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H I G H L I G H T S

• Paper presents a novel approach for optimising the mix of heat supply technologies.

• Heat supply choices are affected by local and national interactions with power.

• Heat sector flexibility can support decarbonisation of electricity supply.

• Emission limits and grid constraints shape the optimal heat plant portfolio.

• Increasing heat storage capacity can help with local network constraints.
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A B S T R A C T

Decarbonisation of the heating and cooling sector is critical for achieving long-term energy and climate change
objectives. Closer integration between heating/cooling and electricity systems can provide additional flexibility
required to support the integration of variable renewables and other low-carbon energy sources. This paper
proposes a framework for identifying cost-efficient solutions for supplying district heating systems within both
operation and investment timescales, while considering local and national-level interactions between heat and
electricity infrastructures. The proposed optimisation model minimises the levelised cost of a portfolio of heating
technologies, and in particular Combined Heat and Power (CHP) and polygeneration systems, centralised heat
pumps (HPs), centralised boilers and thermal energy storage (TES). A number of illustrative case studies are
presented, quantifying the impact of renewable penetration, electricity price volatility, local grid constraints and
local emission targets on optimal planning and operation of heat production assets. The sensitivity analysis
demonstrates that the cost-optimal TES capacity could increase by 41–134% in order to manage a constraint in
the local electricity grid, while in systems with higher RES penetration reflected in higher electricity price
volatility it may be optimal to increase the TES capacity by 50–66% compared to constant prices, allowing
centralised electric HP technologies to divert excess electricity produced by intermittent renewable generators to
the heating sector. This confirms the importance of reflecting the whole-system value of heating technologies in
the underlying cost-benefit analysis of heat networks.

1. Introduction

Together with reducing the carbon impact of the electricity sector
through the deployment of low-carbon technologies such as renewables
or nuclear generation, decarbonisation of the heating and cooling sector
will be critical for achieving EU’s long-term energy and climate change
objectives. Heating and cooling currently account for half of the EU’s
energy consumption and for a similar proportion of the total carbon

emissions [1], with three quarters of energy still being provided by
fossil fuels (mostly natural gas). It has been shown that heating and
electricity systems can benefit significantly from mutual synergies on
their pathways towards decarbonisation [2], by unlocking opportu-
nities for cross-vector flexibility to support the integration of low-
carbon generation technologies and to significantly reduce the cost of
decarbonisation [3]. Integrated planning and operation of district
heating, gas, hydrogen and electricity networks offers interesting
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opportunities for a broad range of technologies, including flexible co-
generation systems, power to gas or demand side management options
[4,5]. Energy storage plays a critical role in balancing the operation of
integrated networks with variable supply and demand. It has been
shown that seasonal storage is especially useful when a significant

reduction in emissions is required, when a large amount of intermittent
renewable generation is available, or when the system is characterised
by a large ratio of thermal to electrical demand [6].

Nomenclature

Indices

t Time interval
d Characteristic day
i CHP plant unit
j Large-scale HP unit
k Heat storage unit
l Boiler unit

Parameters

T Number of time intervals in a characteristic day (typically
24 or 48)

Δ Duration of the unit interval (in hours)
D Number of characteristic days used in the study
Nd Frequency (number of occurrences) of characteristic day d

within a year
I Number of CHP units
J Number of large-scale HP units
K Number of heat storage units
L Number of boiler units
CVOLL Value of Lost Load (VOLL), cost associated with unserved

heat demand (in €/MWth)
Ht d, Heat demand profile at time t for day d (including losses)

(in MWth)
Dt d

el
, Baseline electricity demand profile at local substation at

time t for day d (in MWel)
BE t d, , Electricity price profile at time t for day d (in €/MWhel)
ECO2 Annual limit on CO2 emissions from the heat supply

system (in tonnes of CO2)
ENOx Annual limit on NOx emissions from the heat supply

system (in tonnes of NOx)
EPM Annual limit on particulate matter (PM) emissions from

the heat supply system (in tonnes of PM)
Et

gridCO2 Carbon intensity of electricity grid at time t (in tCO2/
MWhel)

Gcap Capacity of local electricity grid (substation) (in MWel)
α Factor for constraining reverse power flows at substation
PCHP i

MAX
, Maximum installed capacity of CHP unit i (in MWel)

ΓCHP i
min

, Minimum electricity output relative to installed capacity
for CHP uniti

PHP j
MAX

, Maximum installed capacity of large HP unit j (in MWel)
HS k

MAX
, Maximum installed capacity of heat storage unit k (in

MWth)
HB l

MAX
, Maximum installed capacity of boiler unit l (in MWth)

ICHP i
F

, Fixed component of (annualised) investment cost for CHP
unit i (in €/yr)

IHP j
F

, Fixed component of (annualised) investment cost for large
HP unit j (in €/yr)

IS k
F
, Fixed component of (annualised) investment cost for heat

storage unit k (in €/yr)
IB l

F
, Fixed component of (annualised) investment cost for

boiler unit l (in €/yr)
ICHP i

V
, Variable component of (annualised) investment cost for

CHP unit i (in €/kWel/yr)
IHP j

V
, Variable component of (annualised) investment cost for

large HP unit j (in €/kWel/yr)

IS k
V
, Variable component of (annualised) investment cost for

heat storage unit k (in €/kWth/yr)
IB l

V
, Variable component of (annualised) investment cost for

boiler unit l (in €/kWth/yr)
ACHP i, Unit no-load generation cost of CHP unit i (in €/MWhel)
BCHP i, Variable electricity generation cost of CHP unit i (in

€/MWhel)
FB l, Fuel cost of boiler unit l (in €/MWh)
RCHP i, Ratio between heat and electricity output for CHP uniti
RHP j, Ratio between heat output and electricity input (COP) for

large HP unit j
DS k, Duration (ratio between energy and power rating) for heat

storage unit k (in hours)
ηS k, Roundtrip efficiency of heat storage unitk
WS k

min
, Minimum relative SoC of heat storage unitk

ηB l, Combustion efficiency of boiler unitl
ECHP i

CO
,

2 Emission factor for CO2 per unit of electricity output of
CHP unit i (in tCO2/MWhel)

ECHP i
NO

,
x Emission factor for NOx per unit of electricity output of

CHP unit i (in tonnes of NOx per MWhel)
ECHP i

PM
, Emission factor for PM per unit of electricity output of

CHP unit i (in tonnes of PM per MWhel)
EB l

CO
,

2 Emission factor for CO2 per unit of heat output of boiler
unit l (in tCO2/MWhth)

EB l
NO
,

x Emission factor for NOx per unit of heat output of boiler
unit l (in tonnes of NOx per MWhth)

EB l
PM
, Emission factor for PM per unit of heat output of boiler

unit l (in tonnes of PM per MWhth)

Decision variables

cCHP i, Investment cost into CHP unit i (in €/yr)
cHP j, Investment cost into large-scale HP unit j (in €/yr)
cS k, Investment cost into heat storage unit k (in €/yr)
cB l, Investment cost into boiler unit l (in €/yr)
uCHP i, Binary decision on investment into CHP uniti
uHP j, Binary decision on investment into large HP unit j
uS k, Binary decision on investment into heat storage unitk
uB l, Binary decision on investment into boiler unitl
πCHP i, Installed capacity of CHP uniti
πHP j, Installed capacity of large HP unit j
πS k, Installed capacity of heat storage unitk
πB l, Installed capacity of boiler unitl
δCHP i t d, , , Binary decision on whether the CHP unit i is turned on at

time t for dayd
pCHP i t d, , , Electrical output of CHP unit i at time t for day d (in MWel)
ωCHP i t d, , , Operating cost of CHP unit i at time t for day d (in €)
pHP j t d, , , Electrical input of large HP unit j at time t for day d (in

MWel)
hCHP i t d, , , Heat output of CHP unit i at time t for day d (in MWth)
hHP i t d, , , Heat output of large HP unit j at time t for day d (in MWth)

+hS k t d, , , Heat output (discharging) from heat storage unit k at time
t for day d (in MWth)

−hS k t d, , , Heat input (charging) into heat storage unit k at time t for
day d (in MWth)

hB l t d, , , Heat output of boiler unit l at time t for day d (in MWth)
wS k t d, , , State of charge of heat storage unit k at time t for day d (in

MWhth)
hcurt t d, , Curtailed heat demand at time t for day d (in MWth)
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1.1. Interactions in multi-carrier energy networks

The effectiveness of linkages between gas, power, heating, and
water resources and their interdependency in optimal operation and
design of multi-carrier energy networks is a research topic that has
gained broad interest in recent literature. A security-constrained fra-
mework for interconnected power and gas systems was proposed in [7],
while the optimal operation of integrated energy systems while taking
into account the uncertainty of wind generation was proposed in [8],
introducing an incentive-based demand-response strategy to modulate
both gas and electricity loads. A number of a bi-level frameworks have
been introduced for optimal energy management of integrated gas and
electricity networks, minimizing the combined network operation cost
and maximizing the private owners’ profits [9,10], exploring the ex-
pansion planning and optimal integrated operation of these networks
[11], or including minimisation of operation cost and emissions of
pollutant gases [12].

Recent work in this area has also focused on modelling electricity to
heating technologies and the impact of electricity prices on heat supply
and the profitability of district heating networks [13], as well as on the
impact of fluctuating energy prices on operation strategies of poly-
generation systems coupled with energy networks [14]. Energy tech-
nologies linking heat and power will play a key role in the integration
between heating/cooling and electricity networks, and therefore a lot of
research has focused on the optimal design and operation of embedded
polygeneration systems and their integration with energy networks,
including natural gas and biomass dual source technologies [15,16],
hybrid solar-biomass systems [17,18], gas/renewable energy source
integrated polygeneration systems [19], different typologies of
building-integrated vs. centralised heat pumps [20,21,22], or thermal
energy storage options for district heating [23]. A model for cost-op-
timal long-term multi-area combined heat and power production with
heat and power storage and power transmission between areas has been
presented in [24], minimizing the total production and transmission
cost using a novel decomposition method to solve larger systems.

1.2. Planning and operation of DHN

A number of recent studies have shown that district heating (DH)
can play an important role in the evolution towards sustainable energy
systems [25,26,27], but also that the present district heating networks
(DHN) must undergo a radical change to become an integral part of
smart energy systems. Various approaches to heat supply planning have
been proposed in the literature [28,29]. Another common optimisation
problem in this area is district heating network design, for which
methods have been proposed based on operational research [30], ge-
netic algorithms [31,32] and stochastic optimisation [33,34]. Optimi-
sation of a neighbourhood-scale cooling heating and electricity in-
tegrated energy network has been described in [35], where cooperative
game-theory based constraints are proposed to model both cost and
emissions’ benefit allocation. The case study indicates that CHP plus
heat pump can replace gas boilers for cost-efficient heating supply with
significantly lower carbon emissions. A hierarchical approach for de-
signing an integrated cooling, heating and electricity network at district
scale is proposed in [33]. Fully distributed and semi-distributed design
modes are compared from economic and computational efficiency
perspectives and stochastic programming is used for modelling un-
certainties.

Techno-economic approaches to planning of district heating and
energy systems with detailed spatial resolution have been presented in
[36,37], allowing for the optimisation of the routes and capacities of
heat distribution networks, selecting heat loads that will be connected
to a DHN and determining locations for the energy sources. A model of
renewable energy-supplied DH in cities with integration of geospatial
data of buildings and resources is presented in [38]. A rigorous opti-
misation-based clustering approach is used to reduce model complexity

leading to a realistic DHN design aligned with the road network.
A decision support framework for the design of CHP-based com-

bined DHN with boilers for peak load shaving has been presented in
[39]. The model has been used to identify the optimal load ratio be-
tween the CHP and peak shaving boiler. The selection of technologies
for the operation of a DH centre while considering hourly variations in
electricity prices has been described in [40]. The integration of large-
scale heat pumps into DHNs using low-temperature heat sources while
considering seasonal variations in heat source temperature and the heat
pump coefficient of performance has been modelled in [41]. The po-
tential for deploying both long-term storage systems based on hydrogen
and short-term storage systems based on batteries in decentralised
neighbourhoods has been assessed in [42]. Estimating the demands and
prices required by energy planning models is another important con-
sideration. A linear regression model where the demand is calculated
from the hourly weather data coupled with a social component and
historical heat consumption data has been described in [43]. A bottom-
up model of electricity costs that generates real-time price curves and
provides profiles for different UK regions across various seasons has
been presented in [44].

The integrated planning and operation of electricity and DHNs has
been broadly investigated in literature. In [45], a network-constrained
unit commitment (UC) model has been proposed for interconnected
power and heat systems considering CHP units and DHNs. In this study,
the heat storage system has been sized to match the intermittent wind
power generation. An approach to risk analysis for optimal energy
management of interconnected power and heat systems considering
uncertainties associated with electricity price and wind power output
was presented in [46], while in [47] an optimal robust energy man-
agement model for such integrated systems has been proposed to deal
with uncertain parameters such as market price and loads, and in [48]
the multi-objective optimisation of both system operation costs and
emissions has been considered. In [49], a network-constrained optimal
generation scheduling in interconnected power and heat networks has
been studied in deterministic conditions. The uncertain nature of wind
power output, load demand, and electricity market prices has been
investigated from the aspect of energy management in [10] by applying
a seasonal autoregressive integrated moving average model. A similar
analysis has been carried out in [50] by employing a real-time man-
agement model that also included real-time market price signals.

A methodology to increase the efficiency and reduce cost of the
power system by incorporating CHP in combination with thermal sto-
rage and DHN in energy systems has been proposed in [51], while
considering the impact of the temperature of heat delivered by the CHP
plant and of the DHN at whole energy system level, as well as including
the feasible operating regions of CHP for different heat uses.

1.3. Novelty of proposed approach: Local and national interactions in DHN

Economic comparison of different heat decarbonisation pathways
for the UK and the associated impacts on the electricity system were
analysed in [2], suggesting that district heating may be economical in
urban areas, in particular if its inherent flexibility is utilised to support
the decarbonisation of the electricity system. Similarly, the whole-
system modelling of the interaction between electricity and heat sys-
tems presented in [52] highlighted the benefits of system integration at
both local and national level for cost-effective decarbonisation.

Most of the previous research on local district heating systems has
focused on the local infrastructure, with only limited consideration of
wider energy system impacts and benefits, which can be substantial, as
demonstrated through whole-system approaches to integrated heat and
electricity system assessment. In that context, the main contribution of
this paper is to propose a novel optimisation framework for choosing a
cost-efficient portfolio of heat supply technologies for a given local
district heating system, while considering the interactions with a dec-
arbonised electricity system at both national level and within the local
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distribution grid. These interactions are implemented in a robust
manner, by using input electricity price profiles derived from a whole-
system model of the electricity system with varying shares of variable
renewables. The proposed modelling approach allows for an explicit
consideration of the impact of volatile electricity price patterns, re-
sulting from factors such as increased penetration of renewables, local
network constraints and limits on local carbon emissions. One of the
key advantages of the approach proposed in this paper is to directly
consider the interactions between heat and electricity networks and the
associated impact on cost-optimal decisions to invest in heat generation
assets as well as on their optimal operating strategies.

The proposed problem formulation will be integrated into the open-
source application for heat network planning developed within the EU-
funded THERMOS project [53]. The overall optimisation of a district
energy system in THERMOS is decomposed into two separate models
for the heat network and supply system respectively (Fig. 1). The heat
network model determines the network paths for connecting individual
buildings by optimising an objective function based on network in-
vestment costs, heat supply costs and revenues from heat sales [37].
The heat supply cost is a critical parameter in the heat network opti-
misation as it determines which connections are economically viable
[36]. The supply system model described in this paper optimises this
cost by exploiting the benefits of integrating heat and electricity net-
works.

Similar approaches to modelling district heating systems have been
reported in the literature but differ in the level of detail and the opti-
misation strategy used to manage computational requirements for
complex models. The supply system optimisation problem has been
decomposed into a technology selection model and a detailed quarter-
hourly operational simulation, which are optimised using iterative
heuristic methods [54], however this analysis did not consider local
grid constraints or electricity price volatility driven by renewables. A
linear programming (LP) model application to optimise the capacity
selection and hourly operation of the supply technologies over an entire
year has been presented in [55], although without considering the
specific impact of local grid constraints or electricity price variations.
The impact of regulatory requirements, policy interventions and in-
centives such as feed-in tariffs has been included in the optimisation of
the supply system assuming static electricity prices [56]. The modelling
approach adopted in THERMOS combines a high spatial resolution
MILP optimisation model for the heat network [37] with a high tem-
poral resolution MILP optimisation model for the design and operation
of the supply system described in this paper that incorporates volatile
electricity price patterns and local network constraints.

2. Method

The interaction between heating (and potentially cooling) networks
and the electricity grid occurs at both local and national scales. At the
district level the circumstances in the local electricity distribution
network and DHN will affect both the possibility and the cost of grid
connection of a CHP plant or large-scale centralised HP. Local elec-
tricity network constraints could potentially limit the size of the con-
nection or the rate of power consumption or injection that can be ac-
commodated in the existing grid. Opportunities for connecting
generation assets to the DHN with possible capacity limits, any plan-
ning regulations or network refurbishment constraints, heat demand
intensity and future demand forecast will also have an influence on
decisions to invest in heat networks. On the other hand, interactions
with the wider energy system, in particular at bulk power system level,
will be affected by time-varying prices of electricity, which will depend
on the national generation mix and in particular on the contribution of
intermittent renewable generation to the electricity supply. Highly
fluctuating electricity prices will have an impact on the attractiveness
of different heat supply options, including the installation of dedicated
heat storage to increase the operational flexibility of power-to-heat
technologies.

2.1. General approach

The model is formulated as a mixed-integer linear programming
(MILP) optimisation problem, finding the solution that minimises the
total cost of heat supply, including investment and operational costs,
while considering specific constraints associated with local grid capa-
city and pollutant emissions.

Four types of heat supply sources are assumed: 1) Combined Heat
and Power (CHP) plants, 2) large-scale centralised heat pumps (HP), 3)
centralised boilers, and 4) thermal energy storage (TES). Each of these
categories can accommodate a variety of technology subtypes and/or
fuels such as gas or biomass boilers, fuel cells, engines or gas turbine as
prime movers for CHP plants, or TES in the form of hot water tanks,
molten salts or phase-change materials (PCMs).

Key links between the heat supply system (which is the subject of
optimisation) and the electricity system include: a) CHP plants, which
are able to sell their electricity output into the grid at the same time as
supplying heat, and b) large HP plants, which produce heat from
electricity purchased at time-varying prices. Fig. 2 illustrates the key
interactions between heat and electricity distribution systems.

The model assumes a known annual heat demand profile, which for
the sake of computational efficiency is represented as a set of daily

Fig. 1. Optimisation of district heat network and supply system.
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demand profiles for typical days and the associated frequencies of oc-
currence (e.g. representing peak winter day, normal winter day, spring/
autumn and summer days; and/or workdays and weekends). The
number of typical days is an input parameter into the model; the choice
of typical days should capture the key seasonal variations in heat de-
mand, electricity demand and electricity prices. It is assumed that the
heat demand is supplied via a DHN that already exists and is therefore
not the subject of optimisation.

2.2. Objective function

The objective function minimises the cost of supplying heat, con-
sidering the investment and operating cost components of the selected
assets (including heat storage), and assuming it is possible to use an
existing DHN. The main components of the objective function include:

• Investment cost into new CHP, large HP, heat storage and/or cen-
tralised boiler capacity

• Fuel cost of operating CHP and boiler plants

• Revenues from selling electricity generated by CHP

• Electricity purchase cost for large HP operation

• Cost of heat demand curtailment (if any)

The mathematical formulation of the objective function is provided
in (1):

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

∑

= + + + +

⎛

⎝
⎜ − + +

+
⎞

⎠
⎟

= = = = =

= = =

=

z

c c c c N

ω p B B p

F
η

h C h

min

Δ·

( · )

· ·

i

I

CHP i
j

J

HP j
k

K

S k
l

L

B l
d

D

d

t

T

i

I

CHP i t d CHP i t d E t d E t d
j

J

HP j t d

l

L
B l

B l
B l t d VOLL curt t d

1
,

1
,

1
,

1
,

1

1 1
, , , , , , , , , ,

1
, , ,

1

,

,
, , , , ,

(1)

The first four terms in (1) represent the annualised investment cost
components for CHP (cCHP), HP (cHP), TES (cS) and boilers (cB), re-
spectively. This is followed by: the difference between the operating
cost of CHP plants (ω) and the revenues from electricity sales re-
presented as product of CHP power output (pCHP) and electricity prices
(BE); cost of electricity used by HPs, expressed as product of HP power
consumption (pHP) and electricity prices (BE); fuel cost of boilers, ex-
pressed as product of boiler heat output (hB) and the ratio between the
cost of fuel (FB) and boiler efficiency (ηB); and the cost of heat demand
curtailment (hcurt), penalised with a high cost coefficient CVOLL. Δ re-
presents the duration of the unit time interval (0.5 h is assumed in the
examples presented later in the paper). The operating cost components

are summed across all time intervals t and across all characteristic days
d used in the study, weighted by their frequency of occurrence Nd.
Therefore the total operating cost represents a weighted sum across all
characteristic days, ensuring that the operating cost is adequately ac-
counted for across the entire year and that it can be added to the an-
nualised investment cost in the objective function. Note that any in-
vestment decisions in new supply capacity apply across all
characteristic days in a year, as specified later in constraints (13)–(18).

It is assumed that DHN is already available to transport heat from
the generation assets to the end users. There are a number of com-
plexities associated with simultaneous optimisation of generation
technologies and network design, including the different temporal and
spatial resolutions required. Optimisation of generation/storage tech-
nologies generally requires a high temporal resolution, in particular to
select the best operating strategies in light of dynamic system compo-
nents response, operational flexibility, variable costs and emission le-
vels and interactions with demand side management options, but it
generally involves a relatively limited number of possible locations for
technologies. On the other side, heat network design requires high
spatial resolution, while in the time domain considering only peak and
average heat demand is typically sufficient for optimising long-term
investments. It is therefore more efficient to solve the two subproblems
in an iterative fashion, with the heat supply optimised according to the
method presented here, and network planning based on different ap-
proaches proposed in literature such as [37] or [57]. The heat gen-
eration asset optimisation therefore does not consider revenues from
heat sales nor network investment/operational costs, but only capex
and opex of heat generation and storage technologies.

The variable operating cost of CHPs and boilers can also include the
cost of carbon emissions if relevant i.e. if the carbon price is relevant for
the case study. Alternative objective functions (e.g. minimising carbon
emissions) could be formulated with a similar approach, taking into
account emission factors of CHP plants and boilers.

2.3. Model constraints

Constraints that need to be met in the model include:

• Energy balance. The total net heat output of all CHP (hCHP), HP (hHP),
heat storage ( −+ −h hS S ) and boiler units (hB) needs to meet the heat
demand H in each time interval, also allowing for the possibility of
curtailment (at a specified cost):

∑ ∑ ∑ ∑+ + − +

≥ −

+ −h h h h h

H h

( )
i

CHP i t d
j

HP j t d
k

S k t d S k t d
l

B l t d

t d curt t d

, , , , , , , , , , , , , , ,

, , , (2)

• Investment costs. The investment cost of new CHP (cCHP), HP (cHP),
TES (cS) and boiler units (cB) is expressed as the sum of a fixed
component I F that is independent of the size (multiplied by binary
investment variables u) and a variable component that is size-de-
pendent and expressed as a product of parameter IV and the con-
tinuous installed capacity variable π :

≥ +c I u I π· ·CHP i CHP i
F

CHP i CHP i
V

CHP i, , , , , (3)

≥ +c I u I π· ·HP j HP j
F

HP j HP j
V

HP j, , , , , (4)

≥ +c I u I π· ·S k S k
F

S k S k
V

S k, , , , , (5)

≥ +c I u I π· ·B l B l
F

B l B l
V

B l, , , , , (6)

• Installed capacity limits. New installed capacity of heat generators (π)
is limited by the product of maximum capacity limits and binary
investment decisions u, as defined in (7)–(10). In case the unit in-
vestment decisions are discrete, i.e. if one can only install the

Fig. 2. Interactions between electricity system and heat supply system.
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specified maximum capacity or nothing, the inequalities in these
constraints should be converted to equalities (all case studies pre-
sented later in this paper use inequalities i.e. allow continuous in-
vestment decisions).

≤π u P·CHP i CHP i CHP i
MAX

, , , (7)

≤π u P·HP j HP j HP j
MAX

, , , (8)

≤π u H·S k S k S k
MAX

, , , (9)

≤π u H·B l B l B l
MAX

, , , (10)

• Operating cost of CHP. The operating cost of CHP (ωCHP) is composed
of a fixed component independent of the delivered energy (no-load
cost, NLC) and a variable cost component proportional to the CHP
power output pCHP; these two components are respectively defined
for each unit as ACHP i, and BCHP i, . NLC is incurred whenever the unit
is operating but is not dependent on the unit output level. In stan-
dard unit commitment problems the NLC coefficient is typically
expressed in € per operating hour for a unit of known size. However,
given that the unit size is a decision variable and its value is not
known in advance, the coefficient ACHP i, is here specified as ‘unit’
NLC in €/MW of CHP size and per operating hour. Parameters ACHP i,
and BCHP i, are chosen so that the conversion efficiency loss at 50% of
rated power output is 10%, which is a typical value reported in the
literature for gas reciprocating engines, the technology considered
in the proposed application [58]. In general, it can be shown that if
Γ denotes the ratio of minimum to maximum CHP output, and Λ is
the ratio of efficiencies at minimum and maximum output, the unit
NLC coefficient ACHP i, can be expressed relative to the variable op-
erating cost coefficient BCHP i, as in equation (11). For a known unit
size the no-load operating cost of CHP at time t would be found by
simply multiplying the relevant absolute NLC coefficient (in €/h)
with the unit commitment variable for time t . This is however not
possible in a mixed-integer linear problem when the unit size is not
known in advance, as it would result in a product of two variables
representing commitment and investment decisions i.e. in a non-
linear constraint. Constraint (12) therefore ensures that the no-load
cost is accurately accounted for while preserving the linearity of the
formulation. If the CHP unit is switched on at time t , i.e. the binary
unit commitment variable δCHP i t d, , , is equal to 1, the total operating
cost is the sum of no-load and variable cost
( +A π p BCHP i CHP i CHP i t d CHP i, , , , . , ). If on the other hand the unit is
switched off, the right-hand side of (12) takes a value that is less
than or equal to zero, effectively resulting in zero operating cost.

= ⎛
⎝

−
−

− ⎞
⎠

A BΓ· · 1 Γ
Λ Γ

1CHP i CHP i, , (11)

≥ − − +ω A π δ P p B·( (1 )· ) ·CHP i t d CHP i CHP i CHP i t d CHP i
MAX

CHP i t d CHP i, , . , , , , , , , , . ,

(12)

• Operating limits. The outputs of CHP, HP, heat storage and boilers are
limited by the relevant installed capacity decision variables as well
as CHP unit commitment decisions, as specified in expressions
(13)–(18). Constraint (15) ensures that if a CHP plant is turned on at
time t (which is represented through binary commitment variables
δCHP i t d, , , ), its output needs to be at or above the minimum level ex-
pressed relative to its installed capacity. Depending on the appli-
cation, the model could also include more advanced operating
constraints (especially for CHPs) associated with standard unit
commitment problems, such as start-up costs, quadratic cost func-
tions, ramping constraints, minimum up and down times etc.

≤p πCHP i t d CHP i, , . , (13)

≤p δ P·CHP i t d CHP i t d CHP i
MAX

, , . , , , , (14)

≥ + −p π P δΓ · ( 1)CHP i t d CHP i
min

CHP i CHP i
MAX

CHP i t d, , . , , , , , , (15)

≤p πHP j t d HP j, , , , (16)

≤+ −h h π,S k t d S k t d S k, , , , , , , (17)

≤h πB l t d B l, , , , (18)

• Heat storage balance. The duration parameter for heat storage is
defined as the ratio between its energy (MWh) and power (MW)
rating. Similar to CHP, HP and boiler units the investment cost of
TES is expressed per unit of power. It would be equivalent to express
the cost per unit of TES energy capacity and then express its power
rating in MW as the ratio between energy and duration. The state of
charge (SoC) or energy content of heat storage at time t (wS k t d, , , ) is
equal to the SoC at time −t 1 plus the net effect of charging ( +hS k t d, , , )
and discharging ( −hS k t d, , , ), multiplied by the duration of the unit time
interval Δ, while also accounting for roundtrip losses ηS k, (19). SoC
is also limited from above by the product of thermal power rating
(πS k, ) and duration of heat storage DS k, as specified in (20), and from
below using the minimum relative SoC parameter W min as in (21):

= − −−
+ −w w h η hΔ·( · )S k t d S k t d S k t d S k S k t d, , , , , 1, , , , , , , , (19)

≤w π D·S k t d S k S k, , , , , (20)

≥w W π D· ·S k t d S k
min

S k S k, , , , , , (21)

• Heat to power ratios. Power generation/consumption and heat pro-
duction for CHPs and HPs are linked via proportionality constraints
that feature the ratios RCHP for CHP and RHP that represents the COP
of the heat pump (note that both of these are assumed to be time-
independent, but could easily be replaced by temporally varied
profiles):

=h R p·CHP i t d CHP i CHP i t d, , , , , , , (22)

=h R p·HP j t d HP j HP j t d, , , , , , , (23)

• Local electricity grid. Constraints associated with the local power
network (assuming any CHP plants or large HPs would be connected
to the same network substation) need to ensure that the aggregate
effect of baseline power demand (D), CHP generation and HP con-
sumption does not exceed substation capacity Gcap (24). This con-
straint also accounts for limits on any reverse power flows (i.e.
power injections into the grid) using a coefficient <α 1, given that
for technical reasons the substations can normally accommodate
slightly lower power flows in the reverse than in the default direc-
tion.

∑ ∑− ≤ + − ≤G α D p p G·cap t d
el

j
HP j t d

i
CHP i t d cap, , , , , , ,

(24)

• Carbon emission constraints. Total annual carbon dioxide (CO2)
emissions (or in a more general case CO2-equivalent emissions of
greenhouse gases) from the heat supply system can be constrained
so as not to exceed a pre-specified annual limit. Carbon emissions
can result directly from the operation of CHP plants and boilers,
quantified by multiplying their respective outputs with relevant
emission factors ECHP and EB, or indirectly as the carbon emissions
associated with grid electricity (Et

gridCO2) used to operate HPs:

∑ ∑ ∑ ∑ ∑⎛

⎝
⎜ + +

⎞

⎠
⎟

≤

= = = = =
N p E p E h E

E

Δ· · · ·
d

D

d
t

T

i

I

CHP i t d CHP i
j

J

HP j t d t
gridCO

l

L

B l t d B l

CO

1 1 1
, , , ,

1
, , ,

1
, , , ,

2

2 (25)
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• Local emission constraints. Total annual emissions of nitrogen oxides
(NOx) and particulate matter (PM) from CHP plants and boilers can
also be constrained so as not to exceed a pre-specified emission limit
for the heat supply system:

∑ ∑ ∑ ∑⎛

⎝
⎜ + ⎞

⎠
⎟ ≤

= = = =

N p E h E EΔ· · ·
d

D

d
t

T

i

I

CHP i t d CHP i
NO

l

L

B l t d B l
NO

NO
1 1 1

, , , ,
1

, , , ,
x x

x
(26)

∑ ∑ ∑ ∑⎛

⎝
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⎟ ≤

= = = =

N p E h E EΔ· · ·
d

D

d
t

T

i

I

CHP i t d CHP i
PM

l

L

B l t d B l
PM

PM
1 1 1

, , , ,
1

, , , ,
(27)

The model has been implemented in the FICO Xpress optimisation
software [59] in order to produce the case study results presented in the
next section.

2.4. Common assumptions

The assumptions used in these examples are for illustration only and
are not intended to be representative of a specific technology or loca-
tion. For simplicity, all case studies assume that only one unit of each
technology (gas-fired CHP, large-scale HP, TES and gas-fired boiler) is
available for installation.

In single-day case studies presented in Sections 3.1–3.4, only one
characteristic day was assumed to represent the heating season, with 48
half-hourly intervals for heat demand values. It was further assumed
that this day repeats 150 times during a year (representing the length of
the heating season), that the heating system is only providing space
heating, and that no heating (such as e.g. hot water) is required from
the DHN during the rest of the year. On the other hand, in multiple-day
examples presented in Section 3.5, it was assumed the heating season
can be adequately represented using 3 characteristic days. No cooling
demand was considered.

2.4.1. Investment cost and installed capacity limits
Default assumptions used in case studies for annualised investment

cost and maximum installed capacities are presented in Table 1. An-
nualised investment costs are obtained from overnight investment costs
by applying the discount rate of 5% and assuming 15 years as the
economic life of assets. Note that in some case studies the input para-
meters from Table 1 were varied to evaluate their impact on the optimal
solution.

Note that making accurate cost estimates of heat supply technolo-
gies is not the main objective of the paper, especially since some of
these cost parameters are varied significantly across the examples
presented in this paper in order to assess their impact on the optimal
solution. Nevertheless, the investment costs are assumed to be of the
correct order of magnitude compared to those proposed in the relevant
literature [60]. Given the sizes of CHP units considered (up to 2 MWel)
the most suitable choice of CHP technology is likely to be a re-
ciprocating gas engine. For the HP considered here (in the megawatt-
scale) we assume that this is a ground-source or water-source HP based
on a vapour-compression cycle. The assumptions for boilers are broadly
consistent with a natural gas-fired boiler.

The variable CHP operating cost component per unit of electricity
output was assumed to be €80/MWh. Single-day examples presented in
Sections 3.1–3.4 assumed the values for NLC coefficients and minimum
output to be zero, effectively making the unit commitment decisions
irrelevant. In contrast, in the multiple-day examples presented in
Section 3.5 the assumed unit NLC coefficient was €10/MWh, ensuring a
10% efficiency loss at minimum output level, assumed to be at 50% of
maximum output. The fuel (i.e. gas) cost for operating the boiler was
assumed at €30/MWh, and its efficiency was 95%. The emission factor
per unit of output for CHP was 0.5 tCO2/MWhel, and for boilers
0.2 tCO2/MWhth. No specific cost of carbon was assumed.

The assumed heat-to-electricity (H-E) ratio for CHPs was 2.0, which
is in line with the range of 1.1–2.5 for reciprocating engines reported in

[61] (the value of 2.0 was chosen to ensure sufficient heat output from
the CHP to supply heat demand). The Coefficient of Performance (COP)
for large-scale HPs was assumed to be 3.0, which is in line with typical
values reported in the literature [60]. Given that a constant COP value
is used, the influence of variations in environmental temperature and
building comfort parameters or indoor temperature on the COP varia-
tion has not been considered in this work; however, it would be
straightforward to include temporal variations in COP if relevant. Heat
storage duration (ratio between rated energy and power) was assumed
to be 4 h, the minimum SoC was set at 0% and the assumed roundtrip
efficiency of TES was 90%.

2.4.2. Electricity price profiles
A number of daily electricity price profiles has been assumed in the

proposed case studies, as illustrated in Fig. 3, reflecting different pe-
netrations of intermittent renewable energy that may influence the
planning and operation of heat generation technologies. Note that the
price profiles are only illustrative examples, and not all of them would
be likely to be sustained over the course of the heating season. Price
profiles presented here are used in single-day examples presented in
Sections 3.1–3.4; multiple-day examples in Sections 3.5 and 3.6 used
different profiles, as elaborated in those sections.

The profiles include:

• Flat: Fixed electricity price profile (€50/MWh) throughout the day.
It can also represent a scenario where a power purchase agreement
(PPA) is signed by a CHP or a large HP operator.

• Variable: Variable electricity price profile for a typical day, varying
between €36/MWh (overnight) and €65/MWh (peak demand
hours).

• Low Peak: Price scenario reflecting a downward pressure on prices
during peak hours due to abundant wind generation (being a
plausible scenario for the UK system).

• Extreme Peak: A future price scenario that reflects scarcity pricing,
pushing the electricity prices to a very high level during peak de-
mand periods as the result of high demand levels and low renewable
(wind) generation.

2.4.3. Heat and electricity demand
Heat demand profile for the single characteristic day used in case

studies of Sections 3.1–3.4 is shown in Fig. 4, with a peak demand of
about 2.5 MWth, corresponding to a large block of buildings or a small
borough in an urban area. Baseline electricity demand profile at the
local substation (before including the impact of the local heating system
i.e. without any power generation or consumption by CHP and HP in-
stallations) was assumed to follow the pattern also depicted in Fig. 4
(right-hand vertical axis), with peak demand level just above 3 MWel.
The capacity of the local electricity substation was assumed to be
4 MWel.

Table 1
Assumptions on investment cost and maximum capacities for heat supply
technologies.

Parameter Technology

CHP Large HP TES Boiler

Fixed cost (€/yr) 5000 10,000 1000 2000
Variable cost (€/kW/yr) 50 100 10 20
Max. capacity (MW)* 2 2 5 5

* Note: Capacities of CHP and large HP are expressed as electrical power (in
MWel), while those of TES and boilers refer to thermal capacities (in MWth).
These limits are chosen on the basis of the heat demand profile of the selected
case study.
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3. Results and discussion

The proposed model was applied to a number of representative case
studies that highlight the capability of the model to address cost-effi-
ciency trade-offs for a portfolio of heat generation technologies in-
cluding the interaction between heat and electricity systems. Sections
3.1–3.4 present the application of the model to case studies with a
single representative day, while Sections 3.5 and 3.6 present examples
with multiple representative days.

Table 2 provides a description of the proposed case studies for the
single-day analysis, with related assumptions for the investment costs.
A total of 8 single-day case studies have been proposed to illustrate the
impact of the following key drivers on investment decisions: 1) elec-
tricity price profiles, 2) investment cost of heat supply technologies, 3)
constrained electricity network capacity, and 4) constrained carbon
emissions. The assumptions for multiple-day case studies are specified
in Sections 3.5 and 3.6.

Key model outputs for each case study include: a) installed capa-
cities of CHP, HP, thermal storage and boilers, b) total annual cost of
supplying heat, and c) average cost of heat supplied to customers. The
results for installed capacities for CHP and HP refer to their electrical
power (in MWel), while those for TES and boilers refer to thermal ca-
pacities (in MWth).

3.1. Variations in electricity prices

3.1.1. Flat price profile
Fig. 5 shows the daily diagram of heat supply and demand for the

Flat electricity price profile (shown in Fig. 3), as well as the optimal
investment choices for heat sources.

The cost-optimal supply mix in this case is achieved by a mix of
0.7 MWel of CHP and 1.23 MWth of heat storage. This combination

allows the CHP plant to operate at almost constant output, producing
around 1.4 MWth of heat. The remaining heat demand during peak
periods is matched by heat stored in the TES, and this heat is then
replenished during off-peak periods, while still allowing CHP to operate
at full output. Despite the flat electricity prices seen by the CHP plant, it
is still justified to build some heat storage alongside the CHP. Building
any additional CHP capacity above the optimal 0.7 MWel would reduce
its utilisation factor and make the total cost higher than for the com-
bination of CHP and TES.

CHP produces electricity at €80/MWhel while earning a revenue of
€50/MWhel. The difference of €30/MWhel, when applied to the 2 MWh
of heat produced simultaneously with 1 MWh of electricity results in a
net heat cost of €15/MWhth. The heat generation cost of large HPs,
assuming the COP of 3, would be €16.7/MWhth, which combined with a
higher investment cost of HPs explains why CHP is preferred. Gas boiler
on the other hand can produce heat at €30/MWh, which is significantly
higher than CHP, so even the lower investment cost of boilers does not
justify choosing them as a supply source. The average cost of supplying
heat in this example, after accounting for all operating costs as well as
the investment cost of CHP and heat storage capacity, is around €26/
MWhth.

Daily changes in the State of Charge (SoC) of TES are shown in
Fig. 6. A positive gradient of SoC is observed during off-peak periods,
when TES is charged with heat produced by the CHP in excess of cur-
rent heat demand, while negative gradients occur during peak demand
periods when heat storage output is used to top up the heat supplied by
the CHP. The model ensures that TES is fully charged before the be-
ginning of morning and evening peaks.

3.1.2. Time-varying price profiles
The impact of other electricity price profiles (Variable, Low Peak

and Extreme Peak) on investment decisions, total net annual cost and
daily diagrams of heat supply is shown in Fig. 7.

The cost-optimal mix of heat sources with Variable electricity prices
(Fig. 7a) includes more CHP capacity (0.87 MWel) and less TES capacity
(0.84 MWth) than with Flat prices. The overall net cost decreases by 8%,
with the average heat supply cost of €24.2/MWhth. Although the peak
heat demand still requires both CHP and TES to be used, higher CHP
capacity allows it to run at higher output during high price periods. TES
is mostly charged during the mid-day low-demand hours and late
evening, and this heat is again released to help meet the morning and
evening peak demand. The CHP operates at a lower level during the
night when the electricity prices and hence the available net revenues
are lower.

The scenario with Low Peak electricity prices (Fig. 7b) emulates a
price drop during peak demand periods, e.g. due to high output of wind
generation, while outside these periods the prices are relatively higher
(Fig. 3). The optimal volume of CHP capacity is similar to Flat prices
scenario (0.71 MWel), but the optimal TES capacity is now higher
(1.50 MWth). Thanks to high electricity prices outside the peak demand

Fig. 3. Electricity price profiles used in case studies.

Fig. 4. Daily heat demand and local electricity demand profiles.

Table 2
Overview of main assumptions across single-day case studies.

No. Electricity
price
profile

CHP
cost

TES
cost

Boiler
cost

Network
constraint

CO2

constraint

1 Flat Default Default Default – –
2 Variable Default Default Default – –
3 Low Peak Default Default Default – –
4 Extreme Peak Default Default Default – –
5 Flat 4x higher Default Default – –
6 Flat Default 10x higher 2x lower – –
7 Flat 4x higher Default Default Active –
8 Flat Default Default Default – Active

Note: ‘Default’ investment cost assumptions (fixed and variable) are given in
Table 1.
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window, the overall net cost of heat supply is significantly lower than in
previous case studies, with the average cost of heat of only €17.4/MWh.
In the daily diagram CHP operates at full output outside the low-price
window, taking advantage of relatively high electricity prices compared
to its operating cost. Conversely, when power prices drop between 5 pm
and 6.30 pm, the CHP operation is no longer profitable, and hence most
of the heat in that period is released from TES.

Finally, in the Extreme Peak price scenario (Fig. 7c), acknowledging
the low likelihood of such a scenario persisting over the entire heating
season, the optimal solution includes only CHP capacity at the max-
imum allowed level of 2 MWel. Due to extremely high revenues from
selling power, the net annual cost of supplying heat becomes negative
in this example (–€11.8/MWhth). Note that this scenario assumes that
heat dumping is allowed i.e. that any heat produced by CHP in excess of
actual heat demand could be released into the environment if eco-
nomically justified. This is also reflected in constraint (2) that is for-
mulated as inequality rather than equality. (Had the option for heat
dumping been disabled, CHP would be installed at the level of 1.28 MW
in order to meet peak heat demand, while the net cost of heat would be
–€3.3/MWhth.) The CHP operating strategy in this case is to produce
heat equal to the demand if the electricity price is below its operating
cost (€80/MWh), and operate at maximum output if the price exceeds
€80/MWh, while dumping any excess heat.

3.2. Sensitivity to investment cost assumptions

Fig. 8 shows the investment decisions, net annual cost and daily
diagrams of heat supply for case studies with high CHP investment cost
(case #5 in Table 2), and high CHP and TES but low boiler cost (case #6
in Table 2).

Higher investment cost of CHP (Fig. 8a) changes the optimal tech-
nology mix, now consisting of 0.47 MWel of large-scale HP capacity and
1.23 MWth of TES. This also results in about 20% higher total net cost
and the average cost of heat of €31.6/MWhth. Daily operating patterns
of HP and heat storage are similar to Fig. 5, except that the 1.4 MWth of
baseload heat is now supplied by large-scale HP. This also means that
the local electrical substation will see an increase in electricity demand,
including an increase in peak demand by 0.5 MWel (which is still below
the assumed substation rating of 4 MW).

With higher CHP cost combined with higher TES cost and lower
boiler cost (Fig. 8b) the optimal solution no longer includes heat sto-
rage, but a combination of a large HP (0.47 MWel) and boiler
(1.16 MWth). The total annual net cost is now about 8% higher than in
Fig. 8a, and the average cost of heat is €34.1/MWhth. In the daily heat
supply diagram the HP supplies heat demand up to the level of
1.4 MWth, and gas boiler tops up the HP output whenever the heat
demand exceeds this level.

3.3. Constraints in local electricity grid

This example considers the interdependencies with the local elec-
tricity network by assuming that in addition to the assumptions made in
case #5 there is a constraint on total active power that can be supplied
through the local substation, at the level of 3.2 MWel. This means that
the large HP can no longer be operated in the same way as in Fig. 8a, as
this would overload the substation during peak demand hours. The
optimal solution, shown in Fig. 9a, includes a similar volume of large
HP capacity as before (0.50 MWel), but a significantly higher volume of
TES (1.97 MWth), which allows for the HP output during peak hours to
be partly replaced by heat released from TES. The local grid constraint
gives rise to a 7% net cost increase, with the resulting cost of heat of
€33.9/MWhth. Daily output diagram for this case shows that higher TES
capacity is required to enable HP output to reduce sufficiently during
the evening peak (from 4 pm to 7.30 pm) to avoid overloading the local
electrical substation.

The loading profile for the local substation is presented in Fig. 9b.
The power demand of large HP is reduced during the peak period in
order to maintain the aggregate substation loading (baseline demand
plus HP consumption) at the level of substation capacity (3.2 MWel). In
this case it becomes justified to increase the size of TES beyond the
requirement of the heat network itself in order to ensure a more flexible
interaction between the district heating system and the local electricity
grid.

3.4. Constraints on carbon emissions

Case #8 is the same as case #1 except that it has an explicit limit on
annual carbon emissions from the heat supply system, at the level of
500 tCO2. Fig. 10 shows the daily heat supply pattern and optimal in-
vestment decisions for this scenario.

Only gas-fired CHP and boilers were assumed to be direct CO2

emitters, while large HPs were not assumed to produce any direct
emissions and the grid carbon intensity was also assumed to be zero.
Without the emission constraint (case #1) the optimal solution only
included CHP and TES capacity, and the resulting annual carbon
emissions from the CHP were 1230 tCO2. Restricting the carbon emis-
sions, however, limits the output that can be provided by the CHP, and
therefore its capacity is reduced from 0.7 to 0.3 MWel. To compensate
for that, the model adds about 0.27 MWel of large HP capacity. Instead
of CHP continuously providing 1.4 MWth of heat on its own as in case
#1, the heat output is now split between CHP (0.6 MWth) and large HP
(0.8 MWth). If the carbon constraint is tightened further, even more of
the low-cost CHP will be replaced by higher-cost HP (at zero-carbon
target all CHP capacity would be replaced by HPs).

Fig. 5. Heat supply profile and investment decisions for Flat electricity prices.

Fig. 6. Daily variation of energy stored in TES.
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3.5. Multiple representative days

The next set of examples presented in this section is based on more
detailed modelling of CHP operation and the seasonal variations of heat
demand and electricity prices. For the examples presented in this sec-
tion it is assumed that the heating season can be adequately represented
using 3 representative days: a) winter peak, b) winter average and c)
autumn/spring average day. These three days are assumed to occur
with the following respective frequencies over the course of a year (Nd):
5, 60 and 85 (making the total duration of the heating season equal to
150 days, as in single-day examples). Daily heat demand diagrams used
for the 3 representative days are shown in Fig. 11.

Electricity price profile for the spring/autumn average day was

assumed to correspond to the Variable profile from Fig. 3. Price profiles
for winter peak and winter average days were scaled up from the
Variable profile using the scaling factors of 1.5 and 1.1, respectively.

Assumptions on CHP plants have been modified compared to those
described in Section 2.4.1 so that a unit NLC coefficient ACHP i, was
assumed to be €10/MWh, and the minimum output coefficient ΓCHP i

min
,

was assumed to be 0.5. Unlike in the single-day examples where the
unit commitment decisions were effectively irrelevant due to zero va-
lues assumed for ACHP i, and ΓCHP i

min
, , the unit commitment decisions now

have a direct effect on the solution.
The application of the proposed model with multiple characteristic

days is demonstrated for three case studies:

Fig. 7. Heat supply profiles and investment decisions for a) Variable, b) Low Peak and c) Extreme Peak electricity prices.

Fig. 8. Heat supply profiles and investment decisions for a) high CHP cost (case #5) and b) high CHP, high TES and low boiler cost (case #6).
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• Original set of assumptions from Table 1 and Section 2.4.1 without
emission or grid constraints (Case A)

• Imposing a zero carbon constraint (Case B)

• Zero carbon constraint with constrained grid (Case C)

3.5.1. Unconstrained case study
The cost-optimal solution in Case A is to install 0.85 MWel of CHP

capacity and 0.87 MWth of TES capacity. The resulting heat supply
diagrams for the 3 characteristic days are given in Fig. 12. The oper-
ating strategies of CHP and TES units adapt to the level of heat demand
and electricity prices over the course of the year. During the winter

peak day (Fig. 12a), the CHP unit is operating at maximum output of
1.7 MWth through most of the day, only being switched off between
1.30am and 4am, when the demand level as well as electricity prices
are low and due to part-load efficiency losses it is not attractive to keep
the unit operating at low output. TES is used to supply additional heat
during morning and evening peaks as well as while the CHP unit is off,
while outside of those periods TES absorbs excess heat produced by the
CHP unit. On a winter average day (Fig. 12b) CHP still operates at full
output, but for a shorter time, between about 6am and 9 pm, which is
when the heat demand is the highest. TES is again used to top up extra
heat during morning and winter peaks and supply heat while CHP is not
in operation. Finally, during the spring/autumn day (Fig. 12c) the CHP
unit is turned on twice during the day, between 6am and 10am to meet
the morning peak and between 1.30 pm and 7.30 pm to meet the
afternoon/evening peak.

The resulting average cost of supplying heat for Case A is €32.6/
MWhth, while the annual carbon emissions amount to 828 tCO2, as it
was assumed that the CHP unit uses natural gas. In the context of heat
decarbonisation this may not be viable in the long term; therefore the
next case study explores the options to deliver low-carbon heat.

3.5.2. Carbon constraint on heat supply
In Case B it was assumed that the heat supply system should have

zero carbon emissions. In order to make this case study compatible with
the objective to decarbonise national electricity supply as well, it was
assumed that the carbon intensity of grid electricity was zero. The cost-
optimal portfolio for Case B includes 0.49 MWel capacity of large HP
and 1.75 MWth of TES capacity. Daily heat supply diagrams for three
representative days are shown in Fig. 13. On winter peak days the HP
operates at maximum output throughout the day (Fig. 13a), while TES
is releasing heat during peak periods and absorbing it during off-peak
periods, effectively following the shape of the heat demand diagram.
On a winter average day (Fig. 13b) the HP operates at full output during
the night i.e. from about 10 pm to 8am, taking advantage of lower
electricity prices to store excess heat into TES. HP output then follows
the heat load around midday and reduces to almost zero during the
evening peak, triggered by higher electricity prices, while TES supplies
heat at maximum capacity during the evening peak. A similar pattern is
observed for the spring/autumn day (Fig. 13c), with TES supplying
almost the entire heat demand during highest price periods.

The zero-carbon solution for heat supply presented in Fig. 13 in-
creases the unit cost of heat delivered to customers to €41.9/MWhth,
which is 28% higher than in Case A. Another important consideration is
that the operation of large HP imposes additional load on the local
distribution substation. This is particularly relevant for the operation on
a winter peak day, which is also when peak electricity demand is nor-
mally observed in distribution grids. The additional electricity demand

Fig. 9. a) Heat supply profiles and investment decisions, and b) electricity demand profile at local substation for high CHP cost and constrained local grid (case #7).

Fig. 10. Heat supply profiles and investment decisions with constrained carbon
emissions.

Fig. 11. Heat demand profiles for multiple-day example.
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for HP operation, equal to about 0.5 MWel during the winter peak day,
could potentially overload the local distribution network. Given the
baseline peak demand at the local substation assumed at 3.07 MWel

(Fig. 4), the total peak loading of the substation during winter peak day
increases to 3.55 MWel as the result of HP operation.

3.5.3. Carbon emission limit and local grid constraint
In order to simulate the conditions in which the additional HP de-

mand would potentially overload the substation transformers, it is as-
sumed in Case C (similar to the case study presented in Section 3.3) that
the loading of the local substation is limited to 3.2 MWel. The optimal
investment decisions for this case include 0.53 MWel of large HP ca-
pacity and 2.16 MWth of TES capacity. Compared to Case B, there is a
very slight increase in optimal HP capacity, but on the other hand a
considerable expansion of TES capacity, by about 24%. Daily heat
supply diagrams across different seasons as well as the resulting total
loading of the local substation are presented in Fig. 14. The key change
compared to Case B is the HP operation pattern during winter peak day
(Fig. 14a), where the HP output reduces during peak hours to ensure
that the total loading of the local substation does not exceed the
3.2 MW limit (Fig. 14d). To ensure that the heat demand is met during
peak hours, heat is released from TES at up to its maximum output of
2.16 MWth, which also explains why more TES capacity is needed in
Case C than in Case B.

Imposing an additional constraint driven by the limitations in the
local distribution grid is also reflected in an increased average cost of
heat, which in Case C rises to €44.2/MWhth or about 5% above the cost
in Case B and 35% higher than in Case A.

3.6. Impact of variations in renewable penetration

The final set of case studies presented in this section explores the
impact of variations in electricity prices driven by increasing penetra-
tion of variable renewable energy sources (RES), such as wind or solar
PV generation, on investment and operation decisions for heat sources
supplying the DHN. In order to simulate electricity price profiles that
are linked to RES penetration, annual system marginal prices (SMPs)
have been extracted from a whole-system model for the future GB
electricity system described in [62]. Two systems with different shares
of variable RES output have been considered: 1) a Low RES share
system with 35% share of variable RES in electricity supply; and 2) a
High RES share system with RES share of 63% (for reference, the 2019
share of variable RES in GB electricity supply was around 24%).

For the purpose of this section it was assumed that the heating
season includes winter, spring and autumn. Based on the SMP outputs
of the whole-system model, typical electricity price patterns have been
constructed for six representative days:

• Winter peak day

• Winter average day

• Autumn day with low RES output

• Autumn day with high RES output

• Spring day with low RES output

• Spring day with high RES output

The corresponding daily price profiles for the six days are shown in
Fig. 15 (frequencies of occurrence of typical days over the heating
season are indicated in brackets alongside day labels). Winter peak
profile is constructed in order to adequately consider the requirements
for peaking capacity of heat production. RES output was found to have

Fig. 12. Heat supply profiles in Case A for: a) winter peak, b) winter average and c) spring/autumn average day.
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little impact on price levels during average winter days, therefore only
one winter average day type is used. On the other hand, during spring
and autumn, a distinction is made between days with relatively high
RES output (also reflected in price levels) and those with low to average
RES output. The volatility of prices on high RES output days reflects the
level of RES penetration: in the low RES share system prices for those
days tend to be visibly lower but still positive, while in the high RES
share system there are periods of negative prices suggesting surplus RES
output. In spring these periods coincide with high PV output around
mid-day, while in autumn negative prices occur during low-demand
periods in the night.

Heat demand was assumed to vary across typical days as depicted in
Fig. 16. According to the input data used, there was little impact of RES
output levels during spring and autumn on heat demand levels; there-
fore, the same profiles have been used for both low- and high-RES
output day variants.

In order for the case study to be compatible with the energy system
decarbonisation agenda, a zero-carbon constraint has been enforced for
heat production, which effectively only allowed HP and TES capacity to
be built, and prevented investing in gas-fired CHP units or boilers.
Investment cost assumptions were the same as in Table 1.

Table 3 presents the summary of optimisation results for the Low
and High RES share systems, including the installed capacities, annual
heat output and investment and operation cost categories. Note that the
difference in total heat demand is due to different typical day fre-
quencies used in the two system scenarios. Nevertheless, the average
cost of unit of heat is almost the same for both scenarios (€30.2/
MWhth).

Investment decisions for HP capacities are similar in both systems,
with about 3% less capacity built in the High RES share system. The
optimal capacity of TES in the High RES share scenario, characterised

by higher price volatility, is 1.63 MWth, which is about 11% higher than
in the Low RES share system (1.47 MWth). Despite the difference in HP
capacities, the annual heat output of HP is almost the same in both
scenarios (4.73 GWhth), although the annual HP operation cost (i.e. the
cost of purchasing electricity) is about 1.5% lower in the High RES
share system. Lower operating cost is enabled by higher TES capacity
and more volatile electricity prices, allowing HPs to take advantage of
periods with very low or even negative prices. Also, lower cost of
electricity is achieved despite the average electricity price over the year
in both systems being approximately the same, and the prices on winter
peak day being evidently higher in the High RES share system (Fig. 15).
This emphasises the value of heat storage for managing electricity price
volatility in systems with electrified heat production and high RES
penetration.

To further illustrate how the optimisation results are driven by the
underlying price profiles, variations in operating patterns of HP and
TES are presented in Fig. 17 for low- and high-RES output variants of
spring days for the two system scenarios. In both scenarios the HP and
TES operation changes in response to low or negative prices, so that the
use of HP is maximised during the period between 9am and 5 pm,
which is markedly different from the low-RES output day with normal
prices. Excess heat output from HP during low or negative price periods
is stored into TES, to be used at other times of the day (early mornings
and evenings).

Although not directly visible from Fig. 17, more heat is stored into
TES between about 9am and 5pm in the High RES share scenario than
in the Low RES share scenario, justifying the installation of higher TES
capacity in the latter case. This is further illustrated in Fig. 18, which
shows the variations in heat storage SoC during high-RES output spring
day variant for both system scenarios. In the High RES share system
scenario the charging of TES during negative price periods starts earlier

Fig. 13. Heat supply profiles in Case B for: a) winter peak, b) winter average and c) spring/autumn average day.
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and involves a higher volume of heat (6.54 MWhth) than in the Low RES
share system (5.86 MWhth) characterised by low but positive prices on
high-RES output days. In other words, more volatile prices increase the
optimal level of TES capacity.

3.7. Sensitivity of cost-optimal TES capacity to system conditions

This section discusses the results of further sensitivity analysis with
the purpose of quantifying the impact of installed TES capacity on the
total net cost of heat supply i.e. the objective function formulated in (1).

It also investigates in more detail the sensitivity of the cost-optimal
volume of TES capacity to assumptions on local grid constraints and the
volatility of electricity prices reflecting the share of RES in electricity
supply.

To illustrate how variations in installed TES capacity affect the net
cost objective function, Fig. 19 shows the unit cost of heat supply as a
function of TES capacity for three scenarios:

• Flat price scenario, with a constant electricity price equal to the
annual average price of the High RES Share scenario (€42.3/MWh);

Fig. 14. Heat supply profiles in Case C for: a) winter peak, b) winter average and c) spring/autumn average day; d) total loading of local distribution substation for
winter peak day.

Fig. 15. Electricity price profiles for typical days in Low RES share and High RES share systems (numbers in brackets refer to frequencies of occurrence of typical
days).
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• High RES Share scenario, as described in Section 3.6;

• High RES Share scenario with a local grid constraint of 3.2 MWel.

The three scenarios have been implemented on the case study with 6
characteristic days and a zero carbon target, as elaborated in Section
3.6. TES capacity in all three scenarios was varied between 0 and
2.5 MWth in 0.05 MWth increments. Each TES capacity value was given
as fixed input into the model, which was allowed to optimise all deci-
sion variables except the TES capacity. The obtained values for the
average cost of heat are shown in Fig. 19.

In each scenario the cost of heat will have a minimum point that
corresponds to the cost-optimal volume of heat storage, as indicated in
Fig. 19. The optimal TES capacity point will vary between different

scenarios, following the fundamental economic principle that TES ca-
pacity should be incrementally added to the system up to the point
where its marginal benefit (i.e. heat supply cost reduction) becomes
lower than the additional cost of installing an incremental unit of sto-
rage capacity. Given that the cost per unit capacity of TES was assumed
to be the same in all scenarios, different cost-optimal TES capacities
indicate that marginal benefits achieved by adding heat storage differ
across the three scenarios. Benefits of adding storage are driven by the
system cost avoided through adding more storage. The avoided cost in
this case consists of lower investment cost of HP capacity, reduced cost

Fig. 16. Heat demand profiles for typical days used in the case study in Section
3.6.

Table 3
Optimisation results for Low and High RES share systems.

Result Low RES share High RES share

HP capacity (MWel) 0.485 0.470
TES capacity (MWth/MWhth) 1.47/5.86 1.63/6.54
Annual heat demand (MWhth) 4580 4551
HP heat output (MWhth) 4733 4729
TES roundtrip losses (MWhth) 153 178
HP investment cost (€/yr) 58,468 56,971
TES investment cost (€/yr) 15,660 17,342
HP operation cost (€/yr) 64,050 63,113
Total cost (€/yr) 138,178 137,426
Average cost of heat (€/MWhth) 30.17 30.20

Fig. 17. Heat production profiles for low- and high-RES output spring days for two system scenarios.

Fig. 18. Heat storage SoC for high-RES output spring day for two system sce-
narios.

Fig. 19. Impact of TES capacity on the cost of heat supply for Flat price profile
and for High RES share price profile with and without local grid constraint.
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of electricity purchases and (where applicable) avoided demand cur-
tailment cost. In the Flat price scenario, the marginal benefit of TES
drops to the level of TES investment cost already at around 1 MWth.
With more volatile electricity prices characteristic for the High RES
Share scenario, more TES capacity (1.6 MWth) can be installed cost-
efficiently to take advantage of price arbitrage opportunities including
periods of negative prices. Finally, when volatile prices are combined
with a local grid constraint, the cost-optimal TES capacity increases to
over 2 MWth, given that for any TES capacity lower than that the al-
ternative solution would be either demand curtailment or grid re-
inforcement (given that HP output is constrained), both of which are
very costly.

As already demonstrated, the share of RES in electricity supply re-
flected in the price volatility and the severity of local grid constraints
can significantly increase the cost-optimal volume of TES in the local
DH system. To quantify this relationship in more detail, Fig. 20 de-
monstrates how the optimal TES capacity changes for different levels of
local grid constraints, across two electricity price scenarios: (i) High
RES Share (same as in Section 3.6), and (ii) Flat (with the constant
electricity price same as the average price of the High RES Share sce-
nario). Note that the assumed underlying electricity demand (i.e. before
adding any demand by centralised HPs) is given in Fig. 4.

Substation capacity values in this analysis have been varied between
3.1 MWel and 3.8 MWel. If the local substation capacity is constrained to
3.6 MWel or more, there is no impact on the cost-optimal TES capacity
in either scenario, as the HP can operate without being constrained by
the local grid. The resulting optimal TES volumes are 1.63 MWth and
0.98 MWth for High RES Share and Flat scenarios, respectively. At the
lower end of the range, any substation capacity below 3.1 MWel would
not be sufficient to meet even the baseline local electricity demand
regardless of the heat supply solution, and is therefore not relevant for
the analysis.

For grid capacity constraints between 3.1 MWel and 3.45 MWel, the
cost-optimal TES capacity is actually the same for both Flat and High
RES Share scenarios, suggesting that adding TES in those cases is pri-
marily driven by avoiding high demand curtailment cost, which applies
equally in both scenarios. Nevertheless, for grid constraints in the range
between 3.45 MWel and 3.55 MWel the cost-optimal TES volumes in the
two scenarios diverge significantly given that the benefit of TES be-
comes increasingly driven by electricity price arbitrage opportunities,
which are much more attractive in the High RES Share scenario that is
characterised by high price volatility and even negative prices. From
around 3.55 MWel the optimal TES capacities for both scenarios con-
verge to the optimal solutions of non-constrained cases.

For the most severe constrained case of 3.1 MWel it can be observed
that the cost-optimal TES capacity reaches 2.31 MWth in both scenarios,
which is 41% and 134% higher than the optimal capacity in non-con-
strained cases for High RES Share and Flat scenarios, respectively.

The share of RES in electricity supply and the resulting volatility of
electricity prices also represents a key driver for the cost-efficient vo-
lume of heat storage. Combining the results for TES capacity obtained
for High and Low RES Share scenarios in Table 3 and the result for a
Flat price scenario in Fig. 19 (which had the same annual average
electricity price), it is evident that price volatility driven by RES share
represents a key factor for the higher requirement for TES capacity. The
cost-optimal TES capacity increases from 0.98 MWth in the Flat scenario
to 1.47 MWth (50% more) in the Low RES Share scenario, and to
1.63 MWth (66% more) in the High RES Share scenario.

4. Conclusions

This paper proposes a novel optimisation approach for modelling
local and system-wide interactions between heat and electricity net-
works addressing planning and operational domains. Decarbonisation
of electricity and heat supply presents numerous challenges, but also
opportunities for stronger system integration between the two sectors,

taking advantage of flexibility in the heat sector to facilitate a higher
penetration of intermittent renewable energy and thus a cost-effective
decarbonisation of the electricity sector. The modelling approach shows
that certain flexible options in the heating system (such as CHPs or TES)
could have significant whole-system value that is reflected outside of
the local district heating application. As shown in the case studies and
the associated sensitivity analysis, it may be beneficial to increase the
size of TES or CHP beyond the locally optimised solution, in order to
provide additional flexibility in the interactions with the electricity grid
and help with managing local network constraints or local emission
targets. For instance, an increase in cost-optimal TES capacity of
41–134% has been observed in cases where the local heating system
also had to consider a severe constraint in the local electricity dis-
tribution grid. At the same time, higher RES penetration scenarios re-
flected in higher electricity price volatility have also been shown to
increase the optimal size of local thermal storage by 50–66% compared
to a constant price scenario, allowing centralised electric HP technol-
ogies to divert excess electricity produced by intermittent renewable
generators to the heating sector. It is therefore crucial to reflect the
whole-system value of flexible heating technologies in the underlying
cost-benefit analysis of heat networks, especially in the context of
overall energy system decarbonisation.

Future work on extending the functionality of the model will focus
on: adding cooling demand and supply, increasing the detail on tech-
nologies representation and the size range of options, reformulating the
objective function from minimisation of annualised cost to maximisa-
tion of profit, further refining the operating parameters of CHP and HP
plants where appropriate (e.g. by considering ramping constraints,
variable H/E ratios and seasonal COP variations, limited number of
starts per day, etc.), and including the provision of ancillary services
(e.g. frequency regulation) as a potential additional source of revenue
for CHP and HP assets. Another important area that will be explored is
the integration of heat generation technologies planning and heat net-
work design (such as the one presented in [37] or [57]) to enable co-
optimisation of both heat network and generation assets while con-
sidering the interactions with the electricity system.
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