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ABSTRACT
Prediction bias is a well-known problem in classification algorithms,
which tend to be skewed towards more represented classes. This
phenomenon is even more remarkable in multi-label scenarios,
where the number of underrepresented classes is usually larger.
In light of this, we hereby present the Prediction Bias Coefficient
(PBC), a novel measure that aims to assess the bias induced by la-
bel imbalance in multi-label classification. The approach leverages
Spearman’s rank correlation coefficient between the label frequen-
cies and the F-scores obtained for each label individually. After
describing the theoretical properties of the proposed indicator, we
illustrate its behaviour on a classification task performed with state-
of-the-art methods on two real-world datasets, and we compare it
experimentally with other metrics described in the literature.

CCS CONCEPTS
• Information systems→Clustering and classification; Eval-
uation of retrieval results.
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1 INTRODUCTION
Classification algorithms are known to suffer from the prediction
bias issue, as the imbalance between the classes causes them to
penalise classes that appear less frequently in the training set [1, 2].
This behaviour is more pronounced in multi-label settings, in which
each instance can be associated with a variable number of labels
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[3]. The interdependence of co-occurring labels and the larger num-
ber of underrepresented labels makes the learning process in this
scenario remarkably more complex [4, 5]. This challenge is particu-
larly relevant in the current technological era, in which increasingly
larger amounts of multi-medial Big Data are being annotated with
tags or categories for a variety of tasks [6, 7]. Moreover, there are
applications such as job recommendations, credit scoring, or fraud
detection, where prediction bias can potentially translate into the
discrimination or exclusion of certain minorities of people [8]. In
this sense, we can include the prediction bias problem in the field
of algorithmic fairness, which is receiving more and more attention
in Information Retrieval (IR) and Machine Learning (ML) [9].

In the last decades, a wide range of approaches have been pro-
posed to cope with the label imbalance in multi-label classification
[10–12]. A common strategy consists in designing algorithmic adap-
tations of well-known classification techniques [13–15]. Sampling
methods are an alternative, which operates directly on the data to
obtain a balanced dataset on which to train the classifier [4, 16].
Typically, this is achieved either by discarding instances of the
majority classes (undersampling [17]) or adding new instances of
the minority classes (oversampling [18]). Moreover, researchers
have proposed measures that allow evaluating and/or optimise a
multi-label classifier potentially affected by imbalance [16, 19, 20].
This is the research branch that inspired the indicator described in
this paper and on which, therefore, we will focus our attention.

Several metrics have been proposed to measure the imbalance
degree of a dataset [4, 19, 21, 22]. The Imbalance Ratio per Label
(IRLbl) measures the ratio between the frequencies of the majority
label and a given one. The Mean Imbalance Ratio (MeanIR) is an
indicator of the average level of imbalance between the classes,
obtained as the mean of the IRLbl scores, while the Coefficient
of Variation of the IRLbl (CVIR) indicates how much the level of
imbalance differs among the labels. What all these indicators have
in common is that they aim to evaluate the composition of a dataset,
independently of the performance of a classifier applied on those
data. In other words, these metrics gauge the imbalance by taking
into account solely the distribution of the labels, while ignoring
how imbalance affects the correctness of the classification task.

Standard metrics from IR and ML are also commonly employed
to evaluate the output of a multi-label classifier [11]. It is well-
known that precision, recall, and F-score are to be preferred w.r.t.
common accuracy in imbalanced scenarios because the latter is not
sensitive to data distribution[23]. F-score, obtained as the weighted
harmonic mean of precision and recall, is particularly suited as a
global indicator of the functionality of a classifier [20, 24]. Even
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though the F-score preserves the sensitivity to the data distribution,
it fails to capture whether the classifier discriminates against certain
labels and to which extent the classifier’s performance is affected by
class imbalance. The same holds for all other evaluation techniques,
including ROC curves, precision-recall curves, and cost curves [11].

In light of our analysis of the literature, we propose the Prediction
Bias Coefficient (PBC), an indicator that measures the strength of
the correlation between the label imbalance in a dataset and the
performance obtained by a multi-label classifier trained on the
same dataset. The approach exploits the Spearman’s rank correlation
coefficient between the label frequencies and the F-scores obtained
for each label individually. In terms of algorithmic fairness, we can
interpret the PBC indicator as a way of capturing the intensity of
the classifier’s discrimination against the minority classes.

The contributions of our work can be summarised as follows: (i)
we propose a novel evaluation indicator that measures the correla-
tion between the label imbalance and the classification performance
(Section 2); (ii) we visually illustrate the proposed metric on a multi-
label classification task carried out with state-of-the-art techniques
on two real-world datasets (Section 3); (iii) we compare experimen-
tally the proposed indicator with other existing metrics (Section 3).

2 THE PREDICTION BIAS COEFFICIENT
In this section, we formally define the proposed indicator. Then,
we proceed to discuss its interpretation and its utility.

2.1 Definition
We denote sets by uppercase letters (e.g., 𝐴), elements of sets by
lowercase letters (e.g., 𝑎), and vectors by bold lowercase letters (e.g.,
a). Moreover, we use |𝐴| to denote the number of elements in 𝐴.
A dataset is a pair of sets (𝑋,𝑌 ), where 𝑋 is a set of observations
and 𝑌 is a set of ground truth labels, such that |𝑋 | = |𝑌 |. If X is the
𝑛-dimensional space such that 𝑋 ⊆ X, we call X the feature space.

A multi-label classification task with a dataset (𝑋,𝑌 ) and a set
of labels 𝐿 is given, with |𝐿 | ≫ 2; each instance in (𝑋,𝑌 ) is a pair
(x, 𝑦), where x is a vector in a feature space X associated with
the ground truth variable-length list of labels 𝑦, such that 𝑦 ⊆ 𝐿,
where 0 ≤ |𝑦 | ≤ |𝐿 |. The data are split between a training set
(𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) and a test set (𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡 ), i.e., (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛) ∪
(𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡 ) = (𝑋,𝑌 ). The label 𝑙 frequency, 𝑓 𝑟𝑒𝑞𝑙 , is estimated as
the proportion of label lists in 𝑌𝑡𝑟𝑎𝑖𝑛 that contain 𝑙 ; formally:

𝑓 𝑟𝑒𝑞𝑙 =
| {𝑦 | 𝑙 ∈ 𝑦,∀𝑦 ∈ 𝑌𝑡𝑟𝑎𝑖𝑛} |

| 𝑌𝑡𝑟𝑎𝑖𝑛 | ,∀𝑙 ∈ 𝐿. (1)

We formalise a classifier as a function mapping elements of
the feature space into elements of the label space: ℎ(· ;\ ) : X ↦→
℘(𝐿), where for a set 𝑋 , ℘(𝑋 ) denotes the non-empty parts of
𝑋 , and \ are the parameters of the classifier. After being trained
on (𝑋𝑡𝑟𝑎𝑖𝑛, 𝑌𝑡𝑟𝑎𝑖𝑛), the classifier is tested on (𝑋𝑡𝑒𝑠𝑡 , 𝑌𝑡𝑒𝑠𝑡 ), thus
producing𝑊 , a set of lists 𝑤 containing the predicted labels for
each instance in the test set (𝑤 ⊆ 𝐿, with 0 ≤ |𝑤 | ≤ |𝐿 |). The binary
F-score can be computed separately for each label 𝑙 by checking the
ground truth lists and the prediction lists that contain 𝑙 ; formally:

𝐹𝑙 =
𝑇𝑃𝑙

𝑇𝑃𝑙 + 1
2 (𝐹𝑃𝑙 + 𝐹𝑁𝑙 )

,∀𝑙 ∈ 𝐿, (2)

Pearson = 0.03
Spearman = 0.02
Kendall = 0.02

(a)

Pearson = 0.91
Spearman = 1
Kendall = 1

(b)

Pearons = 0.09
Spearman = 0.49
Kendall = 0.5

(c)

Fig. 1: Comparison between Pearson’s, Spearman’s and Kendall’s
correlations for: a) roughly elliptically distributed variables; b)
perfectly monotonic non-linear relationship; c) distribution with
prominent outliers.

where 𝑇𝑃𝑙 =| {(𝑦,𝑤) | 𝑙 ∈ 𝑦 ∧ 𝑙 ∈ 𝑤,∀𝑦 ∈ 𝑌𝑡𝑒𝑠𝑡 ,∀𝑤 ∈𝑊 } | are
the true positives for label 𝑙 , 𝐹𝑃𝑙 =| {(𝑦,𝑤) | 𝑙 ∉ 𝑦 ∧ 𝑙 ∈ 𝑤,∀𝑦 ∈
𝑌𝑡𝑒𝑠𝑡 ,∀𝑤 ∈ 𝑊 } | are the false positives and 𝐹𝑁 =| {(𝑦,𝑤) | 𝑙 ∈
𝑦 ∧ 𝑙 ∉ 𝑤,∀𝑦 ∈ 𝑌𝑡𝑒𝑠𝑡 ,∀𝑤 ∈𝑊 } | are the false negatives.

Finally, let 𝑟𝑔𝑓 𝑟𝑒𝑞 and 𝑟𝑔𝐹 denote the ranks of 𝑓 𝑟𝑒𝑞 and 𝐹 , respec-
tively (the rank of a list of values maps each value to its positional
index in the decreasingly sorted list, with indexes starting from 1).
We now have all the elements to define formally the PBC, calcu-
lated as the Spearman’s rank correlation coefficient between the
proportion variables 𝑓 𝑟𝑒𝑞 and 𝐹 .

𝑃𝐵𝐶 =
𝑐𝑜𝑣 (𝑟𝑔𝑓 𝑟𝑒𝑞, 𝑟𝑔𝐹 )
𝜎𝑟𝑔𝑓 𝑟𝑒𝑞𝜎𝑟𝑔𝐹

, (3)

where 𝑐𝑜𝑣 is the covariance between two random variables, and
𝜎 is the standard deviation.

The Spearman’s correlation [25] is a non-parametric indicator
that measures the statistical dependence between the rankings of
two variables. It does so by assessing how well the relationship
between the two variables can be described in terms of a mono-
tonic function. Its ranges between -1 and 1, which indicate a perfect
opposite and direct correlation, respectively, while 0 indicates no
dependence [26]. The Spearman’s correlation between two vari-
ables is equal to the Pearson’s correlation between the rank values
of those two variables [25, 27]. When two variables are roughly
elliptically distributed without strong outliers, Spearman and Pear-
son give similar values (Fig. 1a). However, the Pearson’s coefficient
is limited to the assessment of linear relationship and reaches value
1 only when the two random variables are perfectly linearly related,
which would be too strict a condition for our application (Fig. 1b).
On top of that, Spearman’s correlation is more robust to prominent
outliers compared to Pearson’s coefficient, because it limits the
outliers to the values of their rank (Fig. 1c). For these reasons, the
choice fell on the Spearman’s coefficient when designing the new
Prediction Bias Coefficient. We refer the reader to [28] for an anal-
ysis of the sample size requirements for estimating the Spearman’s
and Pearson’s correlations. Spearman’s measure could possibly
be replaced by other rank correlation metrics, such as Kendall’s 𝜏
coefficient; Fig. 1 shows a comparison with the other coefficients.
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2.2 Interpretation
The PBC keeps the properties of the Spearman’s coefficient, as it is
positive if the F-scores on single labels tend to increase together
with the label frequencies. In particular, it reaches its maximum
value (1) whenever these two quantities are perfectly monotonically
related. This scenario would imply that the classifier is strongly
biased towards majority labels, penalising the underrepresented
ones. Conversely, if higher label frequencies are associated with
lower F-scores, the PBC is negative. It reaches the lowest value (-1)
whenever those two quantities are related by a perfectly monotonic
decreasing function. This minimum would happen in the scenario
(atypical but theoretically possible) in which the algorithm con-
sistently favours the minority labels at the expense of the most
frequent ones. The ideal classifier, in terms of bias and fairness,
would be the one that achieves PBC scores tending to 0, meaning
that label frequencies and label-wise F-scores are uncorrelated.

To show the advantage of PBC, let us consider an example. Sup-
pose that a dataset has five labels 𝑙1, 𝑙2, 𝑙3, 𝑙4, 𝑙5, with frequencies
0.1, 0.2, 0.3, 0.4, 0.5, respectively. Let us also suppose that a classifier
ℎ1 achieves on these labels the following respective F-scores: 0.5,
0.3, 0.4, 0.2, 0.6. The macro-averaged F-score would be 0.4, while
the PBC would equal 0.1. On the other hand, let us suppose that a
different classifier ℎ2 achieves, on the same labels, the following
F-scores: 0.2, 0.3, 0.4, 0.5, 0.6 (please note that they are the same
values obtained by ℎ1, but in an order that strictly follows the label
frequencies). In this case, the macro-averaged F-score would still
be 0.4, like for ℎ1, but the PBC would equal 1, indicating that ℎ2
is heavily biased towards most represented classes. This demon-
strates that the F-score fails to detect how different classifiers are
influenced in different ways by the dataset imbalance, while this
information is effectively conveyed by the PBC.

We notice that, in the definition of the PBC, the F-score can be
substituted with the label-wise precision or recall, depending on the
desired perspective. We decided to present the formulation based
on F-score because this metric encompasses the other two. It is
important to clarify that the PBC does not convey any information
on the classification correctness, but only on the degree of its depen-
dency with the imbalance. For instance, a classifier that achieves
similarly low F-scores for all labels would get a better PBC com-
pared to a highly accurate model that penalises minority classes.
For this reason, the PBC should be considered as a complementary
indicator w.r.t. standard accuracy metrics.

Interestingly, a random classifier that outputs each label with
the same probability 𝑝 would get a PBC that tends asymptotically
to 1. In fact, it can be proven that, in such scenario: (i) the precision
obtained on label 𝑙 tends asymptotically to the frequency of 𝑙 in the
dataset; (ii) the recall tends for all labels to the same value, which is
the probability 𝑝; (iii) the F-score, which is the harmonic mean of
precision and recall, is monotonically correlated with the precision
scores and, consequently, with the label frequency.

Finally, we observe that we can also apply the PBC to multi-
class scenarios, where (unlike the multi-label case) each instance
is associated with exactly one label from a set of 𝑛 labels, with
𝑛 > 2 [29]. However, we describe and evaluate the metric in the
multi-label scenario because the latter generalises the former one.

Table 1: Statistics about the two datasets employed in the experi-
ments. |X| is the total number of samples, |L| the total number of
labels, “card” is the cardinality, “dens” is the density and “% labeled”
is the percentage of samples with at least one label.

dataset |X| |L| card dens % labeled
Reuters-21578 19,043 119 0.69 0.01 54%
Webscope-R4 106,959 16 0.58 0.03 55%

3 EXPERIMENTAL EVALUATION
We evaluate the proposed measure in a multi-label classification
task carried out with state-of-the-art algorithms on two real-world
datasets. In addition, we visually highlight the correlation detected
by the PBC and compare the PBC against other evaluation metrics.
Our focus is on the metrics and their application in an imbalanced
multi-label/multi-class classification scenario, so the classifier can
be seen as a black box that can be arbitrarily changed. Hence, our
approach is generalizable to any multi-label classification algorithm.

3.1 Methodology
We developed our experimental framework using the Python lan-
guage with standard modules, such as numpy1, scipy2 and scikit-
learn3. The datasets employed in our analysis are Reuters-215784,
consisting of news stories tagged with a list of economic categories,
andWebscope-R45, which includes a corpus of movie synopses as-
sociated to one or more genres. For our experiments, we selected
all samples associated to at least 1 label. Table 1 shows statistics
about the two resulting datasets. The cardinality is defined as the
average number of labels per instance, while the density is given
by the cardinality divided by the total number of labels [16].

We split each dataset into a series of training and test sets, us-
ing a 10-fold cross-validation approach. A multi-label text classi-
fier was trained exploiting the TextCategorizer model provided
by the Python library spacy (version 2.x)6. This algorithm uses
a stacked ensemble of bag-of-words and a Convolutional Neural
Network [30], aligned with the state-of-the-art [31, 32]. Since the
classifier’s output is a list of probabilities over all possible labels, we
selected the predicted labels using a threshold 𝑡 = 0.5, interpreted
as a confidence level. We set the value for 𝑡 experimentally.

For each test set, together with the PBC, we measured the afore-
mentioned MeanIR and CVIR (which describe the label imbalance
without taking into account the classification correctness [21]), the
balanced accuracy [33] and the macro-averaged F-score (which, in
multi-label scenarios, is more suited than the micro-averaged ver-
sion [20]). Additionally, we render a scatter-plot to visually inspect
the correlation between the label imbalance and the performance.

3.2 Results
Table 2 summarises the results obtained on the two datasets. The
most relevant finding is that the dataset associated with a higher de-
gree of imbalance (namely, Webscope-R4, as pointed out by MeanIR
and CVIR) is also the one on which the classifier achieves, on one
hand, a lower value for both the balanced accuracy and the macro-
averaged F-score, and, on the other hand, a higher value of PBC.
This suggests that the latter metric can capture the relation between

1 https://numpy.org/ 2 https://www.scipy.org/ 3 https://scikit-learn.org/
4 http://archive.ics.uci.edu/ml/datasets/Reuters-21578+Text+Categorization+Collection
5 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r 6 https://spacy.io/
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Table 2: Results obtained on the two datasets. The shown values are
the averages ± standard deviations of the values obtained on the 10
folds of the cross-validation.

dataset MeanIR CVIR B. Acc. F-score PBC
Reuters 829.11 ± 37.3 1.34 ± 0.02 0.76 ± 0.03 0.51 ± 0.07 0.53 ± 0.1
Webscope 2757.94 ± 609 2.16 ± 0.47 0.69 ± 0.03 0.44 ± 0.06 0.66 ± 0.19

the imbalance degree and the performance. The visual inspection
offered by the two scatter-plots of Fig. 2, which illustrate the cor-
relation between label frequencies and label-wise F-scores, allows
us observe that, in Webscope-R4, the macro-averaged F-score is
dragged down by the very poor accuracy obtained on severely un-
derrepresented labels (visible in the bottom-left corner of Fig. 2b).
On the other hand, in Reuters-21578 (Fig. 2a), the low F-scores ob-
tained on very infrequent labels (bottom-left corner) are balanced
by very high scores obtained on equally infrequent labels (upper-
left corner), thus leading to a lower PBC compared to Webscope-R4.

The label distribution in Fig. 2a might induce readers to believe
that the PBC is well above 0 because of the strong influence of the
two outlier labels (namely, ‘acq’ and ‘earn’). However, this is not
the case. Indeed, to further demonstrate that the PBC inherits from
the Spearman’s coefficient its robustness to prominent outliers, we
re-computed the PBC on Reuters-21578 without taking into account
the scores obtained on those two labels and we obtained still the
same PBC value (0.53). Fig. 3 can be thought of as a zoom-in of
the left-hand side of Fig. 2a; it shows that even in the scenario
without outliers, there is quite a pronounced dependence between
the label frequencies and the F-scores, which was not evident in
Fig. 2a because of the horizontal deformation of the image. (The
red trend line in Figs. 2 and 3, obtained as a 1st-degree polynomial
interpolation of the points, is shown for illustration purpose only;
although it gives a useful geometric intuition of the correlation, it
is not strictly related to the PBC from a formal standpoint).

We can note that the PBC values obtained on different portions
of the same dataset can vary significantly (as shown by the high
standard deviations in Table 2). For this reason, we recommend a
cross-validation of this metric, to make the evaluation more robust.

4 CONCLUSIONS
In this paper, we presented the Prediction Bias Coefficient (PBC), an
indicator that measures the correlation between the label imbalance
and the correctness of a multi-label classifier. This metric allows
assessing the bias towards majority classes, thus providing a tool to
evaluate a classifier beyond accuracy. Potentially, it can be employed
in the context of algorithmic fairness to estimate to which extent
an algorithm discriminates against underrepresented categories.

After giving a formal definition, we provided empirical evidence
of its utility on two datasets, in a text classification task performed
with state-of-the-art methods. The PBC effectively captures the
correlations while being complementary to metrics that gauge only
the imbalance of a dataset (Mean Imbalance Ratio and Coefficient of
Variation of the Imbalance Ratio) or only the correctness (F-score).

In the future, we aim to include more datasets into the exper-
imental analysis; by using different types of data (images, audio,
time-series, etc.) and a wider variety of label distributions, we would
analyze in more depth the behaviour of the proposed metric. To
conclude, we intend to test the PBC on classification algorithms that
are specifically designed to cope with label imbalance (via either

Prediction Bias Coefficient = 0.53

(a) Reuters-21578

Prediction Bias Coefficient = 0.66

(b) Webscope-R4

Fig. 2: Correlation between the frequency of the labels in the train-
ing set and the label-wise F-scores. The red line, obtained as a 1st-
degree polynomial interpolation of the points, indicates the trend.

Prediction Bias Coefficient = 0.53

Fig. 3: Correlation between label frequencies and F-scores in the
Reuters-21578 dataset, without the two outlier labels with highest
frequency (‘acq’ and ‘earn’).

resampling methods or algorithmic adaptations), with the goal of
observing how sensitive our indicator is to such strategies and how
it can help in finding the most effective one.
Reproducibility. The code implementing our metric and experimen-
tal framework are available at https://github.com/luca-24/prediction-bias-
coefficient.
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