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Abstract 
The purpose of this paper is to broaden the knowledge of mean difference 
and, in particular, of an important distribution model known as truncated 
normal distribution, which is widely used in applied sciences and economics. 
In this work, we obtained the general formula of mean difference, which is 
not yet reported in literature, for the aforementioned distribution model and 
also for particular truncated cases. 
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1. Introduction 

Truncated normal distribution is a part of the important continuous distribution 
models that find wide application in various fields of scientific research (Johnson 
et al., 1994 [1]; Hamedani, 2019 [2]). Said distribution represents normal va-
riables observed on a section of an abscissas plan, more precisely on the right 
half axis X a> , on the left half axis X b<  or on the segment a X b< < . A 
number of publications have dealt with the overview of the truncated normal 
distributions (Barr and Sherrill, 1999 [3]; Domma, 2003 [4]; Cha et al., 2013 [5]; 
Koutroumbas et al., 2014 [6]; Thomopoulos, 2015 [7]). Said distribution has 
important uses in applied sciences, in particular in economic sciences. This dis-
tribution has many shapes and a measure of interest is the coefficient of varia-
tion, that helps to identify the shape of the distribution. The mean difference of 
the truncated normal distribution (Domma et al., 2014 [8]) is not known in lite-
rature, while variability indexes as range of variation, mean deviation and stan-
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dard deviation and shape indexes (asymmetry and disnormality) have been al-
ready obtained. The purpose of this short note is to fill the said gap.  

2. Truncated Normal Distribution 

Density function of standardized normal distribution is 
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Cumulative distribution function of normal distribution is 
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We can consider the case of μ = 0 and σ = 1, namely, of standardized normal 
distribution. Density function of truncated normal distribution between a and b 
corresponds to the formula 
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It is clearly obtained  
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Cumulative distribution function of truncated normal distribution is then 
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3. General Formula of the Mean Difference of Truncated  
Normal Distribution 

Various formulas are available to calculate the mean difference of a continuous 
distribution, the simplest one uses the cumulative distribution function ( )F x  

( ) ( )2 1 d ,
b

a
F x F x x∆ = −  ∫                    (6) 

in which a and b are extreme values of the range of distribution. Dealing with 
truncated normal distribution, it is necessary to use the cumulative distribution 
function ( )xΨ : 

( ) ( )2 1 d .
b

a
x x x∆ = Ψ −Ψ  ∫                   (7) 

By means of heavy integrations and simplifications, the following general 
formula of the mean difference of truncated normal distribution is obtained 
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in which the error function occurs 
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The complement of error function is  
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In the following Figure 1, the mean difference Δ is shown on vertical axis de-
pending on the minimum value a and the maximum value b indicated on base 
axes.  

As can easily be seen, starting from 0, when a and b are both zeros, the mean 
difference grows with a decreasing and b increasing up to the maximum, equal 
to 2

π
, which is obtained when a = −∞  and b = ∞ , that is the case of com-

plete normal distribution. 

4. Special Cases 

Let us consider mean difference formulas in some interesting special cases of 
truncated normal distribution. 

4.1. Symmetric Truncated Distribution 

When b a= −  in the general formula, after a few steps it leads to  
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Figure 1. Mean difference of truncated normal distribution. 
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4.2. Truncated Semi-Normal Distribution 

When 0a =  in the general formula, after a few steps it leads to 
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When 0b = , it leads to a similar result 
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4.3. Semi-Normal Distribution 

When 0a =  and b = ∞  in the general formula, after a few steps it leads to 
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The same result is obtained when a = −∞  and 0b = . 

4.4. Tail Normal Distribution 

When 0a >  and b = ∞  in the general formula, after a few steps it leads to 
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The same result is obtained with a = −∞  and 0b <  in the general formula: 
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4.5. Complete Normal Distribution 

When a = −∞  and b = ∞ , it leads to the well-known result of mean difference 
of complete normal distribution. 

2 .∆ =
π

                         (17) 

In this work, we do not deal with other special cases.  

5. Conclusion 

Truncated normal distribution is an important distribution model that can be 
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applied in many experimental and observational fields, particularly in quantita-
tive economic sciences. Variability indexes as range of variation, mean deviation 
and standard deviation and shape indexes (asymmetry and disnormality) have 
been already obtained, but the mean difference of the truncated normal distribu-
tion is not known in literature. This note fills the gap regarding the lack of 
knowledge of mean difference general formula of said model. Moreover, the ob-
tained formula is proposed for any truncation and for some particular truncated 
cases. 
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