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 Summary
Stratification of spatial data into management 

classes is a common way of interpreting and manag-
ing spatial agricultural data. High-resolution environ-
mental and crop production information was collect-
ed within a 2.2-ha apple orchard (Malus domestica 
cv. Gala) near Sydney, NSW, Australia. Classifying the 
block into management units using the environmen-
tal data did not help to interpret the observed apple 
spatial variation in apple production. A backwards 
modelling approach was subsequently undertaken, 
effectively analyzing whether the crop production 
explains environmental variation. The backwards 
management unit model identified a different spa-
tial patterning that revealed both an environmental 
and managerial effect on fruit production in different 
sections of the orchards. The unknown management 
effect had masked any spatial environmental-crop in-
teractions in the initial (forward) management unit 
analysis. The combined forward and backward mod-
eling approach significantly assisted the interpreta-
tion of the spatial variation in production in the or-
chard and identified a previously unknown manage-
ment effect. When using management units to assess 
spatial relationships, the inclusion of a backwards 
modeling approach may help industry and growers to 
better understand and interpret spatial relationships 
and facilitate orchard management.
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Significance of this study
What is already known on this subject?
• Precision fruit growing techniques and spatial 

data sets are becoming increasingly available for 
horticultural management. Spatial and temporal data 
have been used in fruit production with the aim at 
recognizing its variability and the implementation 
of sensor technologies. Management units are a 
common way of combining spatial environmental 
information in broadacre systems to explain spatial 
crop production patterns.

What are the new findings?
• Modeling using management zones to explain spatial 

crop variation using spatial environmental data 
does not always capture spatial managerial effects. 
Inverting this approach, a counter-intuitive approach 
to explain spatial environmental variation using 
spatial crop data, may help to uncover relationships 
between environmental and crop parameters that are 
impacted by differential management within orchards

What is the expected impact on horticulture?
• The implementation of management units to assess 

spatial relationships, including a backwards modelling 
approach, may help industry and growers to better 
understand and interpret spatial relationships and 
facilitate orchard management.

Introduction
Apple yield is a function of fruit number and size, and 

both may vary significantly within an orchard (Manfrini et 
al., 2012, 2015; Aggelopoulou et al., 2010). However, it is 
difficult for fruit growers to quantify the amount of produc-
tion variability within a season and to determine the factors 
that drive this variability spatially within an orchard. Better 
knowledge of within-orchard variability would facilitate bet-
ter orchard management (Zude-Sasse et al., 2016).

Precision fruit growing techniques and spatial data sets 
are becoming increasingly available for orchard manage-
ment (Manfrini et al., 2012; Käthner et al., 2017). With this 
comes a need to recognize that spatial data, particularly 

high-resolution sensor-derived data, has inherently differ-
ent properties to agricultural data derived from ‘traditional’ 
plot experimentation. Spatial data needs a spatial analysis. 
This means that spatial data often needs to be pre-processed 
prior to analysis and the density of the data may often hide 
relationships. Increasingly, modeling approaches are being 
used to tease out relationships in these high density (high 
information) data sets. These are often sophisticated regres-
sion-based techniques (Usha and Singh, 2013; Peeters et al., 
2015; Käthner et al., 2017) that are not easy to perform or 
interpret for orchard management.

Management units (MUs) have been used in site-specific 
horticultural management (Miranda et al., 2018; Aggelopou-
lou et al., 2013; Taylor and Whelan, 2011; Paoli et al., 2007). 
Recent advances in sensor technologies, such as soil sensors, 
canopy sensors and fruit/yield monitors, can now provide 
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many different layers to help derive these management units 
(Bresilla et al., 2019; Boini et al., 2019; Losciale et al., 2015). 
In many cases horticulture producers already have some of 
these data layers but do not have the tools to apply them spa-
tially to crop management (Praat et al., 2001; Taylor et al., 
2007a; Manfrini et al., 2009; Zude-Sasse et al., 2016). Spatial 
relationships between crop and environmental parameters 
(layers) can be modeled to assist in understanding correla-
tions and determining potential causal effects in the data. 
However, a simpler, more effective approach to help in the 
initial interpretation of spatial data may be to use a manage-
ment unit model. Management unit models integrate multi-
ple data layers into a single layer that is often easier for prac-
titioners not familiar with spatial data analysis to analyze 
and interpret. Management units are generally considered as 
a means of implementing differential (zonal) management, 
however, they can also be used as an analysis tool to help in-
terpret spatial relationships. Experiences in dryland produc-
tion systems have shown that within-field production vari-
ation is strongly influenced by within-field environmental 
variation, particularly edaphic variation (e.g., Kitchen et al., 
2003). Similar experiences have been reported in viticulture 
systems, although these systems tend to be placed under 
water-stress during ripening, thus emphasizing the effect of 
edaphic variation on production (e.g., Tisseyre et al., 2007). 
In horticulture crops, where irrigation is non-limiting, the in-
fluence of soil type may be less obvious.

Information of orchard variability in apple is scant with 
only a few studies published to date (Manfrini et al., 2009; 
Aggelopoulou et al., 2010; Gemtos et al., 2013; Liakos et al., 
2015; Käthner et al., 2017). There is an increasing demand 

from the apple industry for information about orchard vari-
ability and protocols that may facilitate differential man-
agement (Manfrini et al., 2009, 2015), but this needs to be 
supplemented with effective ways for end-users to interpret 
the data.

In this study, a 2.2-ha apple ‘Gala’ orchard in Australia 
was used to test the utility of using management units to 
interpret spatial apple orchard data. The basic hypothesis 
is that a management unit analysis is able to identify if and 
how production variation is related to environmental vari-
ation, particularly soil type. However, there is a recognition 
that spatial variation is often confounded in agricultural 
data sets by managerial as well as environment effects and 
their interactions. For this reason, this study proposes using 
the concept of MUs as a means of spatially organizing and 
interpreting the data using both a forward and backward 
management unit modeling approach. Mixing both forwards 
and backwards modelling is a novel approach to deriving 
and interpreting MUs in precision agriculture. Backward or 
inverse modeling, as the name suggests, is simply a process 
of switching the dependent and independent variables in a 
model. This is typically applied in precision agriculture to 
crop simulation models (Florin et al., 2008).

Materials and methods

Site description and environmental data layers
The study was conducted during the season 2007–2008 

in a commercial ‘Gala’ apple (Malus domestica Borkh.) or-
chard located at Darkes Forest (near Sydney), NSW, Australia 
(Lat. -34.227327°, Long. 150.907844°, elevation 373 m). The 
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Figure 1.  Maps of the a priori environ-
mental data for the study site on the left-
hand side (from top to bottom) Elevation, 
soil apparent electrical conductivity 
(ECa), and net radiation compressed into 
a two-cluster management class map 
(ClusterE) using k-means clustering 
(right-hand side). The two-cluster map 
identifies also the breakdown into two 
different regions (North-East and North-
West/South).
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trees were 12 years old and grafted onto M26 rootstock. They 
were planted 3.0 m apart in rows 5.0 m apart and trained to 
a vertical axis in a north-south orientation. ‘Granny Smith’ 
and ‘Pink Lady’ pollinators were planted every three rows. 
The pollinator rows were omitted from any observations and 
analysis. The orchard was managed according to commercial 
practices including drip irrigation, fertilization and fruit thin-
ning. ‘Gala’ is considered a suitable crop for this 1-year study 
as it is a non-alternate bearing cultivar and the data coming 
from a single growing season is valid for management in the 
following season.

The orchard was chosen for its ease of access and the exis-
tence and availability of a priori environmental information. 
This a priori information consisted of a soil apparent electri-
cal conductivity (ECa) map (performed with a Geonics EM38 
(Geonics Ltd., Mississauga, ON, Canada)) and a high-quality 
elevation map (from a carrier-phase global navigation satel-
lite system (GNSS) receiver) collected commercially (Terra-
byte, Wagga Wagga, NSW, Australia). This data was used to 
identify a 2.2-ha block of apple trees within the orchard that 
exhibited a large variation in ECa. The block was dissected 
north-west/south-east by an internal track for machinery. 
This split the block into two sections, with an approximate 
ratio of 1:2 between the south and north sections (Figure 1).

The following derived environmental information layers 
were available for the orchard block:
a) A Digital Elevation Model (DEM) of the orchard on a 2-m 

grid interpolated using local block-kriging with a linear 
variogram model.

b) An ECa map, interpolated onto the same 2-m grid using 
local block kriging with an exponential variogram model.

c) A surface of modelled Net Radiation Interception. The 
incident net solar radiation (NR) modeled using the 
SRAD program (McKenney et al., 1999) using a modified 
Digital Surface Model (DSM) based on the interpolated 
DEM. The northern and eastern boundaries of the 2.2-
ha block are bordered by native Eucalyptus (Eucalyptus 
sp.) forest with an approximate height of 10 m. The DSM 
was adjusted to reflect this and the potential effect that 
shading, particularly early morning shading, may have on 
NR interception.

Forward MU model and crop sampling scheme
The three data layers (ECa, Elevation and NR) were clus-

tered, using a k-means clustering algorithm after the proto-
col of Taylor et al. (2007b), and the resulting map was used 
to determine samples within the orchard. A range of k values 
were used (2–5) and evaluated based on the spatial arrange-
ment of the resulting units (i.e., is it sensible to manage?) 
and the difference in mean values of the environmental vari-
ables between classes. The 2-means result was selected as 
the most appropriate. The 2-means map highlighted distinct 
classes in the orchard; the higher ECa and elevation ‘hill’ in 
the north-east corner (Class 1E) and the remainder of the 
block (Class 2E). Class 1E and Class 2E occupied 0.4 and 1.8 ha, 
respectively. The subscript ‘E’ has been used in this notation 
to identify that these classes were derived from the environ-
mental layers.

The sampling scheme was defined by randomly select-
ing 89 trees across the orchard with a slight weighting to in-
crease the sample size in the smaller Class 1E. From these 89 
trees, 15 were chosen randomly and the adjacent tree to the 
south of these 15 trees was monitored. By pairing trees, the 
sampling ensures that the short range stochastic variation in 
production per tree is measured and can be accurately mod-

eled in any spatial analysis. Therefore, in total there were 
104 sample trees (shown as white dots in Figures 1 and 2) 
with 41 in Class 1E and 63 in Class 2E).

Crop production data layers
The selected trees were monitored for yield components 

at harvest. Harvest was conducted over 5 days (12th, 14th, 15th, 
19th and 21st February 2008). The initial trees were stripped 
picked. This corresponded to 19 trees in the most easterly 
row. Crop load ((FN) fruit tree-1) and yield (FW (kg tree-1)) 
were measured and then the average fruit weight (MFW (g)) 
was calculated. After this first row, the harvest strategy was 
altered and only saleable (mature) fruit was picked during 
the first pass. Unripened fruit was left on the tree. Subse-
quent passes through the orchard were made over the next 
10 days until all the fruit were removed. The same parame-
ters (FN, FW and MFW) were measured. This approach also 
allowed a maturity index calculation described by the fruit 
percentage picked at the first date (FP%). This was applied 
for the remaining 85 trees providing an indication of ripen-
ing within the orchard. All the harvest data is reported on a 
single tree basis.

The trunk circumference (TC) 20 cm above the graft 
union was measured during the season as an indication of 
tree size. The trees were georeferenced with a standalone 
Garmin GPS76 Global Positioning System (GPS) receiver.

To complete the spreadsheet, the environmental data 
(ECa, elevation and NR) and corresponding ‘E’ class (Class 1E 
or Class 2E) was extracted at the sampling points (tree loca-
tions) and appended to the manually collected orchard data.

Maps of crop production parameters were generated 
by punctual kriging with a global variogram using the Ves-
per freeware (Minasny et al., 2005). The interpolation was 
performed onto the same grid used for the environmental 
parameters. Surfaces of FN, FW, MFW and TC were kriged 
using all 104 points while FP% was kriged using only the 85 
points, where FP% was recorded. Maps were created in Arc-
GIS (ESRI, Redlands, CA, USA).

Data analysis
The primary hypothesis testing revolved around whether 

or not production variation is driven by environmental vari-
ation. As a preliminary investigation, Pearson’s correlation 
analysis was performed between yield component, FP%, TC 
and ECa, elevation and NR. With a fairly dense spatial data set 
(104 pts over 2.2 ha), autocorrelation is expected to affect 
these data (Taylor and Bates, 2013). Therefore, the method 
of Dutilleul (1993) to adjust the sample size to account for 
any auto-correlation in the processes was used to assess sig-
nificance (p < 0.1) with the correlation analysis. The correla-
tion analysis was performed using the PASSaGE v.2 share-
ware suite (Rosenberg and Anderson, 2011).

MU Analysis 1 – Harvest data as the independent 
variable(s)

The crop parameter sampling scheme was based on the 
environmentally derived management units. An unbalanced 
ANOVA (n = 41 and 63 in Class 1E and Class 2E, respective-
ly) was performed in JMP 6.0 (SAS Institute) on the point 
production data (FN, FW, MFW) (n = 104) using the two ‘E’ 
classes as treatment effects and Tukey-Kramer’s means test. 
This investigates how the environmental variables explain 
the variation observed in the crop data. It is expected that 
the local environment will impart some influence on plant 
productivity at each individual site. The ANOVA yielded no 
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significant difference in harvest parameters between the 
two classes (see results for full analysis). A three-cluster ap-
proach was also tried (map and results not shown) but again 
showed no significant difference in harvest parameters be-
tween classes.

MU Analysis 2 – Environmental data as the independent 
variable(s)

As an alternative to MU Analysis 1, and to further inter-
rogate the data, a backwards modeling approach was also 
performed, i.e., do crop variables explain environmental 
variation? It is not expected that crop variables will influence 
the local environment (at least not in a relatively young pro-
duction system). However, a ‘backwards’ approach may pro-
vide alternative (different) information than MU Analysis 1, 
which may help explain the spatial response in the orchard. 
The backward management class modeling was performed 
using k-means clustering on the interpolated crop data (FN, 

MFW and FP%), again using the protocol of Taylor et al. 
(2007). These management classes were labeled with the 
subscript ‘C’ denoting that they are derived from crop param-
eters, i.e., Class 1C, to differentiate them from the ‘E’ classes. 
Again, a range of k-values was tested, and the 2-means result 
was again determined to be the best model using the same 
criteria that was used on the ‘E’ classes. The 2-means ‘C’ clus-
ter map is shown in Figure 2. Standard comparisons of class 
mean, such as the Tukey-Kramer test, cannot be used on spa-
tial data, especially interpolated data, where the assumption 
of independent errors is not valid. In high density spatial 
data sets, neighboring points are generally auto-correlated, 
thus the number of independent points does not equal the 
number of points. Instead, means comparison was assessed 
using the modified confidence interval of Cupitt and Whel-
an (2001) (Eq. 1). This statistic determines if the differences 
between class means is greater (or less than) the mean error 
associated with interpolation. If the error is greater than it 

Figure 2.  Production maps derived from the manual sampling. From top left maps are crop load (fruit tree-1), mean fruit 
weight (g), maturity index (% of fruit harvested at the first pick), yield (kg tree-1), trunk circumference (cm) and the ClusterC 
map derived from the MFW, FP% and FN data. The Class 1C consists of 4 discrete zones, with two of the zones large enough to 
manage – the North-East Zone and the Southern Zone. Class 2C is one contiguous ‘center’ zone.
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is possible for the difference in classes to be an artifact of 
the interpolation procedure. Means comparisons could not 
be performed with the modeled NR data as it does not have 
a kriging variance, a limitation to the statistic of Cupitt and 
Whelan (2001).

The modified C.I. of Cupitt and Whelan (2001) is calculat-
ed as (after Taylor et al., 2007b):
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Preliminary data analysis
The results from the multivariate correlation analysis 

using Dutilleul’s correction are shown in Table 1. Yield com-
ponents (FN, FW and MFW) showed no correlation with the 
individual environmental parameters. The maturity index 
(FP%) was negatively correlated with ECa (r = -0.49) and pos-
itively correlated with net radiation (r = 0.44). There was a 
negative correlation between ECa and trunk circumference 
(r = -0.38).

Description of the crop attribute maps
The kriged maps for the measured crop parameters and 

TC are represented in Figure 2 and showed an independent 
pattern to the initial environmental clustering map (Figure 
1). A high productive area (FW > 60 kg tree-1) is visible in the 
southwestern side of the orchard while a lower productive 
area (FW < 50 kg tree-1) is located in the central northwest-
ern section of the orchard (Figure 2). The FN map followed a 
similar pattern. The MFW map (Figure 2) showed the same 
pattern, but inverted, with larger fruit (> 126 g) in the areas 

with lower FW and FN and smaller fruit (< 115 g) where FW 
and FN were higher.

To evaluate changes in the maturity patterns, a map of 
FP% was produced. The FP% map showed distinct spatial 
patterns that differed from the other yield components maps. 
There was a slow maturing fruit (low FP%) area along the 
eastern edge. The southwestern section of the orchard was 
also slow maturing and aligned with the higher FN and FW 
area. The TC map also described a clear pattern: trees on the 
north-west side of the orchard showed a larger TC while the 
north-east and the south seems to have a smaller size. The 
trend in TC in the northern section of the orchard follows the 
spatial trend exhibit by the ECa and elevation maps (Figure 
1). The NR surface (Figure 1) showed less radiation intercep-
tion in the eastern and northern sections of the block.

Results of Approach 1 – Effectiveness of MUs based on 
environmental variables

The ClusterE map, derived from analysis of the environ-
mental data, is shown in Figure 1 and the mean response of 
both the environmental data and crop yield parameters for 
the two clusters are shown in Table 2. The clustering per-
formed on the ‘E’ data (Figure 1) divided the orchard into 
two blocks corresponding to high/low ECa and high/low el-
evation. This also shows the breakdown into two main re-
gions: North-East and South (Figure 1). The ANOVA showed 
that there was no statistical difference in mean crop produc-
tion responses between these two ‘E’ classes. The harvest 
parameter maps (Figure 2) showed strong spatial patterns 
but these patterns did not visually correlate with the ClusterE 
map (Figure 1).

Results of Approach 2 – The backward modeling 
approach

The ClusterC map, derived from the cluster analysis of 
the FN, FW and FP% parameters, is shown in Figure 2. In 
the ClusterC map, Class 1C is separated into 4 discrete zones 
whilst Class 2C is contiguous. The class means and compari-
sons are given in Table 3. The two smallest zones in Class 1C 
(mid-eastern and north-western corner) contained no or few 
sample points and are probably too small to be considered 

Table 1.  Correlations between environmental parameters and crop production parameters from the 104 sample sites 
assessed. Significant relationships indicated in bold.

Environmental
parameter

Trunk circumference 
(cm)

Yield
(kg tree-1)

Maturity index 
(% fruit pick first harvest)*

Crop load
(fruit tree-1)

Mean fruit weight
(g)

Elevation (m) -0.27 0.05 -0.03 0.01 0.15
ECa (mS m-1) -0.37 0.01 -0.24 0.01 0.01
Net radiation (W m-2) 0.21 0.04 0.37 0.04 0.34

* Sample size (n) = 85 for the FP% data.

Table 2.  The mean response per class for the environmental variates used in the initial cluster analysis and the corresponding 
mean crop production parameters based on hand sampling within the two clusters (zones).

Environmental data† Crop production data*
Elevation

(m)
ECa

(mS m-1)
Net radiation

(W m-2)
Yield

(kg tree-1)
Crop load
(fruit tree-1)

Mean fruit weight 
(g)

Class 1E (N=41) 397.09 48.54 103.99 55.90 461.98 121.95
Class 2E (N=63) 394.38 33.99 105.32 56.35 465.65 121.64
Significance Yes Yes No No No

† Significance between means determined using Cupitt and Whelan’s statistic.
* Significant differences between the crop production means was assessed by ANOVA using Tukey’s means comparison with p<0.05.
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as management units. It is ignored for subsequent analysis 
and discussion. The 2-class outcome did not yield significant 
differences between classes in the environmental data re-
sponse (Table 3).

When Class 1C was deconstructed into the two dominant 
zones – a north-east zone and a southern zone – a different 
picture emerged. The means comparison showed no signifi-
cant differences in crop production between the north-east 
and southern zones of Class 1C (as can be expected given that 
classification was based on this data). However, the environ-
mental data was significantly different. The southern zone of 
Class 1C has a lower ECa and elevation than the north-east 
zone. There was no significant difference in ECa and elevation 
between this southern zone of Class 1C and Class 2C, but a 
significant difference in all crop production parameters (Ta-
ble 3).

Discussion

Discussion on preliminary data analysis and crop 
attribute maps

The multivariate correlation analyses (Table 1) only 
showed a few significant relationships between the envi-
ronmental parameters (elevation, ECa and Net Radiation) 
and tree and crop production parameters. The ECa was cor-
related to trunk circumference, indicating that the long-term 
development of trees was linked to soil variability. However, 
the in-season correlations between ECa and crop parameters 
were non-significant and close to 0 for yield, crop load, and 
mean fruit weight. The NR was significantly correlated to 
MFW and FP% indicating that there were in-season spatial 
effects of net radiation on production. Visually, this can be 
seen in the maturity patterns displayed in the FP% map (Fig-
ure 2) that show a slow maturing fruit zone along the east-
ern edge. This is hypothesized to be associated with morning 
shading due to the Eucalyptus forest along the northern and 
eastern side of the block. The maps show spatial relation-
ships between crop parameters that are to be expected from 
a physiological perspective (Palmer et al., 1991; Wünsche et 
al., 2000; Lopez et al., 2018). There was a high-yield area due 
to a high crop load in the southwestern side of the orchard 
and a lower productive zone, associated with a low FN, lo-
cated in the central northeastern section of the orchard. The 
MFW map followed a similar but inverted pattern, reflecting 
a probable result of managerial effect at the within-orchard 
level. In addition, the southwestern section of the orchard 
also had slow maturing fruit and aligned with the higher 
FN and FW area. Late maturity in this area was likely due to 

the larger ripening load placed on the trees as described by 
Wünsche et al. (2000).

Discussion of Approach 1 and 2
In Approach 1, the ClusterE map derived from analysis of 

the environmental data clearly shows a delineation between 
the high elevation and high ECa in the northeast corner of the 
block and the remainder of the block. It was hypothesized 
that crop production would be influenced by this pattern, but 
the seasonal data did not support this. The backward model 
(Approach 2), derived from clustering the FN, FW and FP% 
parameters (Figure 2), produced more segmented classes 
(ClusterC map). Class 1C was separated into 4 discrete zones, 
of which 3 can be considered manageable, whilst Class 2C 
was contiguous. This contrasted with the ClusterE map, 
which had 2 classes and 2 zones. The first obvious feature of 
the ClusterC map was the zone in the north-east corner that 
corresponded to the area of high ECa response (and Class 1E). 
The second is that the large south zone in Class 1C encom-
passed the area in the block south of the internal machinery 
track.

With Approach 2, the classes derived from the clustering 
of crop production data (Table 3) did not yield significant dif-
ferences in the environmental data response. This reflected 
the results found in Approach 1. However, deconstructing 
Class 1C into its main zones did show significant differenc-
es (Table 3). The ECa and NR response of the south zone of 
Class 1C was not significantly different from the center zone 
(Class 2C) (Figure 2). However, the crop response between 
the centre and south zones is significantly different for all 
three parameters (FN, MFW and FP%) (Table 3). There is an 
unidentified effect(s) in the centre zone that reduced FN and 
produced larger earlier ripening fruit. While this effect may 
be environmental, an observation of the patterning in the 
cluster map indicated that it is more likely to be managerial. 
The boundary between the centre and south zones followed 
the internal track. This can be considered a strong fit given 
that the cluster map (and backwards modeling approach) 
was derived from the low-density 104 sampling points, mak-
ing boundary locations uncertain.

Sources of the managerial effects on production may 
be diverse and could range from different treatments be-
tween the two sections during block establishment, different 
management within this season or possibly different man-
agement in previous seasons. With perennial systems it is 
possible for management effects to linger for several years, 
for example, a different pruning strategy in year 1 will affect 
canopy and fruit development in year 2. This in turn influ-

Table 3.  The mean class and zone response of the interpolated crop production environmental data from the ClusterC analysis. 
The first two rows represent the class responses while the bottom three rows represent the zone responses where Class 1C has 
been split into two zones.

ID N
Crop production data† Environmental data*

Crop load
(fruit tree-1)

Mean fruit weight
(g)

Maturity index
(% fruit picked first harvest)

ECa

(mS m-1)
Elevation

(m)
Net radiation

(W m-2)
Class 1C 51 487.21 118.71 60.21 36.491 394.261 106.96
  Class 1C North-East 27 468.6ab 121.7ab 65.1b 50.05a 397.45a 104.36
  Class 1C South 21 485.2a 119.2b 64.6b 32.28b 393.23b 107.91
Class 2C 53 442.12,b 124.72,a 81.82,a 34.321,b 394.931,b 107.80

Different superscript numbers indicate significant differences between classes whilst different superscript letters indicate significant differences 
between the two zones in Class 1C and Class 2C (contiguous center zone in Figure 2).
† Significant differences between the crop production means were assessed by Tukey means comparison with p<0.05.
* The confidence interval of Cupitt and Whelan was used to determine significance with the environmental data. C.I. for ECa and Elevation were 
3.94 and 0.94, respectively.
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ences pruning at the end of year 2, which could influence 
fruit development in year 3, and so on. Although the orchard 
manager believed that the two sections were uniformly 
managed, further investigation and discussion are needed 
to identify likely sources of the spatial pattern in the block. 
This is a key part of any spatial analysis and the next step in 
developing a spatial management strategy for the orchard, 
such as targeting differential, spatial pruning, thinning and/
or harvest strategies based on variable fruit set and maturity 
patterns to meet market targets. In this specific case, the NR 
area that showed low radiation interception in the eastern 
and northern sections of the block, could be heavily thinned 
to overcome the late maturity and obtain larger fruit. The 
same could be said for the Class 1C area where a combination 
between crop load and tree vigor probably did not permit 
production to achieve a higher-class fruit size. However, the 
size, density and interactions within spatial crop data often 
hides these spatial relationships.

The environmental differences between the north-east 
and south zones offset each other and hide the differences 
between Class 1C and Class 2C. The backwards ClusterC mod-
eling approach yielded a different spatial structure, which, on 
first analysis again, yielded no statistical differences. Howev-
er, interpretation of the results on a zonal, rather than class, 
basis indicated that the management classes (zones) are 
segregating crop variation and may be useful as a means for 
future investigations. If the analysis was restricted to the pre-
liminary multivariate correlation analysis and management 
class model, then the conclusion for this block would be that 
ECa, elevation and NR are not indicators (or drivers) of pro-
duction variation. The backwards modeling revealed that the 
environmental parameters do affect production, however 
the relationship is complex and probably influenced by man-
agement. To understand these spatial relationships better, 
further information on crop management is needed.

Over time, temporal and spatial changes could provide 
effective feedback for precision horticulture and for growers 
on how persistent and responsive the patterns within an or-
chard are depending on management treatments and envi-
ronmental conditions. If normal treatments are planned as 
homogeneous, it is rather common to find zonal pattern in 
a field. That may indicate an environmental implication or 
inconsistent managing treatments.

Conclusions
Different approaches are often needed to uncover rela-

tionships between environmental and crop parameters. In 
this study a backwards modeling of management classes is 
used as a tool for achieving this result. A typical non-spatial 
analysis was undertaken but showed low or no correlation 
between environmental and production/quality parameters 
within the ‘Gala’ orchard. A conventional (forward) manage-
ment class model also showed no spatial relationships. How-
ever, a backwards modeling approach, coupled with some 
local knowledge, identified relationships between the pro-
duction, managerial and environmental conditions.

This result underlined that spatial variation does exist in 
apple orchards and there may be differential management 
options (i.e., differential management operation such as 
picking, thinning and pruning) available to growers who are 
aware of this variation, to increase their potential to respond 
to market demands for higher quality fruit without addition-
al cost. Advisors and growers should take the time to apply 
various data mining and modeling techniques to gain the 
best understanding of the data possible.
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