity propagation.

The common property of clustering algorithms is that they distribute genes in groups based on

similarity measures in gene expression [48]. We can classify the three proposed approaches

according to the way used to determine the number of modules: explicit methods, such as

agglomerative hierarchical clustering and fuzzy c-means, in which the number of clusters is

imposed by the researcher; implicit methods, such as affinity propagation, where the number

of modules is adapted on the dataset analyzed according to other information suggested by the

researcher [48]. The agglomerative hierarchical clustering method merges iteratively clusters

together if their similarity measure is sufficiently high [30]. This similarity is based on a spe-

cific metric that measures the distance between pairs of elements and a linkage criterion that

computes how similar clusters are according to the chosen metric. In this work we imple-

mented the Euclidean distance (L2 − norm):

dE� AB ¼
Xn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaj � bjÞ
2

q

ð9Þ

and the Manhattan distance (L1 − norm):

dM� AB ¼
Xn

j¼1

jaj � bjj ð10Þ

where aj and bj are elements of two data points respectively A = (a1, a2, . . ., an) and B = (b1,

b2, . . ., bn).

We used the following linkage criteria:
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• complete linkage: the maximum distance between clusters is calculated before merging;

• single linkage: the minimum distance between clusters is computed before merging;

• average linkage: the average distance between clusters is calculated before merging;

• centroid linkage: after finding centroids of clusters, the distance between them is calculated

before merging.

To choose the metric and the optimal number of clusters we computed the silhouette coeffi-

cient. This coefficient quantifies how well an observation (in this work an observation is repre-

sented by a gene with a gene expression value for each considered subject) is clustered

measuring the proximity of each point in a cluster to points in neighboring clusters. It’s

defined as [49]:

sðiÞ ¼
zðiÞ � yðiÞ

maxðyðiÞ; zðiÞÞ
ð11Þ

in which y(i) is the average dissimilarity between i-th element and all other elements of the

cluster to which belongs and z(i) is the minimum average dissimilarity of i-th element to all

observation of all other clusters D. The silhouette coefficient is a quantity between −1 and 1,

where a value near 1 indicates that the element i is very well clustered whereas a value near -1

indicates that the point should be affected to another cluster.

The Fuzzy c-means clustering algorithm (FCM) operates by randomly assigning a degree of

membership μij to each element xi with belongs to each cluster j that we want to derive [50].

Through an iterative process, the cluster centers cj are dynamically moved towards the optimal

localization that is going to minimize a objective function that represents the sum of the dis-

tances of each point from each cluster center, appropriately weighted with the correct degree

of membership. This function is defined as [50]:

J ¼
XD

i¼1

XN

j¼1

mmij k xi � cj k
2

ð12Þ

where μij is the degree to which an observation xi belongs to a cluster j; cj is the center of the

cluster J; D is the number of observation; N is the desired number of clusters; m is the hyper-

parameter (fuzzifier) that controls how fuzzy the cluster will be. In general, the squared Euclid-

ean distance metric is used with FCM in order to compute the distances between the cluster

centers and each observation in the dataset. In this work we compared the performance of

three different metrics: euclidean, Manhattan, Pearson correlation defined in Eqs (9), (10) and

(2) respectively.

Affinity Propagation (AF) [51] is a cluster technique that does not require user to specify

the number of clusters. This algorithm is based on the concept of message passing where all

the data points send messages to all other points. These messages contains the willingness of

the points being exemplars i.e. the points that best explain the other data points. Each cluster

only has one exemplar. The messages according to their nature are inserted in two different

matrices: the responsibility matrix R in which each element reflects how suitable a point k is to

be an exemplar for a point i; the availability matrix A that quantify how appropriate it would

be for a point i to choose point k as its exemplar. The values of matrix R are based on a similar-

ity function. The standard similarity measure used in the papers of Frey and Dueck is the nega-

tive euclidian distance squared [51]. AF is an iterative algorithm in which iterations are

performed until either the cluster boundaries remain unchanged over a number of iterations.
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The exemplars are the points that at the last iteration satisfy the following condition:

Rði; iÞ þ Aði; iÞ > 0 ð13Þ

1.10 Identification of gene communities through three other network

reconstruction algorithms

We compared our findings with other three methods for constructing gene network: ARA-

CNE, GENIE3, and SPACE. These methods can in some cases compete with clustering and

decomposition algorithms. Here we give a brief summary of these techniques. The detailed

methodology for each approach has been described in other papers [52–54]. Tools such as

ARACNE and GENIE3 try to build regulatory networks from co-expression networks [55].

ARACNE (Algorithm for the Reconstruction of Accurate Cellular Networks) eliminates indi-

rect connections between genes, then partners of a gene having a stronger correlation with

each other genes than with the gene itself [55]. Only those connections that should be regula-

tory are left. This tool is an information-theory-based method that uses mutual information

instead of Pearson correlation with the advantage to identify the non-linear or irregular depen-

dencies, which will be missed by Pearson correlation [56].

GENIE3 (GEne Network Inference with Ensemble of trees) is a network inference method

based on variable selection with ensembles of regression trees [53]. This tool is able to divide

the problem of prediction of a regulatory network between n genes into n different regression

issues. In each of the regression problems, the expression pattern of the target gene is predicted

from the expression patterns of all the other genes (input genes), by means of tree-based

ensemble methods (for example Random Forests). A sign on a possible regulatory link is

derived from the importance of an input gene in predicting a target gene. These possible links

are then jointed over all genes to provide a ranking of interactions to build whole network

[53].

SPACE (Sparse PArtial Correlation Estimation) [54] is a partial-correlation-based method.

This technique points to estimate non-zero entries in the inverse of the covariance matrix, also

known as the concentration matrix. In the SPACE algorithm the concentration matrix estima-

tion problem is converted in a regression problem and the results are optimized with a sym-

metric constraint [56].

To compare the different proposed methods with our procedure, we computed the correla-

tion of the module eigengene of each found communities with AD clinical features, as

described in the section 1.5.

2 Results and discussion

2.1 Preprocessing procedure

Firstly, we calculated the standard deviation σ for each gene expression, then we determined

the maximum value σmax. In this analysis we considered only genes with standard deviation

greater than 0.1 σmax. We chose this selection criterion after a study to evaluate the optimal

cut. We repeated steps 1-3 of the pipeline for different values. 0.1 σmax is resulted the optimal

cut that maximizes the average correlation between the communities of interest and clinical

features MMSE and NFT, as shown in Fig 3. Furthermore selecting genes exceeding 0.1 σmax
would have resulted in no AD-related communities (step 3 of the pipeline).

Fig 4 illustrates the distribution of standard deviation of gene expression. Then we kept 4,

154 genes for further analysis.
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2.2 Information entropy based on betweenness to select the best threshold

value

With gene expressions selected in the preprocessing procedure, we built the network of co-

expressed genes. Fig 5 shows entropy distribution based on betweenness, as a function of the

threshold for the co-expression network. The distribution presents a maximum at the thresh-

old value 0.74 which corresponds to the network configuration with the highest informative

significance related to betweenness.

Fig 3. Average correlation coefficient with different cut. 0.1 σmax is the optimal cut that maximizes the average correlation between the communities

of interest and clinical features MMSE and NFT. In fact selecting genes exceeding 0.1 σmax we did not find AD-related communities.

https://doi.org/10.1371/journal.pone.0226190.g003
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2.3 Community detection through Fast Greedy algorithm and correlation

analysis with clinical phenotype

We applied the Fast Greedy community detection algorithm on the network at threshold equal

to 0.74 resulting 127 gene communities. The Pearson’s correlation coefficient between the

principal component of communities and clinical phenotype was computed to identify

Fig 4. Distribution of standard deviation of gene expression. The vertical red line indicates the selection implemented on the data. Only the genes to right of

the red line for further analysis have been selected.

https://doi.org/10.1371/journal.pone.0226190.g004
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communities significantly correlated with clinical features MMSE score and NFT value simul-

taneously. We found only two gene communities significantly associated with both clinical

features:

• a community that included 72 genes (called C1);

• a community that included 39 genes (called C2).

Table 1 highlights the results obtained for C1 and C2 communities from the correlation test

with MMSE and NFT. Fig 6 shows a schematization of C1 and C2 communities.

We computed the overlap coefficient through Eq 6 for different threshold values belonging

to neighborhood 0.74 to evaluate the stability of C1 and C2 communities. Fig 7 displays the

overlap coefficient computed in relation to C1 and C2 communities for different threshold val-

ues. The high values of overlap coefficient (> 0.6) certify the stability of the two communities

over a wide range of the chosen threshold. To verify the robustness of results reported in

Table 1 we applied the sampling procedure described in the section 1.5 on C1 and C2

Fig 5. Betweenness entropy as a function of threshold. Information entropy distribution based on betweenness as a function of

threshold for the whole network. The distribution presents a maximum at a threshold value equal to 0.74.

https://doi.org/10.1371/journal.pone.0226190.g005

Table 1. Results of correlation test between the first principal component of C1 and C2 communities and clinical

features. The results show significant correlation (p-value< 0.05) of both gene communities with MMSE and NFT.

Community MMSE NFT

C1 r = -0.46; p = 0.03 r = 0.59; p = 0.004

C2 r = 0.47; p = 0.02 r = -0.46; p = 0.03

https://doi.org/10.1371/journal.pone.0226190.t001
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communities and obtained distributions of correlation coefficients as shown in Fig 8. Distribu-

tions appear consistent with correlation coefficient values reported in Table 1.

The gene membership per community are reported in S4 Table. In S5 Table we listed genes

of C1 and C2 communities with the weight in their contribution to the eigengene and their

individual correlation with MMSE and NFT variables. Finally the list of detected communities

with their correlation with clinical features is given in S6 Table.

2.4 Gene set enrichment analysis

C1 and C2 communities have been subjected to gene set enrichment analysis. The results for C1

and C2 communities are shown in Tables 2 and 3 respectively.

2.5 Hub genes identification

We identified 24 hub genes in C1 community and 9 in C2 community with Kcs> 0.8. More-

over we implemented a boostrap procedure, with 100 resamplings, to confirm these hub

genes. In all resamplings, 28 genes belonging to C1 community were clustered together as well

as 13 of C2 community. We called these modules sub-C1 and sub-C2. Hub genes of C1 and C2

communities are included in sub-C1 and sub-C2 modules, respectively. Hence, we imple-

mented the correlation analysis described in section 1.5 for the hub genes of C1 and C2. The

findings for MMSE score (rhub� C1
¼ � 0:55, phub� C1

¼ 0:008; rhub� C2
¼ 0:60, phub� C2

¼ 0:003)

and NFT value (rhub� C1
¼ 0:55, phub� C1

¼ 0:008; rhub� C2
¼ � 0:47, phub� C2

¼ 0:02) show that the

correlations between these genes and clinical features are improved compared to results

reported in Table 1. Lists of hub genes for C1 and C2 communities are reported in S1 Table.

Fig 9 displays overlap coefficient distributions for C1 and C2 communities and other commu-

nities found with th = 0.74 for each bootstrap resampling. C1 and C2 communities appear to be

better preserved than other communities.

2.6 Identification of gene communities through WGCNA

We applied WGCNA algorithm to gene expressions selected in the section 2.1. We imple-

mented the scale independence analysis and we found β value equal to 6 was the smallest

threshold that resulted in a scale-free R2 fit greater than 0.8, as shown in Fig 10.

Fig 6. Schematization of C1 and C2 communities. Gene community C1 (Panel a) and gene community C2 (Panel b) composed by 72 and 39 genes

respectively. In red we indicated genes significantly correlated with both clinical features simultaneously.

https://doi.org/10.1371/journal.pone.0226190.g006
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Through this configuration we obtained 21 gene communities. Fig 11 shows a dendrogram

of 21 modules found by means of the WGCNA algorithm. We computed the linear correlation

between communities and clinical features MMSE score and NFT value. Only one community,

the blue module, was significantly associated with both clinical features (r = −0.43 with

MMSE; r = 0.43 with NFT). This community was composed by 637 genes, and it contained the

78% of C1 and C2 communities (87 genes). All hub genes found in the previous section were

included in the blue module. Fig 12 shows the overlap index between the blue module com-

puted with β = 6 and other AD-related modules obtained for different threshold values. A

strong module overlap emerges for different threshold values (CO> 0.75) confirming the

goodness of the choosen β. In S7 Table we reported for each threshold values and for different

parameter values of sigmoid function the number of modules detected and their correlation

Fig 7. Overlap coefficient for C1 and C2 communities. The overlap coefficient as a function of threshold calculated in relation to the C1 and C2

communities. The dashed vertical line indicates the threshold value selected for our analysis.

https://doi.org/10.1371/journal.pone.0226190.g007
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with the clinical features. Topological measures of co-expression network constructed through

WGCNA and our method are reported in S2 and S3 Tables.

2.7 Identification of gene communities through traditional clustering

methods and network reconstruction algorithms

On gene expressions selected in the section 2.1 we implemented other seven methods of com-

munity detection. Fig 13 displays the silhouette coefficient obtained by means of Eq 11 for

agglomerative hierarchical clustering in many configurations. In particular in the panel A we

presented distributions of the silhouette coefficient for the metrics and linkage criteria listed in

the section 1.9. For each proposed methods we considered the number of clusters between 2

and 50. Instead Panel B shows the silhouette coefficient as a function of the number of clusters

Fig 8. Distributions of correlation coefficient with the clinical features for 100 sampling of C1 and C2 communities. Random subsets of 10 genes

are removed from C1 and C2 communities before to compute the first principal component.

https://doi.org/10.1371/journal.pone.0226190.g008
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k for the chosen configuration (Manhattan-centroid). Based on the distribution of the silhou-

ette coefficient, we chose k between 2 and 30 and we found no AD-related modules.

In Fig 14 we reported silhouette coefficient distributions computed for the Fuzzy c-means,

for three different distance metrics and for a number of clusters between 2 and 50 (Panel A).

Pick out Manhattan as metric, in panel B we reported the silhouette coefficient for a set of clus-

ters number. Choosing k between 2 and 7 (since the average silhouette coefficient is greater

than 0) no module was correlated with AD. In this work the default parameters were used for

affinity propagation, ARACNE, GENIE3, and SPACE without additional tuning. Table 4 high-

lights the results obtained through the selected community detection methods.

2.8 Validation on independent datasets

Due to the relationship between aging and AD [57] we excluded the gene expression profiles

of young (20-50 years) from GSE48350. In this way, we made comparable the three dataset age

distributions, as displayed in Fig 15.

For GSE48350 database we found a first community composed by 35 genes with overlap of

23 with C1 community (8 hub genes of C1) and a second community of 28 genes, 23 members

of C2 community (8 hub genes of C2). Instead applying our procedure on GSE29378 database

we obtained a first community with 79 genes, 49 members of C1 community (17 hub genes of

C1) and a second community containing 35 genes with overlap of 21 genes with C2 community

Table 2. Results of gene set enrichment analysis for C1 community. In the third column overlaps with gene set in the selected MSigDB gene set collection are reported.

The fourth column displays the false discovery rate (FDR) analog of hypergeometric p-value after correction for multiple hypothesis testing according to Benjamini and

Hochberg [43]. The table shows seven most significant enrichments.

Gene Set Name Description Genes in

overlap

FDR p-value

BLALOCK ALZHEIMER’S DISEASE DN Genes down-regulated in brain from patients with Alzheimer’s disease—Homo sapiens 32 1.25 � 10−28

HALLMARK OXIDATIVE

PHOSPHORYLATION

Genes encoding proteins involved in oxidative phosphorylation—Homo sapiens 11 3.87 � 10−11

GO ELECTRON TRANSPORT CHAIN A process in which a series of electron carriers operate together to transfer electrons

from donors to any of several different terminal electron acceptors to generate a

transmembrane electrochemical gradient—Homo sapiens

9 5.24 � 10−11

GO CELLULAR RESPIRATION The enzymatic release of energy from inorganic and organic compounds (especially

carbohydrates and fats) which either requires oxygen (aerobic respiration) or does not

(anaerobic respiration)—Homo sapiens

9 1.24 � 10−9

GO ORGANONITROGEN COMPOUND

METABOLIC P C PROCESS

The chemical reactions and pathways involving organonitrogen compound—Homo

sapiens

19 6.23 � 10−9

KEGG PARKINSONS DISEASE Parkinson’s disease—Homo sapiens 19 1.38 � 10−8

BLALOCK ALZHEIMER’S DISEASE UP Genes up-regulated in brain from patients with Alzheimer’s disease—Homo sapiens 18 1.38 � 10−8

https://doi.org/10.1371/journal.pone.0226190.t002

Table 3. Results of gene set enrichment analysis for C2 community. In the third column the genes in the overlapping gene sets are reported. The fourth column indicates

the false discovery rate (FDR) analog of hypergeometric p-value after correction for multiple hypothesis testing according to Benjamini and Hochberg [43]. he table shows

the top three significant enrichments.

Gene Set Name Description Genes in

overlap

FDR p-value

BLALOCK ALZHEIMER’S DISEASE DN Genes down-regulated in brain from patients with Alzheimer’s disease—Homo sapiens 22 1.07 � 10−22

HALLMARK OXIDATIVE

PHOSPHORYLATION

Genes encoding proteins involved in oxidative phosphorylation—Homo sapiens 9 1.23 � 10−10

KIM BIPOLAR DISORDER

OLIGODENDROCYTE DENSITY CORR UP

Genes whose expression significantly and positively correlated with oligodendrocyte

density in layer VI of BA9 brain region in patients with bipolar disorder—Homo

sapiens

11 5.49 � 10−9

https://doi.org/10.1371/journal.pone.0226190.t003
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(5 hub genes of C2). These findings highlight the replicability of our results on unseen datasets.

Results of gene set enrichment analysis of these communities found for GSE48350 and

GSE29378 are reported in S8 Table.

2.9 Discussion

In the present study, we implemented a co-expression network-based approach to analyze the

whole genome expression data obtained from AD and control human hippocampus. The

selected database GSE1297 was accompanied by the complete information of gene expression

data and detailed clinical data. We applied a hard threshold analysis, proposed in a previous

work [21], in which we analyzed the Shannon entropy based on betweenness of the network.

We selected the network configuration with the highest informative significance. Through this

Fig 9. Overlap coefficient distributions for C1 and C2 communities and other communities found with th = 0.74. The overlap coefficient is

computed for each bootstrap resampling.

https://doi.org/10.1371/journal.pone.0226190.g009
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procedure we identified 127 gene communities. Due to the high threshold value selected

(th = 0.74), genes in each community showed highly-related expression, indicating potential

interaction and a common biological trend. By calculating the Pearson’s correlation coefficient

between the communities and two AD-related clinical features such as MMSE score and NFT

value, we selected two communities (called C1 and C2) of interest. C1 and C2 communities

were composed by 72 and 39 genes respectively and they showed significant but opposite cor-

relations with the same variables (see Table 1). We compared our method with three tradi-

tional clustering algorithms: agglomerative hierarchical clustering, Fuzzy c-means, affinity

propagation and with four network reconstruction approaches: WGCNA ARACNE, GENIE3,

Fig 10. Scale free topology fitting index for different soft thresholds. β value equal to 6 was the smallest threshold that presented R2 greater than

0.8.

https://doi.org/10.1371/journal.pone.0226190.g010
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and SPACE. As shown in Table 4 these other methods obtained communities with slightly

lower correlations with clinical variables than C1 and C2 communities. In particular through

WGCNA algorithm we found only one community of interest: the blue module. This commu-

nity was quite large (637 genes) and the 78% of C1 and C2 communities was included in it. Our

method preserved and condensed into two much smaller communities the relevant informa-

tion highlighted by WGCNA. Furthermore, our analysis confirmed a limitation of the

WGCNA approach, in which small gene communities may, in some cases, be incorporated

into larger modules, with a loss of biological information [17]. Instead ARACNE and

Fig 11. Dendrogram of the network with the modules indicated through the colors. This dendrogram was obtained through average linkage

hierarchical clustering. The color spectrum underneath the plot indicates the module assignment determined by means of the Dynamic Tree Cut.

https://doi.org/10.1371/journal.pone.0226190.g011
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GENEIE3 algorithms suppress too many connections by creating a very large number of small

communities. Compared to the remaining implemented techniques our findings are similar in

terms of correlation to AD but C1 and C2 communities hold a different information content

because they consist largely of different genes. The proposed approach outlines the relation-

ships among genes and paves the way to further studies about the physiological interpretation

of AD-related communities. To assess the reproducibility of our findings, we performed our

community detection method on two independent datasets: GSE48350 and GSE29378. We

obtained two communities for each datasets within at least the 65% of C1 and C2 genes. These

results underline the importance of the found communities in relation to AD. In previous

work a lot of genes belonging to C1 and C2 communities had already been highlighted as linked

to AD. For example RIN3 was found to play key roles in the development of AD ad in

Fig 12. The overlap index between the blue module (β = 6) and other AD-related modules obtained for different threshold values. We obtained

C0 > 0.75 for all different threshold values.

https://doi.org/10.1371/journal.pone.0226190.g012
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Fig 13. Silhouette coefficient distributions for agglomerative hierarchical clustering method. Silhouette coefficient distributions computed for different

configurations (Panel A), and for different number of clusters (Panel B) only for the chosen configuration Manhattan-centroid.

https://doi.org/10.1371/journal.pone.0226190.g013

Fig 14. Silhouette coefficient distributions for fuzzy c-means method. Silhouette coefficient distributions computed for different distance measures (Panel A), and

for different number of clusters (Panel B) only for the chosen metric Manhattan.

https://doi.org/10.1371/journal.pone.0226190.g014
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particular it resulted associated with AD risk [58, 59]. J.W. Liang et al. [40] reported an AD-

related community containing RIN3 and GNA12, two genes belonging to C1. Seyfried N.T.

et al. [60] by means of a co-expression network analysis found 10 modules correlated with AD

phenotype. In particular in M1 module (composed by 1294 genes) were contained 12 genes

found in C1 (PPIA, RTN3, COX6C, DNAJC6, AASDHPPT, COX7B, TM2D3, RNF11, BEX4,

CD200, MRPL3, THYN1) and 9 found in C2 (TUBB2A, GPM6A, MDH1, PFKM, ATP9A,

UQCRC1, ASTN1, ATPIF1, GGCT) while in M5 module (composed by 775 genes) were clus-

tered together 9 genes of C1 (PRKACB, OAT, GHITM, PAPSS1, IARS, NDUFA6, ACLY,

TLK1, C3orf14) and 4 of C2 (LDHA, PDHB, ISCA1, TCERG1). Miller J.A. et al. [61] used

WGCNA to identify 12 distinct modules related to synapticand metabolic processes of AD.

Specifically we found a good overlap with the module enriched in mitochondrion pathway

(containing 366 genes): 13 genes belonging to C1 community (COX6C, ATP5A1, OAT,

AASDHPPT, GHITM, COX7B, TM2D3, IARS, FAM3C, NDUFB5, DLD, CD200, MRPL3)

and 9 to C2 community (MDH1, ATP5C1, NDFIP1, PDHB, PFKM, UQCRC1, TIMM17A,

CCNH, ATPIF1).

Further gene set enrichment analysis showed that both communities C1 and C2 were mostly

enriched in AD, oxidative phosphorylation (OXPHOS), Krebs (TCA) cycle, Parkinson’s dis-

ease and bipolar disorder pathways. Several works studied the pathway enrichments associated

with AD [62–64]. For example, Naj et al. [65] provided a comprehensive review of genomic

studies of AD. Moreover, many studies [66, 67] confirmed that oxidative phosphorylation and

electron transfer defects were closely associated with neuro-degenerative diseases, such as AD.

Oxidative phosphorylation rapresents the apex of a series of energy transformations indicated

as cellular respiration or simply respiration in their entirety [68]. In this cellular process the

electron transport chain constitutes a proton gradient across the inner mitochondrial mem-

brane, in which the synthesis of ATP is driven through the chemiosmosis. The role of

OXPHOS changes in the pathogenesis of AD is controversial. Abnormalities in cellular bioen-

ergetics have been detected in a lot of people affected by AD and their links with dementia

have been highlighted in several experiments in vivo and in vitro [69]. As reported in Table 2,

C1 community results also enriched for genes involved in Krebs (TCA) cycle. The TCA cycle is

a mitochondrial metabolic process essential for generating the proton gradient across the

inner membrane of the mitochondria that is used to produce ATP [70]. A connection between

Table 4. Summary table of the results obtained through the proposed community detection methods. In the fourth column the number of genes in common with C1

and C2 communities is shown in bold. We reported only significant correlations (p-value< 0.05).

Method Number of

communities

AD-related

communities

Number of genes in AD-related

communities

Correlation coefficient

with NFT

Correlation coefficient with

MMSE

Our method 127 C1 71 0.59 −0.46

C2 39 −0.46 0.47

WGCNA 21 Blue module 637(87) 0.43 −0.43

Affinity propagation 233 A1 31(7) 0.45 −0.43

A2 39(23) 0.45 −0.43

Agglomerative

clustering

Between 2 and 30 None

Fuzzy c-means Between 2 and 7 None

ARACNE 674 AR1 8(2) −0.45 0.44

AR2 7(5) −0.43 0.43

GENIE3 675 G1 9(3) −0.44 0.44

G2 7(2) −0.44 0.46

SPACE 24 S1 25(2) 0.44 −0.44

https://doi.org/10.1371/journal.pone.0226190.t004
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aberrations in TCA cycle and AD has been widely witnessed [70–73]. For example, Bubber

et al. [74] stated that the metabolic activity of the TCA cycle decreases in AD mitochondria

due to a decline in several of the enzymes of the cycle. As reported in S8 Table also the found

communities within GSE48350 and GSE29378 were mostly enriched in AD, OXPHOS and

energy cellular processes pathways. Finally, we implemented a study of hub genes by means of

the Kleinberg’s centrality and identified 24 hub genes in C1 community and 9 in C2 commu-

nity. The robustness of our findings was confirmed through a bootstrap procedure. In fact, C1

and C2 communities appear on average more stable than the other communities, as displayed

in Fig 9. The communities of the hub genes presented a stronger correlation with the clinical

phenotype than C1 and C2 communities. This could indicate the presence of a robust core

component of genes within the detected communities more closely related to AD. As shown in

Fig 15. Age distributions of the three datasets analyzed. To make the three distributions comparable we did not consider 17 samples of young

subjects in the database GSE48350.

https://doi.org/10.1371/journal.pone.0226190.g015
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Fig 6 and reported in S5 Table the found hub nodes often do not coincide with the genes most

correlated to AD phenotype. In fact our procedure was based on a centrality measure and a

bootstrap verification independently by correlation with clinical features. The detected com-

munities, C1 and C2, and in particular the communities of their hub genes could help to under-

stand the mechanisms of Alzheimer’s disease and they can be potential targets for a future AD

therapy. Clearly, a more in-depth clinical validation is necessary to understand how these

genes are implicated in the biological processes linked to AD.

3 Conclusions

In this paper we implemented a method proposed in a previous work and used in an interna-

tional competition to detect gene communities linked to AD. Our strategy was based on a co-

expression network analysis and a study of Shannon entropy of the betweenness. The pivotal

role of co-expression networks consists in representing binary relationships between individ-

ual genes that may highlight obscure processes of cellular communication. As reported in

Table 4 the communities found with our method are significantly smaller than the module

obtained through WGCNA but much more populated than the communities detected by

means of ARACNE and GENIE3 where gene connections appear suppressed. Compared to

the remaining implemented techniques our results are similar in terms of correlation to AD

but the two found communities have a different information content because they consist

largely of different genes. These communities were stable and mostly replicated on two inde-

pendent databases. Furthermore they contained some genes already known to be linked to AD

as RIN3 and GNA12. The detected communities resulted mostly enriched in pathways closely

associated with neuro-degenative diseases as energy cellular processes. A study of the hub

genes of the two communities revealed even stronger correlation of hub genes communities to

the clinical phenotype. Further exploration on the two AD-relevant communities and the

detected hub genes, combined with analysis using different clinical tools such as neuroimaging

[75], are needed to understand physiological mechanisms of AD.
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