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Abstract
We introduce Boolean-like algebras of dimension n ( nBA s) having n constants �1,… , �

n
 , 

and an (n + 1)-ary operation q (a “generalised if-then-else”) that induces a decomposition 
of the algebra into n factors through the so-called n-central elements. Varieties of nBA s 
share many remarkable properties with the variety of Boolean algebras and with primal 
varieties. The nBA s provide the algebraic framework for generalising the classical proposi-
tional calculus to the case of n–perfectly symmetric–truth-values. Every finite-valued tabu-
lar logic can be embedded into such a n-valued propositional logic, nCL , and this embed-
ding preserves validity. We define a confluent and terminating first-order rewriting system 
for deciding validity in nCL , and, via the embeddings, in all the finite tabular logics.

Keywords Many-valued logics · Classical logic with n truth values · Boolean-like 
algebras · Equipollence · Rewriting systems

Mathematics Subject Classification 03B50 · 08B05 · 08A70

1 Introduction

This paper means to kick off a general programme aimed at bridging several different areas 
of logic, algebra and computation—the algebraic analysis of conditional statements in pro-
gramming languages, the theory of factorisations of algebras, the theory of Boolean vector 
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spaces, the investigation into generalisations of classical logic—most of which somehow 
revolve around the main concept that lies at the crossroads of the three disciplines: the 
notion of a Boolean algebra.

There is a thriving literature on abstract treatments of the if-then-else construct of com-
puter science, starting with McCarthy’s seminal investigations (McCarthy 1963). On the 
algebraic side, one of the most influential approaches originated with the work of Bergman 
(1991). Bergman modelled the if-then-else by considering Boolean algebras acting on sets: 
if the Boolean algebra of actions is the 2-element algebra, one simply puts 1(a, b) = a and 
0(a, b) = b . In Salibra et al. (2013), on the other hand, some of the present authors took 
their cue from Dicker’s axiomatisation of Boolean algebras in the language with the if-
then-else as primitive (Dicker 1963). Accordingly, this construct was treated as a proper 
algebraic operation q� on algebras � whose type contains, besides the ternary term q, two 
constants 0 and 1, and having the property that for every a, b ∈ A , q�(1�, a, b) = a and 
q�(0�, a, b) = b . Such algebras, called Church algebras in Salibra et  al. (2013), will be 
termed here Church algebras of dimension 2.

The reason for this denomination is as follows. At the root of the most important results 
in the theory of Boolean algebras (including Stone’s representation theorem) there is the 
simple observation that every element e ≠ 0, 1 of a Boolean algebra � decomposes � as 
a Cartesian product [0, e] × [e, 1] of two nontrivial Boolean algebras. In the more general 
context of Church algebras of dimension 2, we say that an element e of a Church algebra � 
of dimension 2 is 2-central if � can be decomposed as the product �∕�(e, 0) × �∕�(e, 1) , 
where �(e, 0) ( �(e, 1) ) is the smallest congruence on � that collapses e and 0 (e and 1). 
Church algebras of dimension 2 where every element is 2-central were called Boolean-like 
algebras in Salibra et al. (2013), since the variety of all such algebras in the type (q, 0, 1) 
is term-equivalent to the variety of Boolean algebras. In this paper, on the other hand, they 
will be called Boolean-like algebras of dimension 2. Against this backdrop, it is tempting 
to generalise the previous approach to algebras � having n designated elements �1,… , �n 
( n ≥ 2 ) and a n + 1-ary operation q (a sort of “generalised if-then-else”) that induces a 
decomposition of � into n, rather than just 2, factors. These algebras will be called, natu-
rally enough, Church algebras of dimension n (nCA), while algebras � all of whose ele-
ments induce a n-ary factorisation of this sort are given the name of Boolean-like algebras 
of dimension n ( nBAs). Free V-algebras (for V a variety), lambda algebras, semimodules 
over semirings–hence, in particular, Boolean vector spaces–give rise to Church algebras 
which, in general, have dimension greater than 2.

In Sect. 2 we go over the required preliminaries in universal algebra and algebraic logic. 
In Sect. 3 we introduce the definitions of an nCA and of an nBA and provide examples 
of both concepts. Varieties of nBA s share many remarkable properties with the variety of 
Boolean algebras. In Sect. 4, we show that any variety of nBA s is generated by the nBA s 
of finite cardinality n. In the pure case (i.e., when the type includes just the generalised if-
then-else q and the n constants), the variety is generated by a unique algebra � of universe 
{�1,… , �n} , so that any pure nBA is, up to isomorphism, a subalgebra of �I , for a suitable 
set I. Another remarkable property of the 2-element Boolean algebra is the definability of 
all finite Boolean functions in terms e.g. of the connectives and, or, not. This property is 
inherited by the algebra � : all finite functions on {�1,… , �n} are term-definable, so that the 
variety of pure nBA s is primal. More generally, a variety of an arbitrary type with one gen-
erator is primal if and only if it is a variety of nBAs.

The last two section of the papers are devoted to applications of these concepts to logic. 
Just like Boolean algebras are the algebraic counterpart of classical logic CL , in Sect. 5 for 
every n ≥ 2 we define a logic nCL whose algebraic counterpart are nBA s. We show the 
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complete symmetry (in a sense to be specified below) of the truth values �1,… , �n , sup-
porting the idea that nCL is the right generalisation of classical logic from dimension 2 to 
dimension n. In Sect. 6, we conservatively translate into nCL any n-valued tabular logic 
with a single designated value. We also define a terminating and confluent term rewriting 
system to test the validity of formulas of nCL by rewriting. By the universality of nCL , 
in order to check whether a formula � is valid in a n-valued tabular logic, it is enough to 
see whether the normal form �∗ of its nCL-translation is the designated value of nCL . Our 
rewriting rules bear a strong resemblance to the equivalence transformation rules of multi-
valued decision diagrams (Hett et  al. 1997; Miller and Drechsler 2002). Our approach, 
moreover, generalises both Zantema and van de Pol’s work (Zantema and van de Pol 2001) 
on rewriting of binary decision diagrams and the work by Salibra et al. (2016) on rewriting 
terms of factor varieties with decomposition operators. We point out that in Salibra et al. 
(2016) tabular logics were translated in terms of decomposition operators, very much in 
the spirit of what we are doing here. Nevertheless, due to the lack of an underlying logic 
and to the absence of the q operator, those translations were ad hoc.

2  Preliminaries

The notation and terminology in this paper are pretty standard. For concepts, notations and 
results not covered hereafter, the reader is referred to Burris and Sankappanavar (1981), 
McKenzie et  al. (1987) for universal algebra and to Salibra et  al. (2013), Ledda et  al. 
(2013), Bucciarelli et al. (2018) for nBAs.

2.1  Algebras

If � is an algebraic type, an algebra � of type � is called a �-algebra, or simply an algebra 
when � is clear from the context. An algebra is trivial if its carrier set is a singleton set.

Superscripts that mark the difference between operations and operation symbols will be 
dropped whenever the context is sufficient for a disambiguation.

Con(�) is the lattice of all congruences on � , whose bottom and top elements are, 
respectively, Δ = {(a, a) ∶ a ∈ A} and ∇ = A × A . Given a, b ∈ A , we write �(a, b) for the 
smallest congruence � such that (a, b) ∈ �.

We say that an algebra � is: (i) subdirectly irreducible if the lattice Con(�) has a unique 
atom; (ii) simple if Con(�) = {Δ,∇} ; (iii) directly indecomposable if � is not isomorphic 
to a direct product of two nontrivial algebras.

A class V of �-algebras is a variety (equational class) if it is closed under subalgebras, 
direct products and homomorphic images. If K is a class of �-algebras, the variety V(K) 
generated by K is the smallest variety including K . If K = {�} we write V(�) for V({�}).

Let V be a variety. We denote by �V(X) the free V-algebra over the set X of free genera-
tors. If � is an algebraic type, then �� (X) denotes the absolutely free �-algebra over the set 
X of free generators.

Following (Blok and Pigozzi 1994), two elements a, b of an algebra � are said to be 
residually distinct if they have distinct images in every non-trivial homomorphic image of 
�.

We say that a variety V is n-pointed iff it has at least n nullary operations that are 
residually distinct in any nontrivial member of V . Boolean algebras are the main exam-
ple of a 2-pointed, or double-pointed, variety. A variety V whose type contains at least 
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one nullary operation symbol c is c-regular if in any � ∈ V , no two different congru-
ences share a congruence class of c�.

2.2  Factor Congruences and Decomposition

Directly indecomposable algebras play an important role in the characterisation of the 
structure of a variety of algebras. For example, if the class of indecomposable algebras 
in a Church variety (see Sect. 3 and Salibra et al. 2013) is universal, then any algebra 
in the variety is a weak Boolean product of directly indecomposable algebras. In this 
section we recap the basic ingredients of factorisations: tuples of complementary factor 
congruences and decomposition operators (see McKenzie et al. 1987).

Definition 1 A sequence (�1,… ,�n) of congruences on a �-algebra � is a n-tuple of 
complementary factor congruences exactly when: 

1. 
⋂

1≤i≤n �i = Δ;
2. ∀(a1,… , an) ∈ An , there is u ∈ A such that ai�i u , for all 1 ≤ i ≤ n.

The element u such that ai�i u for every i is unique by Definition 1(1).
If (�1,… ,�n) is a n-tuple of complementary factor congruences on � , then the func-

tion f ∶ � →

∏n

i=1
�∕�i , defined by f (a) = (a∕�1,… , a∕�n) , is an isomorphism. More-

over, every direct decomposition of � in n factors univocally determines a n-tuple of 
complementary factor congruences.

Observe that, when n = 2 , a pair (�1,�2) of congruences is a pair of complementary 
factor congruences if and only if �1 ∩ �2 = Δ and �1◦�2 = ∇ . The pair (Δ,∇) corre-
sponds to the product � ≅ � × � , where � is a trivial algebra; obviously � ≅ �∕∇ and 
� ≅ �∕Δ . A factor congruence is any congruence which belongs to a pair of comple-
mentary factor congruences. The set of factor congruences of � is not, in general, a sub-
lattice of Con(�) . Notice that, if (�1,… ,�n) is a n-tuple of complementary factor con-
gruences, then �i is a factor congruence for each 1 ≤ i ≤ n , because the pair (�i,

⋂
j≠i �j) 

is a pair of complementary factor congruences.
It is possible to characterise n-tuples of complementary factor congruences in terms 

of certain algebra homomorphisms called decomposition operators (see (McKenzie 
et al. 1987,Def. 4.32) for additional details).

Definition 2 A n-ary decomposition operator on a �-algebra � is a function f ∶ An
→ A 

satisfying the following conditions: 

D1 f (x, x,… , x) = x;
D2 f (f (x11, x12,… , x1n),… , f (xn1, xn2,… , xnn)) = f (x11,… , xnn);
D3 f is an algebra homomorphism from �n to �:

for every g ∈ � of arity k.

f (g(x11,… , x1k),… , g(xn1,… , xnk)) = g(f (x11,… , xn1),… , f (x1k,… , xnk)),
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There is a bijective correspondence between n-tuples of complementary factor con-
gruences and n-ary decomposition operators, and thus, between n-ary decomposition 
operators and factorisations of an algebra in n factors.

Theorem  1 Any n-ary decomposition operator f ∶ �n
→ � on an algebra � induces 

a n-tuple 
(
�1,… ,�n

)
 of complementary factor congruences, where each 𝜙i ⊆ A × A is 

defined by:

Conversely, any n-tuple 
(
�1,… ,�n

)
 of complementary factor congruences induces a 

decomposition operator f on � : f (a1,… , an) = u iff ai �i u for all i.

2.3  Factor Elements

The notions of a decomposition operator and of a factorisation can sometimes be inter-
nalised: some elements of the algebra, the so called factor elements, can carry all the 
information encoded by a decomposition operator.

Let � be a �-algebra, where we distinguish a (n + 1)-ary term operation q.

Definition 3 We say that an element e of � is a factor element with respect to q if the n-
ary operation fe ∶ An

→ A , defined by

is a n-ary decomposition operator (that is, fe satisfies identities (D1)-(D3) of Definition 2).

An element e of � is a factor element if and only if the tuple of relations (�1,… ,�n) , 
defined by a �i b iff q(e, a,… , a, b, a,… , a) = a (b at position i), is a n-tuple of comple-
mentary factor congruences of �.

By (Cvetko-Vah and Salibra 2015,  Proposition 3.4) the set of factor elements is 
closed under the operation q: if a, b1,… , bn ∈ A are factor elements, then q(a, b1,… , bn) 
is also a factor element.

Observe that in general:

• Different factor elements may define the same tuple of complementary factor con-
gruences;

• There may exist n-tuples of complementary factor congruences that do not corre-
spond to any factor element.

In Sect.  3 we describe a class of algebras, called Church algebras of dimension n, 
where the (n + 1)-ary operator q induces a bijective correspondence between a suit-
able subset of factor elements, the so-called n-central elements, and the set of all n-ary 
decomposition operators.

a �i b iff f (a,… , a, b, a,… , a) = a (b at position i).

fe(a1,… , an) = q�(e, a1,… , an), for all ai ∈ A,
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2.4  Logics

In logic the operation symbols of an algebraic type � are considered as logical connectives. 
Then the term algebra �� (X) over the countable infinite set X of generators is also called 
the algebra of �-formulas. The elements x0, x1,… of X are called propositional variables.

Definition 4 If � is an algebraic type whose algebra of �-formulas over X is �� (X) , a 
consequence relation on � is a relation ⊢ ⊆ ℘(T𝜏 (X)) × T𝜏 (X) obeying the following condi-
tions for all Γ,Δ ⊆ T𝜏 (X) and �,� ∈ T� (X):

• Reflexivity: Γ ⊢ 𝜑 whenever � ∈ Γ;
• Monotonicity: if Γ ⊢ 𝜑 and Γ ⊆ Δ , then Δ ⊢ 𝜑;
• Cut: if Γ ⊢ 𝜑 and Δ ⊢ 𝜓 for all � ∈ Γ , then Δ ⊢ 𝜑.

A consequence relation ⊢ is said to be finitary if whenever Γ ⊢ 𝜑 , then Δ ⊢ 𝜑 for some 
finite Δ ⊆ Γ ; it is said to be substitution-invariant if whenever Γ ⊢ 𝜑 , then 𝜎(Γ) ⊢ 𝜎(𝜑) for 
any endomorphism � of �� (X).

Definition 5 A (finitary) logic of type � is a pair L =
(
𝜏,⊢L

)
 , where � is an algebraic 

type and ⊢L is a (finitary and) substitution-invariant consequence relation on �.

Definition 6 Let L = (𝜏,⊢L) be a logic. A set Γ of �-formulas is called an L-theory if 
Γ ⊢L 𝜑 implies � ∈ Γ for every �-formula �.

The set of L-theories is closed under arbitrary intersections and is the universe of a 
complete lattice, denoted by Th(L).

Definition 7 If L = (𝜏,⊢L) is a logic, then two �-formulas � and � are said to be logi-
cally L-equivalent, written � ≡L � , if 𝜑 ⊢L 𝜓 and 𝜓 ⊢L 𝜑.

Definition 8 If � is a type, a �-matrix (Blok and Pigozzi 1989) (or simply a matrix, when 
� is understood) is a pair A = (�,F) , where � is a �-algebra and F ⊆ A . The elements in F 
are said to be designated. If F = {�} is a singleton, we write (�, �) for (�, {�}).

A �-matrix A = (�,F) defines a logic LA = (𝜏,⊢A) as follows: Γ ⊢A 𝜙 if, for any 
homomorphism h ∶ �� (X) → � , if h(�) ∈ F for any � ∈ Γ , then h(�) ∈ F.

Logics of the form LA = (𝜏,⊢A) , where A = (�,F) is a matrix and � is a finite �-alge-
bra, are called tabular. Many well-known logics in the literature are tabular logics with the 
additional property that F = {�} is a singleton; in such case, � can be read as representing 
the value “true”. Some examples of tabular logics in the type � = (2, 2, 1) are given below.

• Classical logic CL = L(�,{1}) , where � is the 2-element Boolean algebra;
• For any n ≥ 2 , the n-valued Post logic Pn = L(�n,{1}) , where �n is the expansion of the 

n-element chain �n =
({

0,
1

n−1
,… ,

n−2

n−1
, 1
}
, min,max, 0, 1

)
 by the unary operation ¬�n 

defined as follows: 

¬�
na =

{
a −

1

n−1
if a ≠ 0;

1 if a = 0.
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If L = (𝜏,⊢L) is a logic of type � , any set D = {�i(x) ≈ �i(x)}i∈I of �-equations in a single 
variable can also be regarded as a function which maps formulas in T� (X) to sets of equa-
tions of the same type: the behaviour of this function, for any � ∈ T� (X) , is given by the 
condition

This mapping is sometimes called a formula-equation translation.
A class K of �-algebras is an algebraic semantics for L (also of type � ) if, for some 

formula-equation translation D, the following condition holds for all Γ ∪ {𝜑} ⊆ T𝜏 (X):

a condition which can be rewritten1 as

If K is given, we also say that the logic L having the same type � as K , whose consequence 
relation ⊢L is defined as in the previous display, is the D-assertional logic of K . If D is the 
singleton {x ≈ c} , for c a constant in � , we say that L is the c-assertional logic of K.

Given an equation � ≈ � and a set of formulas in two variables E =
{
�j(x, y)

}
j∈J

 , we 
use the abbreviation

E will be also regarded as a function mapping equations to sets of formulas, and called an 
equation-formula translation.

A logic L = (𝜏,⊢L) is said to be algebraisable with equivalent algebraic seman-
tics K (where K is a class of �-algebras) iff there exist a formula-equation translation D, 
and an equation-formula translation E, such that the following conditions hold for any 
�,� ∈ T� (X) , for any Γ ⊆ T𝜏 (X) and for any Σ ⊆ T𝜏 (X)

2 : 

AL1: Γ ⊢L 𝜑 iff D(Γ) ⊢Eq(K) D(𝜑);
AL2: Σ ⊢Eq(K) 𝜑 ≈ 𝜓 iff E(Σ) ⊢L E(𝜑,𝜓);
AL3: 𝜑 ⊣⊢L E(D(𝜑));
AL4: 𝜑 ≈ 𝜓 ⊣⊢Eq(K) D(E(𝜑,𝜓)).

The mappings D(x) and E(x, y) are respectively called a system of defining equations and a 
system of equivalence formulas for L and K . A logic L is algebraisable (tout court) iff, for 
some K , it is algebraisable with equivalent algebraic semantics K . By virtue of (Blok and 
Pigozzi 1989, Corollary 2.11), at least in the finitary case, we may assume without loss of 
generality that K is a quasivariety; in other words, K is an equivalent quasivariety seman-
tics for L.

In their article on assertionally equivalent quasivarieties (Blok and Raftery 2008), 
Blok and Raftery introduce a notion of D-class which relativises the usual notion of a 

D(�) = {�i(�∕x) ≈ �i(�∕x)}i∈I .

Γ ⊢L 𝜑 iff for every � ∈ K and every �⃗a ∈ An,

if D(𝛾)�( �⃗a) for all 𝛾 ∈ Γ, then D(𝜑)�( �⃗a),

Γ ⊢L 𝜑 iff D(Γ) =
⋃

{D(𝛾) ∶ 𝛾 ∈ Γ} ⊢Eq(K) D(𝜑).

E(�,�) =
{
�j(�∕x,�∕y)

}
j∈J

.

1 If Γ,Δ are sets of formulas, Γ ⊢L Δ means Γ ⊢L 𝜑 for all � ∈ Δ ; if Σ,Σ� are sets of equations, Σ ⊢
Eq(K) Σ

� 
means Σ ⊢

Eq(K) 𝜖 for all � ∈ Σ�.
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congruence class to a given formula-equation translation D. If � is a �-algebra, 𝜃 ⊆ A2 and 
D =

{
�i(x) ≈ �i(x) ∶ i ≤ n

}
 is a formula-equation translation in the type � , the D-class of � 

in � — in symbols D�∕� — is defined as

Observe that for D = {x ≈ c} , D�∕� is simply the �-congruence class of c� . This justifies 
the next generalisation of point regularity: a variety V is D-regular if in any � ∈ V , no two 
different congruences share a D-class. The following theorem holds (see Blok and Raftery 
1999; Barbour and Raftery 2003; Blok and Raftery 2008):

Theorem 2 For V a variety of type � , the following are equivalent: 

1. V is D-regular;
2. The D-assertional logic of V is algebraisable with V as equivalent variety semantics.
3. There are binary �-formulas �1,… ,�n such that for all i ≤ n , x ≈ y ⊣⊢Eq(V) D(𝜑i(x, y)).

The set U of binary �-formulas in the preceding theorem is said to witness D-regularity 
for V.

The D-assertional logic of a D-regular variety V , noted S(V,D) , can be effectively axi-
omatised provided an axiomatisation of V and a system of equivalence formulas for S(V,D) 
and V are both known (Blok and Raftery 2008, Thm. 8.0.9):

Theorem 3 Let V be a D-regular variety of type � , and let E(x, y) be a system of equiva-
lence formulas for L = S(V,D) and V . Then L is axiomatised by the following axioms and 
rules: 

A1 ⊢L E(𝜑,𝜑);
A2 𝜑,E(𝜑,𝜓) ⊢L 𝜓;
A3 E(𝜑,𝜓) ⊢L E(𝜓 ,𝜑);
A4 For each k-ary �-connective f k , 

⋃
i≤k E

�
𝜑i,𝜓i

�
⊢L E

�
f k
�
��⃗𝜑
�
, f k

�
��⃗𝜓
��

;
A5 𝜑 ⊣⊢L E(D(𝜑));
A6 For each axiom � ≈ � of V , 

Observe that, if D = {x ≈ c} and the set U witnessing c-regularity is also a singleton, 
then the set of equivalence formulas E(x, y) can be taken to be U.

2.5  Equipollent Logical Systems

Two logical systems are equipollent whenever there exist uniform translations between the 
two logical languages that induce an isomorphism on the corresponding theory lattices 
(the interested reader is referred to Caleiro and Gonçalves (2007), Gyuris (1999), Smiley 
(1962) for a comprehensive account).

Throughout the sequel, we fix a set Ξ = {�i}i∈� of metavariables.

D�∕� =
{
a ∈ � ∶

(
��
i
(a), ��

i
(a)

)
∈ � for every i ≤ n

}
.

E(�,�).
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Definition 9 (Caleiro and Gonçalves 2007,  Definition 2.4) Given types �1 and �2 , 
a type morphism h ∶ �1 → �2 is determined by a denumerable family of functions 
{hn ∶ (�1)

n
→ T�2 ({�1,… , �n})}n∈� and by a formula h∗(x) ∈ T�2 (x) , for every propositional 

variable x ∈ X.

Given a type morphism h ∶ �1 → �2 , we can define its extension h ∶ T�1 (X) → T�2 (X) 
inductively, as follows: 

1. h(x) = h∗(x) , for every propositional variable x ∈ X;
2. h(c) = h0(c) , for every nullary operator c ∈ �0;
3. h(f (�1,… ,�n)) = hn(f )(h(�1)∕�1,… , h(�n)∕�n) for  every f ∈ �n

1
 and every 

�1,… ,�n ∈ T�1 (X).

The formula hn(f )(h(�1)∕�1,… , h(�n)∕�n) is obtained from hn(f ) by simultaneously replac-
ing each occurrence of �i in hn(f ) by h(�i) , for every 1 ≤ i ≤ n.

Definition 10 (Caleiro and Gonçalves 2007,  Definition 2.5, Proposition 4.3) Let 
L1 = (𝜏1,⊢1) and L2 = (𝜏2,⊢2) be logics. 

1. A logical morphism h ∶ L1 → L2 is a type morphism h ∶ �1 → �2 such that 

 for every Γ ⊆ T𝜏1 (X).
2. A logical morphism h ∶ L1 → L2 is called strong if 

 for every Γ ⊆ T𝜏1 (X).
3. L1 and L2 are (strongly) equipollent if and only if there exist (strong) logical morphisms 

h ∶ L1 → L2 and g ∶ L2 → L1 such that the following two conditions hold, for every 
� ∈ T�1 (X) and � ∈ T�2 (X) : 

Lemma 1 (Caleiro and Gonçalves 2007,  Section  4) If L1 and L2 are equipollent logical 
systems, then the lattice Th(L1) of L1-theories is isomorphic to the lattice Th(L2) of L2

-theories.

Definition 11 If L1 = (𝜏1,⊢1) and L2 = (𝜏2,⊢2) are logics, we say that L2 is a conserva-
tive expansion of L1 if there exists a strong logical morphism h ∶ L1 → L2 , whose expan-
sion h ∶ T�1 (X) → T�2 (X) satisfies h(x) = x , for every propositional variable x ∈ X.

3  Church Algebras of Finite Dimension

In this section we introduce algebras having n designated elements �1,… , �n ( n ≥ 2 ) 
and an operation q of arity n + 1 (a sort of “generalised if-then-else”) satisfying 
q(�i, x1,… , xn) = xi . The operator q induces, through the so-called n-central elements, a 

Γ ⊢1 𝜙 ⇒ h[Γ] ⊢2 h(𝜙),

Γ ⊢1 𝜙 ⇔ h[Γ] ⊢2 h(𝜙),

� ≡L1
g(h(�)); � ≡L2

h(g(�)).
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decomposition of the algebra into n factors. These algebras will be called Church alge-
bras of dimension n.

Definition 12 An algebra � of type � is a Church algebra of dimension n (a nCA , for 
short) if there are term definable elements ��

1
, ��

2
,… , ��

n
∈ A and a term operation q� of 

arity n + 1 such that, for all b1,… , bn ∈ A and 1 ≤ i ≤ n , q�(��
i
, b1,… , bn) = bi . A variety 

V of type � is a variety of algebras of dimension n if every member of V is a nCA with 
respect to the same terms q, �1,… , �n.

If � is a nCA , then �0 = (A, q�, ��
1
,… , ��

n
) is the pure reduct of �.

Church algebras of dimension 2 were introduced as Church algebras in Manzonetto 
and Salibra (2008) and studied in Salibra et al. (2013). Examples of Church algebras of 
dimension 2 are Boolean algebras (with q(x, y, z) = (x ∧ z) ∨ (¬x ∧ y) ) or rings with unit 
(with q(x, y, z) = xz + y − xy ). Next, we list some relevant examples of Church algebras 
having dimension greater than 2.

Example 1 (Free algebras) Let � be a type and X = {x1,… , xn} be a finite set of variables. 
For all �,�1,… ,�n in the term algebra �� (X) , we define:

where �
[
�1∕x1,… ,�n∕xn

]
 denotes the term obtained from � by replacing each occurrence 

of xi by �i , for all i. If V is any variety of algebras of type � and �V(X) is the free V-algebra 
over X, this operation is well-defined on equivalence classes of terms in �V(X) and turns 
�V(X) into a nCA , with respect to q and x1,… , xn.

Example 2 (n-Sets) Let X be a set. A n-subset of X is a sequence (Y1,… , Yn) of subsets Yi 
of X. We denote by Setn(X) the family of all n-subsets of X. Setn(X) can be viewed as the 
universe of a Boolean vector space over the powerset P(X) with respect to the following 
operations:

and, for every Z ⊆ X,

Setn(X) is freely generated by the n-sets �1 = (X, �,… , �),… , �n = (�,… , �,X) . Thus, an 
arbitrary n-set (Y1,… , Yn) has the canonical representation Y1�1 +⋯ + Yn�n as a vector. An 
explicit description of the q operator is as follows, for all �i = Yi

1
�1 +⋯ + Yi

n
�n:

Congruences are notoriously irksome objects in algebra. Therefore, considerable 
advantage is gained whenever one can find more manageable concepts that can act 
in their stead — like normal subgroups in the variety of groups, or, more generally, 
ideals in any ideal-determined variety (Gumm and Ursini 1984). In Vaggione (1996), 
Vaggione introduced the notion of a central element to study algebras whose comple-
mentary factor congruences can be replaced by certain elements of their universes. If a 

q(�,�1,… ,�n) = �
[
�1∕x1,… ,�n∕xn

]
,

(Y1,… , Yn) + (Z1,… , Zn) = (Y1 ∪ Z1,… , Yn ∪ Zn)

Z(Y1,… , Yn) = (Z ∩ Y1,… , Z ∩ Yn).

q(�0, �1,… , �n) = (

n⋃

i=1

Y0
i
∩ Yi

1
,… ,

n⋃

i=1

Y0
i
∩ Yi

n
).
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neat description of such elements is available, one usually gets important insights into 
the structure theories of the algebras at issue. To list a few examples, central elements 
coincide with central idempotents in rings with unit, with complemented elements 
in FLew-algebras, which form the equivalent algebraic semantics of the full Lambek 
calculus with exchange and weakening, and with members of the centre in ortholat-
tices. In Salibra et al. (2013), T. Kowalski and three of the present authors investigated 
central elements in Church algebras of dimension 2. Here, we generalise the idea to 
Church algebras of arbitrary finite dimension.

We omit the proof of the next characterisation of n-central elements, which follows 
closely the proof for the 2-dimensional case given in (Salibra et al. 2013, Proposition 
3.6).

Theorem 4 If � is a nCA of type � and c ∈ A , then the following conditions are equivalent: 

1. c is a factor element (w.r.t. q) satisfying the identity q(c, �1,… , �n) = c;
2. the sequence of congruences (�(c, �1),… , �(c, �n)) is a n-tuple of complementary factor 

congruences of �;
3. for all a1,… , an ∈ A , q(c, a1,… , an) is the unique element such that 

 for all 1 ≤ i ≤ n;
4. The function fc , defined by fc(a1,… , an) = q(c, a1,… , an) for all a1,… , an ∈ A , is a 

n-ary decomposition operator on � such that fc(�1,… , �n) = c.

Definition 13 If � is a nCA , then c ∈ A is called n-central if it satisfies one of the equiva-
lent conditions of Theorem 4. A n-central element c is nontrivial if c ∉ {�1,… , �n}.

Every n-central element c ∈ A induces a decomposition of � as a direct product of 
the algebras �∕�(c, �i) , for i ≤ n . The following proposition characterises the algebraic 
structure of n-central elements.

Proposition 1 Let � be a nCA . Then the set of all n-central elements of � is a subalgebra 
of the pure reduct of �.

Proof Let a, c1,… cn be n-central elements. It is sufficient to prove that q(a, c1,… cn) is 
also a n-central element, i.e., the function q(q(a, c1,… cn),−,… ,−) is a decomposition 
operator satisfying q(q(a, c1,… cn), �1,… , �n) = q(a, c1,… cn) .   ◻

Hereafter, we denote by ��n(�) the algebra (Cen(�), q, �1,… , �n) of all n-central ele-
ments of a nCA �.

4  Boolean‑Like Algebras of Finite Dimension

Boolean algebras are Church algebras of dimension 2 all of whose elements are 2-cen-
tral. It turns out that, among the n-dimensional Church algebras, those algebras all of 
whose elements are n-central inherit many of the remarkable properties that distinguish 

ai �(c, �i) q(c, a1,… , an),
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Boolean algebras. We now zoom in on such algebras, which will take centre stage in 
this section.

Definition 14 A nCA � is called a Boolean-like algebra of dimension n ( nBA , for short) if 
every element of A is n-central.

The class of all nBA s of type � is a variety axiomatised by the following identities: 

(��)  q(�i, x1,… , xn) ≈ xi ( i = 1,… , n).
(��)  q(y, x,… , x) ≈ x.
(��)  q(y, q(y, x11, x12,… , x1n),… , q(y, xn1, xn2,… , xnn)) ≈ q(y, x11,… , xnn).

(��)

  
 for every f ∈ � of arity k.

(��)  q(y, �1,… , �n) ≈ y.

If � is a nBA , then �0 = (A, q�, ��
1
,… , ��

n
) is the pure reduct of � . For all 2 ≤ n < 𝜔 , 

we henceforth let �n be the type (q, �1,… , �n) of pure nBAs.
In the following lemma we recall from (Bucciarelli and Salibra 2019, Lemma 3.8) 

that every nontrivial nBA has at least n elements.

Lemma 2 The constants �i ( 1 ≤ i ≤ n ) are pairwise residually distinct in every nontrivial 
nBA.

By Proposition 1, the algebra ��n(�) of all n-central elements of a nCA � is a canon-
ical example of pure nBA.

Boolean-like algebras of dimension 2 were introduced in Salibra et  al. (2013) with 
the name “Boolean-like algebras”. Inter alia, it was shown in that paper that the vari-
ety of pure Boolean-like algebras of dimension 2 is term-equivalent to the variety of 
Boolean algebras.

Example 3 The algebra � = ({�1,… , �n}, q
�, ��

1
,… , ��

n
) , where

for every i ≤ n , is a pure nBA.

Example 4 (n-Partitions) Let X be a set. A n-partition of X is a n-subset (Y1,… , Yn) of X 
such that 

⋃n

i=1
Yi = X and Yi ∩ Yj = � for all i ≠ j . The set of n-partitions of X is closed 

under the q-operator defined in Example 2 and determines the algebra of n-central ele-
ments of the Boolean vector space Setn(X) of all n-subsets of X. Notice that the algebra of 
n-partitions of X, denoted by ���(X) , is isomorphic to the nBA �X.

The structure theory of Boolean algebras is as good as it gets. The variety BA of 
Boolean algebras is in particular semisimple as every � ∈ BA is subdirectly embed-
dable into a power of the 2-element Boolean algebra, which is the only directly 

q(y, f (x11,… , x1k),… , f (xn1,… , xnk)) ≈

f (q(y, x11,… , xn1),… ,q(y, x1k,… , xnk)),

q�(�i, x1,… , xn) = xi
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indecomposable (hence, the only subdirectly irreducible and the only simple) member 
of BA . By and large, all these properties find some analogue in the structure theory of 
nBA s. For a start, we show that all subdirectly irreducible nBA s have the same finite 
cardinality.

Lemma 3 For an nBA � , the following are equivalent: 

 (i) � is simple;
 (ii) � is subdirectly irreducible;
 (iii) � is directly indecomposable;
 (iv) |A| = n.

Proof We prove the nontrivial implications.
((iv) implies (i)) We show that every nBA � with n elements is simple. If � is a congru-

ence on � such that �i��j , for some i ≠ j , then

for arbitrary x, y. Then � is a simple algebra.
((iii) implies (iv)) If |A| > n , then there exists an a ∈ A such that a ≠ �i for every i ≤ n . 

Since a is a nontrivial n-central element of � , it gives rise to a decomposition of � into 
n ≥ 2 factors. Then � is directly decomposable.   ◻

As a direct consequence of the previous lemma, we get:

Theorem 5 Any variety V of nBA s is generated by the finite set {� ∈ V ∶ |A| = n} . In par-
ticular, the variety of pure nBA s is generated by the algebra �.

Notice that, if a nBA � has a minimal subalgebra � of cardinality n, then 
V(�) = V(�) . However, we cannot assume that any two n-element algebras in an arbi-
trary variety V of nBAs are isomorphic, for such algebras may have further operations 
over which we do not have any control.

The next corollary shows that, for any n ≥ 2 , the nBA � plays a role analogous to the 
Boolean algebra � of truth values.

Corollary 1 (i) Every nBA � is isomorphic to a subdirect product of �I1
1
×… × �

Ik
k
 for 

some sets I1,… , Ik and some nBA s �1,… ,�k of cardinality n; (ii) Every pure nBA � is 
isomorphic to a subdirect power of �I , for some set I.

Proof (i) Apply Lemma 3, Theorem 5 and Birkhoff’s subdirect representation theorem to 
the variety generated by � . (ii) By (i) and by � ∈ V(�) .   ◻

A subalgebra of the nBA ���(X) of the n-partitions on a set X, defined in Exam-
ple 4, is called a field of n-partitions on X. The Stone representation theorem for nBAs 
follows.

x = q(�i,… , x,… , y,…)�q(�j,… , x,… , y,…) = y
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Corollary 2 Any pure nBA is isomorphic to a field of n-partitions on a suitable set X.

One of the most remarkable properties of the 2-element Boolean algebra, called pri-
mality in universal algebra (Burris and Sankappanavar 1981, Section 7 in Chap. IV), is 
the definability of all finite Boolean functions in terms of a certain set of term opera-
tions, e.g. the connectives and, or, not. This property is inherited by nBAs. We prove 
that an algebra of cardinality n is primal if and only if it is a nBA , so that every variety 
generated by a n-element primal algebra is a variety of nBAs.

Definition 15 Let � be a nontrivial �-algebra. � is primal if it is of finite cardinality and, 
for every function f ∶ An

→ A ( n ≥ 0 ), there is a �-formula �(x1,… , xn) such that for all 
a1,… , an ∈ A , f (a1,… , an) = ��(a1,… , an) . A variety V is primal if V = V(�) for a pri-
mal algebra �.

Definition 16 A �n-formula is a head normal form (hnf, for short) if it is defined according 
to the following grammar: �,�i ∶∶= �i | x | q(x,�1,… ,�n) , where x is an arbitrary vari-
able. The occurrence of the variable x in the hnf � ≡ q(x,�1,… ,�n) is called head occur-
rence of x into �.

Lemma 4 Let � be a finite nBA of cardinality n. Then, for every function f ∶ Ak
→ A , there 

exists a canonical hnf � such that f = ��.

Proof Since � is a nBA of cardinality n, then A = {��
1
,… , ��

n
} . We show by induction 

on k that every function f ∶ Ak
→ A is term-definable in � . If f ∶ A → A is a unary func-

tion, then we define f (x) = q�(x, f (��
1
), f (��

2
),…… , f (��

n
)) . If f ∶ A × Ak

→ A is a func-
tion of arity k + 1 , then by induction hypothesis, for each ��

i
∈ A , there exists a formula 

�i(x1,… , xk) such that f (��
i
, a1,… , ak) = ��

i
(a1,… , ak) for all aj ∈ A . Then we have: 

f (a, b1,… , bk) = q�(a,��
1
(b1,… , bk),… ,��

n
(b1,… , bk)) .   ◻

The following theorem is a trivial application of Lemma 4.

Theorem 6 Let � be a finite �-algebra of cardinality n. Then � is primal if and only if it is 
a nBA.

It follows that, if � is a primal algebra of cardinality n, then the variety generated by 
� is a variety of nBA s. Notice that varieties of nBAs generated by more than one alge-
bra are not primal.

We would like to point out here that when an algebra � is primal, the choice of fun-
damental operations is a matter of taste and convenience (since any functionally com-
plete set of operations would do the job), and hence is typically driven by applications.

Example 5 (The primal variety of n-valued Post algebras) An algebra (A,∨,∧,� , 0, 1) of 
type (2, 2, 1, 0, 0) is a n-valued Post algebra if it satisfies every identity satisfied by the 
algebra �n = (Pn,∨,∧,

� , 0, 1) , where Pn is the chain 0 < n − 1 < n − 2 < ⋯ < 2 < 1 , and 
0� = 1 , 1� = 2,… , (n − 2)� = n − 1, (n − 1)� = 0 . Writing x(k) for the result of k successive 
applications of ′ to x, every n-valued Post algebra is a nBA with respect to
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where

is a term operation on �n for each 0 ≤ i ≤ n − 1.

For later use, the reader is reminded that the discriminator function on a set A is the 
ternary function

A variety V of type � is a discriminator variety if there is a ternary �-formula �(x, y, z) that 
realises the discriminator function on any subdirectly irreducible member of V . Clearly, 
primal varieties are discriminator varieties.

5  The logics nCL

For every natural number n ≥ 2 , the algebra � naturally gives rise to a tabular logic 
nCLF = (𝜈n,⊢(�,F)) , for each � ≠ F ⊊ {�1,… , �n} . These logics have a unique connective q 
of arity n + 1 and generalise classical propositional logic CL . As a matter of fact, the logic 
2CL

�2
= (𝜈2,⊢�2

) , where 1 = �2 and 0 = �1 , is nothing else than CL with a different choice 
of primitive connectives. For these reasons, for all 2 ≤ n < 𝜔 , the logic nCLF = (𝜈n,⊢(�,F)) 
will be called classical logic of dimension n and designated elements F. In this and the next 
section we show: 

 (i) The complete symmetry of the truth values �1,… , �n , supporting the idea that nCL 
is the right generalisation of classical logic from dimension 2 to dimension n.

 (ii) The universality of nCL , by conservatively translating any n-valued tabular logic 
into it.

 (iii) The existence of a terminating and confluent term rewriting system (TRS, for short) 
to test the validity of �n-formulas by rewriting. By the universality of nCL , in order 
to check whether a n-valued tabular logic satisfies a formula � it is enough to see 
whether the normal form of the translation �∗ is one of the designated values.

5.1  Equipollence

In this section we establish the complete symmetry of the truth values �1,… , �n , by show-
ing that every permutation � of the truth values determines, for every designated set F of 
truth values, a strong equipollence (see Caleiro and Gonçalves (2007)) between the tabular 
logic nCLF and the tabular logic nCL�F.

Let � be any algebra in the similarity type of nBA s and �, � be permutations of 1,… , n . 
For any x ∈ A , we define

q(x, y0,… , yn−1) =

n−1⋁

i = 0

yi ∧ g(g(x, i), 1),

g(x, i) = [
⋀

1≤j≤n−1

(
⋀

1≤k≤n

x(k) ∨ i(k))(j)]� =

{
0 if x = i

1 otherwise.

t(a, b, c) =

{
c if a = b;

a, otherwise.
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If there is no ambiguity, we write x� = q(x, ��1,… , ��n) for x��

= q�(x, ��
�1
,… , ��

�n
) . We 

remark that (�i)� = q(�i, ��1,… , ��n) = ��i in any nCA.

Lemma 5 Let � be a nBA . Then � satisfies the following conditions: 

 (i) (x�)� = x�◦�;
 (ii) q(x, y1,… , yn)

� = q(x, y�
1
,… , y�

n
);

 (iii) q(x� , y1,… , yn) = q(x, y�1,… , y�n);
 (iv) The map x ↦ x� is bijective with inverse map x ↦ x�

−1.

Proof

 
  

If � is a �n-formula and � is a permutation of 1,… , n , we define

We now restrict our attention to the algebra � . If F ⊆ {�1,… , �n} and � is a permutation of 
1,… , n , then we define

Proposition 2 Let � be a permutation and � ⊊ F ⊆ {�1,… , �n} . Then the following condi-
tions are equivalent: 

 (i) Γ ⊢(�,F) 𝜙;
 (ii) Γ𝜎 ⊢(�,𝜎F) 𝜙

𝜎.

Proof If g ∶ ��n
(X) → � is a homomorphism, for every formula � we have: g(�) = �i iff 

g(��) = g(q(� , ��1,… , ��n)) = q(g(�), g(��1),… , g(��n)) = q(�i, ��1,… , ��n) = ��i .   ◻

(1)x�
�

= q�(x, ��
�1
,… , ��

�n
).

(x�)� = q(q(x, ��1,… , ��n), ��1,… , ��n)

= q(x, q(��1, ��1,… , ��n),… , q(��n, ��1,… , ��n)) by (B3)

= q(x, ��(�1),… , ��(�n))

= x�◦� .

q(x, y1,… , yn)
� = q(q(x, y1,… , yn), ��1,… , ��n)

= q(x, y�
1
,… , y�

n
) by (B3)

q(x� , y1,… , yn) = q(q(x, ��1,… , ��n), y1,… , yn)

= q(x, q(��1, y1,… , yn),… , q(��n, y1,… , yn)) by (B3)

= q(x, y�1,… , y�n).

(x�)�
−1

= x�
−1◦� by (i)

= xId = q(x, �1,… , �n) = x by (B4)

◻

�� = q(�, ��1,… , ��n).

�F = {��i ∶ �i ∈ F}.
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Example 6 Let �,� be two formulas of classical logic CL and let � be the permutation such 
that �1 = 2 and �2 = 1 . Recalling that � = �2 and � = �1 , we have 𝜓 ⊢(�,𝗍) 𝜙 ⇔ 𝜓𝜎 ⊢(�,𝖿 ) 𝜙

𝜎 .

A permutation � of 1,… , n determines a type morphism �̂� ∶ 𝜈n → 𝜈n (see Definition 9) 
as follows:

We recall from Sect. 2.5 that, if q(�,�1,… ,�n) is a �n-formula, then

Lemma 6 Any nBA satisfies the identity �̂�(𝜑) = 𝜑𝜎.

Proof The proof is by induction over the complexity of � . The basis is clear. We consider 
now the inductive step:

  ◻

Lemma 7 Let F, G be nonempty proper subsets of {�1,… , �n} having the same cardinal-
ity and let � be a permutation such that �F = G . Then the type morphism �̂� ∶ 𝜈n → 𝜈n is a 
strong logical morphism from nCLF = (𝜈n,⊢(�,F)) into nCLG = (𝜈n,⊢(�,G)).

Proof By Lemma 6 and Proposition 2.   ◻

Proposition 3 Let F, G be nonempty proper subsets of {�1,… , �n} having the same car-
dinality. Then the tabular logics nCLF = (𝜈n,⊢(�,F)) and nCLG = (𝜈n,⊢(�,G)) are strongly 
equipollent.

Proof Let � be a permutation of 1,… , n such that �F = G . Let � = �−1 . Then �G = F . 
By Lemma 7 �̂� ∶ nCLF → nCLG and �̂� ∶ nCLG → nCLF are logical morphisms. It remains 
to prove that 𝜙 ≡nCLF

�̂�(�̂�(𝜙)) and 𝜙 ≡nCLG
�̂�(�̂�(𝜙)) . The conclusion is trivial because 

�̂�(�̂�(𝜙)) = (𝜙𝜎)𝜌 = (𝜙𝜎)𝜎
−1

= 𝜙Id = 𝜙 in every nBA.   ◻

Corollary 3 Under the assumptions of Proposition 3, the theory lattices of the logics nCLF 
and nCLG are isomorphic.

Definition 17 (Moraschini 2015, Definition 3.1) A finite non-trivial algebra � is every-
where strongly logifiable if the tabular logic determined by the matrix (�,F) is algebrais-
able, for every F ∈ P(A) ⧵ {�,A} , with equivalent algebraic semantics the variety V(�).

�̂�(�k) = (�k)
𝜎 (1 ≤ k ≤ n); �̂�(x) = x𝜎 (x ∈ X); �̂�(q) = q((𝜉0)

𝜎−1

, 𝜉1,… , 𝜉n).

�̂�(q(𝜙,𝜓1,… ,𝜓n)) = q(�̂�(𝜙)𝜎
−1

, �̂�(𝜓1),… , �̂�(𝜓n)).

�̂�(q(𝜙,𝜓1,… ,𝜓n)) = q(�̂�(𝜙)𝜎
−1

, �̂�(𝜓1),… , �̂�(𝜓n))

= q((𝜙𝜎)𝜎
−1

,𝜓𝜎
1
,… ,𝜓𝜎

n
) by induction

= q(𝜙𝜎−1◦𝜎 ,𝜓𝜎
1
,… ,𝜓𝜎

n
) by Lemma 5(i)

= q(𝜙Id,𝜓𝜎
1
,… ,𝜓𝜎

n
) by 𝜎−1◦𝜎 = Id

= q(q(𝜙, �1,… , �n),𝜓
𝜎
1
,… ,𝜓𝜎

n
) by definition of 𝜙Id

= q(𝜙,𝜓𝜎
1
,… ,𝜓𝜎

n
) by (B4)

= q(𝜙,𝜓1,… ,𝜓n)
𝜎 by Lemma 5(ii)
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Proposition 4 

 (i) The algebra � is everywhere strongly logifiable.
 (ii) For every nonempty proper subsets F of {�1,… , �n} , the logic nCLF is algebraisable 

with equivalent algebraic semantics the variety nBA.

Proof By (Moraschini 2015, Lemma 3.2) and the primality of � .   ◻

5.2  A Hilbert calculus for the nCL logics

In this short subsection we provide a Hilbert-style axiomatisation for the classical logics of 
dimension n with a single designated value ei . Basically, after observing that each variety 
V(�) of pure nBAs is ei-regular for all i ≤ n , we apply Blok and Pigozzi’s algorithm (Theo-
rem 3) to the axiomatisation of V(�) given above immediately after Definition 14.

For �,� ∈ T�n (X) , and for all i, j, k ≤ n , we set:

• ei
[
ej∕k

]
=∶ ei, ei,… , ej,… , ei, ei(ej in k-th position);

• � ↔
i � =∶ q

(
�, q

(
� , ej

[
ei∕1

])
,… , q

(
� , ej

[
ei∕n

]))
.

Lemma 8 For all n < 𝜔 , and for all i ≤ n , the variety V(�) is ei-regular and the formula 
� ↔

i � witnesses ei-regularity for V(�).

Proof By Theorem 6, V(�) is a discriminator variety with discriminator formula

Moreover, it is a double-pointed variety for every choice of ei and ej . Then by (Salibra et al. 
2013, Lemma 5.5) it is ei-regular with witness formula

  ◻

Theorem 7 Fixing j ≠ i , the logic nCL{ei}
 is axiomatised by the following axioms and rules:

�(x, y, z) = q(x, q(y, x
[
z∕1

]
),… , q(y, x

[
z∕n

]
)).

� ↔
i,j � = �(�(� ,� , ei),�(� ,� , ej), ej).

A1 𝜑 ↔
i,j 𝜑

A2 q
(
𝜑, e1,… , en

)
↔

i,j 𝜑

A3 q
(
𝜑, ��⃗𝜓

)
↔

i,j 𝜓

A4
q
(
𝜑, q

(
𝜓1,𝜒11,… ,𝜒1n

)
,… , q

(
𝜓n,𝜒n1,… ,𝜒nn

))

↔
i,j q

(
q
(
𝜑,𝜓1,… ,𝜓n

)
,… , q

(
𝜑,𝜒1n,… ,𝜒nn

))

R1 𝜑,𝜑 ↔
i,j 𝜓 ⊢(�,{ei})

)𝜓

R2 𝜑 ↔
i,j 𝜓 ⊢(�,{ei})

)𝜓 ↔
i,j 𝜑

R3
𝜑1 ↔

i,j 𝜓1,… ,𝜑n+1 ↔
i,j 𝜓n+1

⊢(�,{ei})
)q
(
𝜑1,… ,𝜑n+1

)
↔

i,j q
(
𝜓1,… ,𝜓n+1

)

R4 𝜑 ⊢(�,{ei})
)𝜑 ↔

i,j ei
R5 𝜑 ↔

i,j ei ⊢(�,{ei})
)𝜑
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Proof By Theorem 2 and the remarks immediately following Theorem 3, the ei-assertional 
logic S

(
V, {x ≈ ei}

)
 of a ei-regular variety V , where ei-regularity is witnessed by a single 

formula, is algebraisable with V as equivalent variety semantics, and with a singleton set 
of equivalence formulas whose member is the formula witnessing ei-regularity. The axioms 
A1-A4 and the rules R1-R5 result from applying the algorithm in Theorem 3 to the axi-
omatisation of V(�) (implicitly) given above immediately after Definition 14.   ◻

6  Universality

The logics nCLF ( F ⊆ {�1,… , �n} ) are universal in the sense that any n-valued tabular 
logic with k designated elements admits a faithful translation into nCLF with |F| = k . This 
is not surprising, because � is a primal algebra. We notice here that, as a general rule, we 
could work just as well with the tabular logics (𝜏,⊢(�,F)) ( F ⊆ P ), where � is a primal alge-
bra of cardinality n.

Let L = (𝜏,⊢(�,F)) be a tabular logic with a set F of designated values such that |A| = n 
and 0 < |F| < n . In what follows, we identify A with {�1,… , �n}.

We now define a type morphism (−)∗ ∶ � → �n , translating the �-formulas of L into �n
-formulas of nCL . We start with the logical connectives. If f is a k-ary connective of type 
� , then f� ∶ Ak

→ A is a k-ary operation on � . As the algebra � and the nBA � have the 
same universe, then f� can be considered as a function from {�1,… , �n}

k to {�1,… , �n} . 
By Lemma 4 the function f� is term-definable through a hnf f ∗(�1,… , �k) of type �n . The 
translation of the �-formulas into �n-formulas is defined by induction as follows:

The formula f (�1,… ,�k)
∗ is not in general a hnf (see Definition 16), because the substitu-

tion �∗
i
∕�i may occur into a head occurrence of the metavariable �i.

The next theorem shows that the translation is sound and complete.

Theorem 8 Let L = (𝜏,⊢(�,F)) be a tabular logic such that |A| = n . Then nCLF is a con-
servative expansion of L and, for �-formulas Γ ∪ {�} , we have:

Example 7 The translation of the connectives of CL is as follows, where 0 = �1 and 1 = �2:

Example 8 The translation of the connectives of Gödel Logic G3 , Łukasiewicz Logic L–3 , 
and Post Logic P3 is as follows:

– G3 , L–3 , P3 : ∨◦ = q(x, y, q(y, �2, �2, �3), �3)      ∧◦ = q(x, �1, q(y, �1, �2, �2), y)

– G3 : ¬◦ = q(x, �3, �1, �1);   L–3 : ¬◦ = q(x, �3, �2, �1);   P3 : ¬◦ = q(x, �3, �1, �2);
– G3 : →◦= q(x, 𝖾3, q(y, 𝖾1, 𝖾3, 𝖾3), y);      L–3 : →◦= q(x, 𝖾3, q(y, 𝖾2, 𝖾3, 𝖾3), y).

x∗ = x; �
∗
i
= �i; f (�1,… ,�k)

∗ = f ∗(�∗
1
∕�1,… ,�∗

k
∕�k).

Γ ⊢(�,F) 𝜙 ⇔ Γ∗ ⊢(�,F) 𝜙
∗.

∨◦ = q(x1, x2, 1) ∧◦ = q(x1, 0, x2); ¬◦ = q(x1, 1, 0).
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6.1  Rewriting

In this subsection we show how to turn the equations axiomatising nBA into rewriting rules. 
We introduce two terminating and confluent TRSs ↣hnf and ↣full on �n-formulas. We will 
show that, for every 1 ≤ i ≤ n,

where hnf(�) is the canonical head normal form logically equivalent to � (see Definition 16 
and Lemma 4).

The rewriting rules in this section are very tightly related to the equivalence transforma-
tion rules of multi-valued decision diagrams (see Hett et al. 1997; Miller and Drechsler 2002). 
The TRS ↣full is a direct generalisation to the multiple case of Zantema and van de Pol binary 
rewriting system described in Zantema and van de Pol (2001), where the authors are seem-
ingly unaware that their axiomatisation captures exactly binary decomposition operators.

The subsection is organised as follows: in Sect. 6.1.1 we prove that the TRS ↣hnf is conflu-
ent and terminating. Then in Sect. 6.1.2 we describe the relationship between multiple-valued 
decision diagrams and nBAs. We conclude the article with Sect. 6.1.3, where the TRS ↣full is 
presented, and its termination and confluence are stated.

6.1.1  The hnf of a formula

In this section we define a confluent and terminating rewriting system to get the canonical hnf 
of a formula.

We consider the variety H of �n-algebras axiomatised by the following identities: 

 (A1) q(�i, x1,… , xn) ≈ xi;
 (A2) q(q(x, y1,… , yn), z1,… , zn) ≈ q(x, q(y1, z1,… , zn),… , q(yn, z1,… , zn)).

Notice that (A1) is the axiom defining nCAs and (A2) is an instance of axiom (B3) defining 
n-central elements.

We define an algebra � of type �n , having the set of hnfs as universe. The operation q� is 
defined by induction over the complexity of its first hnf argument.

For every hnfs �̄� = 𝜓1,… ,𝜓n:

A routine calculation shows that � is isomorphic to the free algebra �H over a countable 
set Var of generators. We turn the identities axiomatising H into rewriting rules.

Definition 18 The rewriting rules ↣hnf are: 

(h0)  q(𝖾i, x1,… , xn) ↣hnf xi
(h1)  q(q(x, y1 … , yn), z1,… , zn) ↣hnf q(x, q(y1, z1,… , zn),… , q(yn, z1,… , zn)).

⊢(�,𝖾i)
𝜙 iff 𝜙 ↣

∗
hnf

hnf(𝜙) ↣∗
full

𝖾i,

q�(�i, �̄�) = 𝜓i

q�(x, �̄�) = q(x, �̄�) (x ∈ Var)

q�(q(x, u1,… , un), �̄�) = q(x, q�(u1, �̄�),… , q�(un, �̄�)).
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Theorem 9 The rewriting system ↣hnf is terminating and confluent.

Proof The left linear system ↣hnf is confluent because all critical pairs are converging. Ter-
mination is obtained by applying the subterm criterion to the dependency pairs of ↣hnf (see 
(Hirokawa and Middeldorp 2007,  Section  2)). We have the following dependency pairs 
of rule (h1) l ↣hnf r : q#(q(x, ȳ), z̄) ↣ q#(yi, z̄) , since q(yi, z̄) is not a subformula of l, and 
q#(q(x, ȳ), z̄) ↣ q(x, q(y1, z̄),… , q(yn, z̄)) , since r is not a subformula of l. For the subterm 
criterion, we apply the simple projection in the first argument. This proof of termination 
of the TRS ↣hnf is automatised by the  tool (see Korp et al. 2009).   ◻

The normal forms of ↣hnf are the hnfs; we denote by hnf(�) the normal form of �.

6.1.2  nCL and Decision Diagrams

As we have observed, there are connections between the logics nCL and the theories of 
binary decision diagrams (BDD) and multi-valued decision diagrams (MDD). A decision 
diagram is an acyclic oriented graph that can be unfolded as a tree. Each branch node rep-
resents a choice between a number of alternatives and each leaf node represents a decision. 
As the operation q in the nBA � is a n-arguments choice operation, a decision tree with 
branching factor at most n, whose nodes are labelled only by variables, can be codified as a 
head normal form in the type of pure nBAs. As a matter of fact, a logical variable x label-
ling a node of a decision diagram is an operator, whose arity is the branching factor of the 
node. For example, the variable x in the diagram D below is a ternary operator: 

 This diagram is naturally represented by the head normal form:

In general, a branch of a n-branching decision tree D in k variables corresponds to a homo-
morphism from the formula algebra ��n

(y1,… , yk) into � . In an arbitrary nBA a n-branch-
ing variable x of a decision diagram becomes the decomposition operator q(x,−1,… ,−n).

It is remarkable that several transformations on decision diagrams found in literature 
(Hett et al. 1997; Miller and Drechsler 2002) are instances of nBA axiomatisation.

The next example explains the relationship among CL, 2CL and BDDs.

Example 9 By Example 7 the formula � = x1 ∨ (x2 ∧ x3) is translated into 2CL as follows: 
�∗ = q(x1, q(x2, 0, x3), 1) (where 0 = �1 and 1 = �2).

�D = q(x, q(y1,…), q(y2,…), q(y3,…)).
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CL 2CL BDD

� = x1 ∨ (x2 ∧ x3) �∗ = q(x1, q(x2, 0, x3), 1)

Remark that the formula �∗ in the example above is a hnf, and this allows one to associ-
ate a BDD to it. In general, the translation of a formula is not in head normal form, as 
for instance ((x1 ∨ x2) ∧ x3)

∗ = q(q(x1, x2, 1), 0, x3) . Applying the TRS ↣hnf to the formula 
q(q(x1, x2, 1), 0, x3) we get an equivalent head normal form. Thus, we may associate univo-
cally a decision diagram to any formula.

In the next example, we consider a non-binary case: the “all-different” constraint for 
ternary variables. To keep the example reasonably small, we consider the simple case of 
two variables.

Example 10 Let �1, �2, �3 be the truth values. We define 1 = �3 and 0 = �1.

3CL MDD

q(x1, q(x2, 0, 1, 1), q(x2, 1, 0, 1), q(x2, 1, 1, 0) x1

x2

0 1 1

x2

1 0 1

x2

1 1 0

6.1.3  The normal form of a formula

We introduce a second TRS, which, restricted to hnfs, is terminating and confluent. First 
we define the variety W axiomatised over H (see Sect. 6.1.1) by the following identities: 

(A3)  q(x, y,… , y) ≈ y;
(A4)  q(x, �1,… , �n) ≈ x;
(A5 i)  q(x, y1,… , yi−1, q(x, z1,… , zn), yi+1,… , yn) ≈

  q(x, y1,… , yi−1, zi, yi+1,… , yn);
(A6)  q(x, q(y, y1

1
,… , y1

n
),… , q(y, yn

1
,… , yn

n
)) ≈

  q(y, q(x, y1
1
,… , yn

1
),… , q(x, y1

n
,… , yn

n
)).
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Lemma 9 W = nBA.

Proof (B3) ∶ q(q(c, x1,… , xn), q(c, ȳ),… , q(c, z̄)) =A2

q(c, q(x1, q(c, ȳ),… , q(c, z̄)),… , q(xn, q(c, ȳ),… , q(c, z̄))) =A6

q(c, q(c, q(x1y1 … z1),… , q(x1yn … zn)),… ,

q(c, q(xny1 … z1),… , q(xnyn ⋯ zn))) =A5i

q(c, q(x1, y1,… , z1),… , q(xn, yn,… , zn)).   ◻

By Lemma 9 the free algebra �nBA over a countable set Var of generators is isomor-
phic to the quotient �H∕� , where � is the fully invariant congruence generated by the 
axioms (A3)-(A6). The characterisation of �H given in Sect. 6.1 justifies the restriction 
to hnfs of the TRS defined below.

For all �n-formulas � of nCL , each subformula of hnf(�) of the form q(x, y1,… , yn) 
is such that x is always a variable. It follows that the head occurrences of variables in 
hnf(�) behave as constants. We consider a total order < on the set Var of variables: 
x1 < x2 < x3 < ⋯.

Definition 19 The following are the rewriting rules ↣full acting on hnfs, where x, x′ ranges 
over variables and y, yi, zj, ū over arbitrary hnfs: 

(r2)  q(x, y,… , y) ↣ y;
(r3)  q(x, 𝖾1,… , 𝖾n) ↣ x;
(ri
4
)  q(x, y1,… , yi−1, x, yi+1,… , yn) ↣ q(x, y1,… , yi−1, 𝖾i, yi+1,… , yn);

(ri
5
)  q(x, y1,… , yi−1, q(x, z1,… , zn), yi+1,… , yn) ↣ q(x, y1,… , yi−1, zi, yi+1,… , yn);

(ri
6
)  If x′ < x then q(x, y1,… , yi−1, q(x

�, z1,… , zn), yi+1,… , yn) ↣ 
q(x�, q(x, y1,… , yi−1, z1, yi+1,… , yn),… , q(x, y1,… , yi−1, zn, yi+1,… , yn));

(ri
7
)  If x′ < x then q(x, y1,… , yi−1, x

�, yi+1,… , yn) ↣

  
q(x�, q(x, y1,… , yi−1, �1, yi+1,… , yn),… , q(x, y1,… , yi−1, �n, yi+1,… , yn))

.

Theorem 10 ↣full restricted to hnfs is terminating and confluent.

Proof The proof is an easy generalisation of the case n = 2 that can be found in Zantema 
and van de Pol (2001), Salibra et  al. (2016). For the sake of completeness, the proof is 
given in the “Appendix”.   ◻

Corollary 4 A given n-valued tabular logic satisfies ⊢(�,F) 𝜙 if and only if �∗
↣

∗
𝖾i , with 

�i ∈ F.
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7  Conclusions and future work

The focus of the present paper is on the logical, and partly on the computational, aspects of 
the project we illustrated in the introduction. A closer examination of its implications and 
potential for universal algebra and for the theory of Boolean vector spaces is deferred to 
future accounts of work that is currently in progress [23].

In particular, we intend to parlay the theory of n-central elements into an extension to 
arbitrary semirings of the technique of Boolean powers (semiring powers). We will show 
that: i) any pure nBA � can be represented as the nBA of n-central elements of a Boolean 
vector space; ii) any nBA in a variety of nBAs with one generator is isomorphic to a 
Boolean power of this generator. Foster’s theorem on primal varieties (Burris and Sankap-
panavar 1981, Thm. 7.4), according to which any member of a variety generated by a pri-
mal algebra is a Boolean power of the generator, will follow as a corollary.

Apart from Boolean algebras, many algebras investigated in classical mathematics, like 
rings with unit or ortholattices, have dimension 2. We succeeded in generalising Boolean 
algebras to n-dimensional Boolean-like algebras. It would be worthwhile to explore 
whether other classes of algebras also admit of meaningful n-dimensional counterparts.

On the logical side, we intend to develop further the metatheory of nCL , by providing 
sequent calculi for each of these logics.
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Appendix

In this appendix we prove Theorem 10. Let Σ be the type given by: {ci}i∈N and �1,… , �n , 
nullary function symbols, and q, (n + 1)-ary function symbol. We write ci < cj if i < j . The 
constants ci represent the elements of Var. Throughout this Appendix, we use t, u,… as 
metavariables for formulas.

Definition 20 The lexicographic path ordering on hnfs <lpo is defined by t <lpo u if: 

http://creativecommons.org/licenses/by/4.0/
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(b1)  ∃i, j such that t = �j and u = ci.
(b2)  ∃i < j such that t = ci and u = cj.
(s1)  u = q(u0, u1,… , un) and ∃i ∈ {0,… , n} such that t ≤lpo ui , where t ≤lpo ui stands for 

t <lpo ui or t = ui.
(s2)  t = q(t0, t1,… , tn), u = q(u0, u1,… , un) and ∃i ∈ {0,… , n} such that 

∀j ∈ {0,… , i − 1} tj = uj , ti <lpo ui and ∀j ∈ {i + 1,… , n} tj <lpo u.

Lemma 10 For each rewriting rule t ↣ u of Rfull we have t >lpo u.

Proof 

• (r2 ): q(cj, y,… , y) >lpo y by ( s1).
• (r3 ): q(cj, �1,… , �n) >lpo cj by ( s1).
• (ri

4
 ): q(cj, y1,… , yi−1, cj, yi+1,… , yn) >lpo q(cj, y1,… , yi−1, �i, yi+1,… , yn) by ( s2 ) and 

( b1).
• (ri

5
 ): q(cj, y1,… , yi−1, q(cj, z1,… , zn), yi+1,… , yn) >lpo q(cj, y1,… , yi−1, zi, yi+1,… , yn) 

by ( s2 ) and ( s1).
• (ri

6
 ): if ck < cj then q(cj, y1,… , yi−1, q(ck, z1,… , zn), yi+1,… , yn) >lpo 

q(ck, q(cj, y1,… , yi−1, z1, yi+1,… , yn),… , q(cj, y1,… , yi−1, zn, yi+1,… , yn)) by ( s2 ), ( b2 ) 
and ( s1).

• (ri
7
 ): if ck < cj then q(cj, y1,… , yi−1, ck, yi+1,… , yn) >lpo 

q(ck, q(cj, y1,… , yi−1, �1, yi+1,… , yn),… , q(cj, y1,… , yi−1, �n, yi+1,… , yn)) by ( s2 ) and 
( b1).

  ◻

Since the partial order on Σ given by ( b1 ) and ( b2 ) in Definition 20 is well-founded, the 
corresponding recursive path ordering <lpo on hnfs is well-founded, too. Hence:

Theorem 11 The rewriting system Rfull is terminating.

The confluence of Rfull is proved by showing that two Rfull normal forms that are logi-
cally equivalent are actually equal.

Definition 21 Let C = {cn}n∈ℕ . Given an environment � ∶ C → � let us define the inter-
pretation of the formula t with respect to � , written [[t]]� ∈ � , as follows:

• [[�i]]� = �i

• [[ci]]� = �(ci)
• [[q(t, u1,… , un)]]� = [[ui]]� if [[t]]� = �i.

The formulas t and u are logically equivalent, written t ≃ u , if for all � , [[t]]� = [[u]]�.
The following remark is trivial:

Remark 1 If ci does not occur in the term t, and the environments �, �′ are such that for all 
j ≠ i �(cj) = ��(cj) , then [[t]]� = [[t]]��.

As a matter of notation, for i ∈ ℕ , 1 ≤ k ≤ n and an environment � let �i←k be the envi-
ronment defined by
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Definition 22 The size of Σ-terms is defined by

• #(ci) = #(�j) = 0,
• #(q(u0, u1,… , un)) = 1 + #(u0) +⋯ + #(un).

Lemma 11 If t = q(ci, t1,… , tn) is a Rfull normal form, and if cj occurs in tk , j ∈ ℕ and 
1 ≤ k ≤ n , then ci < cj.

Proof By induction on tk . If tk = cj , then ci < cj since if ci = cj then the rule rk
4
 applies to 

t, and if cj < ci then the rule rk
7
 applies to t. Otherwise, tk = q(cl, u1,… , un) . By induction 

hypothesis we know that cl ≤ cj . We also know that cl ≠ ci , otherwise rule rk
5
 applies to t, 

and that cl ≮ ci , otherwise rule rk
6
 applies to t. Hence ci < cl and we are done.   ◻

Lemma 12 Let t, u be Rfull normal forms:

If t ≃ u then t = u.

– If t = q(ci, t1,… , tn) (resp. u = q(cj, u1,… , un) ) then there exist 1 ≤ k, l ≤ n such that 
tk ≄ tl (resp. uk ≄ ul ) .

Proof Let us call S(t, u) and T(t, u) the two statements of the lemma, whose proof is by 
mutual induction on #(t) + #(u).

If #(t) + #(u) = 0 then:

• T(t, u): trivial.
• S(t, u): t and u are either ci or �j for some i, j; it is easy to see that if t ≠ u then t ≄ u.

If #(t) = 0 and #(u) > 0 , say u = q(ci, u1,… , un):

• T(t, u): if for all 1 ≤ i, j ≤ n we had ui ≃ uj , then by the induction hypothesis S(ui, uj) we 
would get ui = uj , and hence u would be a (r2)-redex.

• S(t, u): We reason by cases on t: if t = �j , then t ≃ u iff for all i ui ≃ �j . By induction 
hypothesis S(�j, ui) , we have that for all i ui = �j , and hence u is a (r2)-redex, a contra-
diction. If t = ci , then t ≃ u iff for all i ui ≃ �i . By the induction hypothesis S(�i, ui) , , we 
have for all i ui = �i , and hence u is a (r3)-redex, a contradiction. If t = cj for some j ≠ i , 
then let k, l, � given by the induction hypothesis T(t, u), such that [[uk]]� ≠ [[ul]]� . Let us 
suppose w.l.o.g. that [[uk]]� ≠ �(cj) , otherwise we pick l instead of k, and let �� = �i←k . 
Using Lemma 11 and Fact 1 we get: 

 a contradiction, since u ≃ t.
If #(t) > 0 and #(u) = 0 , we reason as above.

If #(t) > 0 and #(u) > 0 , say t = q(ci, t1,… , tn) and u = q(cj, u1,… , un):

�i←k(cj) =

{
�(cj) if j ≠ i

𝖾k otherwise

[[u]]�� = [[uk]]�� = [[uk]]� ≠ �(cj) = ��(cj) = [[t]]��
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• T(t,  u): as above, if for all 1 ≤ i, j ≤ n we had ui ≃ uj , then by induction hypothesis 
S(ui, uj) we would get ui = uj , and hence u would be a (r2)-redex. Similarly for t.

• S(t, u) we proceed by case analysis: if i = j , we have that t ≃ u iff for all i, ti ≃ ui . Then 
the induction hypothesis S(ti, ui) gives ti = ui , and hence t = u . If i ≠ j , then w.l.o.g. let 
us suppose that ci < cj . By the induction hypothesis T(t, u), let [[tk]]� ≠ [[tl]]� , and let us 
suppose, again w.l.o.g., that [[u]]� ≠ [[tk]]� (otherwise we pick l instead of k). By using 
Lemma 11 and Fact 1 we get: 

 a contradiction, since u ≃ t.
  ◻

Lemma 13 If t ↣ u in Rfull , then t ≃ u.

Theorem 12 The rewriting system Rfull is confluent.

Proof If t ↣∗ ti for i = 1, 2 , let t′
i
 be the Rfull normal form of ti , that exists by Theorem 11. 

By Lemma 13 t�
1
≃ t ≃ t�

2
 , and we conclude by Lemma 12 that t�

1
= t�

2
 .   ◻
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