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Abstract: Computer vision techniques have become important in agriculture and plant sciences due
to their wide variety of applications. In particular, the analysis of seeds can provide meaningful
information on their evolution, the history of agriculture, the domestication of plants, and knowledge
of diets in ancient times. This work aims to propose an exhaustive comparison of several different
types of features in the context of multiclass seed classification, leveraging two public plant seeds data
sets to classify their families or species. In detail, we studied possible optimisations of five traditional
machine learning classifiers trained with seven different categories of handcrafted features. We also
fine-tuned several well-known convolutional neural networks (CNNs) and the recently proposed
SeedNet to determine whether and to what extent using their deep features may be advantageous
over handcrafted features. The experimental results demonstrated that CNN features are appropriate
to the task and representative of the multiclass scenario. In particular, SeedNet achieved a mean
F-measure of 96%, at least. Nevertheless, several cases showed satisfactory performance from the
handcrafted features to be considered a valid alternative. In detail, we found that the Ensemble
strategy combined with all the handcrafted features can achieve 90.93% of mean F-measure, at least,
with a considerably lower amount of times. We consider the obtained results an excellent preliminary
step towards realising an automatic seeds recognition and classification framework.

Keywords: image analysis; classification; deep learning; features extraction; seeds analysis

1. Introduction

The last few decades have seen considerable growth in the use of image processing
techniques to solve various problems in agriculture and the life sciences because of their
wide variety of applications [1]. This growth is mainly due to the fact that computer vision
techniques have been combined with deep learning techniques. The latter has offered
promising results in various application fields, such as haematology [2], biology [3,4],
or botany [5,6]. Deep learning algorithms differ from traditional machine learning (ML)
methods in that they require little or no preprocessing of images and can infer an optimal
representation of data from raw images without the need for prior feature selection, result-
ing in a more objective and less biased process. Moreover, the ability to investigate the
structural details of biological components, such as organisms and their parts, can signifi-
cantly influence biological research. According to Kamilaris et al. [7], image analysis is a
significant field of research in agriculture for seeds, crops or leaves classification, anomaly
or disease detection, and other related activities.

In the agricultural area, the cultivation of crops is based on seeds, mainly for food
production. In particular, in this study, we focus on the field of plant science carpology,
which examines seeds and fruits from a morphological and structural point of view. It
generally has two main challenges: reconstructing the evolution of a particular plant
species and recreating what the landscape was and, therefore, what its flora and fauna
appeared. Professionals employed in this field typically capture images of seeds using
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a digital camera or flatbed scanner. Especially the latter provides quality and speed of
workflow due to the constant illumination condition and the defined image size [8–12]. In
this context, the seed image classification can play a fundamental role for manifold reasons,
from crops, fruits and vegetables to disease recognition, or even to obtain specific feature
information for archaeobotanical reasons, and so forth. One of the most-used tools by
biologists is ImageJ [13–15]. It is defined as one of the standard types of image analysis
software, as it is freely available, platform-independent, and easily applicable for biological
researchers to quantify laboratory tests.

A traditional image analysis procedure uses a pipeline of four steps: preprocessing,
segmentation, feature extraction, and classification, although deep learning workflows
have emerged since the proposal of the convolutional neural network (CNN) AlexNet
in 2012 [16]. CNNs do not follow the typical image analysis workflow because they
can extract features independently without the need for feature descriptors or specific
feature extraction techniques. In the traditional pipeline, image preprocessing techniques
are used to prepare the image before analysing it to eliminate possible distortions or
unnecessary data or highlight and enhance distinctive features for further processing.
Next, the segmentation step divides the significant regions into sets of pixels with shared
characteristics such as colour, intensity, or texture. The purpose of segmentation is to
simplify and change the image representation into something more meaningful and easier
to analyse. Extracting features from the regions of interest identified by segmentation is the
next step. In particular, features can be based on shape, structure or colour [17,18]. The last
step is classification, assigning a label to the objects using supervised or unsupervised
machine learning approaches. Compared to manual analysis, the use of seed image analysis
techniques brings several advantages to the process:

(i) It speeds up the analysis process;
(ii) It minimises distortions created by natural light and microscopes;
(iii) It automatically identifies specific features;
(iv) It automatically classifies families or genera.

In this work, we address the problem of multiclass classification of seed images
from two different perspectives. First, we study possible optimisations of five traditional
machine learning classifiers as adopted in our previous work [6], trained with seven
different categories of handcrafted (HC) features extracted from seed images with our
proposed ImageJ tool [19]. Second, we train several well-known convolutional neural
networks and a new CNN, namely SeedNet, recently proposed in our previous work [6], in
order to determine whether and to what extent a feature extraction performed from them
may be advantageous over handcrafted features for training the same traditional machine
learning methods depicted before. In particular, Table 1 depicts the study, contributions,
and tools provided by our previous works and the one presented here.

The overall aim of the work is to propose a comprehensive comparison of seed
classification systems, both based on handcrafted and deep features, to produce an accurate
and efficient classification of heterogeneous seeds. It is important, for example, to obtain
archaeobotanical information of seeds and to effectively recognise their types. More
specifically, the classification addressed in this work is fine-grained, oriented to single
seeds, rather than sets of seeds, as it is in [20]. In detail, our contribution is threefold:

(i) We exploit handcrafted, a combination of handcrafted, and CNN-extracted features;
(ii) We compare the classification results of five different models, trained with HC and

CNN-extracted features;
(iii) We evaluate the classification results from a multiclass perspective to assess which

type of descriptor may be most suitable for this task.
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Table 1. Contributions of current and our previous work in the context of seeds images analysis.

Work Contributions

Loddo et al. [6]
- SeedNet CNN proposal
- classification based on HC + ML methods vs. CNN
- retrieval based on HC + ML methods vs. CNN

Loddo et al. [19]

- seed image acquisition and preprocessing schemes
- open source ImageJ plugin for seeds feature extraction
- open source ImageJ plugin for seeds classification
- seeds classification with HC + ML methods
- seeds classification with CNNs only

This work

- seeds classification with HC + ML methods
- seeds classification with deep features + ML algorithms
- study of the parameters optimisations in ML methods
- comparison of the classification schemes for multiclass tasks

This research aims to classify individual seeds belonging to the same family or species
from two different and heterogeneous seed data sets, where differences in colour, shape,
and structure can be challenging to detect. We also want to highlight how traditional classi-
fication techniques trained with handcrafted features can outperform CNNs in training
speed and achieve accuracy close to CNNs in this task.

The rest of the article is organised as follows. Section 2 presents state of the art in plant
science work, with a focus on seed image analysis. Section 3 presents the data sets used
and the classification experiments. The experimental evaluation is discussed in Section 4,
and finally, in Section 5 we give the conclusions of the work.

2. Related Work

This work aims to classify seeds of different families, or species, according to the data
set used. In general, computer vision techniques have been applied to this or similar tasks,
even though no studies address heterogeneous seed identification or classification. For
example, several authors have proposed methods to detect or classify types of seeds [5,6,21],
leaves [22–24], and crops [25], to identify the quality of crops [26] or diseased leaves or
crops [1,25,27–29], using both traditional and deep learning-based techniques. Table 2
gives a summary of the main methods and findings of the literature.

2.1. Leaf Detection and Classification

Several methods have been proposed for tasks similar to seed classification, such as
leaf identification and recognition. Examples include a Support Vector Machine (SVM)-
based method trained with leaf-related features such as shape, colour, and texture [22]
and a mobile leaf detection system based on saliency computation to extract regions of
interest, followed by segmentation with the region growing algorithm, which exploits
both saliency map and colour features [24]. Finally, Hall et al. [23] use a combination of
handcrafted and deep features as part of a classification system based on Random Forest
(RF). It can classify the leaves of different plant species using a data set of over 1900 images
divided into 32 species. The last method is particularly relevant and can be applied to
seed images; however, it uses images of leaves acquired in ideal conditions, as well as
Di Ruberto et al. [22], i.e., with an artificial background and not in actual conditions with
a natural background, as in our investigation. As for Putzu et al. [24], the main focus is
on the processing of leaves with complex artificial backgrounds in a mobile application
scenario, which is far from the purposes of this work.

2.2. Leaf Diseases Identification

Works that are similar but oriented to the identification of diseases have been proposed
by different authors [1,25,27–29]. Some examples include the work of Slado et al. [27],
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which used CaffeNet (a single-GPU version of AlexNet’s CNN) to identify leaf diseases;
while AlexNet and GoogleNet have been used to identify 14 crop species and 26 different
diseases [25]. In addition, LeNet has been used for diseased banana leaves recognition
in [28]. Barman et al. [1] proposed a real-time citrus leaf disease detection and classification
system based on the MobileNet CNN [30]. Finally, Gajjar et al. [29] proposed a novel
CNN as part of a framework for real-time identification of diseases in a crop, tested on
20 different healthy and diseased leaves of four different plants. Each of the works in this
section uses convolutional neural networks suitable for leaf disease detection. Contrary to
the analysis carried out in our work, they did not study the handcrafted features that are
particularly important in discriminating different types of seeds.

Table 2. Overview of existing works in this field with key insights from the proposed methods.

Work Task Main Method Observations

[22] Leaf detection HC features + SVM Ideal background
[23] Leaf classification HC+CNN features + RF Ideal background

[24] Leaf detection saliency + colour features Complex artificial
+ SVM background

[25] Leaf disease AlexNet and No investigation
detection GoogLeNet on HC features

[28] ” LeNet ”
[27] ” CaffeNet ”
[1] ” MobileNet ”
[29] ” Novel CNN ”

[31] Crop detection YOLOv3 Detection system
modified for monitoring

[26] Crop quality CNN features + SVM No investigation
detection on HC features

[5] Seed detection HC features+LDA Identification of single
seed class

[21] Seed germination AlexNet modified Identification of
ability classification single seed quality

[6] Seed classification
HC features + ML methods

No optimisations
on ML methods

CNN methods No investigation on deep
features + ML methods

2.3. Classification of Crops

A pretty similar task to the one faced in this work is related to the classification of
crops. For example, Junos et al. [31] proposed a detection system based on an improved
version of YOLOv3 to detect loose palm fruits from images acquired under various natural
conditions; on the other hand, Zhu et al. [26] realised a system to recognise the appearance
quality of carrots, based on the SVM classifier trained with features extracted by CNNs.
In particular, ResNet101 network offered excellent results. CNNs are also used in these
works. In the first case, the task is different because the proposed system is a monitoring
framework rather than a fine-grained classification system. In Zhu et al. [26], however, they
employed features extracted from CNNs as in our work, although they did not employ
handcrafted features as a comparison term for detecting the quality of carrots.

2.4. Seed Detection and Classification

The works most related to ours belong to this category. In particular, Sarigu et al. [5]
performed a plum variety identification employing seed’s endocarp shape, colour, and tex-
ture descriptors followed by a Linear Discriminant Analysis (LDA) to obtain the most
representative features, while Przybylo et al. [21] and Loddo et al. [6] employed CNNs.
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On the one hand, the first one used a modified version of AlexNet [32] and focused on
the task of acorn germination ability classification based on the colour intensity of seed
sections as a feature. On the other hand, a new CNN, called SeedNet, has been proposed by
Loddo et al. [6] to classify and sort seeds belonging to different families or species. As in
the first two works, we aim to classify seeds. Moreover, we investigated the same data
sets employed in the latter work. The authors focused on a single seed variety in the first
two works and employed only handcrafted features. As for our previous work [6], we
proposed a new CNN for the classification and retrieval of fine-grained seeds without going
into the details of handcrafted and deep features, which is one of the main purposes of the
current work.

3. Materials and Methods

We leverage two data sets in this work. They contain images of heterogeneous seeds,
both in number and in characteristics. They are publicly available on request. Each one
was preprocessed as described in our previous work [6] and used for seed family or species
classification using handcrafted or deep features. In the following, we start by describing
the data sets in Sections 3.1.1 and 3.1.2. We then provide the implementation details of the
classification strategy. We validate the performance through an empirical evaluation with
a 10-fold cross-validation strategy and visualise the process’s overall and class-specific
discriminative features.

3.1. Data Sets Description

In this section, we describe the data sets used for the experiments.

3.1.1. Canada Data Set

The Canada data set is publicly available [33]. It contains 587 images of seeds, organ-
ised into families. Every seed belongs to the Magnoliophyta phylum. Every image can have
one of the following three different resolutions: 600 × 800, 600 × 480, and 600 × 400. We
exploited this data set because

(i) It provides several different families, and
(ii) The background of the images is clean and requires a precise and unique preprocessing

strategy.

In particular, for the experiments, we selected the families considering the six most
represented—Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Plantaginaceae, and Solanaceae
(23)—for a total of 215 seed images. Figure 1 shows a sample for each family, and Table 3
indicates the number of samples. Each original image contains a scale marker as a di-
mensional reference for the seed. It was removed following the preprocessing procedure
proposed in [6].

(a) Amaranthaceae (b) Apiaceae (c) Asteraceae (d) Brassicaceae (e) Plantaginaceae (f) Solanaceae

Figure 1. Samples of seed for each family present in the Canadian data set.
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Table 3. Canada data set description: family name and number of samples.

Family Samples

Amaranthaceae (Ama) 10
Apiaceae (Api) 56
Asteraceae (Ast) 49
Brassicaceae (Bra) 34
Plantaginaceae (Pla) 43
Solanaceae (Sol) 23

3.1.2. Cagliari Data Set

The basic collection of the Banca del Germoplasma della Sardegna (BG-SAR), University
of Cagliari, Italy, was used to create the local data set. It consists of 3386 samples from
120 different plant species. Each seed is a member of the Fabaceae family and varies
significantly in size and colour. The images have a resolution of 2125 × 2834 [34]. We used
a preprocessing procedure defined by our previous work [6] to remove the background
and extract single seeds for classification.

We chose the families with the most numerous samples, for a total of 23 different ones:
Amorpha, Anagyris, Anthyllis barba jovis, Anthyllis cytisoides, Astragalus glycyphyllos, Calico-
tome, Caragana, Ceratonia, Colutea, Cytisus purgans, Cytisus scoparius, Dorycnium pentaphyllum,
Dorycnium rectum, Hedysarum coronarium, Lathyrus aphaca, Lathyrus ochrus, Medicago sativa,
Melilotus officinalis, Pisum, Senna alexandrina, Spartium junceum, and Trifolium, Vicia faba,
for a total of 1988 seeds.

Figure 2 depicts one sample from each family in the Cagliari data set, while Table 4
shows the number of samples.

Table 4. Cagliari data set description: species name and number of samples.

Species Samples Species Samples

Amorpha fruticosa (Am.F) 51 Dorycnium rectum (Do.R) 236
Anagyris foetida (An.F) 29 Hedysarum coronarium (He.C) 208
Anthyllis barba jovis (An.BJ) 51 Lathyrus aphaca (La.A) 52
Anthyllis cytisoides (An.C) 29 Lathyrus ochrus (La.O) 46
Astragalus glycyphyllos (As.G) 50 Medicago sativa (Me.S) 116
Calicotome villosa (Ca.V) 32 Melilotus officinalis (Me.O) 176
Caragana arborescens (Ca.A) 36 Pisum sativum (Pi.S) 121
Ceratonia siliqua (Ce.S) 45 Senna alexandrina (Se.A) 194
Colutea arborescens (Co.A) 42 Spartium junceum (Sp.J) 109
Cytisus purgans (Cy.P) 44 Trifolium angustifolium (Tr.A) 183
Cytisus scoparius (Cy.S) 65 Vicia faba (Vi.F) 31
Dorycnium pentaphyllum (Do.P) 42
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(a) Amorpha (b) Anagyris (c) Anthyllis B. (d) Anthyllis C. (e) Astragalus (f) Calicotome

(g) Caragana (h) Ceratonia (i) Colutea (j) Cytisus P. (k) Cytisus C. (l) Dorycnium P.

(m) Dorycnium R. (n) Hedysarum (o) Lathyrus A. (p) Lathyrus O. (q) Medicago (r) Melilotus

(s) Pisum (t) Senna (u) Spartium (v) Trifolium (w) Vicia

Figure 2. Samples of seed for each species present in the Cagliari data set.

3.2. Evaluation Metrics

The following metrics are used to evaluate the performance of each classification
model: accuracy (Acc), precision (Pre), specificity (Spec), and recall (Rec). Accuracy is
defined as the proportion of correctly labelled instances to the total number of instances.
Precision is the proportion of true positives in a set of positive results. Specificity is the
proportion of negative results that are correctly identified, and recall is the proportion of
positive results that are correctly identified. They are defined as follows:

Accuracy =
TP + TN

TP + TF + FP + FN
, (1)

Precision =
TP

TP + FP
, (2)

Speci f icity =
TN

FP + TN
, (3)

Recall =
TP

TP + FN
. (4)

TP, FP, TN, and FN indicate True Positives, False Positives, True Negatives, and False
Negatives, respectively. Finally, since we are facing a multiclass imbalance problem, we
also applied two of the most common global metrics for learning multiclass imbalance to
evaluate the performance of the classifier [35]. The measures are the macro geometric mean
(MAvG), defined as the geometric mean of the partial accuracy of each class, and the mean
F-measure (MFM), which is the average of the F-measure computed for each class. They
are defined as:

MAvG = (
J

∏
i=1

Acci)
1
J , (5)
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MFM =
J

∑
i=1

F − measure(i)
J

, (6)

where i represents the current class and J the total number of classes. The F-measure(i) for
class i is defined as:

F-measure(i) =
2 × TP(i)

2 × TP(i) + FP(i) + FN(i)
. (7)

We pinpoint that each of the metrics shown in this work has been calculated as a
macro average of the number of classes.

3.3. Seed Classification

The handcrafted features were extracted using the ImageJ tool described in [19]. It
can extract up to 64 different features. In particular, 32 are morphological shapes, 16 are
textures, and 16 are colour intensities. Among the texture features, Haralick’s GLCM,
which describes the arrangement of pixel pairs with the same grey level [36], was used
to extract information of local similarities. They all permit their computation with the
typical four different degrees: 0◦, 45◦, 90◦, 135◦. More precisely, we extracted the following
second-order statistics from GLCM: energy, contrast, correlation, and homogeneity.

The handcrafted descriptors have been compared to deep features that were ex-
tracted from several different well-known network architectures: Vgg16, Vgg19, AlexNet,
GoogLeNet, InceptionV3, ResNet101, Resnet18, Resnet50, and SeedNet. AlexNet [16],
Vgg16 [37], and Vgg19 [38] are the shallowest among the tested architectures, being
composed of 8, 16, and 19 layers, respectively. In all of these three cases, we extracted
the features from the second last fully connected layer (fc7) for a total of 4096 features.
GoogleNet [39], Inception-v3 [40], ResNet18, ResNet50, and ResNet101 [41] are much
deeper, being composed of 100, 48, 18, 50, and 101 layers, respectively. In all of these cases,
we extracted the features from the one fully connected layer for a total of 1000 features.
Finally, SeedNet is a novel and lightweight CNN proposed in [6] for seed image classi-
fication and retrieval. We extracted the features from the last fully connected layer for
a total of 23 features. The CNNs are known to have a sufficient representational power
and generalisation ability to perform different visual recognition tasks [42]. Nevertheless,
we fine-tuned the above CNNs on both data sets before the feature extraction in order
to produce a fairer comparison to the standard machine learning classifiers trained with
handcrafted features. In particular, we adopted the following classification strategy for
both data sets:

(i) We split the data into 60% for training, 20% for validation, and 20% for test set;
(ii) We fine-tuned the CNNs on the training set, using the validation set to avoid overfitting;
(iii) We used 10-fold stratified cross-validation on training and validation set combined,

in order to train the five classification algorithms;
(iv) We finally evaluated the classification performed on the test set.

The extracted features have been used as input to different classification algorithms
in order to produce different classification models. The models considered are the follow-
ing: k-Nearest Neighbors (kNN), Decision Tree (DT), Naive Bayes (NB), Ensemble (Ens),
and Support Vector Machine (SVM). KNN uses the k nearest neighbour training examples
in the data set as input, and a neighbour voting strategy ranks an object. Decision trees
create a model that predicts the value of a target variable by learning simple decision rules
inferred from the characteristics of the data. The deeper the tree, the more complex the deci-
sion rules and the more suitable the model. Naive Bayes classifiers are probabilistic models
based on the application of the Bayes theorem with strong assumptions of independence
between features. The Ensemble classifier is based on an ensemble of classifiers rather
than a single one. The classifiers in the ensemble all predict the correct classification of
each unseen instance, and their predictions are then combined using some form of voting
system. Finally, SVM is a non-probabilistic binary linear classifier that assigns objects to
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a category, mapping the instances to points in space to maximise the width of the gap
between categories.

To ensure the heterogeneity of the training set and keeping in mind that we faced a
class imbalance problem, we trained each classifier with 10-fold stratified cross-validation
to ensure that the proportion of positive and negative examples is respected in all folds in
such a way that they contain a representative ratio of each class. For each case, we selected
the model with the largest area under the ROC curve (AUC). The primary hyperparam-
eters characterising each classifier were tuned in order to obtain a model with optimal
performance. Furthermore, to make the results reproducible, we specify the values of the
hyperparameters chosen for each model considered. For the kNN classifier, the distance
metric adopted is the cityblock, and the number of nearest neighbours is 6, with a squared
inverse distance weighting function. For the Decision Tree classifier, the maximum number
of splits to control the depth of the trees is 50. The chosen distribution used to model
the data is normal for the Naive Bayes classifier with a normal kernel smoother. For the
Ensemble classifier, we chose the Adaptive Boosting (AdaBoost) method for multiclass
classification. In particular, the learners are decision trees. Finally, for the SVM classifier,
we used a polynomial kernel function of order 2, with an auto kernel scale parameter and
a box constraint parameter equal to 1 to control the maximum penalty imposed on margin-
violating observations and therefore to prevent overfitting. We evaluated the performance
of each classifier using the same hyperparameters on both data sets.

4. Results and Discussion

We report several results obtained from the experiments. First of all, four graphs are
presented to show the general behaviour of the two sets of descriptors from two points
of view. In fact, we report the best and average accuracies for both sets, as shown in
Figures 3 and 4. It works as a general indicator of the effectiveness of the features used for
the task. In addition, we pinpoint their performance in the multiclass scenario. In particular,
Figures 5 and 6 show the behaviour of the MFM computed for the different classifiers.
Secondly, in the Appendix A, we report Tables A1–A5, in which the individual descriptor
categories results obtained with each classifier are detailed.

kNN DT NB SVM Ensemble

80

90

100

Classifier

A
cc

ur
ac

y

HC CNN

kNN DT NB SVM Ensemble

80

90

100

Classifier

A
cc

ur
ac

y

HC CNN

Figure 3. Accuracy trends with the different classifiers adopted. On the left, best accuracies obtained
on Canada data set; on the right, on Cagliari data set.
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Figure 4. Average accuracy trends with the different classifiers adopted. On the left, average
accuracies obtained on Canada data set; on the right, on Cagliari data set.
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Figure 5. Best MFM trends with the different classifiers adopted. On the left, best MFM obtained on
Canada data set; on the right, on Cagliari data set.
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Figure 6. Average MFM trends with the different classifiers adopted. On the left, average MFM
obtained on Canada data set; on the right, on Cagliari data set.

The graphs in Figures 3 and 4 show that each of the employed classifiers can achieve
excellent classification accuracy on both data sets. However, from the results of the Canada
data set, the Decision Tree classifier seems the least suitable for the task, especially when
trained with CNNs descriptors, being the only one below 90% on average in that case.
Although the other four strategies can achieve an accuracy above 90% in practically all
cases, the Support Vector Machine seems the most appropriate in every experimental
condition. It outperforms the others, averaging 98.38% and 99.49% on the Canada and
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Cagliari data sets, respectively, and a best of 99.58% and 99.73% with the features extracted
from SeedNet on the Canada and Cagliari data sets, respectively. In general, and looking
only at the accuracy, there seem to be no distinct performance differences in the two
categories of descriptors to justify one over the other.

However, the scenario considerably changes when observing the results of the multi-
class classification performance that we evaluated using the F-measure computed for all
the classes, as indicated in Equation (6). In particular, Figure 5 shows that the best MFMs
are generally lower than the accuracy on both data sets, even though the SVM reaches
more than 99% of MFM on the Canada data set with ResNet50 and SeedNet descriptors
and 96.07% with SeedNet-extracted features on Cagliari data set. In the last graph shown in
Figure 6, the average performance obtained with the MFM again indicates the SVM trained
with CNN descriptors as the most suitable choice for the task. Indeed, the SVM trained
with CNN-extracted descriptors obtains 96.11% and 92.86% on Canada and Cagliari data
sets, respectively.

As a general rule, on the one hand, the results provided with the extensive experiments
conducted seem to show that the SVM trained with CNN-extracted features can accomplish
the multiclass seeds classification task with performance that outperforms every other
combination of descriptors and classifier analysed. Moreover, this solution seems to
be robust, achieving the highest results in each comparative test. Those extracted from
SeedNet performed excellently in all categories among the deep features, establishing
themselves very well suited to the task. On the other hand, the results produced using
the HC descriptors are satisfactory since they generally bring results comparable to the
CNNs ones, even slightly lower than the best CNN descriptors case of the SVM. In general,
the Ensemble strategy turns out to be the most appropriate when using HC descriptors,
being able to reach 98.76% and 99.42% as the best accuracy and 95.24% and 90.93% as
best the MFM on Canada and Cagliari data sets, respectively, and 96.50% 98.84% as the
average accuracy and 84.88% and 81.59% as the MFM. Nevertheless, the different number
of features that the two different categories have should also be considered. In particular,
the handcrafted ones are 64 if combined, while the deep features are 4096 in the worst
cases of AlexNet, Vgg16, and Vgg19, and 1000 in all the remaining CNNs. SeedNet is an
exception because it has 23 features. Therefore, if we consider the number of discriminative
features, the results obtained with the HC features are even more satisfactory and pave the
way for possible combinations of heterogeneous features.

Since our investigation is the first attempt to study the problems of classifying fine-
grained seed types with a large variety of different seed classes (up to 23), we leveraged
known existing classification strategies that have been commonly used in other works
closer to this [22,24,26,43,44]. Specifically, we employed kNN, Decision Tree, Naive Bayes,
Ensemble classifier with AdaBoost method, and SVM. SVM is the most suitable for this
task, probably due to its excellent capacity in distinguishing classes with closely related
elements. This condition is evident in the Canada data set, containing seeds with hetero-
geneous shapes, colours, and textures. In contrast, the Cagliari data set is composed of
similar classes, making the process more complex (see Astragalus, Medicago, and Melitotus
as examples from Figure 2). For the same reasons, Decision Trees showed the most un-
satisfactory results in this context because, with high probabilities, the features produced
are insufficient to adequately represent all possible conditions of the internal nodes and
realise an appropriate number of splits. Furthermore, as Figures 3 and 4 show, the overall
performance of the system in terms of accuracy indicates that the HC and CNN features are
comparable, and in some cases, the first ones are better than the last ones. This behaviour
is because, in general, both categories have high representational power for fine-grained
seeds classification [6], both in this context and on the same data sets. However, the accu-
racy metric does not represent the detail of the multiclass issue faced in this work. For this
reason, we adopted the mean F-measure in order to have a more unambiguous indication
of the most suitable features for the task, keeping in mind the multiclass scenario.
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Considering that we addressed a a multiclass classification problem, we provide
Figures 7–10, which represent the classwise MFM for each class of both features categories.
In detail, regarding the Cagliari data set, Figures 9 and 10 show that the most difficult classes
are Calicotome villosa (with F-measures of 77.78% with the SeedNet features and 65.38%
with all the HC features) and Cystus purgans (with F-measures of 82.93% with the SeedNet
features and 68.35% with all the HC features), in both cases far below 90%. They are
mostly misclassified with Hedysarum coronarium and Cystus scoparius, respectively. In both
cases, this is certainly due to their similar shapes, and in the latter, certain seeds also have
similar colours. As regards the Canada data set, Figure 8 shows that the Amaranthaceae
(F-measure of 66%) class is mainly misclassified with Solanaceae, and vice versa, although to
a lesser extent (F-measure of 86.95%). Even in this case, this is probably due to the
similar shapes, but it is necessary to remark that the Amaranthaceae class contains only ten
samples. The remaining four classes obtained an F-measure highly above 95%. On the other
hand, Figure 7 represents the excellent representational power of the ResNet50-extracted
features, considering that the F-measure of all the classes is above 95%, and, above all,
the Amaranthaceae obtained 100%, overcoming the issues of the handcrafted features in
discriminating it.
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Figure 7. Classwise MFM on the best model for the Canada data set trained with deep features: SVM
with ResNet50 features.
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Figure 8. Classwise MFM on the best model for the Canada data set, trained with HC features:
Ensemble with Texture features.

A final remark should be devoted to the execution time. We did not indicate the
training time of the different CNNs employed because it is out of the scope of the work.
However, we note that the training time was never less than 22 min on the Canada data set
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(AlexNet) and 21 min on the Cagliari data set (GoogLeNet) for the known architectures,
while the SeedNet training lasted 4 and 12 min, respectively. Regarding the training time
of the traditional classifiers, it was never above 1 min (the worst was Naive Bayes).
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Figure 9. Classwise MFM on the best model for the Cagliari data set, trained with deep features:
SVM with SeedNet features.
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Figure 10. Classwise MFM on the best model for the Cagliari data set, trained with HC features:
Ensemble trained with Shape + Texture + Colour (All) features.

To sum up, the classification strategy based on the optimised SVM trained with
SeedNet-extracted features is suitable for the seed-classification task, even in a multiclass
scenario. This work shows how SeedNet is not only a robust solution for classification [6]
but is also an outstanding feature extractor if coupled with the SVM classifier. The solution
here obtained could also be more feasible than using SeedNet alone, considering the
quicker training time of the SVM once provided with the selected features, in contrast to
SeedNet alone.

While interesting results have been shown, our work suffers from some limitations.
First, the best-performing solution relies entirely on one combination of descriptor and
classifier, even though other categories of descriptors produced satisfactory results. Con-
sidering the properties of handcrafted features, combining them with deep features could
improve the results, particularly in distinguishing the different classes of seeds more specif-
ically. Second, every experimental condition assumed a preprocessing step before it, which
needs to be tuned according to the data set employed. As a result, the trained classifier
could have issues if applied to other data sets with different image conditions. Third,
the training time of the best classification system strictly depends on the training time
of the CNN adopted for the feature extraction. Efforts should be made in this sense in
order to make a real-time system for the task addressed. Fourth, the dimensionality of the
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different feature vectors slightly changes if we compare handcrafted and deep descriptors.
The first ones have a maximum of 64 features, while the second ones can have up to 4096.
In this context, SeedNet is an excellent solution with only 23 features. A reasonable combi-
nation of heterogeneous descriptors could be made to investigate possible improvements,
even followed by a feature reduction/selection. Fifth, as represented by the classwise
performance, some classes are harder to distinguish because of their similar shapes and
colours. In the case of Cagliari data sets, not even the deep features have overcome this
issue. For this reason, the combination of heterogeneous descriptors could help recognise
the most challenging classes.

5. Conclusions

In this work, we mainly focused on the problem of seed image classification. In this
context, we specifically addressed an unbalanced multiclass task with two heteroge-
neous seed data sets, using both handcrafted and deep features. Based on shape, tex-
ture, and colour, the handcrafted features are general and dependent on the problem
addressed, generating a feature vector with a maximum size of 64. Deep features were
extracted from several known CNNs capable of performing different visual recognition
tasks, generating a feature vector whose size is 1000 or 4096, except for SeedNet, which
has 23. The features were then used to train five different classification algorithms, kNN,
Decision Tree, Naive Bayes, SVM, and Ensemble. The experimental results show that the
different feature categories perform best and comparably using SVM or Ensemble models
for the Canada data set, with average accuracy values above 96.5%. The best model for the
Cagliari data set is Ensemble for HC features and SVM for deep features. In both cases,
the average accuracy values are above 99.4%. The MFM metric values give us essential
information about how well the considered features can solve the unbalanced multiclass
task. For both types of features, the Ensemble model achieves the best and comparable
performance, with average values higher than 95.2% and 91%, respectively, for the data sets
of Canada and Cagliari. When comparing HC- and CNN-based features, especially when
considering the size of the feature vector, HC descriptors outperformed deep descriptors
in some cases, as they achieved similar performance but with significant computational
savings. In general, the results provided by the extensive experiments indicate that the
SVM trained with the features extracted from the CNN can perform the task of multi-
class seed classification with a performance that outperforms any other combination of
descriptors and classifiers analysed. Moreover, this solution seems to be robust, obtaining
the highest results in each comparative test. Among the deep features, those extracted
by SeedNet performed excellently in all categories, establishing themselves as very well
suited to the task and expressing SeedNet as a powerful tool for seed classification and
feature extraction. It is also important to remark that the classwise performance highlighted
that some classes are harder to distinguish because of their similar shapes and colours.
For this reason, the combination of HC and deep descriptors could help recognise the most
challenging classes.

In conclusion, SeedNet and CNNs, in general, have demonstrated their ability to offer
convenient features for this task, achieving outstanding performance results with both data
sets. However, if we consider the size of the feature vectors as a computational term, and
the training time involved in the initial process, the HC feature performed satisfactorily,
which is particularly desired for a real-time framework.

As a future direction, we aim to further improve the results obtained by investigating
the possibility of combining the HC and CNN features, particularly to overcome the
difficulties in recognising some seed classes and a feature selection step to reduce the
dimensionality of the features. Finally, we also plan to realise a complete framework that
can manage all the steps involved in this task, from image acquisition to seed classification,
broadening our approach to distinguishing between seeds’ genera and species.
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Appendix A. Numerical Results

This appendix section contains the numerical results of the experiments conducted,
grouped by classifier. In particular, for every classifier we reported a table with its perfor-
mance results. We employed kNN Table A1, Decision Tree Table A2, Naive Bayes Table A3,
SVM Table A4, and Ensemble Table A5. More specifically, every table contains the detail
of the individual HC descriptors of Shape, Texture, and Colour alone. Then, we inserted
all the possible combinations: Shape + Colour, Shape + Texture, Texture + Colour, and All,
which represent the combination of all the three categories. Then, the Average HC row
represents the information used in Figures 4 and 6. Regarding the CNN descriptors, every
row represent the results obtained using that ConvNet as feature extractor. Finally, we
reported the Average CNN row, which was also used in Figures 4 and 6.

https://github.com/andrealoddo/On-Efficacy-HC-Deep-Features-for-Seed-Images-Classification
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Table A1. Performance results obtained using HC descriptors and deep features with kNN classifier
on Canada and Cagliari data sets. KNN were trained with k = 6 and cityblock as distance. DS
indicates the data set.

DS Descriptors Acc Prec Spec Rec MAvG MFM

C
an

ad
a

Shape 94.88 80.07 96.86 82.66 78.86 81.13
Texture 96.90 81.37 98.22 92.07 72.30 82.11
Colour 86.20 48.94 91.58 51.00 40.91 49.18
Shape + Colour 97.21 83.14 98.39 91.85 77.38 84.25
Shape + Texture 98.14 88.56 98.92 94.69 86.25 90.19
Texture + Colour 95.35 76.02 97.31 82.12 67.85 76.70
All 97.52 85.23 98.56 89.52 81.56 86.20

Average HC 95.17 77.62 97.12 83.42 72.16 78.54

AlexNet 96.34 91.16 97.62 90.58 91.04 90.56
Vgg16 94.01 82.45 96.19 85.57 82.04 83.52
Vgg19 97.28 94.53 98.20 94.30 94.38 94.28
GoogLeNet 94.97 89.64 96.82 90.07 88.88 88.80
Inceptionv3 94.55 88.95 96.58 86.94 87.92 87.03
ResNet101 95.81 90.82 97.28 88.91 90.64 89.65
ResNet18 95.77 91.28 97.20 90.43 91.13 90.64
ResNet50 96.42 92.80 97.62 92.19 92.66 92.35
SeedNet 97.66 94.85 98.51 93.27 94.66 93.84

Average CNN 95.87 90.72 97.34 90.25 90.37 90.07

C
ag

lia
ri

Shape 95.43 39.32 97.56 45.07 5.59 41.07
Texture 96.59 44.78 98.20 54.91 34.96 47.05
Colour 98.24 71.93 99.07 76.72 66.01 72.75
Shape + Colour 98.24 71.15 99.08 80.82 67.42 74.36
Shape + Texture 97.04 53.67 98.44 63.48 42.65 55.95
Texture + Colour 98.27 71.88 99.09 80.37 67.88 74.06
All 98.47 74.70 99.20 83.79 70.90 77.53

Average HC 97.47 61.06 98.66 69.31 50.77 63.25

AlexNet 98.90 82.72 99.43 89.99 79.73 84.78
Vgg16 99.03 84.23 99.49 88.91 82.99 86.02
Vgg19 99.02 84.05 99.49 91.59 81.40 86.35
GoogLeNet 99.23 87.78 99.60 93.59 85.70 89.55
Inceptionv3 98.78 79.96 99.36 87.74 77.00 82.46
ResNet101 98.80 81.17 99.37 87.78 76.49 82.88
ResNet18 99.33 89.26 99.65 93.54 88.36 90.86
ResNet50 99.15 86.25 99.55 91.01 84.56 87.86
SeedNet 99.37 89.49 99.67 94.36 87.99 91.19

Average CNN 99.07 84.99 99.51 90.95 82.69 86.88
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Table A2. Performance results attained using HC descriptors and deep features by Decision Tree
classifier on Canada and Cagliari data sets. Decision Tree were trained with 50 as maximum number
of splits. DS indicates the data set.

DS Descriptors Acc Prec Spec Rec MAvG MFM

C
an

ad
a

Shape 93.02 74.12 95.72 73.53 72.44 73.80
Texture 97.21 86.78 98.33 87.32 85.48 86.99
Colour 89.15 59.42 93.44 58.83 53.57 58.91
Shape + Colour 96.59 85.84 97.94 85.38 84.97 85.51
Shape + Texture 97.21 89.94 98.28 89.53 89.71 89.68
Texture + Colour 97.98 88.43 98.83 88.82 87.02 88.59
All 97.36 89.75 98.39 89.63 89.50 89.68

Average HC 95.50 82.04 97.28 81.86 80.38 81.88

AlexNet 87.47 71.81 91.72 67.98 71.01 69.41
Vgg16 91.01 71.69 94.23 70.58 69.30 70.74
Vgg19 90.43 76.58 93.68 75.86 76.54 76.16
GoogLeNet 88.99 67.14 92.87 74.19 65.13 69.21
Inceptionv3 89.01 70.05 92.84 69.56 69.66 69.48
ResNet101 83.74 60.97 89.27 62.65 60.01 61.71
ResNet18 88.09 64.40 92.35 65.34 62.75 64.75
ResNet50 87.03 69.08 91.47 68.17 68.62 68.16
SeedNet 87.59 70.16 91.84 72.18 69.64 70.80

Average CNN 88.15 69.10 92.25 69.61 68.07 68.94

C
ag

lia
ri

Shape 97.45 63.29 98.65 67.89 55.55 63.47
Texture 98.00 66.33 98.95 67.54 11.25 66.31
Colour 97.25 57.82 98.55 60.71 48.11 58.34
Shape + Colour 98.51 75.66 99.22 78.68 68.91 76.63
Shape + Texture 98.43 73.43 99.18 76.09 65.88 73.95
Texture + Colour 98.51 75.42 99.22 80.13 70.19 76.44
All 98.58 76.33 99.25 79.00 70.46 77.06

Average HC 98.10 69.75 99.00 72.86 55.76 70.31

AlexNet 97.69 66.47 98.77 67.09 60.11 66.45
Vgg16 98.25 73.34 99.07 76.53 71.03 74.33
Vgg19 97.64 66.11 98.75 67.55 61.30 66.69
GoogLeNet 97.85 68.66 98.87 68.31 64.17 68.33
Inceptionv3 97.35 61.45 98.60 63.57 57.11 62.14
ResNet101 96.63 52.77 98.21 54.59 8.45 53.09
ResNet18 97.70 66.63 98.78 66.79 63.46 66.44
ResNet50 97.27 60.49 98.55 60.41 55.13 60.18
SeedNet 97.63 66.13 98.74 66.72 61.92 66.18

Average CNN 97.56 64.67 98.70 65.73 55.85 64.87
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Table A3. Performance results attained using HC descriptors and deep features by Naive Bayes
classifier on Canada and Cagliari data sets. Naive Bayes were trained with kernel as distribution and
normal as kernel type. DS indicates the data set.

DS Descriptors Acc Prec Spec Rec MAvG MFM

C
an

ad
a

Shape 93.02 71.80 95.79 73.97 67.29 72.24
Colour 85.12 47.48 91.03 47.86 0.10 45.55
Texture 96.12 83.07 97.67 86.20 81.07 84.07
Shape + Colour 95.19 77.51 97.12 78.89 72.71 77.61
Shape + Texture 96.59 86.24 97.91 90.64 85.23 87.45
Texture + Colour 95.04 78.80 97.02 81.47 76.62 79.61
All 96.59 85.85 97.92 90.75 84.84 87.32

Average HC 93.95 75.82 96.35 78.54 66.84 76.26

AlexNet 96.74 90.62 97.94 92.72 90.48 91.35
Vgg16 92.26 81.50 95.08 80.43 80.93 80.20
Vgg19 96.12 88.22 97.60 89.89 88.11 88.85
GoogLeNet 96.74 90.62 97.94 92.72 90.48 91.35
Inceptionv3 96.74 90.62 97.94 92.72 90.48 91.35
ResNet101 95.66 86.31 97.30 90.24 86.06 87.88
ResNet18 95.66 87.18 97.30 89.57 87.09 88.15
ResNet50 95.66 86.28 97.29 89.22 86.15 87.47
SeedNet 95.81 89.38 97.37 88.91 89.11 89.02

Average CNN 95.71 87.86 97.31 89.60 87.65 88.40

C
ag

lia
ri

Shape 95.93 45.89 97.85 50.57 7.17 45.88
Texture 94.36 35.64 97.06 42.31 4.88 32.47
Colour 97.36 65.72 98.61 65.45 59.72 62.95
Shape + Colour 96.91 55.18 98.37 63.52 50.34 55.80
Shape + Texture 96.10 43.95 97.94 54.91 36.74 46.04
Texture + Colour 96.46 54.74 98.15 58.44 50.01 52.87
All 96.41 47.67 98.11 59.18 41.31 49.39

Average HC 96.22 49.83 98.01 56.34 35.74 49.34

AlexNet 98.78 83.76 99.35 82.89 82.83 82.83
Vgg16 98.77 83.71 99.35 82.53 82.75 82.72
Vgg19 98.79 83.81 99.36 82.48 82.83 82.76
GoogLeNet 98.78 83.94 99.35 82.68 82.91 82.85
Inceptionv3 98.77 83.71 99.35 82.50 82.79 82.65
ResNet101 98.77 83.40 99.35 82.48 82.45 82.46
ResNet18 98.79 83.84 99.36 82.77 82.90 82.88
ResNet50 98.76 83.68 99.34 82.18 82.71 82.46
SeedNet 98.78 83.68 99.35 82.75 82.68 82.71

Average CNN 98.78 83.73 99.35 82.58 82.76 82.70
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Table A4. Performance results attained using HC descriptors and deep features by SVM classifier on
Canada and Cagliari data sets. SVM was trained with a polynomial kernel of order 2. DS indicates
the data set.

DS Descriptors Acc Prec Spec Rec MAvG MFM

C
an

ad
a

Shape 94.26 77.32 96.49 77.94 75.64 77.56
Colour 92.87 69.54 95.80 69.36 61.89 68.89
Texture 97.52 88.31 98.49 87.98 87.09 88.13
Shape + Colour 96.74 83.51 98.08 83.72 81.24 83.54
Shape + Texture 97.98 90.85 98.77 92.51 90.26 91.50
Texture + Colour 98.60 91.89 99.19 91.99 91.19 91.92
All 97.67 89.44 98.60 90.29 88.80 89.78

Average HC 96.52 84.41 97.92 84.83 82.30 84.47

AlexNet 98.94 97.77 99.32 97.54 97.74 97.57
Vgg16 95.72 87.94 97.22 89.50 87.82 88.55
Vgg19 98.75 97.60 99.16 97.34 97.57 97.45
GoogLeNet 98.74 97.54 99.15 96.05 97.52 96.73
Inceptionv3 97.25 94.16 98.23 92.69 93.97 93.24
ResNet101 97.70 95.11 98.48 95.03 95.07 95.06
ResNet18 99.15 98.40 99.42 98.01 98.39 98.18
ResNet50 99.58 99.23 99.71 99.12 99.22 99.17
SeedNet 99.58 99.07 99.73 99.08 99.05 99.06

Average CNN 98.38 96.31 98.94 96.04 96.26 96.11

C
ag

lia
ri

Shape 94.60 31.25 97.11 37.06 22.99 33.13
Texture 96.53 48.07 98.16 50.46 42.24 48.92
Colour 98.51 76.47 99.21 79.79 74.36 77.48
Shape + Colour 98.32 72.91 99.12 79.73 68.85 75.18
Shape + Texture 96.68 47.97 98.25 54.33 39.48 50.06
Texture + Colour 98.54 76.79 99.23 80.14 74.21 78.01
All 98.49 73.97 99.21 81.18 70.01 76.74

Average HC 97.38 61.06 98.61 66.10 56.02 62.79

AlexNet 99.48 91.96 99.73 94.62 91.31 92.99
Vgg16 99.27 88.24 99.62 90.49 87.29 89.14
Vgg19 99.54 93.08 99.75 94.55 92.71 93.73
GoogLeNet 99.55 93.08 99.76 94.16 92.52 93.52
Inceptionv3 99.40 90.81 99.68 92.31 90.29 91.47
ResNet101 99.25 88.64 99.61 91.48 86.93 89.62
ResNet18 99.67 95.08 99.83 96.82 94.80 95.83
ResNet50 99.53 92.94 99.75 93.94 92.43 93.34
SeedNet 99.73 95.47 99.86 96.91 95.11 96.07

Average CNN 99.49 92.14 99.73 93.92 91.49 92.86
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Table A5. Performance results attained using HC descriptors and deep features by Ensemble classifier
on Canada and Cagliari data sets. The ensemble was trained with a bag method and tree as a learner.
DS indicates the data set.

DS Descriptors Acc Prec Spec Rec MAvG MFM

C
an

ad
a

Shape 95.04 77.84 97.02 80.53 74.78 78.87
Texture 98.76 94.28 99.25 96.64 94.01 95.24
Colour 89.92 59.61 93.93 62.59 53.60 60.34
Shape + Colour 97.36 86.73 98.45 87.98 85.31 87.21
Shape + Texture 98.14 90.49 98.90 93.00 89.77 91.50
Texture + Colour 98.29 90.08 99.01 91.58 88.80 90.67
All 97.98 89.25 98.80 92.18 87.97 90.31

Average HC 96.50 84.04 97.91 86.36 82.03 84.88

AlexNet 96.28 89.31 97.70 88.85 88.87 88.59
Vgg16 93.64 76.20 96.13 79.52 75.03 77.32
Vgg19 97.52 92.75 98.47 94.04 92.64 93.30
GoogLeNet 94.73 83.92 96.76 85.62 83.64 84.68
Inceptionv3 95.19 84.70 97.13 86.80 83.98 85.12
ResNet101 93.95 81.66 96.31 85.07 81.29 82.84
ResNet18 95.81 88.52 97.39 90.18 88.30 89.10
ResNet50 96.59 91.46 97.84 90.14 91.35 90.69
SeedNet 95.35 87.38 97.10 87.51 87.09 87.40

Average CNN 95.45 86.21 97.20 87.53 85.80 86.56

C
ag

lia
ri

Shape 98.15 70.75 99.03 76.62 65.90 72.61
Texture 98.56 72.96 99.25 77.29 66.68 73.96
Colour 98.27 73.13 99.09 76.88 70.08 74.37
Shape + Colour 99.29 88.35 99.63 91.68 87.01 89.55
Shape + Texture 99.02 81.53 99.49 86.78 77.19 82.95
Texture + Colour 99.15 85.14 99.56 89.20 83.67 86.74
All 99.42 89.54 99.70 93.53 88.13 90.93

Average HC 98.84 80.20 99.39 84.57 76.95 81.59

AlexNet 99.02 82.69 99.49 91.15 79.29 85.05
Vgg16 99.06 84.87 99.50 87.16 83.79 85.73
Vgg19 99.07 83.55 99.51 91.11 80.73 85.89
GoogLeNet 99.16 85.39 99.56 90.67 83.23 87.34
Inceptionv3 98.81 79.11 99.38 88.60 75.89 82.20
ResNet101 98.40 72.45 99.17 83.57 63.71 74.96
ResNet18 99.20 86.39 99.58 91.52 83.97 88.28
ResNet50 98.93 80.64 99.44 88.23 77.28 83.20
SeedNet 99.21 85.58 99.59 92.22 83.08 87.63

Average CNN 98.98 82.30 99.47 89.36 79.00 84.48
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