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ABSTRACT The outcome-oriented predictive process monitoring is a family of predictive process mining
techniques that have witnessed rapid development and increasing adoption in the past few years. Boosted
by the recent successful applications of deep learning in predictive process mining, we propose ORANGE,
a novel deep learning method for learning outcome-oriented predictive process models. The main innovation
of this study is that we adopt an imagery representation of the ongoing traces, which delineates potential
data patterns that arise at neighbour pixels. Leveraging a collection of images representing ongoing traces,
we train a Convolutional Neural Network (CNN) to predict the outcome of an ongoing trace. The empirical
study shows the feasibility of the proposed method by investigating its accuracy on different benchmark
outcome prediction problems in comparison to state-of-art competitor methods. In addition, we show how
ORANGE can be integrated as an Intelligent Assistant into a CVM realized by MTM Project srl company
to support sales agents in their negotiations. This case study shows that ORANGE can be effectively used to
smartly monitor the outcome of ongoing negotiations by early highlighting negotiations that are candidate
to be completed successfully.

INDEX TERMS Predictive process analytics, outcome prediction, computer vision, convolutional neural
networks, spatial data modeling.

I. INTRODUCTION
Nowadays predictive process mining is playing a fundamen-
tal role in the business scenario. In particular, it is emerging as
an effective means to monitor the execution of any business
running process by predicting at run-time the outcome of
ongoing traces of a process given their uncompleted execu-
tions [1]–[6]. For instance, knowing in advance the outcome
of an ongoing trace (e.g. the placement of a purchase order
by a potential customer) may foster the early implementation
of mitigation strategies, in order to increase the customer
satisfaction, as well as to promote efficiency and quality of
the business process management.

The associate editor coordinating the review of this manuscript and

approving it for publication was Bohui Wang .

In general, outcome-oriented predictive process monitor-
ing methods refer to classifying each ongoing trace of a pro-
cess according to a given set of possible categorical outcomes.
In this way the problem of outcome process monitoring is
formulated as a problem of early sequence classification.
According to this formulation, given a trace of an ongoing
process execution (which can be modeled as a sequence of
events with data payloads [7]), the outcome-oriented predic-
tive process seeks to predict as early a possible whether the
outcome of the trace will fall into a positive class or a negative
class. For example, in an order-to-cash process, the positive
class may include purchase orders that are closed success-
fully, while the negative class may correspond to canceled
or withdrawn orders. Another set of possible outcomes is
that the products were delivered on time (positive class) or
delivered late (negative class).
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The prediction of the correct class is based on a clas-
sification model extracted from historical process execu-
tion logs (event logs) [8]. In particular, current methods for
outcome-oriented predictive process mainly follow the stan-
dard pipeline for classification involving two phases: (i) a
feature extraction phase where features are extracted from
event traces so that each trace is abstracted as a vector of
features representing event occurrences and (ii) a classifier
construction phase, where feature vectors are given as input
to a machine learning method (e.g. decision trees) to produce
a classifier.

Recently, the traditionalmachine learning pipeline for clas-
sification has been overcome by the deep learning approach
in many application fields [9]. In general, deep learning
architectures are computational models that are composed of
multiple processing layers capable to learn representations of
data with multiple levels of abstraction. From this point of
view, deep learning methods overcome conventional machine
learning methods, because of their ability to detect optimal
features in raw data through consecutive nonlinear transfor-
mations, with each transformation reaching a higher level of
abstraction and complexity of the extracted features.

Among the several deep learning architectures, Convolu-
tional Neural Networks (CNNs) deserve special attention as
they have dramatically improved the state of the art in the
field of computer vision. Inspired by the amazing results
of deep learning in computer vision, a very recent trend is
bringing together computer vision and process mining [10].
This seminal study has in fact assessed the viability of CNN
methods designed for computer vision into predictive process
mining approaches for next activity prediction.

Boosted by this recent application of computer vision
approaches in process mining, in this paper we introduce
a novel deep learning approach for deriving a classifica-
tion model useful for outcome-oriented predictive process
monitoring. The proposed method, called ORANGE (Out-
come pRediction bAsed oN imaGe Encoding) adopts an
imagery representation of ongoing traces, which is able to
delineate potential data patterns that arise at neighbour pixels
representing trace features. Leveraging a collection of images
representing running traces, a CNN is trained to predict the
outcome of each trace.

The novel contribution of this study is the achievement of
a new important milestone in coupling computer vision to
process mining. In particular, we prove that computer vision
methods can aid in gaining accuracy not only in the next
activity prediction, as it was initially investigated in [10],
but also in problems of outcome-oriented predictive process
monitoring. This result is achieved once a vector of trace
features is extracted and arranged as pixel frames of an image
and CNNs are trained to address the outcome monitoring
process as a problem of image classification.

On the other hand, focusing the attention on the technique
we adopt here to transform traces in images, we further
advance the previous study in [10] improving the effective-
ness of the images of traces produced. In fact, in this paper,

we take advantage of the ability of capturing possible patterns
of spatial continuity among data features as described in
[11] and use these patterns to transform traces into effective
images.

Specifically, we identify trace features that assume similar
values on training samples and associate themwith neighbour
pixel frames. We point out that data continuity among trace
features was neglected in the past study [10], where trace
features were associated to pixel frames following the naive
order according to the features were extracted from the trace
events. On the other hand, discovering and accounting for the
existence of phenomena of data continuity among trace fea-
tures allow us to construct images of traces, which plausibly
exhibit continuous grey-scale intensities at neighbour pixels
instead of salt and pepper intensities. This contributes to
construct images depicting specific spatial data arrangements
on neighbour pixels (e.g. edges, shading changes, shapes).
These arrangements are common in real imagery data and
may be helpful for the use of filtering and pooling operations
when training CNNs on images of traces.

As an additional contribution, we evaluate the effectiveness
of the proposed method in various outcome-oriented process
monitoring problems for traces collected in benchmark event
logs. The empirical study presented in this work investigates
the ability of ORANGE, to increase accuracy when com-
pared to several competitors taken from the recent literature.
In addition, we present a case study to show the viability
of the proposed method as a means to increase the value of
the data-driven Customer Value Management (CVM) called
CRM and realized by an Italian software company – MTM
Project srl.1 Coupling ORANGE to CRM, we are able to
engage inputs and customers’ performance data to predict
success outcomes on their negotiations. The final feeling is
that a new generation CVM integrating outcome-oriented
predictive process monitoring may optimize business pro-
cesses and decisions throughout the entertainment ecosystem.
It also boosts content programming to realize a better return
on their content investment.

The paper is organized as follows. An overview of related
works is provided in the next Section. The proposed method
is described in Section III. Section IV describes the experi-
mental setup and discusses the results on different real-world
event logs. Section IV-D illustrates the effectiveness on the
outcome-oriented predictive process monitoring performed
within a data-driven Customer Value Management (CVM).
Finally, Section V draws conclusions and outlines future
work.

II. RELATED WORK
There is a plethora of works addressing the problem of pre-
dicting the outcome of an ongoing trace of a business process
based on event logs. In [5] a systematic review of outcome-
oriented predictive process monitoring methods is presented.

1https://www.mtmproject.com/
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Previous approaches to this problem are largely based on
simple symbolic sequence classification, meaning that they
extract features from traces seen as sequences of event labels,
and use these features to construct a classifier for run-time
prediction [1]–[3], [6], [12]. However, these approaches often
ignore the data payload associated to each event. In [1] the
payload of the last executed event is taken into account,
but the evolution of data throughout the execution traces is
ignored.

Other approaches treat traces as complex symbolic
sequences, that is, sequences of events each carrying a data
payload. For example, in [13] the authors consider traces as
sequences of activities each carrying a data payload consist-
ing of attribute-value pairs. By starting from this assumption,
the authors compare different feature encoding approaches,
ranging from traditional ones, such as counting the occur-
rences of activities and data attributes in each trace, up to
more complex encoding that take into account also the evo-
lution of data by combining Hidden Markov Models with
an index-based encoding specifying, for each position in the
case, the event occurring in that position and the value of each
data attribute in that position. In [14], unstructured (textual)
information, contained in text messages exchanged during
process executions, is also considered, together with con-
trol and data flow information. A crucial phase in these
approaches is how to encode a complex symbolic sequence in
terms of vectors of features representative of the data payload.

As concerns the construction of the classification model,
existing predictive process monitoring methods have adopted
different machine learning algorithms, the most popular
choice being Decision Tree (DT) [15]–[17], Random For-
est (RF) [13] and SVM [18]. Also the XGBoost classifier
showed promising results when applied to business process
data [19]. In general, RF and boosted trees have shown to
outperform other methods in many predictive monitoring
scenarios, including the outcome prediction task [5].

However the recent success of deep learning approaches in
computed vision for tasks of image classification has recently
attracted attention also in process mining. Pioneering studies
on deep learning for predictive process mining have mainly
investigated Long Short-Term Memory (LSTM) [20]–[23]
architectures to accomplish various process predictive tasks
(next activity, time of next activity and completion time).
LSTMs are mainly adopted in predictive process mining due
to their natural ability in delivering consistently high accuracy
in the natural sequence modeling of a trace without impos-
ing flattening the data from the different events and loosing
information on the order. In [24], an adversarial training
framework is formulated to perform the next activity pre-
diction with LSTMs. The framework is formulated to avoid
sub-optimal network configurations and architectures due to
insufficient training data. It adapts Generative Adversarial
Networks (GANs) to the realm of sequential temporal data,
where both the generator and the discriminator are LSTMs.
Finally, the authors of [25] adapt the LSTM-based neural
architecture defined in [22] for problems of next activity

prediction, in order to predict the outcome of each ongoing
trace in an event log.

In spite of the prevalence of predictive processmining stud-
ies with LSTMs, there are a few investigations where other
deep neural network architectures, such as 1D Convolutional
Neural Networks (CNNs) [26], Recurrent Neural Networks
(RNNs) [27], [28] or stacked autoencoders [29], are applied
in the realm of process mining. All these approaches are
formulated for the next activity prediction and apply deep
neural networks to training data that are feature vectors of
event traces rather than sequences of events. However, none
of these approaches embeds spatial structures, hence they
are not able to take full advantage of filtering and pooling
operations that are applied when training such networks on
spatially structured data such as images.

In [30], starting from the evidence that 2D CNNs – CNN
architectures defined to process 2D data as images, are very
accurate classifiers whenever applied to image data embed-
ding a clear spatial structure [31]–[34], the authors firstly
explore the use of a 2D CNN to perform next activity by
processing imagery representations of non-visual sequential
data coming from traces of event logs. However in [30] only
simple features (i.e. rough activities and timestamps) are
encoded in the imagery representation by resembling more a
multi-variate time series format rather than an image format.

In [10], a more complex imagery scheme is presented as
a means to take into account multi-perspective trace features
and derive a richer representation of trace events. In partic-
ular, trace samples are firstly converted into feature vectors
that are subsequently represented in the form of RGB-like
images, where pixels are associated with color values and
each pixel captures a feature of the trace. The RGB images
are finally used to train a 2D CNN based on Inception block
[35] for next-activity prediction. The results collected in [10]
provide empirical evidence of the effectiveness of resorting to
the imagery trace representation in process mining. Although
this study confirms that computer vision can successfully be
applied to process mining, the imaging technique used in
[10] leaves out any mechanism to explore possible continuity
(or similarity) across values measured on various features of
the same trace, as these features are arranged as pixels of
RGB images. In fact, in [10] the images of the traces are
produced by processing the trace features in the naive order
they have been computed and assigning them to consecutive
pixel frames of an imagery grid (moving from the left to
the right, from the top to the bottom of the image). So,
they typically show a salt and pepper arrangement of pixels.
This is a limitation from the computer vision point of view,
where images are typically expected to show some form of
continuity in the intensity values of neighbour pixels. In any
case, the above studies clearly indicate how well the potential
of deep learning can be transferred from computer vision to
predictive process mining. The ORANGE approach presented
in this paper advances further the state of the art in coupling
computer vision and process mining. ORANGE extends the
imagery representation of ongoing traces adopted in [10]
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FIGURE 1. The ORANGE pipeline.

TABLE 1. A fragment of the example event log Production (see Section IV-A for details on this event log).

so that data continuity patterns arise as neighbour pixels
in the resulting images, thus modeling spatial dependencies
between trace features and enabling an accurate prediction of
process outcome classes.

III. PROPOSED APPROACH
Given a trace, outcome-oriented predictive process monitor-
ing aims at predicting its class label expressing its outcome
according to some business goal. To solve this problem,
we propose a novel deep learning approach called ORANGE
(Outcome pRediction bAsed oN imaGe Encoding).

We assume the availability of an event log containing a
list of process traces and we need to create a labeled dataset
from the given event log. Each process trace under consid-
eration identifies the execution of a process instance and
consists of a finite sequence of events σ = 〈e1, e2, . . . , en〉
such that each event appears at most ones in the event log.
Every event measures a vector of attributes (comprising, for
example, the executed activity, the resource triggering the
event, the timestamp at which the event has been started).
Optional trace attributes, that remain the same throughout
the whole trace, may be also associated with each trace. An
example of a fragment of an event log is reported in Table 1.
From each trace in the event log, we can derive several prefix
traces σ k with 1 ≤ k ≤ |σ |. Hence, a trace is a complete
process instance (started and ended), while a prefix trace is
an instance in execution (ongoing trace). The labeled dataset
includes all the prefixes of all the traces in the input event
log, labeled with the outcome class (that is, the outcome
achieved at the completion of the trace). Let us consider
the complete trace σ1 in Table 1 that comprises six events

(|σ1| = 6). It defines six prefix traces labeled with the class
label ‘‘regular’’ as follows:
σ 1
1 : (e1), regular
σ 2
1 : (e1 e2), regular
σ 3
1 : (e1 e2 e3), regular
σ 4
1 : (e1 e2 e3 e4), regular
σ 5
1 : (e1 e2 e3 e4 e5), regular
σ 6
1 : (e1 e2 e3 e4 e5 e6), regular

Given a set of completed traces with their known class
labels, ORANGE creates a classification model capable to
distinguish between positive (regular) and negative (deviant)
traces. Firstly, prefix traces in the event log are mapped onto
a vector of features extracted over various perspectives (with
one perspective for each attribute stored with trace events).
An autoencoder is employed to reduce the dimensionality
of the feature vector (see Section III-A). Then an encoding
method is applied to transform the reduced feature vector
into a 2D image representing the trace (see Section III-B).
A 2D CNN architecture is finally trained on the collected
labeled images representing ongoing traces, in order to learn a
classification model capable to estimate the outcome class of
an ongoing trace (see details in Section III-C). After training,
the CNN takes as input the image encoding any ongoing
trace and predicts the outcome class. The pipeline of the
proposed approach is depicted in Figure 1 and detailed in the
followings.

A. FEATURE EXTRACTION
Various trace encoding schemes – Last state, Aggregation
and Index – have been synthesized in the process mining
literature. A review is done in [5], where the authors com-
pare the performances of these schemes with respect to the
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accuracy of several pipelines of outcome-oriented process
monitoring. The Last state scheme considers the last event in
the prefix trace generating a feature for each event attribute.
The Aggregation scheme considers all the events since the
beginning of the prefix trace and applies aggregation opera-
tors to events’ attributes. For numerical attributes of events,
it computes the average and standard deviation. For categori-
cal attributes of events, it commonly uses the one hot encod-
ing and computes the frequency of each symbol. Finally,
it adds the trace features to the feature vector ‘‘as is’’ without
any loss of past information. The Index scheme also uses all
possible information (including the order) in the prefix trace,
by generating one feature per each event attribute and per
each executed event.We note that the Last state schema looses
the information on the oldest events in the prefix trace, while
both the Aggregation and Index schemes exploit information
from all the performed events. However, the Aggregation
still exhibits information loss by neglecting the order of the
events. On the other side, a drawback of the Index schema
is that due to the fact that the length of the feature vector
increases with each executed event, this encoding can only be
used when all samples have the same length through padding.

So, by accounting for the considerations formulated above,
as well as the overall results of the empirical validation
described in [5], we use here the trace encoding schema based
on the Aggregation, in order to represent all prefix-traces
as fixed length feature vectors of features. In fact, the com-
parison of the performances of Last state, Aggregation and
Index done in [5] with respect to predictive pipelines with
Random Forest and XGBoost evaluated in various problems
of outcome-oriented process monitoring concludes that the
Aggregation achieves the highest accuracy in the majority of
the datasets. However, our decision of computing the Aggre-
gation scheme differs from the one taken in [25], where the
authors use the Index schema with the LSTM-based pipeline
they have defined for outcome-oriented process monitoring.
In any case, preserving information on the order is manda-
tory with LSTMs, as these are deep learning architectures
formulated to process ‘‘sequence’’ data. We note that in
this paper we opt for a different deep learning architecture,
as we train 2D CNNs in place of LSTMs. This leads to
process images instead of sequences, reducing the need of
data enhancing the knowledge hidden in the order, while
strengthening the request of data depicting spatial data conti-
nuity to fuel effective convolution operations.

Additional considerations concern the fact that the size of
the vector of features constructed with Aggregation could be
too large when process event dictionaries are big. In such
cases, there is a need to reduce the feature space, to the
complexity on the subsequent steps under control. To this
aim, we resort to an autoencoder [36] that is a non-linear gen-
eralization of Principal Component Analysis (PCA). Autoen-
coders are neural networks that are trained to reconstruct
their input [37]. More precisely, an autoencoder is com-
posed of two modules: an encoder, which learns a nonlinear
mapping between the input data and a smaller hidden latent

space, and a decoder, which learns to reconstruct the original
input by using features of the latent space. Hence the main
objective of an autoencoder is to compress the input into
a lower-dimensional code and then reconstruct the output
from this representation. The results of this compression is
called the latent-space representation. To learn a proper code,
the parameters (weights and biases) of the network are opti-
mized in both encoding and reconstruction phase to minimize
a reconstruction loss.

Using an autoencoder, we map the features of event traces
to a latent feature space that is suitable for the task of out-
come class prediction, since we retain non-linear relation-
ships among data. A similar approach is investigated in [29]
for business process event prediction, where stacked autoen-
coders are applied to extract features from the pre-processed
business process log data.

B. IMAGE ENCODING
Once the prefix traces have been transformed into the vectors
of the above-described features, these vectors are transformed
into images according to a 2D grid ofN×N pixel frames. The
core of this image encoding is the decision of how features
of traces are associated to pixel frames in a way to delineate
potential patterns of data continuity, which arise at neighbour
pixels.

In an attempt to capture possible spatial relationships
between features, the one-to-one association between fea-
tures and pixel frames is done according to the theory intro-
duced in [11]. Let us consider the training set θ composed of
n samples (all prefix traces extracted for the training stage)
spanned over the vector of m features (extracted with the
feature extraction). θ is a data matrix with size n × m. Let
us define the set ψ – the data matrix with size m× n – which
is constructed by transposing θ so that samples are put on
columns and features on rows. The t-SNE [38] dimensionality
reduction technique2 is applied to reduce columns of ψ and
project all features on two columns (determined as a non
linear combination of the training samples where the features
have been measured). The rows of ψt−SNE represent the
location of the features in the Cartesian plane defined by these
two columns. Subsequently, the convex hull algorithm is used
to find the smallest rectangle containing all the point and a
rotation is performed to framed the grid in a horizontal or
vertical form. Finally, the Cartesian coordinates are converted
to pixels frames by segmenting the rotate convex hull into
N × N equally-sized rectangular pixel frames.
Whenever more than one features are associated to the

same pixel frame, the feature with the highest mutual info is
selected to be assigned to the pixel frame, while the remaining
colliding features are filtered-out. This procedure to manage
of collisions is different from the one described in [11],
where colliding features were simply averaged. However,
this solution may lead to summing-up values that measure

2In principle any non-linear dimensionality reduction techniques can be
used to this aim.
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FIGURE 2. The image representation of two completed traces extracted from Production (see Section IV-A for details on this event log).

completely different features. On the other hand, the mutual-
info approach we propose to apply can elegantly solve colli-
sions by also achieving a feature selection goal.

Once the location of the features is established in the
imagery grid according to the procedure described above, this
will be the same for all the prefix traces (also the one used for
testing). For each prefix trace, the value actually assigned to
the pixel of its grey-level imagery representation is the value
measured by the corresponding feature in the prefix trace. An
example of the image encoding of both a regular prefix trace
and a deviant prefix trace is shown in Figure 2. In particular,
Figure 2a shows the image of a prefix trace labeled as
regular, while Figure 2b shows the image of a prefix trace
labeled as deviant. Both images are produced using the image
encoding technique described above. On the other hand,
Figure 2c and 2d show the images of the same samples, but
they are produced using the naive encoding technique. The
naive encoding assigns values of consecutive sample features
to consecutive pixel frames by proceeding from the left to the
right and from the top to the bottom of the 2D grid. We note
that the images of the normal sample feel different from the
images of the deviant sample independently of the image
encoding technique used. However, a progressive gradation
of grey continuity is evident on the neighbour pixels of the
images built with the encoding technique used ORANGE,
while a salt and pepper grey distribution emerges in the
images built with the naive encoding.

C. CONVOLUTIONAL NEURAL NETWORKS
The images extracted from the prefix traces of a complete
event log are used as training set to learn a classification
model for outcome process prediction. To learn the model
we use a 2D deep Convolutional Neural Network (CNN)
architecture. CNNs extend simple fully connected feed-
forward neural networks by introducing convolution and
pooling operators, that are applied in several layers stacked
on top of each other [39].

A convolutional layer applies a set of local filters that are
replicated along the whole input to process small parts of
the input and extract local features. Each convolutional layer
receives the input (image) and convolves it by applying a set
of filters. Each filter is a squared matrix of size s containing
weights wj0 that acts as a local kernel on the input space, i.e.

it can be modeled as a node that receives input only from a
limited portion of the whole input (the receptive field of the
node) and is thus suited to exploit local spatial correlations
hidden in the input. Each node j applies the convolution
operator over the input image, by computing the inner product
of the filter at every location in the image, and outputs the
result as a feature map hj(x, y). A non-linear function f () is
then applied to each feature map providing activation values:

a(l)j = f (h(l)j (x, y)).

For the first convolutional layer the values of the feature
maps h(1)j (x, y) are obtained by convolving the input map

I (x, y) = h(0)(x, y) with the respective kernel w(1)
j0 followed

by the non-linear activation function:

h(1)j (x, y) = f
( ∑

(u,v)∈U

w(1)
j0 h

(0)(x + u, y+ v)+ b(1)j

)
,

where U = {(u, v) ∈ N2
|0 ≤ u ≤ s, 0 ≤ v ≤ s} and N

is the set of whole numbers. Theoretically, any non-linear
function can be used as activation function, provided that
it is continuous and differentiable, as required by the back-
propagation learning algorithm. The most common choices
are tanh, logistic, softmax and relu. In our case we used the
Relu (Rectifier Linear Unit) function f (x) = max(0, x) that
is widely used in CNNs because it improves convergence of
the network training with respect to sigmoid units [40] and
because it limits the gradient vanishing downside as its by-
product is usually one once x is positive.
A pooling layer [41] is added on top of each convolutional

layer to achieve spatial invariance and to reduce the dimen-
sionality of the feature maps, preserving important informa-
tion and discarding irrelevant details. Indeed, a pooling layer
generates a lower resolution version of the convolutional
layer output. This adds translation invariance and tolerance
to minor differences of patterns in the input. The pooling
operation is typically a sum, average, maximum or even a
combination of various methods. In this work we use the
max pooling (taking the maximum value of filter activation
from different positions within a specified window) since it is
the best performing operator according to the literature [41].
Activation values of the max-pooling layer are divided intoM
bands. Each band receives input from r neighbouring bands
of the convolution layer output, being r the pooling size,
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to generate J values representing the maximum activations
received from the J convolution filters within these r bands.
By doing this maximization operation every n bands (where
n is the sub-sampling factor) the max-pooling layer produces
an output that is a lower resolution version of the convolution
layer output. The m-th band of the max-pooling layer pro-
duces a vector of J activation values:

pm = [pm,1, pm,2, · · · , pm,J ]T ,

where each activation is computed as:

pm,j =
r

max
k=1

(hm×n+k,j).

As a result a smaller number of bands are obtained. They
provide lower resolution features containing more useful
information that can be further processed by higher layers of
the network. Higher layers use more broad filters that work
on lower resolution inputs to process more complex parts of
the input. Top fully connected layers finally combine inputs
from all positions to do the classification of the overall inputs.
This hierarchical organization enables a CNN to model local
structures in the input once proper filter parameters are opti-
mized via supervised learning algorithms.

D. IMPLEMENTATION DETAILS
ORANGE, whose code is publicly available on the GitHub3

repository, is implemented in Python 3.6.9 – 64 bit version –
using Keras 2.3.14 library that is a high-level neural network
API using TensorFlow 1.15.05 as the back-end. The code
of the feature extraction stage is that provided by [5] on
https://github.com/irhete/predictive-monitoring-benchmark.

A min-max normalization is applied to the data computed
by the feature extraction stage before applying the autoen-
coder for dimensionality reduction.

In the implemented autoencoder, the encoder starts with a
layer sized equal to the the number of features extracted by
feature extraction stage and compresses the features through a
sequence of intermediate encoder layers ewith size size(e) =
size(e − 40) until the bottleneck layer with size equal to 80.
The decoder starts in the bottleneck layer (the output layer
of the encoder) and maps the bottleneck signals back to the
input space through symmetric decoder layers d with size
size(d) = size(d−1)+40, respectively. For each intermediate
layer of the autoencoder, we apply a tanh activation func-
tion. We adopt the Adam optimization algorithm with mean
squared error as loss function.
The vectors of features extracted from the latent-space of

the autoencoder are subsequently transformed into 10 × 10
grey-level images (as described in section III-B), which are
used to train the 2D CNN.

The adopted CNN architecture consists of a series of pairs
ofConvolutional andMaxPooling layers. An increasing num-
ber of filters (32, 64) is applied to each convolutional layer.

3https://github.com/vinspdb/ORANGE
4https://keras.io/
5https://www.tensorflow.org/

TABLE 2. Configuration of neural network hyperparameters.

The number of layers applied during the training phase is
an hyper-parameter that is automatically selected with tree-
structured Parzen estimator (TPE) [42] during the training
stage. The hyper-parameters optimization phase has been
conducted by considering the 20% of the training set as a val-
idation set. Table 2 reports the hyper-parameters optimized
during this stage and the corresponding range of possible
values explored with TPE.

To speed-up the training of the CNN, we introduce Batch
Normalization layers that normalize the output of each con-
volution layer before entering in the subsequent max-pooling
layer. The output computed from these layers is passed to a
GlobalMaxPooling layer that is given as input to the Sigmoid
function to estimate the outcome class. The loss function
adopted to measure the error between the expected label and
the probability predicted by the neural network is the Binary
Cross Entropy. The training of the neural network is accom-
plished through the Back Propagation learning algorithm.

The Backpropagation training is applied with early stop-
ping to avoid overfitting. Specifically, the training phase
is stopped when there is no improvement of the loss on
the validation set for 20 consecutive epochs. Finally, Adam
(Adaptive moment estimation) optimizer [43] is adopted to
minimize the loss function. We fix to 200 the number of
epochs.

IV. EXPERIMENTAL RESULTS
A. EVENT LOGS
The experiments are performed on seven outcome-prediction
problems formulated from three real-life event logs. The
public logs are accessible from the 4TU Centre for
Research Data.6 These outcome prediction problems have
been selected among those experimented in [5], where the
Aggregation schema (that we have also considered in this
paper for the feature extraction phase) achieved the highest
performance.

1) SEPSIS
This log [44] records trajectories of patients with symptoms
of the life-threatening sepsis condition in a Dutch hospital.
Each trace collects the sequence of events since the patient’s
registration in the emergency room until the patient’s dis-
charge from the hospital. Among others, laboratory tests
together with their results are recorded as events. In any
case, the reason of the discharge is available in the data
in an obfuscated format. The authors of [5] defined three
different labeling procedures for this log: (i) sepsis_1 where
a patient returns to the emergency room within 28 days from

6https://data.4tu.nl/
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the discharge, (ii) sepsis_2 where a patient is (eventually)
admitted to intensive care and (iii) sepsis_3 where a patient is
discharged from the hospital on the basis of something other
than Release A (that is, the most common release type).

2) BPIC2011
This log [45] was published into the Business Process-
ing Intelligence Challenge (BPIC) in 2011. It contains
data coming from a Dutch Academic Hospital. Each trace
describes the medical history of a given patient so that the
applied procedures and treatments are recorded as activi-
ties. As in [5], we consider four constraint conditions and
define four binary outcome prediction tasks accordingly
(i.e. bpic2011_1, bpic2011_2, bpic2011_3 and bpic2011_4).
In each binary task, a trace is assigned to outcome equal to
1 if the constraint is violated, to 0 otherwise. Details on the
used constraint formulation are reported in [5].

3) BPIC2012
This log [46] was published into the Business Processing
Intelligence Challenge (BPIC) in 2012. It contains the execu-
tion history of a loan application process in a Dutch financial
institution. Each trace in this log records the events related
to a loan application. The authors of [5] identified a multi-
class labeling for this log based on the final outcome of a
trace, that is, whether the application is accepted, rejected or
canceled. Based on this multi-class labeling, three separate
binary outcome prediction tasks have been defined referred
to in [5] as bpic2012_1, bpic2012_2 and bpic2012_3.

4) PRODUCTION
This log [47] contains data from a manufacturing process.
Each trace records information about the activities, workers
and/or machines involved in producing an item. The label-
ing (production) is based on whether or not the number of
rejected work orders is larger than zero.

B. EXPERIMENTAL SET-UP
We have reproduced the experimental setting introduced in
[5]. A temporal split is used to divide the event log into train
and test traces. To this aim, the traces of a log are sorted
by the the starting timestamp. The first 80% are selected for
training the predictive model, while the remaining 20% are
considered to evaluate the performance of the learned model
on the unseen traces. We note that this allows us to simulate
the real-life situation where prediction models are trained
using historic data (started before a given data) and applied to
ongoing traces. Whenever some events in the training traces
overlapwith the testing period, training traces with events that
overlap with the testing period have been discarded.

Different metrics can be used to measure the accuracy of
predictions. Rather than returning a hard prediction (a binary
number) on the expected case outcome, the classifiers usually
output a real-valued score, reflecting how likely it is that the
sample will end in one way or the other. Accounting for the
considerations reported in [5], good outcome classifier will

give higher scores to ongoing traces that will end with a posi-
tive outcome, and lower values to those endingwith a negative
one. Therefore, similarly to [5], we use the area under the
ROC curve (AUC) metric that expresses the probability that
a given classifier will rank a positive case higher than a
negative one. A major advantage of the AUC metric over the
commonly used accuracy, e.g. F-score (the harmonic mean
of precision and recall), is that the AUC remains unbiased
even in case of a highly imbalanced distribution of class labels
[48]. Furthermore, AUC is a threshold-independent measure,
as it operates on the ranking of the scores rather than the
binary class values. Still, relying on a single evaluation crite-
rion may provide a biased viewpoint of the results; therefore,
we also report the F-scores additionally to AUC.

Overall AUC are F-score are both obtained by first comput-
ing the scores separately for each prefix length and then by
taking the weighted average of the obtained scores, where the
weights are assigned according to the number of prefixes used
for the calculation of a given score. This weighting assures
that the overall metrics are influenced equally by each prefix
in the testing set, instead of being biased towards longer
prefixes (i.e., where many traces have already finished).

In order to measure the earliness of the predictions, we also
monitor the accuracy of the predictive model separately for
each prefix length [13]. In each step, the prediction model
is applied to a subset of prefixes of exactly the given length.
The improvement of prediction accuracy as the prefix length
increases should provide an implicit notion of earliness.

C. RESULTS AND DISCUSSION
We start the validation by investigating the effectiveness of
the image encoding technique that we adopt in this study to
transform trace data into images. To this purpose, we compare
the performance of ORANGE to that of its variant ORANGE–
naive that is defined replacing the image encoding technique
used in ORANGE with that adopted in [10]. As the pipeline
described in [10] is formulated for problems of next activity
prediction, the validation is done using the 2D CNN architec-
ture formulated in this paper for the outcome-oriented process
monitoring. The overall AUC and F-score, of ORANGE and
ORANGE–naive are compared in Figures 3a and 3b, respec-
tively. This comparative analysis confirms that ORANGE
systematically gains accuracy with respect to its variant
ORANGE–naive by taking advantage of the better quality
of the images produced. Specifically, this result provides the
empirical evidence thatORANGE effectively benefits from its
ability of accounting for phenomena of data continuity among
features within the imagery encode done.

We proceed this validation by comparing the performance
ofORANGE to that of the list of competitors – based on SVM,
LR,RF and XGB – introduced in [5],7 as well as the competitor
– based on LSTM – described in [25].8 SVM, LR, RF and

7The code of the competitors is available at https://github.com/irhete/
predictive-monitoring-benchmark

8https://github.com/irhete/stability-predictive-monitoring
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FIGURE 3. AUC and F-score of ORANGE and its variant ORANGE-naive on all the outcome prediction problems.

TABLE 3. AUC for both ORANGE and the competitors presented both in [5] ( SVM, LR, RF, XGB) and in [25] (LSTM) on all the outcome prediction problems.
The best results are in bold.

TABLE 4. F-Score for both ORANGE and the competitors presented both in [5] (SVM, LR, RF, XGB) and in [25] (LSTM) on all the outcome prediction
problems. The best results are in bold.

XGB are run using the optimization described in [5] to select
the hyperparameters of the machine learning algorithms.
In addition, similarly to ORANGE, they use the Aggrega-
tion schema for the trace feature extraction. The decision of
using the Aggregation schema with these competitors follows
the conclusions drawn in the empirical study discussed [5].
On the other hand, LSTM is run with the architecture hyper-
parameters set as described in [25] and the trace feature
extraction performed with the Index schema. In this case,
the decision of coupling the LSTM architecture with the Index
schema follows the formulation of the competitor reported in
[25], as well as the consideration that, differently from the

Aggregation schema, the Index schema is able to preserve the
information on the order that the LSTM architecture is able
to process.

The overall AUC and F-score of both ORANGE and com-
petitors are reported in Tables 3 and 4, respectively. These
results show that ORANGE commonly outperforms (or per-
forms equally to) the competitors. The only exceptions con-
cern the AUC of ORANGE on bpic2012_1 and the F-score of
ORANGE on bpic2011_2 and bpic2011_3, which are lower
than those of RF and XGB, while the F-score of ORANGE
on Production is lower than that of LSTM. The interesting
result is that, left-out ORANGE, there is no competitor that
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FIGURE 4. Comparison of AUC and F-score of ORANGE, as well as the competitor approaches LR, RF, SVM, XGB with the Nemenyi
test. Groups of approaches that are not significantly different (at p ≤ 0.05) are connected.

systematically achieves the highest accuracy (AUC, as well as
F-score) in all the problems. For example, considering AUC,
LR is the best competitor on sepsis_1, sepsis_2 and sepsis_1,
XGB is the best competitor on bpic2012_1 and production,
RF is the best competitor on bpic2012_2, both XGB and RF
are the best competitors on bpic2011_1, bpic2011_2 and
bpic2011_3, while bothRF and LSTM are the best competitors
on bpic2011_4 and bpic2012_3. Similar conclusions can be
drawn analyzing the F-score. So, there is no competitor that
performs equally well on the various business processes.
Differently, our deep learning proposal can maintain the same
architecture design being equally effective in multiple busi-
ness process scenarios.

To statistically test whether these considerations are sta-
tistically significant, we use the Friedman’s test. This is
a non-parametric test that is commonly used to compare
multiple approaches over multiple datasets [49]. In partic-
ular, the Friedman test compares the average ranks of the
approaches, so that the best performing approach gets the
rank of 1, the second best gets rank 2. The null-hypothesis
states that all the approaches are equivalent. Under this
hypothesis, ranks of compared approaches should be equal.
In this study, we perform this test by considering the average
F-measure achieved by the compared approaches on each
dataset and reject the null hypothesis with p-value ≤ 0.05.
As the null-hypothesis is rejected, that is, no approach is
singled out, we use a post-hoc test—the Nemenyi test—for
pairwise comparisons [49]. The results of this test, reported
in Figure 4, confirm that ORANGE is ranked higher than
the competitors. In addition, the resulting critical difference
diagram, obtained using a 0.05 significance level, confirms
that ORANGE is on average the best performing approach
with respect to both AUC and F-score with RF as runner-up
with respect to both AUC and F-score. This is coherent with
the conclusions we have drawn before indicating ORANGE
as the best-performing classifier in the addressed outcome
prediction problems. For each problem, ORANGE is able
to perform equally well to the best competitor that is not
necessarily the same for all the considered problems.

At the completion of this study, we investigate the perfor-
mance ofORANGE in terms of earliness. Figure 5 presents the
AUC for the outcome prediction problems of sepsis (sepsis1,
sepsis2 and sepsis3) evaluated across different prefix lengths.
Each evaluation point includes prefix traces of exactly the

given length. Thus the number of traces used for evaluation
is monotonically decreasing when increasing prefix length.
From Figure 5 it can be seen that ORANGE yields an AUC
that is systematically greater than 0.5 (i.e., better than ran-
dom) on each prefix length. On the other hand, there are a few
competitors (e.g. LSTM in sepsis2 and sepsis3, SVM, RF and
XGboost in sepsis1) whose performance may become worse
than the random choice across some prefix lengths. Finally,
in all the problems, ORANGE is the most accurate method on
several prefix lengths. In general, it is systematically in the
top-three ranked methods.

D. APPLICATION TO A CVM CASE STUDY
In this section we show the viability of the proposed method
as a means to increase the value of a data-driven Customer
Value Management (CVM). We present the application of
ORANGE to CRM9 that is a CVM realized by the Italian
software company MTM Project srl to support negotiation
and sales management. We processed data of 1388 events
logged on 29 months during the execution of 140 traces of
the negotiation and sales management process into CRM.
Each event comprises information on the activity carried out,
the sales agent triggering the activity and the timestamp.
The labeling of the trace is positive (‘‘accept’’) if the sales
negotiation is successfully completed, negative (‘‘reject’’)
otherwise. Figure 6 shows the graphical representation of this
log. This is extracted in the form of a direct follow graph using
Directly Follows Graph plugin in ProM 6.9.10

This case study is intended to evaluate the viability of
integrating ORANGE in CRM. In particular, the expectation
of MTM Project srl is that ORANGE may be considered to
process the historical event log stored byCRM andmine accu-
rate outcome predictive knowledge from the logged events.
This knowledge will allow the Intelligent Assistant of CRM
to smartly assist the sales agent by suggesting the most
promising ongoing negotiations (i.e. the negotiations that are
candidate to be successfully completed). We note that, from
the point of view of the sales agent, it is desirable to count on
a predictive service that is as more accurate as possible in the
early stages of the negotiation operations. This capability will

9https://www.mtmproject.com/cvm/
10http://www.promtools.org/doku.php
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FIGURE 5. AUC (axis Y) on the outcome prediction problem of datasets sepsis1, sepsis2 and sepsis3 across different prefix lengths (axis X).

FIGURE 6. Direct Follow Graph of the event log collected with CVR.

actually support every sales agent of CRM in improving the
workload organization by maximizing efficiency and profit.

As for the the benchmark outcome-oriented process moni-
toring problems analyzed in Section IV, the evaluation is done
here splitting the event log of CRM into training traces (80%)

and testing traces (20%). We train both ORANGE and the
competitors on the training traces and evaluate the accuracy
of the learned predictive models on the testing traces.

Table 5 reports the overall AUC and F-score of the meth-
ods compared in this case study. In addition, Figure 7
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FIGURE 7. Computation time (in seconds) spent in completing the
learning stage of ORANGE and the competitors presented both in [5]
(SVM, LR, RF, XGB) and in [25] (LSTM) on the outcome prediction problem
of CVR.

TABLE 5. AUC and F-score for both ORANGE and the competitors
presented both in [5] (SVM, LR, RF, XGB) and in [25] (LSTM) on the
outcome prediction problem of CVR. The best results are in bold.

compares the methods in terms of computation time required
to learn the outcome prediction models. The computation
times are collected on a Linux machine with an Intel R© Core
i9-8950HK CPU@ 2.90GHz× 12 and 16GB RAM - NVidia
GeForce GTX 1050 Ti. The compared times highlight that
ORANGE spends more computation time learning the pre-
diction model than the competitors. The higher computation
complexity of ORANGE is mainly due to the image encoding
step coupled to deep learning. In fact, we note that the training
of LSTM which (similarly to ORANGE) is based on a deep
learning architecture takes more time than SVM, LR, RF and
XGB, which use traditional machine learning approaches.
On the other hand, the learning stage of LSTM requires less
computation time than ORANGE due to the lack of the image
encoding step.

However, the higher training time of ORANGE is fully
counterbalanced by the highest accuracy of the learned mod-
els which overcome all other competitors.

At the completion of this study, we evaluate the earli-
ness of the predictions in the case study. Figure 8 shows
the AUC computed along the different prefix lengths. These
results confirm that, as desired, ORANGE outperforms all its
competitors along the early stages of the test negotiations.
This can aid sales agents in promptly identifying the most
promising negotiations to be worth considering. We also
note that ORANGE systematically outperforms competitors,
except for the one based on SVM, also in the remaining stages
of the negotiations. In any case, the SVM-based competitor
performs more accurately than ORANGE in few cases, i.e.
when the number of events already observed in the ongoing
negotiation is equal to 4, 6 and 7.

Based upon these overall results, software company MTM
Project srl will proceed to integrate the outcome-oriented
process monitoring service provided by ORANGE into
CRM.

FIGURE 8. AUC on the outcome prediction problem of CVR across
different prefix lengths.

V. CONCLUSION
Boosted by the recent application of computer vision
approaches in predictive process mining [10], [30], we pro-
pose a novel deep learning approach for outcome-oriented
predictive process monitoring. This approach founds on the
idea of transforming features of traces into pixels of images
so that deep learning methods designed for computer vision
can be used to process the imagery representation of the
traces. In this study, the image encoding of traces is done by
modeling the across-feature data continuity so that similar
trace features can be mapped onto neighbour pixels. This
allows us to construct images of traces, in which possible
spatial patterns (e.g. edges, shapes, shading changes) arise.
In fact, thanking the embed spatial structure of this imagery
representation of traces, we can properly train a 2D CNN
that predicts the outcome of an ongoing trace by taking full
advantage of convolution and pooling operations.

Experimental results on several real-world event logs con-
firm the accuracy of the proposed approach compared to var-
ious competitors recently illustrated in [5]. They also prove
the viability of ORANGE as a means to realize an Intelligent
Assistant for CRM – the CVM realized by MTM Project srl,
to support sales agents inmanaging their negations.ORANGE
can aid in smartly monitoring the outcome of the ongoing
negotiations by highlighting the most promising ones (the
negotiations that are candidate to be successfully completed
by the sale agent).

Although the experiments have proved the effectiveness of
ORANGE in various outcome prediction problems, the pro-
posed method suffers from a few limitations. One limitation
of ORANGE is the lack of prescription and explanation with
predictions. We plan to explore the use of prescriptive learn-
ing theories, such as those investigated in [4], [50], in order
to enrich the proposed learning approach with guidelines
that describe what to do to achieve specific outcomes and
how to expand the model by integrating possible reactions to
prediction-based alerts. A further limitation is that ORANGE,
similarly to competitors, does not implement any solution
to deal with the imbalanced condition that occurs in various
outcome prediction problems. To overcome this limitation,
we plan to extend the proposed method by implementing
trace augmentation techniques, in order to augment the set
of training traces with new traces produced to achieve the
balance in the learning stage.
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As an additional future work, we plan to extend the inves-
tigation of the sensitivity of the proposed method to the
multiple schemes for the feature vector construction, which
are described in [5]. Another interesting research direction is
that of extending the proposed approach in a streaming set-
ting with the training performed continuously as new events
are logged (in running or new traces). This will require the
definition of a streaming framework to update the predictive
model as new events are collected and deal with concept drift
happening as new events (unobserved before) appear in the
process. Finally, transfer learning mechanisms may be also
explored to reuse a model developed for business process as
the starting point for a model on a new process.
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