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Abstract Fractional Newtonian gravity, based on the fractional generalization of Poisson’s
equation for Newtonian gravity, is a novel approach to Galactic dynamics aimed at providing
an alternative to the dark matter paradigm through a non-local modification of Newton’s
theory. We provide an in-depth discussion of the gravitational potential for the Kuzmin disk
within this new approach. Specifically, we derive an integral and a series representation for
the potential, we verify its asymptotic behavior at large scales, and we provide illuminating
plots of the resulting equipotential surfaces.

1 Introduction

Galaxy rotation curves and the formation of large-scale structure in the universe are among
the most compelling indications that general relativity and the standard model of particle
physics cannot account for all natural phenomena. The situation is even more severe than
that, indeed it turns out that the theoretical tools which are currently available in physics can
only resolve about 5% of the content of the universe. In more detail, in order to explain the
current accelerating expansion of the universe it is customary to postulate the existence of
an exotic dark energy [1,2] fluid, with positive energy and negative pressure, affecting the
universe on its largest scale. Similarly, in order to account for structure formation after the
Big Bang, as well as deviations from the expected Newtonian predictions for galaxy rotation
curves, it seems to be necessary to include an additional dark component of the universe,
featuring no direct coupling with electromagnetic radiation and an (almost) imperceptible
pressure, which is dubbed as dark matter [3–5]. In the picture discussed above, dark matter
and dark energy are treated as exotic forms of matter evading the Standard Model of particle
physics. This exotic matter content finds its way in the so-called standard model of cosmology,
also known as the �—cold dark matter model or �CDM for short, according to which the
energy content of the universe splits into a 5% of ordinary (luminous) matter, 25% of dark
matter, and about 70% is accounted for by dark energy. It is worth stressing that cold dark
matter, namely dark matter moving with non-relativistic velocity, seems to be favored with
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respect to “warm” and “hot” models since it yields predictions for the cosmological large-
scale structure that generally agree with current astronomical observations [6].

An alternative approach to dark matter and dark energy, which are typically added ad hoc
in Einstein’s theory to reproduce the astronomical and cosmological observations, requires
to rethink gravitational physics at a more fundamental level and include large-scale modi-
fications of gravity aimed at reconciling theory and experiments. Notably, extensive efforts
have been devoted toward the study of alternative theories of gravity that could replace, at
least in part, dark matter and dark energy with the phenomenology of some additional grav-
itational degrees of freedom, see, e.g., [7–17]. However, lacking a direct detection of new
particles signaling the emergence of physics beyond the Standard Model, and any definitive
experimental proof of significant deviations from General Relativity, one can only conclude
the jury is still out on what is really responsible for the odd phenomena observed at galactic
and cosmological scales.

One of the most successful proposals of modification of gravity theory aimed at explaining
the phenomenology typically traced back to dark matter is known as modified Newtonian
dynamics (MOND), originally introduced by Milgrom in [18–21]. The idea behind this
approach relies on the assumption that there exists a critical acceleration scale a0, whose
value is empirically determined, such that Newton’s gravity dramatically changes when the
magnitude of the acceleration of a test particle falls below this threshold. Specifically, under
the simple assumption of spherical symmetry and considering a test particle on a stable orbit
around a core mass M , denoting by a = a(r) the acceleration of the test body MOND predicts
that for a � a0 one recovers standard Newtonian gravity, i.e.,

a � GN M

r2 , (1)

whereas when a � a0 the dynamics of the test particle is modified according to

a2

a0
� GN M

r2 (2)

with r denoting the distance from the center of the system. In other words, MOND recovers
the standard Newtonian scaling of the acceleration a(r) ∼ 1/r2 at short scales, while the
model yields the asymptotic behavior a(r) ∼ 1/r at large (Galactic) scales. This implies that
the rotational velocity of a test body around a Galaxy center behaves as v2(r) ∼ GN m(r)/r
in the innermost part of the Galaxy, with m(r) denoting the total mass contained within a
circular orbit of radius r , while v4(r) ∼ GN M a0 as one moves away from the Galaxy center.
On other words, galaxy rotation curves flatten out as one moves asymptotically far from the
Galaxy center, in full agreement with various astronomical observations [4,22–24]. In [21]
Bekenstein and Milgrom proposed a non-relativistic potential theory reproducing the MOND
scenario based on a nonlinear modification of the Poisson equation of Newtonian gravity.
The first robust relativistic MOND inspired model, known as tensor–vector–scalar gravity or
TeVeS, was then proposed by Bekenstein [25]. Clearly, this last proposal is not exempt from
problems; however, in the broader scheme of things it served as the seminal work for the
study of dark matter phenomenology as an emergent effect of alternative theories of gravity.

Fractional calculus [26–28] offers a reliable set of tools for describing several physical
phenomena which are not typically accounted for by model based on ordinary calculus (see,
e.g., [28–30]). In recent years, this mathematical scheme has also been applied, in various
forms, to gravity and fundamental physics, see, e.g., [31–34]. Focusing on the problem of
dark matter phenomenology, the first fractional MOND-like non-relativistic potential theory
was proposed by Giusti [35]. This approach is based on a fractional modification of the
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Poisson equation of Newtonian gravity, where the ordinary Laplacian −� is replaced by the
so-called fractional Laplacian (−�)s with s ∈ [1, 3/2). Notably, another model for a MOND-
like non-relativistic potential theory, somehow related to fractional calculus, was proposed
by Varieschi [36,37]. Varieschi’s approach is very similar to the one in [35] thought the two
are not identical as discussed in [36]. The key difference lays in the fact that Varieschi’s
model is not a fractional theory. Indeed, Varieschi’s model relies on the use of a generalized
gravitational Gauss’s law where the standard integration overR3 is replaced with an Hausdorff
measure of R3 related to Weyl’s fractional integral. This procedure turns the model into a
generalization of Newtonian gravity on a fractal space, involving a measure inspired by
fractional calculus, for which the field equation remains of integer order (and thus local).
This specific caveat, however, does not make Varieschi’s model any less interesting or less
deserving of further investigation.

This work is organized as follows: first, we recall the basics of Giusti’s fractional New-
tonian gravity, introduced in [35], and its implications for Galactic dynamics; second, we
review the preliminary results discussed in [35] for the Kuzmin disk; third, we complete
the analysis for the Kuzmin disk in fractional Newtonian gravity providing a discussion of
the asymptotic behavior of the corresponding potential, a series representation for the full
potential outside the plane of the disk, and a numerical study of the equipotential surfaces as
one varies the fractional parameter s ∈ [1, 3/2).

2 Fractional Newtonian gravity

Fractional Newtonian gravity [35] is an alternative to standard Newtonian gravity based on
a modification of the Poisson equation for the gravitational potential. Specifically, the key
ingredient of this model consists in the so-called fractional Laplacian.

Let f (x) be a sufficiently well-behaved function on R
3; one defines the Fourier transform

of f (x) as

̂f (k) ≡ F [ f (x) ; k] =
∫

R3
e−ik·x f (x) d3x, (3)

with · denoting the standard Euclidean scalar product on R
3. Hence, if

� f (x) := div[∇ f (x)]
denotes the Laplacian of f (x), then it is easy to see that

F [(−�) f (x) ; k] = |k|2 ̂f (k), (4)

with |k|2 ≡ k ·k. The fractional Laplacian [38,39] is therefore defined as the operator (−�)s

such that

F [

(−�)s f (x) ; k
] = |k|2s ̂f (k). (5)

Ten equivalent representations of this operator are discussed in [39]. Further details on the
fractional Laplacian are analyzed and reviewed in [40].

Fractional Newtonian gravity [35] is therefore based on the fractional Poisson equation

(−�)s�(x) = −4 π GN �2−2s ρ(x), (6)

with GN denoting the Newtonian constant of gravitation, � being a constant such that [�] =
length, ρ(x) is the mass density of the system, and 1 ≤ s < 3/2 denotes the fractional
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parameter. It is often useful to deal with the fractional Poisson equation in the momentum
space, hence taking the Fourier transform of both sides of Eq. (6) yields

̂�(k) = −4 π GN �2−2s

|k|2s ρ̂(k). (7)

Remark 2.1 Note that Eq. (7) allows one to justify the condition s < 3/2 on R
3, see, e.g.,

[41] for details.

If one considers the case of a point-like source of mass density ρ(x) = δ3(x) then one
finds

�s(x) = − �
( 3

2 − s
)

4s−1
√

π �(s)

(

�

|x|
)2−2s GN M

|x| , for 1 ≤ s <
3

2
. (8)

Clearly, this expression is not well behaved as s → (3/2)−, as expected. However, focusing
on the momentum space representation of the fractional Poisson Eq. (7) for s = 3/2, i.e.,

̂�(k) = −4 π GN M

� |k|3 , (9)

the inverse Fourier transform of which can be regularized (see [35]) and yields

�3/2(x)
reg= 2 GN M

π �
log (|x|/�) . (10)

From a = −∇�s(x), and after recalling that

a(r) = v(r)2

r
= |∇�s(r)|, (11)

with r = |x|, one finds the expression of the orbital speed of a test particle around the center
as a function of r and s, i.e.,

vs(r) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2
3
2 −s

4
√

π

√

√

√

√

�
(

5
2 − s

)

�(s)

(

�

r

)1−s
√

GNM

r
, for 1 ≤ s < 3/2,

√

2 GN M

π �
, for s = 3/2.

(12)

This suggests that, in order to smoothly reproduce the flattening of Galaxy rotation curves in
fractional Newtonian gravity one needs to turn the theory into a variable order. This is achieved
by replacing s with a scale-dependent fractional parameter s(r/�) such that s(r/�) → 1 for
r < �, whereas s(r/�) → (3/2)− as r � �.

Note that, differently from pure MOND, this approach is equipped with a critical length
scale � rather than an acceleration scale a0. Furthermore, even a variable-order version of
Eq. (6) yields a linear theory, whereas MOND is inherently nonlinear in nature [21]. However,
one can reconcile the phenomenology of the two theories at Galactic scales by means of the
(empirical) Tully–Fisher relation [42]

v4 = GN M a0,
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Fig. 1 Left: mass density of the Kuzmin disk on the plane of the disk (z = 0) as a function of R. Right: section
of the three-dimensional equipotential surfaces (�N(R, z) = const.) for the Kuzmin disk. Assumptions:
GN = 1, M = 0.5, R0 = 1

which leads to

� = 2

π

√

GN M

a0
, (13)

with a0 denoting the critical acceleration scale of MOND.
Note that in [35] the scheme of fractional Newtonian gravity and the corresponding

MOND-like scenario have been generally put in connection with bootstrapped Newtonian
and corpuscular gravity (see, e.g., [43–49] for details and [50] for a review on the topic).

3 The Kuzmin disk in fractional Newtonian gravity

The Kuzmin mass density that in cylindrical coordinates reads

ρ(R, z) = R0 M

2π (R2 + R2
0)3/2

δ(z), (14)

with R0 > 0 and [R0] = length, is a widely used axisymmetric model for thin-disk Galaxies
[51]. The classical Newtonian solution of Eq. (6) for the Kuzmin disk corresponds to the case
s = 1 and yields

�N(R, z) ≡ �s=1(R, z) = − GN M
√

R2 + (R0 + |z|)2
, (15)

see Fig. 1.
Since the Fourier transform of the Kuzmin density reads

ρ̂(k) = ρ̂(κ) = M e−κR0 ,

with κ =
√

k2
x + k2

y , then Eq. (6) for the Kuzmin disk, in the momentum space, reduces to

̂�(k) = ̂�(κ, kz) = −4 π GN �2−2s ρ̂(k)
|k|2s = −4 π GN M �2−2s e−κR0

(κ2 + k2
z )

s
. (16)
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Inverting ̂�(k) back to position space yields

�s(R, z) = −GN M �2−2s

π

∫ ∞

0
dκ κ e−κR0 J0(κR)

∫

R

dkz
eikz z

(κ2 + k2
z )

s
. (17)

In order to derive an expression for �s(R, z) that is more easily treatable from a numerical
perspective, one first has to consider the integral

I1(s ; κ, z) =
∫

R

dkz
eikz z

(κ2 + k2
z )

s
. (18)

Taking advantage of Euler’s formula ei x = cos(x) + i sin(x) and of the known symmetry
properties of trigonometric functions, one can easily conclude that

I1(s ; κ, z) = 2
∫ ∞

0

cos(kzz)

(κ2 + k2
z )

s
dkz . (19)

Then, recalling that [52]

Kν(xz) = �
(

ν + 1
2

)

(2z)ν√
πxν

∫ ∞

0

cos(xt)

(t2 + z2)ν+ 1
2

dt, (20)

with Kν(z) denoting the modified Bessel function of the second kind, Re(ν) > −1/2, x > 0,
and arg(z) < π/2, one infers that

I1(s ; κ, z) = 2
3
2 −s√π

�(s)

( |z|
κ

)s− 1
2

Ks− 1
2
(κ|z|). (21)

Hence, for z = 0 one can rewrite Eq. (17) as

�s(R, z) = −2
3
2 −s GN M �2−2s |z|s− 1

2√
π �(s)

I2(s ; R, z),

with

I2(s ; R, z) =
∫ ∞

0
dκ κ

3
2 −s e−κR0 J0(κR) Ks− 1

2
(κ|z|). (22)

Remark 3.1 The case z = 0 has already been analyzed in [35] and yields

�s(R, 0) = −GN M �2−2s

√
π R3−2s

0

�(s − 1/2) �(3 − 2s)

�(s)

× 2F1

(

3

2
− s, 2 − s; 1 ; − R2

R2
0

)

, (23)

with 2F1(a, b; c ; z) the Gaussian hypergeometric function (see [52] for details) and 1 ≤
s < 3/2. Moreover, the regularized potential on the plane of the disk for s = 3/2 reads

�3/2(R, 0)
reg= 2

π

GN M

�
log

⎡

⎣1 +
√

1 +
(

R

R0

)2
⎤

⎦ .

The behavior of the potential �s(R, z) in Eq. (22) can be more easily understood thorough
the plot of the corresponding equipotential surfaces. Thus, a numerical evaluation of the
integral in Eq. (22), based on an adaptive Gauss–Kronrod quadrature, yields the illuminating
plots and contours reported in Figs. 2 and 3.

123



Eur. Phys. J. Plus         (2020) 135:798 Page 7 of 12   798 

-0.09
-0.081

-0.072

-0.063

-0.055

-0.046

-0.046

-0.037

-0.037

0 0.5 1 1.5 2

0.5

1

1.5

2

-0.063

-0.057

-0.052

-0.046

-0.046

-0.04

-0.04

-0.035

-0.035

0 0.5 1 1.5 2

0.5

1

1.5

2

-0.059

-0.057

-0.054

-0.052

-0.049

-0.049

-0.047

-0.047

-0.044

0 0.5 1 1.5 2

0.5

1

1.5

2

-0.084

-0.082

-0.08

-0.08

-0.078

-0.078

-0.076

-0.076

-0.074

0 0.5 1 1.5 2

0.5

1

1.5

2

-0.1454

-0.1439

-0.1425

-0.1411

-0.1411

-0.1396

-0.1396

-0.1382

-0.1382

-0.1367

0 0.5 1 1.5 2

0.5

1

1.5

2

Fig. 2 Sections of �s (R, z) = const. for positive R and z, assuming GN M = 0.1, R0 = 1, � = 5

3.1 Asymptotic behavior

In [35] it was shown that for a point particle the solution of Eq. (6) is given by Eqs. (8) and
(10), where the latter corresponds to s = 3/2 and it is understood in the regularized sense.
Thus, moving away from the Galaxy center one would expect to find a similar behavior from
Eq. (22) for r := √

R2 + z2 � R0.
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Fig. 3 Cross section of an
equipotential surface with
s = 1.1, assuming GN M = 0.1,
R0 = 1, � = 5
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From [52] one recalls that

J0(x) ∼
√

2

πx
cos

(

x − π

4

)

, Kν(x) ∼
√

π

2x
e−x , (24)

to the lowest order, when x → ∞. This suggests that when R, z � R0

I2(s ; R, z) ∼ 1√
R|z|

∫ ∞

0
κ

1
2 −s e−κ(R0+|z|) cos(κR) dκ

∼ �
( 3

2 − s
)

√
R|z| [

R2 + (R0 + |z|)2
] 3−2s

4

cos

[

3 − 2s

2
arctan

(

R

R0 + |z|
)]

, (25)

that yields I2 ∼ rs− 5
2 when R, z � R0, i.e., r = √

R2 + z2 � R0. From Eq. (22) one
concludes that

�s(R, z) � |z|s− 1
2 I2(s ; R, z) ∼ |z|s− 1

2 rs−
5
2 ∼ r2s−3, (26)

assuming for simplicity O(R) = O(|z|) as r → ∞, which coincides with the asymptotic
behavior of the potential for the point particle Eq. (8) for 1 ≤ s < 3/2. Furthermore, it is
easy to show using the same procedure discussed above to the Hadamard partie finie of (22)
for s = 3/2 (see, e.g., [53,54]) that �3/2(R, z) ∼ log(r) as r → ∞ with O(R) = O(|z|).
3.2 Full potential outside the Galactic plane: a series representation

From [52] one recalls that

J0(x) =
∞
∑

n=0

(−1)n

(n!)2

( x

2

)2n
. (27)

Taking advantage of Lebesgue’s dominated convergence theorem, one can expand J0 in
Eq. (22) and interchange the summation and integral. This leads to

I2(s ; R, z) =
∞
∑

n=0

(−1)n

(n!)2

(

R

2

)2n ∫ ∞

0
κ

3
2 +2n−s e−κR0 Ks− 1

2
(κ|z|) dκ

≡
∞
∑

n=0

(−1)n

(n!)2

(

R

2

)2n

I3(s, n ; R, z), (28)
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with

I3(s, n ; R, z) :=
∫ ∞

0
κ

3
2 +2n−s e−κR0 Ks− 1

2
(κ|z|) dκ. (29)

If one recalls the definitions of Kummer’s (confluent hypergeometric) functions [52]

M(a, b, z) =
∞
∑

n=0

(a)n

(b)n

zn

n! ≡ 1F1(a; b; z), (30)

and

U (a, b, z) = �(1 − b)

�(a − b + 1)
M(a, b, z) + �(b − 1)

�(a)
z1−b M(a − b + 1, 2 − b, z), (31)

it is not hard to see that

Kν(z) = √
π(2z)ν e−z U

(

ν + 1

2
, 2ν + 1, 2z

)

. (32)

The last expression for the modified Bessel function of the second kind then implies that

Ks− 1
2
(κ|z|) = √

π (2κ|z|)s− 1
2 e−κ|z| U (s, 2s, 2κ|z|) , (33)

that once inserted in Eq. (29) allows one to rewrite I3 as

I3(s, n ; R, z) = √
π (2|z|)s− 1

2

∫ ∞

0
κ2n+1 e−κ(R0+|z|) U (s, 2s, 2κ|z|) dκ. (34)

If one recalls the known special integral (see, e.g., [55, §13.10(ii), Eq. 13.10.7])
∫ ∞

0
e−zt tb−1 U (a, c, t) dt

= �(b) �(b − c + 1)

�(a + b − c + 1) zb
2F1

(

a, b; a + b − c + 1 ; z − 1

z

)

, (35)

with Re(b) > max{Re(c) − 1, 0} and Re(z) > 0, then Eq. (34) reduces to

I3(s, n ; R, z) =
√

π(2|z|)s− 1
2

(R0 + |z|)2n+2

�(2n + 2)�(2n − 2s + 3)

�(2n + 3 − s)

×2F1

(

s, 2n + 2; 2n + 3 − s ; R0 − |z|
R0 + |z|

)

. (36)

Therefore, combining Eqs. (22), (28), and (36) one finds

�s(R, z) = −2
3
2 −s GN M �2−2s |z|s− 1

2√
π �(s)

I2(s ; R, z)

= −2 GN M �2−2s |z|2s−1

�(s) (R0 + |z|)2 ×

×
∞
∑

n=0

(−1)n

(n!)2

[

R

2(R0 + |z|)
]2n

�(2n + 2)�(2n − 2s + 3)

�(2n + 3 − s)
×

×2F1

(

s, 2n + 2; 2n + 3 − s; R0 − |z|
R0 + |z|

)

, (37)
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that ultimately provides an explicit expression of the potential, outside of the Galactic plane,
in terms of a series of known special functions. However, such an expression can hardly be
useful when dealing with observations; thus, the numerical evaluation of Eqs. (22) and (22)
turns out to be a more practical path to follow.

4 Conclusions and outlook

Fractional Newtonian gravity [35], based on the fractional extension of Poisson’s field equa-
tion for the gravitational potential obtained through the replacement of the Laplacian with
the fractional Laplacian, represents a novel application of fractional calculus to astrophysics.
Most notably, this theory naturally comprises both Newtonian gravity and MOND’s asymp-
totic behavior as limiting scenario, respectively, obtained setting s = 1 and s = 3/2. This
particular feature surprisingly allows one to naturally connect observations of Galaxy rota-
tion curves with the more abstract theory of weakly singular integro-differential operators,
and hence to non-local theories of gravity.

In this work, we have completed the analysis for an important toy model for the mass
distribution of very thin-disk galaxies, known as the Kuzmin disk. First, in Eq. (22) we
have provided an explicit integral representation of the potential generate by the disk outside
the plane of the disk. Second, we have computed numerically the form of the equipotential
surfaces for different values of the fractional parameter s and we provided some illuminating
cross sections of these surfaces in Figs. 2 and 3. Third, in Sect. 3.1 we verified the asymptotic
behavior of the potential in Eq. (22) when r → ∞. Finally, in Eq. (37) we have provided
an explicit series representation for the potential generated by the Kuzmin disk, outside the
plane of the disk z = 0, thus filling a gap in the literature.

The program of fractional Newtonian gravity surely looks promising and deserving of
further investigation. First, in order to properly reproduce Galaxy rotation curves one needs
to turn the theory into a variable-order one, with s = s(x/�) being a function reducing to 1
at short scale and approaching 3/2 as one moves asymptotically far away from the center of
the Galaxy. However, promoting this model to a variable-order theory leads to complications
(see, e.g. [56]), both mathematical and numerical. These more serious topics will be discussed
in detail in future studies.
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