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ABSTRACT
We study the influence of fuzziness of trapezoidal fuzzy sets in the strong fuzzy partitions (SFPs) that constitute the database
of a fuzzy rule-based classifier. To this end, we develop a particular representation of the trapezoidal fuzzy sets that is based on
the concept of cuts, which are the cross-points of fuzzy sets in a SFP and fix the position of the fuzzy sets in the Universe of
Discourse. In this way, it is possible to isolate the parameters that characterize the fuzziness of the fuzzy sets, which are subject
to fine-tuning through particle swarm optimization (PSO). In this paper, we propose a formulation of the parameter space that
enables the exploration of all possible levels of fuzziness in a SFP. The experimental results show that the impact of fuzziness is
strongly dependent on the defuzzification procedure used in fuzzy rule-based classifiers. Fuzziness has little influence in the case
of winner-takes-all defuzzification, while it is more influential in weighted sum defuzzification, which however may pose some
interpretation problems.
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1. INTRODUCTION

The design of fuzzy inference systems promotes interpretability as
a key factor to express the embedded knowledge in a plain read-
able and understandable way. As a matter of fact, interpretabil-
ity is the most important quality that justifies the adoption of
fuzzy inference systems in real-world applications [1,2,3,4]. When
such systems have to be acquired through data-driven approaches,
two main design issues arise: (i) the resulting fuzzy inference sys-
tem should adequately fit data; (ii) the knowledge base should
be interpretable to end-users. This led to the development of
design methodologies that take into account both accuracy and
interpretability [5,6,7,8,9,10,11]; in parallel, the very concept of
interpretability, its definition and assessment are matter of current
research [12,13,14,15].

In this paper we focus on a specific type of fuzzy inference system,
namely the fuzzy rule-based classifier, which adopts a knowledge
base consisting of a set of fuzzy classification rules in the form

Rule r: IF x1 is A(r)
1 AND⋯ AND xm is A(r)

m THEN c(r)

where a complex antecedent consists of a conjunction of soft con-
straints binding each variable xi to a linguistic term A(r)

i , and a
simple consequent represents a class label c(r). (Further details on
fuzzy rule-based classifiers can be found in literature [16,17,18].)
The linguistic terms, bound to the same variable in all rules, form
a linguistic variable, which includes information to map each lin-
guistic term to a fuzzy set through an operation of interpretation. In

*Corresponding author. Email: ciro.castiello@uniba.it

other words, the (explicit) semantics of a linguistic term is defined
by a fuzzy set, whose membership function is usually determined
through some data-driven process. On the other hand, a linguistic
term is usually drawn from natural language (e.g. “low,” “old,” etc.),
therefore it carries an implicit semantics that, in a given context, is
assigned by a user when reading the term. The ultimate objective
of interpretability-driven design of linguistic variables is to define
fuzzy sets so that explicit and implicit semantics of the correspond-
ing linguistic terms highly overlap [19].

The interpretation of linguistic terms determines a collection of
fuzzy sets: a standard approach to impose interpretability of linguis-
tic variables is to consider such an ensemble of fuzzy sets as a gran-
ulation (or fuzzy partition) of the variable domain. In particular,
a convenient way to define such fuzzy sets is through strong fuzzy
partitions (SFP), i.e., collections of complementary fuzzy sets where
the sum of the membership degrees over all fuzzy sets is always
equal to the unity, whatever the variable value in the domain. SFPs
are convenient tools because they help in satisfying a number of
basic interpretability constraints and enable efficient inference since
complementarity avoids that many rules are simultaneously active
for a given input [20]. Usually, the fuzzy sets of a SFPs are defined
through triangular or trapezoidal membership functions, although
less common alternatives exist [21,22,23]. In this work we focus on
trapezoidal fuzzy sets because they can be efficiently computed and
offer greater flexibility than triangular partitions, the latter being
considered as a special case.

Typical data-driven design techniques use optimization meth-
ods to set the parameters of the fuzzy sets so as to adapt to
data. (Eventually, such optimization is constrained to preserve the
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well-formedness of the involved SFPs.) In most cases, fuzzy sets are
optimized in terms of both their position and their fuzziness. The
first is related to the sub-regions of the domain where the fuzzy sets
mostly influence the inference; the latter indicates how much the
fuzzy sets are different from crisp sets. Fuzziness and position can
be differently measured [24,25]. For the sake of the present study,
position can be defined in terms of 0.5 cut; fuzziness can be defined
in terms of the slopes of the oblique slides of the trapezoidal fuzzy
sets. In this way, it is possible to well separate position and fuzzi-
ness, and analyze them separately.

In thisworkwe address the problemof assessing the impact of fuzzi-
ness in the performance of a fuzzy rule-based classifier, provided
that its position is kept fixed. We consider this issue to be a very
important one because many data-driven design methods mainly
focus on position of fuzzy sets, while fuzziness is relegated to amore
marginal role. As an example, in some works SFPs are defined by
looking at prototypes (often obtained after some optimization pro-
cess), then fuzzy sets of triangular shape are defined so as to form a
SFP [26,27,28,29]: in such a case, the information coming frompro-
totypes actually settles the fuzzy sets position, while the determina-
tion of fuzziness is only functional to preserve the well-formedness
of the partition.

In a previous work of ours, we showed that trapezoidal fuzzy sets
offer more degrees of freedom than triangular fuzzy sets, but they
still preserve the well-formedness of SFPs [30]. The adoption of tri-
angular fuzzy sets is therefore self-limiting as it introduces a bias
which may hinder the reach of acceptable accuracy levels. On the
other hand, trapezoidal fuzzy sets require the setting ofmore hyper-
parameters, therefore some existing design techniques (which com-
pute the prototypes of fuzzy sets) cannot be directly applied. To
overcome this problem, data-driven optimization can be split into
two steps: optimization of position and fine-tuning of fuzziness.
We already proposed two methods for fine-tuning the fuzziness of
trapezoidal fuzzy sets [31]. Those methods, however, cannot guar-
antee that the space of all possible SFPs is thoroughly spanned in
search of an optimal solution. In this paper we propose an exten-
sion of those methods and we prove that this extension is capable to
explore the entire search space. In this way, we are able to empiri-
cally assess the effects of fuzziness on the overall accuracy of a fuzzy
rule-based classifier (while position is kept unchanged), with dif-
ferent inference settings.

After a brief outline of the related work reported in Section 2, in
Section 3 we formally define the concepts of SFPs and trapezoidal
fuzzy sets, together with the constraints that such fuzzy sets must
fulfill to preserve the well-formedness of a SFP. In Section 4 we
introduce PSO and we sketch the way to represent trapezoidal SFPs
as particles. In Section 5 we formally prove that the proposed rep-
resentation allows PSO to span the entire space of SFPs with fixed
positions. Section 6 summarizes the experimental results on syn-
thetic and benchmark datasets. Finally, Section 7 concludes the
work by highlighting the main results and setting the direction of
future research.

2. RELATED WORK

The design of SFPs in fuzzy modeling is long-stated. The simplest
design approach is uniform granulation, where the domain of a

feature (assumed to be a closed interval in the real line) is
partitioned by detecting a number of equally-spaced points in
the domain, which eventually serve as prototypes of triangular
fuzzy sets. The number of such prototypes is usually user-defined
although some computational methods have been proposed in lit-
erature for its determination [32].

Noticeably, the position and fuzziness of fuzzy sets determined by
uniform granulation do not depend on data: the reasons to use this
method are related to the appreciable interpretability of the result-
ing partitions and the relative difficulty to determine data-driven
SFPs with comparable interpretability level. Nevertheless, uniform
granulation is too rigid as it does not adapt to data. For such a rea-
son, several methods have been proposed to enable a data-driven
design of fuzzy partitions, especially in the realm of evolutionary
computation [33].

Starting from some pioneering works on data-driven structure
identification of fuzzy rule bases [34], a huge literature devel-
oped around the problem of data-driven design of fuzzy parti-
tions [5,35,36,37]. Two general approaches can be identified when
attempting to classify data-driven design methods for fuzzy parti-
tions [38]: First Interpretability ThenAccuracy (FITA), where fuzzy
partitions are first defined (often through uniform granulation)
then fine-attuned to data in order tomaximize accuracy; FirstAccu-
racy Then Interpretability (FATI), where fuzzy partitions are firstly
generated from data (often through data clustering) then adjusted
to meet a number of interpretability requirements. In most cases,
fuzzy sets are adjusted both in their position and fuzziness in order
to optimize some objective function.

In some cases, fuzziness is explicitly addressed separately from
position. As an example, Alcalá et al. [39] use a particular rep-
resentation of linguistic terms involving two different parameters
expressing the variation of position and fuzziness with respect to
a reference SFP. Specifically, fuzziness is quantified as the length
of the support of triangular fuzzy sets. These variations are used
as parameters to be optimized through a genetic algorithm (GA).
Results show that by adjusting both position and fuzziness, the
accuracy of the resulting fuzzy rule-based systems can be improved.
That is paid in terms of a decreased interpretability since the result-
ing partitions are no longer strong. Noticeably, the reported experi-
ments show that the introduction of fuzziness optimization leads to
a slight improvement with respect to a schema where only position
is optimized.

Sanz et al. [40] use GAs for improving the performance of fuzzy
rule-based classification systems by adapting the fuzziness of (tri-
angular) fuzzy sets as measured by the length of their support. In
this work, interval-valued fuzzy sets are used to represent linguistic
terms, and inference depends on lower and upper triangular fuzzy
sets that may not satisfy the requirement of SFPs. Also, the use of
triangular fuzzy sets only (though of type-2) does not assure that all
possible fuzziness degrees are exploited to find the final fuzzy par-
titions. Nevertheless, experimental results show that accuracy can
be improved by acting on the fuzziness of the fuzzy sets.

Inmany cases, triangular fuzzy sets are used to define the semantics
of linguistic terms. In few works, however, trapezoidal fuzzy sets
have been employedwith the result of a greater flexibility. For exam-
ple, Nguyen et al. [41] showed that the extension of hedge algebra
semantics by trapezoidal fuzzy sets (in place of triangular) leads to
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an average improvement of the resulting fuzzy rule-based classifiers
in terms of both structural complexity and accuracy.

Evolutionary algorithms have been employed to optimize trape-
zoidal fuzzy sets for data-driven design of fuzzy partitions [42].
However, differently from triangular fuzzy sets, special care must
be paid on the way fuzzy sets’ parameters are fixed: without proper
constraints, it is not guaranteed that the resulting partition satisfies
the requirements of a SFP.

The aforementioned research works, alongside subsequent devel-
opments, stimulated a research question concerning the evaluation
of the influence of the sole fuzziness in the data-driven optimization
of a fuzzy partition, given a certain type of fuzzy rule-based system.
To conduct this study, an optimization framework is needed with
some key features:

i. the optimization process must operate in the space of fuzzi-
ness only, so as to avoid the interference due to changing the
position of fuzzy sets. To this purpose, a proper formalization
of fuzziness is required;

ii. the optimization process should potentially span all possible
values of fuzziness for all the fuzzy sets involved in the fuzzy
partitions that constitute the database of a fuzzy rule-based
system;

iii. the optimization process must not consider configurations of
fuzziness that violate the requirements of SFPs.

The following sections are devoted to illustrate the proposed
approach for optimizing the fuzziness in the way declared above.
The main assumptions in this work are

1. we consider fuzzy rule-based classifiers only, with dif-
ferent defuzzification schemes and no rule weights
involved. This is the simplest structure of rules that can
be useful to highlight the influence of fuzziness in the
final quality of the model;

2. we use trapezoidal fuzzy sets because they are more flex-
ible than triangular fuzzy sets and provide a wider search
space in terms of fuzziness. Additionally, fuzziness of
trapezoidal fuzzy sets can be easily formalized in terms
of the slopes of their oblique slides.

As a final note of caution, we underline how our proposal does not
concern a newmodeling technique (whichwould be improper since
fuzzy sets are not modified in terms of position), rather it is focused
on the analysis of the influence of fuzziness in the performance of
the selected models.

3. CUT-BASED REPRESENTATION OF SFPs

With the purpose of separating position and fuzziness of the trape-
zoidal fuzzy sets involved in a fuzzy partition, we resort to a specific
representation that is focused on the crossing points between adja-
cent fuzzy sets, which are henceforth called cuts.

Let U = [mU,MU] ⊆ ℝ be a Universe of Discourse (UoD). A
SFP can be composed on U by a sequence of normal and convex

fuzzy sets A1,A2, … ,An+1 if their membership functions 𝜇Ai
are

such that:

∀x ∈ U ∶
n+1
∑
i=1

𝜇Ai
(x) = 1

For i = 1,… , n, we assume that the fuzzy sets involved in any cou-
ple (Ai,Ai+1) intersect in such a way that there exists a single point
ti ∈ U such that 𝜇Ai

(ti) = 𝜇Ai+1
(ti) = 0.5, due to the particu-

lar arrangement of the SFP. In other words, a sequence of points
t1, … , tn, such that ti < ti+1, can be identified in U and any range
[ti, ti+1] (i = 1,… , n − 1) defines the boundaries of the 0.5-cut
related to the fuzzy set Ai+1 (see Figure 1 as an illustrative exam-
ple with n = 4). Such points are referred to as cuts and play a
crucial role in the context of our study. In fact, we are going to
elect the sequence of cuts as a constraint to arrange an optimal SFP:
assigned the points t1, … , tn, we want to explore the way to build
onto them a partition which could prove to produce better results
when employed in a fuzzy inference system. For each fuzzy set in
the SFP, this approach allows to decouple its position, which is iden-
tified by two consecutive cuts, from its fuzziness, which stands as a
degree of freedom that is susceptible of optimization.

Different types of fuzzy sets can be involved into the realization of
a SFP; among them, the trapezoidal fuzzy sets are characterized by
a four-parameter function T[a, b, c, d] defined as

T[a, b, c, d](x) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x − a
b − a

, x ∈]a, b[

1 x ∈ [b, c]
x − d
c − d

, x ∈]c, d[

0 x ⩽ a ∨ x ⩾ d

with the parameters a, b, c, d subjected to the condition:

a ⩽ b ⩽ c ⩽ d (1)

which ensures the well formedness of the fuzzy sets. Obviously, a
trapezoidal fuzzy set assumes a triangular shape if the particular
case b = c occurs.

Indeed, the choice of the fuzzy set typology is significant in our
research. Since we are dealing with the problem to design SFPs
constrained by cuts, it is worth recalling that the employment of
triangular fuzzy sets is a limiting choice, which would lead to
the impossibility to produce triangular SFPs when some particular
sequences of cuts are assigned. The adoption of trapezoidal fuzzy
sets, instead, is flexible enough to guarantee the realization of well-
formed SFPswhatever sequence of cuts is assigned, as demonstrated
in a previous work of ours [30].

The fuzzy sets involved in a trapezoidal SFP must be such that

⎧⎪
⎨⎪
⎩

a1 = b1 = mU,
ai+1 = ci, (i = 1,… , n)
bi+1 = di, (i = 1,… , n)
cn+1 = dn+1 = MU

(2)

it can be noticed how the sequence of fuzzy sets is confined at the
extremes by rectangular trapezoids leaning against the limits mU
and MU of U.
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Figure 1 A strong fuzzy partition (SFP) over the Universe of Discourse composed by 5 fuzzy sets whose positions are
determined by the arrangement of 4 cuts.

To tailor a trapezoidal SFP to an assigned sequence of cuts t1, … , tn,
an additional couple of conditions (which are of course equivalent
due to (2)) must hold:

{bi+1 = 2ti − ai+1
di = 2ti − ci

(3)

The conditions expressed in (3) allow the cut ti to be in the middle
point between two consecutive vertices of a trapezoidal fuzzy set.

Several methods may be adopted to build a trapezoidal SFP from
cuts. The Constant Slope (CS) method [30] is a very simple and
intuitive one, which can be applied in full compliance with the
aforementioned conditions (2–3). According to the CS method, a
common slope is set for all the trapezoidal fuzzy sets involved in the
resulting SFP. This specific slope is the one1 associated to the sides
of the triangular fuzzy set centered on themiddle point between the
nearest cuts in the assigned sequence. Figure 2 illustrates an appli-
cation of the CS method: the sequence of cuts t1, t2, t3 is assigned
to produce a partition involving 4 fuzzy sets. Firstly, the minimum
distance Δmin among cuts is identified

Δmin = min{(ti+1 − ti)|i = 0,… , 3}

where mU = t0 and MU = t4 have been imposed to integrate the
sequence of cuts (this practice is going to be replied in the rest of the
present work). Then, a triangular fuzzy set (labeled as A2) is built
onto Δmin and its specific slopes on the left and the right sides are
imposed to construct the remaining trapezoidal fuzzy sets compos-
ing the resulting SFP.

1Actually, two opposite slopes are involved (related to the ascending and
the descending sides of the fuzzy set, respectively) which are equal in
magnitude.

Othermethods can be adopted to derive trapezoidal SFPs from cuts:
each of them is supposed to provide different results [30]. All of
the partitions are characterized by a number of trapezoidal fuzzy
sets with fixed positions (due to the prearranged sequence of cuts)
and exhibit dissimilar fuzziness as determined by the different slope
configurations of the oblique slides. However, a single method is
able to produce a single partition of fuzzy sets, against a number of
possibilities which is infinite. Hence the necessity to devise a way
for fully exploring this space of possibilities to properly investigate
how fuzziness affects the performance of such SFPs when they are
applied in some contexts of application.

4. PARTICLE SWARM OPTIMIZATION AS A
TOOL TO OPTIMIZE FUZZINESS

Particle swarm optimization (PSO) is a computational method
devised to perform stochastic optimization [43]. Originally intro-
duced in 1995 [44], it soon started attracting interest from
researchers and underwent further analysis, variations, and devel-
opment [45,46,47,48].

PSO emulates social behavior with special references to such orga-
nized groups as insect swarms, fish schools, and bird flocks. All
of them are composed by a large number of individuals which all
together interact and coordinate their movements to contribute to
the global repositioning of the group. In this way, the whole set of
individuals is able to reach some goal of common interest. Drawing
inspiration from this natural behavior, PSO incorporates a number
of entities moving through a search space to find a (nearly-)optimal
solution for a given problem. Movement and velocity are key con-
cepts, so the involved entities are called “particles,” a term which
best suits these notions. Just like in a flock or a swarm, the particles
interact with one other and, at the same time, they learn from their
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Figure 2 A trapezoidal strong fuzzy partition (SFP) tailored on the basis of 3 assigned cuts through the
application of the constant slope (CS) method.

own experience. To keep track of advancements, PSO evaluates the
particles’ positions through an objective function (which must be
minimized) and then moves the population at each successive iter-
ation of the process. The movement of each particle through the
search space is determined by combining information about its cur-
rent and best position, the best positions reached by one or more
other particles in the swarm, and some random perturbations. As a
global result, the population gradually moves toward better regions
of the search space, reaching a final position which can be regarded
as the solution of the problem at hand.

Given an objective function f ∶ E → ℝ to be minimized, a formal
description of the R-dimensional search space E to be explored by
PSO can be expressed as follows:

E = [l1, u1] × [l2, u2] ×⋯ × [lR, uR] (4)

being [lr, ur] ⊂ ℝ for r = 1, 2, … ,R. Let S be the number of particles
composing the swarm which is going to explore E: at time 𝜏, each
of them is associated to three R-dimensional vectors:

• xi(𝜏), a position vector encoding the current location of the
particle;

• vi(𝜏), a velocity vector which previously contributed to
determine the current position vector of the particle;

• pi(𝜏), a memory vector encoding the best position reached
so far,

for i = 1,… , S. A further piece of information regards the particle
neighborhood (possibly, the entire swarm) and it is encoded in the
R-dimensional vector:

• pg(𝜏), a position vector encoding the best position globally
reached so far.

By the term “best” position, we refer to the evaluation of a posi-
tion vector performed through the objective function, which is pur-
posely designed depending on the problem at hand.

The PSO is organized as an iterative process: at each step, the posi-
tion and velocity vectors of each particle are updated as follows:2

⎧
⎨
⎩

vi(𝜏 + 1) = 𝜔vi(𝜏) +u(0, 𝜙1) ∘ (pi(𝜏) − xi(𝜏))
+u(0, 𝜙2) ∘ (pg(𝜏) − xi(𝜏))

xi(𝜏 + 1) = xi(𝜏) +vi(𝜏 + 1)
(5)

where ∘ is the component-wise multiplication; 𝜔 is a positive value
(the inertia weight) which can be regarded as the fluidity of the
swarm motion; u(0, 𝜙i) are R-dimensional vectors composed by
random numbers uniformly distributed in [0, 𝜙i]; 𝜙1, 𝜙2 are pos-
itive values (the cognitive and social coefficients) which can be
regarded as the attraction of the i-th particle towards the best of its
positions and the global best position, respectively.

To some degree, the PSO working machinery resembles another
nature-inspired algorithm, i.e., the GA, which is also a stochastic
population-based optimization process. Both particles and chro-
mosomes similarly act as candidate solutions and the objective
function in PSO clearly recalls the fitness function of GAs. How-
ever, some differences between these methods can be highlighted
[49]. PSO does not implement selection and lacks genetic operators
such as crossover andmutation (even if a kind of crossover is repre-
sented by the combined information of particle and neighborhood
best positions, useful to evaluate acceleration). Also, PSO is intrin-
sically directional in its process, while the GA mutation is omnidi-
rectional in its nature. All in all, PSO is able to produce satisfactory
results in terms of optimization while showing the benefit of an eas-
ier implementation and a reduced number of parameters to adjust

2As previously asserted, some other formulations for updating the PSO
vectors have been proposed in literature, but we can refer to this ver-
sion for our purposes.



1420 C. Castiello and C. Mencar / International Journal of Computational Intelligence Systems 13(1) 1415–1428

when compared with GA. It applies, therefore, as a suitable candi-
date to carry on the exploration of the search space we are going to
investigate in the present work.

The scenario under study is such that the SFPs are meant to be
exploited to build up a fuzzy rule-based inference system from data.
Therefore, we deal with the following setting:

(a) the cuts are supposed to be imposed by the specific context
and derived from the analysis of the dataset at hand (bymeans
of a particular clustering process);

(b) the objective function steering the PSO process is represented
by the average accuracy obtained while evaluating the rule
base corresponding to the derived SFP;

(c) the particles’ position in the search space must be related to
the shape of trapezoidal fuzzy sets.

It can be observed how, according to (a), the locations of the
involved trapezoidal fuzzy sets are fixed in our setting.

We already applied PSO to design trapezoidal SFPs in a prelim-
inary study of ours [31]. In particular, concerning point (c), we
put a direct correspondence between the particles and the edges
of a trapezoidal fuzzy set. More precisely, given a sequence of
cuts t1, t2, … , tn, recalling that a SFP is fully characterized by the
sequence of 4(n + 1) parameters

a1, b1, … , ci, di, ai+1, bi+1⏟⎵⎵⎵⏟⎵⎵⎵⏟,… , cn+1, dn+1 (6)

we observe that each sub-sequence ci, di, ai+1, bi+1 can be reduced
to ci. In fact, from (2) and (3) we get ai+1 = ci and bi+1 = di =
2ti − ci. From being also a1 = b1 = mU and cn+1 = dn+1 = MU,
we conclude that the sequence (6) can be fully recovered by the
sequence

c1, c2, … , cn (7)

which includes the only free parameters that can be modified in
order to get different SFPs, provided that the bounds mU,MU and
the cuts t1, … , tn are preserved.

Moving from those assumptions, it is straightforward to consider
an n-dimensional search space3 where the particles can shift their
position vectors which ultimately correspond to sequences of trape-
zoid edges as in (7). From (4) we know that the search space is com-
posed by bounded intervals and in our past study we related them
to the ranges where each trapezoid edge ci ∈ [li, ui]must find place.

3Up to now, we considered the SFP which can be drawn on a
single UoD. When dealing with real-world problems, the related
datasets usually involve several dimensions (say, D), thus implying
that the same reasoning scheme must be replied for all the involved
UoDs. In this sense, a sequence of cuts must be provided for each
dimension, (t1, t2, … , tn1 ), … , (t1, t2, … , tnD ), which in turn requires
the PSO to look for a number of D sequences of free parameters
(c1, c2, … , cn1 ), … , (c1, c2, … , cnD ), thus enlarging the dimension of
the search space up to the value n1+n2+…+nD. For the sake of sim-
plicity, we take for granted such a clarification and we keep it implicit,
while continuing to refer in the following to the case of a single UoD.

Since the sequence of cuts mU = t0, t1, t2, … , tn, tn+1 = MU is
assigned, it can be easily inferred that

ci ∈ [li, ui] ⊆ [ti−1, ti] for i = 1,… , n + 1,

and special attentionmust be paid to correctly specify the subsets of
the intervals defined by the cuts where every ci should be placed. In
fact, their arbitrary positioning inside [ti−1, ti] could compromise
the well-formedness of the resulting trapezoidal fuzzy sets, which is
to be preserved instead.

Therefore, we developed a couple of strategies to constrain the
placement of the ci edges inside each range, basically founded on
a geometrical analysis of the SFP design problem. The strategies
we adopted were termed Leftmost Slope Constraint and Constant
Slope Constraint (we address the interested reader to Ref. [31 for
further details about them): they have been exploited to properly
define the bounded intervals composing the search space which has
been then explored by the PSO process being assured about the
well-formedness of all the trapezoidal SFPs.

The results we obtained were encouraging, however we were con-
scious that the imposed constraints reduced the search space as a
side effect. In other words, during the PSO process the particles
could not explore all the infinite possible solutions of the problem
at hand, but a subset of them (which is different depending on the
specific strategy adopted to constrain the ranges [li, ui]). This is the
reason why we developed an alternative strategy to relate the parti-
cles’ positions and the edges of the trapezoidal fuzzy sets, as we are
going to discuss in the following section.

5. A NEW DEFINITION OF THE PSO
SEARCH SPACE

The preliminary tests showed that PSO stands as a suitable tool to
support the design of SFPs based on cuts. However, to fully appre-
ciate the effectiveness of this approach, a thorough exploration of
the search space must be performed. In this way, we can evaluate
how much the PSO algorithm is able to fine-tune the fuzziness of
the fuzzy sets involved in an inference system whose realization is
constrained by some assigned cuts. In this section, therefore, we
introduce a novel formalization of the particles involved in the PSO
process and we demonstrate that it is instrumental in shaping a
search space including all (and only) the trapezoidal SFPs possibly
standing on a UoD.

To this aim, we alter the meaning of the particle positions in the
search space: instead of being regarded as the set of edges c1, … , cn
of the trapezoidal fuzzy sets, they are simply interpreted as a set of
values 𝛼1, … , 𝛼n ∈ [0, 1]. By doing so, the bounded intervals com-
posing the search space (see equation (4)) assume a fixed form:

[li, ui] = [0, 1] for i = 1,… , n

Toderive the edges of the fuzzy sets, we proceed as follows.Assigned
a sequence of cuts mU = t0, t1, t2, … , tn, tn+1 = MU over a UoD
U = [mU,MU], we define:

a1 = b1 = t0 (8a)

ai+1 = ci = (ti − si)𝛼i + si (8b)
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bi+1 = 2ti − ai+1 (8c)

di = 2ti − ci (8d)

cn+1 = dn+1 = tn+1 (8e)

It can be observed how all the points ai, bi, ci, di framing the fuzzy
sets are defined for i = 1,… , n + 1. Particularly, the sequence
c1, … , cn is evaluated in terms of 𝛼1, … , 𝛼n, i.e. the previously intro-
duced values provided by the PSO search. Also, they are defined in
terms of s1, … , sn, being

si = max[(2ti − ti+1), bi] for i = 1,… , n (9)

Figure 3 provides an intuitive understanding of the si placement
with respect to the cuts positions. The configuration depicted in
Figure 3(a) is such that bi < (2ti − ti+1): in this case a safe area
to set the ci point is determined (represented by the green region
in figure), ranging from (2ti − ti+1) to ti. Setting ci outside from
this area would disrupt the SFP design, as shown by the red dashed
trapezoidal fuzzy set in figurewhich intersects the cut ti+1. The con-
figuration depicted in Figure 3(b) is such that (2ti − ti+1) < bi: in
this case a safe area to set the ci point is ranging from bi to ti. Setting
ci outside from the safe area would disrupt the well-formedness of
the trapezoidal fuzzy set.

Moving from the above assumptions, we are going to demonstrate
that, as the values𝛼1, … , 𝛼n vary in [0, 1], it is possible to explore the
whole space of the trapezoidal SFPs which can be drawn on a UoD.
The proof is split into two theorems to prove that each sequence
𝛼1, … , 𝛼n allows to derive: (i) only well-formed trapezoidal SFPs;
(ii) all the obtainable well-formed trapezoidal SFPs.

Firstly we must consider the following lemmas:

Lemma 1 Let U = [mU,MU] ⊆ ℝ be a UoD and let t1, t2, … , tn ∈
U, with ti < ti+1. Let t0 = mU, tn+1 = MU and let 𝛼1, 𝛼2, … , 𝛼n ∈
[0, 1]. For i = 1,… , n, given the position (8b), the following
inequality holds:

ci ⩾ 2ti − ti+1 (10)

Proof. From being ci = (ti − si)𝛼i + si = ti𝛼i + si(1 − 𝛼i), we can
evaluate ci by distinguishing two alternative cases:

si = {
2ti − ti+1 for bi < 2ti − ti+1 (11a)
bi for 2ti − ti+1 ⩽ bi (11b)

From (11a) we obtain

ci = ti𝛼i +
(
2ti − ti+1

)
(1 − 𝛼i)

=
(
2ti − ti+1

)
+ 𝛼i

(
ti+1 − ti

)
⇒ ci ⩾ 2ti − ti+1

(12)

On the other hand, from (11b) we obtain

ci = ti𝛼i + bi(1 − 𝛼i) ⩾ ti𝛼i + (2ti − ti+1)(1 − 𝛼i)
⇒ ci ⩾ 2ti − ti+1

Lemma 2 Given the same premises of Lemma 1, for i = 1,… , n the
following inequality holds:

si ⩽ ti (13)

Proof. For i = 1 we should prove that s1 ⩽ t1 while considering
the possible values of s1:

s1 = {2t1 − t2 = t1 + (t1 − t2)
b1 = t0

⇒ s1 ⩽ t1

For i = 2,… , n, we can prove that si ⩽ ti by reductio ad absurdum
while considering the possible values of si. Whenever (2ti − ti+1) >
bi we get si = 2ti−ti+1 and, by contradictionwith (13), the following
inequality would result:

2ti − ti+1 > ti ⇒ ti > ti+1

which is absurd since we posed that t1, t2, … , tn ∈ U, with ti < ti+1.

Whenever (2ti − ti+1) < bi we get si = bi = 2ti−1 − ai = 2ti−1 −
ci−1 and, by contradiction with (13), the following inequality would
result:

2ti−1 − ci−1 > ti ⇒ ci−1 < 2ti−1 − ti (14)

which is absurd due to Lemma 1.

Figure 3 Placement of si = max[(2ti − ti+1), bi]. According to the illustrated cuts configurations, si = (2ti − ti+1) in
(a); si = bi in (b).
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Theorem 3 Let U = [mU,MU] ⊆ ℝ be a UoD and let t1, t2, … , tn ∈
U, with ti < ti+1. Let t0 = mU, tn+1 = MU and let 𝛼1, 𝛼2, … , 𝛼n ∈
[0, 1]. For i = 1,… , n, if the positions (8a)-(8e) are given, then by
varying the values of (𝛼1, 𝛼2, … , 𝛼n) inside the hypercube [0, 1]n, the
(infinite) partitions obtained on theUoDare trapezoidal SFPs tailored
on t1, … , tn (according to (3)).

Proof. To construct a well-formed trapezoidal SFP the following
relationship must hold:

ai ⩽ ti−1 ⩽ bi ⩽ ci ⩽ ti ⩽ di for i = 1,… , n + 1 (15)

as well as the equalities expressed in (8b)-(8d).

From Lemma 2 we argue that ci ∈ [si, ti] for i = 1,… , n. From
being bi ⩽ si, we are certain about the relationship bi ⩽ ci ⩽ ti
for i = 1,… , n. Therefore, from (8d), we get also ci ⩽ ti ⩽ di for
i = 1,… , n (the case related to i = n + 1 refers to the rightmost
rectangular trapezoid, where ci, di, and ti are collapsing to the same
pointMU). Finally, from (8c), we get ai+1 ⩽ ti ⩽ bi+1 for i = 2,… , n
(the case related to i = 1 refers to the leftmost rectangular trapezoid,
where ai, bi, and t0 are collapsing to the same point mU).

In summary, the relationship (15) is proven and we can argue that,
however set the values of (𝛼1, 𝛼2, … , 𝛼n) in [0, 1]n, the resulting par-
tition of the UoD is a well-formed trapezoidal SFP.

Theorem 4 Let U = [mU,MU] ⊆ ℝ be a UoD and let t1, t2, … , tn ∈
U, with ti < ti+1. Let t0 = mU, tn+1 = MU. For i = 1,… , n,
all the (infinite) well-formed trapezoidal SFPs on U tailored on
t1, … , tn (according to (3)) can be obtained by varying the values of
(𝛼1, 𝛼2, … , 𝛼n) inside the hypercube [0, 1]n.

Proof. If the values of (𝛼1, … , 𝛼n) are to be involved into the con-
struction of the SFPs, then all the vertexes framing the trapezoidal
fuzzy sets must be such that ci ∈ [si, ti]. This is due to the definition
expressed in (8b) when we consider that si ⩽ ti (from Lemma 2)
and 𝛼i ∈ [0, 1] for i = 1,… , n. By contradiction of the thesis, there-
fore, there should be a trapezoidal SFP such that

ci < si or (16a)

ci > ti (16b)

However, the inequality in (16b) contrasts with (15), thus ruining
the well-formedness of the resulting trapezoidal SFP. Concerning
the inequality in (16a), frombeing si = max[(2ti−ti+1), bi], it trans-
lates into

ci < bi or (17a)

ci < 2ti − ti+1 (17b)

The inequality in (17a) again contrasts with (15). The inequality in
(17b) implies

2ti − ci = di > ti+1

which would ruin the well-formedness of the resulting trapezoidal
SFP. In summary, neither (16a) nor (16b) would lead to the defini-
tion of well-formed trapezoidal SFPs, thus proving that all of them
can be only obtained in compliance with the theorem hypotheses.

We have shown that by varying the values of (𝛼1, 𝛼2, … , 𝛼n) inside
the hypercube [0, 1]n it is possible to derive all and only the
trapezoidal SFPs which can be designed on the UoD U. The alter-
native design strategy represented by the positions (8a-8e), there-
fore, can be adopted to exhaustively explore the SFP search space,
exploiting the PSO algorithm to generate optimal sequences of the
parameters 𝛼i.
It can be observed that the parameters ci do not linearly depend
on the parameters aj (j < i) used to determine them. In principle,
this means that the SFPs are not uniformly distributed in the search
space to be explored. That is true at the beginning of the PSO pro-
cess, even if the parameters ci are generated by a uniform random
sequence (𝛼1, 𝛼2, … , 𝛼n). To attenuate the effects of the lack of uni-
formity, PSO will be set up with a large number of particles and a
large number of iterations to ensure that low-probability configu-
rations have the chance of being explored if their fitness is high.

6. EXPERIMENTAL RESULTS

Trapezoidal SFPs may be useful to design the structure of infer-
ence systems based on fuzzy rules. We already mentioned how this
idea has been injected in the very definition of the previously dis-
cussed PSO algorithm, whose objective function is represented by
the accuracy evaluation of the resulting fuzzy system applied on
some dataset. The cuts themselves can be interpreted as constraints
intrinsic to the problem at hand, which can be extracted from the
dataset analysis. In our work, we are not interested in tackling some
specific problem aiming at designing an optimal fuzzy inference
engine to solve that particular task at its best. Our goal is to test the
suitability of the developed PSO strategy in fine-tuning the design
of trapezoidal SFPs based on cuts, instead. To this aim, we refer to a
number of datasets related to classification problems: we are going
to use them to evaluate the performance evolution of some fuzzy
rule-based systems while optimizing the fuzziness of the fuzzy sets
involved in the underlying fuzzy partitions.

We set up an array of datasets, including both synthetic and real
benchmark data. The first are described in Table 1: they are all bi-
dimensional datasets purposely designed to include a diverse num-
ber of samples and classes. The benchmark datasets are described in
Table 2: they come from publicly accessible repositories and can be
retrieved online. 50,51,52]. Again, they represent a variety of cases
in terms of samples, features, and classes.

The cuts needed to trigger the design process can be acquired
directly from data by means of a clustering process. In particular,

Table 1 Description of the synthetic datasets involved in the
experimental session.

Dataset # Samples # Features # Classes

sd1 200 2 3
sd2 400 2 3
sd3 400 2 3
sd4 300 2 3
sd5 600 2 3
sd6 500 2 2
sd7 300 2 2
sd8 600 2 3



C. Castiello and C. Mencar / International Journal of Computational Intelligence Systems 13(1) 1415–1428 1423

we employed DC*, an algorithm which takes its name from Dou-
ble Clustering with A*, i.e., a mechanism oriented to extract inter-
pretable information from data [53]. That is accomplished by going
through a two-step process which firstly clusters the data around
some detected prototypes and then projects the prototypes them-
selves along each feature axis to allow a further clustering per-
formed by the A* algorithm. By doing so it is possible to derive
a partition over each dimension: this represents the setting where
the SFPs can be grounded, thus enabling the design of a fuzzy
rule-based system incorporating the fuzzy sets which compose the
obtained fuzzy partitions. This process is carried out by the DC*
algorithm intervening on every dimension at the same time: some
of them could be unaffected by the partition construction, thus
implicitly reducing the dimensionality of the problem at hand. The
interested reader can find a thorough description of DC* in Ref. 53.

The cuts play a pivotal role in the previously described algorithm
since they represent the mid-points placed on each axis between a
couple of projections referring to prototypes of different classes. As
such, they contribute to the definition of the final configuration of
partitions: a subset of cuts is identified through theA* search to split
the space of the problem into sub-spaces containing homogeneous
prototypes.

For the purposes related to the present work we are going to exploit
DC* not to benefit of its main results (namely, the definition of
interpretable granules of information to be embedded into an infer-
ence engine in form of fuzzy rules), but to profit from its side prod-
ucts, i.e., the cuts derived from data. As previously asserted, they
are necessary to start up the trapezoidal SFP optimization process.
In this sense, we are not concerned with the attainment of the best
clustering results which DC* may provide. For that reason, in some
cases we contented with sub-optimal cut configurations. That can
be noticed by referring to Figure 4 where the datasets sd1-sd8 are
represented together with the cuts obtained at the end of the appli-
cation of the DC* algorithm (being bi-dimensional, the synthetic

Table 2 Description of the benchmark datasets involved in the
experimental session. (#S = number of samples, #F = number of features,
#C = number of classes.)

Dataset ID #S #F #C

Appendicitis Ap 106 7 2
Balance Bl 625 4 3
Banana Bn 5300 2 2
Beer Styles BS 400 3 8
Bupa Bu 345 6 2
Cardiotocography CTG 2126 21 3
Hayes-Roth Hy 160 4 3
Ionosphere Ion 351 33 2
Iris Ir 150 4 3
Monk-2 Mo 432 6 2
Newthyroid Nth 215 5 3
Page-Blocks PB 5472 10 5
Phoneme Ph 5404 5 2
Pima Pi 768 8 2
Saheart Sh 462 9 2
Sonar So 208 60 2
Thyroid Thy 7200 21 3
Vertebral 2 V2 310 6 2
Vertebral 3 V3 310 6 3
Wine Wi 178 13 3

datasets lend themselves to a handy graphical illustration). In a sim-
ilar way, a configuration of cuts has been obtained through DC* for
each of the benchmark datasets listed in Table 2.

Once the cuts are assigned, an infinite number of partitions can
be drawn on the space of data. To assess the capability of the PSO
algorithm as a fine-tuning tool of trapezoidal SFPs, we firstly set
a landmark method to be employed in the following for the sake
of comparison. That is represented by the CS algorithm described
in Section 3, which is one of the default methods adopted by
DC* to finally produce the trapezoidal fuzzy sets composing the
fuzzy inference system resulting from the data clustering process.
We launched the PSO algorithm following the scheme reported in
Equation (5), posing 𝜔 = 0.7298 and 𝜙1 = 𝜙2 = 1.49618: these
parameter values are consistent with some suggestions reported in
literature [54,55,56]. Furthermore, we set 1000 particles per swarm
and 1000 iterations, with an early stopping after 200 iterations with-
out advancement of the objective function. It should be recalled that
the particles are free to move in the search space E and the trape-
zoidal fuzzy set corresponding to each particle position is derived
by applying equations (8a–8e), as reported in Section 5.

A twofold inference strategy has been set up to assess the perfor-
mance of the fuzzy systems built up on the SFPs obtained through
theCSmethod.On the one hand, awinner-take-all strategy (labeled
as “max” method) assigns to each sample in the dataset the class
related to the fuzzy rulewhich activates at the highest degree.On the
other hand, an alternative strategy (labeled as “sum” method) dis-
tinguishes the groups of fuzzy rules providing the same classes and
assigns to each sample in the dataset the class related to the group
producing the highest cumulative strength. Similarly, the objective
function driving the search of the PSO algorithm embeds both the
max and the summethods, so that the fuzzy systems corresponding
to each particle position produce two kinds of inference results too.
In this way, a congruent comparison can be performed and the fine-
tuning capabilities of the PSO can be assessed for both the inference
methods.

Tables 3 and 4 illustrate a comparison (in terms of accuracy per-
formance) of the fuzzy rule-based systems resulting from the parti-
tions obtained by the CS method and the PSO full search (FS). The
comparison refers to the classification of the synthetic data apply-
ing the max and sum inference methods, respectively. In the same
way, Tables 5 and 6 illustrate an analogous comparison referred to
the classification of the benchmark data.

As a general remark, we can observe the suitability of the PSO algo-
rithm as a tool for fine-tuning the derived SFPs based on cuts. In

Table 3 Fuzzy classification of synthetic data — Fine-tuning operated
by the PSO search with respect to CS using the max inference method.

Dataset Accuracy Performance (%) Accuracy

CS FS gain (%)
sd1 82.00 82.00 0.00
sd2 96.25 96.25 0.00
sd3 81.75 95.00 13.25
sd4 55.33 60.00 4.67
sd5 88.17 88.50 0.33
sd6 68.00 70.40 2.40
sd7 66.67 66.67 0.00
sd8 58.67 58.67 0.00
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Figure 4 Graphical representation of the synthetic datasets adopted for the experimental session. The
figures include the cuts produced by DC*.

fact, in several cases its application contributes to modify the fuzzi-
ness of the involved fuzzy sets in such a way that the performance
of the resulting classifiers is improved when compared to the results
related to the baseline CS method. For some datasets the accuracy
gain appears to be quite considerable. Also, none of the experi-
ments determined a decay in the classification accuracy. It should
be stressed, however, that the goal of our experiments concerned
the analysis of the fuzziness influence on the final performance,
instead of the definition of the best single model to be employed
as an optimal classifier. In other words, we did not perform model
selection; that is the reason why we did not apply any scheme of
cross-validation, as it is usually the case in some other common
experimental sessions whose scope is quite different from ours.

As a further remark, if we consider the results reported in the
tables, it is straightforward to argue that the application of the PSO
algorithm is much more profitable when fuzzy classifiers equipped
with the sum inference method are considered. This allows some
interesting observations which can be brought to the attention of
the research community dwelling on fuzzy system design. On the
one hand, the performance of themax inferencemethod exhibited a
certain stiffness with respect to the actual orientation of the oblique
slides composing the trapezoidal fuzzy sets.

In this sense, the main contribution to the final performance of
the fuzzy classifiers comes from the position of the fuzzy parti-
tions (which in our experimental session has been fixed by the cuts
obtained from data through the application of the DC* algorithm).
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Table 4 Fuzzy classification of synthetic data — Fine-tuning operated
by the PSO search with respect to CS using the sum inference method.

Dataset Accuracy Performance (%) Accuracy

CS FS gain (%)
sd1 82.00 82.00 0.00
sd2 86.75 96.25 9.50
sd3 92.50 92.75 0.25
sd4 55.33 60.00 4.67
sd5 87.67 91.33 3.67
sd6 69.00 77.40 8.40
sd7 61.33 67.67 6.33
sd8 58.17 61.67 3.50

Table 5 Fuzzy classification of benchmark data — Fine-tuning operated
by the PSO with respect to CS using the max inference method.

Dataset Accuracy Performance (%) Accuracy

CS FS gain (%)
Ap 82.08 82.08 0.00
Bl 66.08 66.08 0.00
Bn 67.30 67.32 0.02
BS 95.00 95.50 0.50
Bu 61.45 62.32 0.87
CTG 75.82 75.82 0.00
Hy 44.38 44.38 0.00
Ion 65.24 65.24 0.00
Ir 88.00 90.00 2.00
Mo 36.11 36.11 0.00
Nth 92.56 92.56 0.00
PB 85.31 85.64 0.33
Ph 61.01 62.56 1.55
Pi 62.11 62.11 0.00
Sh 63.64 64.29 0.65
So 56.73 56.73 0.00
Thy 91.22 91.22 0.00
V2 56.13 56.13 0.00
V3 72.26 72.26 0.00
Wi 81.46 81.46 0.00

On the other hand, the performance of the sum inference method
proved to be much more sensitive to the fuzziness component,
allowing a greater degree of variation in the optimization results
while considering both the synthetic and the benchmark data.

As a consequence, to fully exploit the contribution coming from the
fuzziness component, it makes sense to combine the adoption of
the sum inference method and trapezoidal fuzzy sets. As previously
asserted, in fact, this kind of fuzzy sets lend itself to a major flexi-
bility in terms of fuzziness, which cannot be attained with different
set shapes (i.e., triangular fuzzy sets). It is worth noting that such
observations are supported by an empirical analysis which has been
thoroughly conducted during the application of both the inference
methods. Indeed, as formally demonstrated in Section 5, the PSO
algorithm has been applied to the problem at hand so as to exhaus-
tively explore the search space composed by all the trapezoidal SFPs
possibly standing on a UoD.

Finally, to explicitly illustrate the tuning process, Figures 5 and 6
depict the comparison of the trapezoidal SFPs derived for some
datasets through the application of the baseline CS method and
the PSO algorithm. Particularly, the figures illustrate the results
concerning a selected subset of synthetic and benchmark datasets,
respectively.

Table 6 Fuzzy classification of benchmark data — Fine-tuning operated
by the PSO with respect to CS using the sum inference method.

Dataset Accuracy Performance (%) Accuracy

CS FS gain (%)
Ap 86.79 86.79 0.00
Bl 66.08 66.08 0.00
Bn 65.34 68.81 3.47
BS 95.25 96.00 0.75
Bu 56.23 64.93 8.70
CTG 82.03 82.08 0.05
Hy 44.38 44.38 0.00
Ion 68.95 68.95 0.00
Ir 72.00 95.33 23.33
Mo 36.11 36.11 0.00
Nth2 83.26 92.56 9.30
PB 87.63 87.81 0.18
Ph 60.16 66.47 6.31
Pi 55.60 63.28 7.68
Sh 65.15 67.10 1.95
So 53.85 58.17 4.33
Thy 93.51 93.56 0.04
V2 49.68 57.42 7.74
V3 62.26 78.06 15.81
Wi 68.54 87.08 18.54

7. CONCLUSIONS

Designing fuzzy classifiers is a challenging endeavor involving a
number of research issues. We deal with this matter by analyzing
some convenient way to define the SFPs which underlie a fuzzy
inference system. Particularly, we highlighted a couple of features
that characterize the design of the fuzzy sets involved in a SFP,
namely their position and fuzziness. While focusing on a specific
shape among others, i.e., trapezoidal fuzzy sets, we investigated
the contribution coming from fuzziness when the performance of
fuzzy classifiers is evaluated. To this end, we set up an optimiza-
tion method based on the PSO algorithm to fine-tune the slopes of
trapezoidal sets.

We described a mechanism to model the fuzzy sets by adopting
a particular PSO implementation: we formally demonstrate that
our proposal enables an exhaustive exploration of the search space
composed by all the possible SFPs traceable on a UoD once the
position of fuzzy sets is fixed. In other words, we were able to pro-
vide a thorough assessment of the fuzziness contribution to the
performance of fuzzy classifiers. In this sense, this work represents
a completion of some previous research of ours, where the PSO
algorithm has been adopted to provide a partial exploration of the
above-described search space. Additionally, the experimental ses-
sion allowed to bring into focus some interesting issues which can
be of some relevance for the research community working on the
design of fuzzy inference system. This kind of remarks are con-
nected to a couple of inference methods which may be adopted to
trigger the classification process of a fuzzy system: we termed them
max and sum methods.

As a hint for future research, we address the theoretical investiga-
tion of such inference methods as a major issue to better under-
stand the semantics behind the working engine propelling a fuzzy
classifier.
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Figure 5 Comparison of the trapezoidal SFPs obtained through the application of the CS
(upper row) and FS (lower row) methods. The involved synthetic datasets: sd3 (sum
inference method, first feature), sd5 (max inference method, first feature), sd6 (sum
inference method, first feature).

Figure 6 Comparison of the trapezoidal SFPs obtained through the application of the CS (upper row) and FS (lower row)
methods. The involved benchmark datasets: BS (sum inference method, first feature), Ir (max inference method, fourth input),
Nth (sum inference method, first feature).
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