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Abstract
Significant progress has recently been made in the field of polyatomic gases, in
particular by Professors T Ruggeri, M Sugiyama and collaborators. But so far it
has not yet been seen how they interact with an electromagnetic field. This is
realized in the present paper. As a first step, we consider here the case when the
gas is described only by the Euler Equations and the electromagnetic field by
Maxwell’s Equations in materials. To find the field equations, a supplementary
conservation law is imposed which is the entropy principle for the Euler
Equations, while for Maxwell’s Equations is the energy; this is useful because in
this way the whole set of equations becomes a symmetric hyperbolic system as
usual in Extended Thermodynamics. One of the results is a restriction on the law
connecting the magnetic field in the empty space and the electric field in materials
to the electromotive force and its dual: they are the gradients of a scalar function.
Obviously, two Maxwell’s equations are not evolutive (The Gauss magnetic and
electric laws).
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1. Introduction
In this article, we try to put together the new knowledges available from Extended Thermodynamics (ET)
(Born and Infeld, 1934; Donato and Ruggeri, 1972; Liu and M¨uller, 1972;  Ruggeri, 1973; Liu and M¨uller,
1983; Amendt  and Weitzner, 1985; Liu et al., 1986; Anile and Pennisi, 1991; Carrisi, 2011; Boillat  et al., 1994;
M¨uller and Ruggeri, 1998; Gibbons  and Herdeiro, 2001; Boillat and Ruggeri, 2004; Carrisi  et al., 2004; Carrisi,
2013; Carrisi et al., 2014; Carrisi and Pennisi, 2014; Carrisi et al., 2015) (concerning field field equations that
meet the hyperbolic requirement) and extensive literature on Maxwell’s equations in matter. So far in the ET
models, such equations contain the influence of the electromagnetic field only through Lorentz ’s force (see,
Amendt  and Weitzner, 1985; Anile and Pennisi, 1991; Carrisi, 2011); likewise, in the articles on Maxwell’s
equations in matter, the latter are not coupled with the equations for matter and even less with those for
polyatomic gases. Since there is to be expected that they affect each other, it is natural that they should be
modeled with a single set of equations. It is also expected that, in the absence of an electromagnetic field, this
set of equations must coincide with those already known of ET and that, in the absence of equations for the

International Journal of Pure and
Applied Mathematics Research
Publisher's Home Page: https://www.svedbergopen.com/

Research Paper Open Access

SvedbergOpen
DISSEMINATION OF KNOWLEDGE

https://creativecommons.org/licenses/by/4.0/),
mailto:spennisi@unica.it
mailto:spennisi@unica.it
https://doi.org/10.51483/IJPAMR.1.1.2021.1-20
https://www.svedbergopen.com/


S. Pennisi  / Int.J.Pure&App.Math.Res. 1(1) (2021) 1-20 Page 2 of 20

matter of ET, such equation set must coincide or contain as particular cases the known knowledge about
Maxwell’s equations in matter. This result is achieved in this article. Indeed, here we consider only the 5
moments model as ET component equations, but the extension to the case of several moments will be
straightforward because almost all models in ET take as the benchmark of equilibrium just that with 5 moments.

The articles (see, Born and Infeld, 1934; Donato and Ruggeri, 1972; Ruggeri, 1973; Boillat et al., 1994;
Gibbond and Heedeiro, 2001; Boillat and Ruggeri, 2004) deserve a particular attention, so in Section 5 we will
analyze the model presented here in the light of the knowledges presented in those articles. Let’s now cite other
articles from which we moved. To this regard we like to cite (Liu and Muller, 1972) where a very complicated
theory was presented for magnetizable and polarizable fluids; for example, two new equations were presented
for the magnetization and for the polarization. We will see here that this is not necessary because those
equations are consequences of the remaining ones. But at that time Extended Thermodynamics was not fully
established as today, so we have now more opportunities to take advantage of the new knowledge.

In (Carrisi et al., 2004) we find an attempt to improve (Liu and Muller, 1972), by using an extended set of
independent variables and of corresponding equations as usual in Extended Thermodynamics; but many ad
hoc hypothesis were introduced and the results were not fully satisfactory. In  (Strumia, 1992) this problems
were considered but without using the whole set of Maxwell’s equations and without considering them jointly
with the field equations for the material because only a particular result was searched.

On the other hand, Maxwell’s equations in the empty space are easier; so they have fully investigated from
the present point of view as in Pennisi (1996) and Arima et al. (2012). The goal of the present article is to find the
corresponding results for Maxwell’s equations coupled with those of the material. To this end, we take advantage
of the new knowledges appeared recently in literature for polyatomic gases such as, Pavi´c et al. (2013), Arima
et al. (2012 and 2014), Carrisi et al.  (2015), Ruggeri and Sugiyama (2015), Carrisi  (2015), Carrisi and Pennisi
(2016), Carrisi et al.  (2016, 2017, 2019, 2020, 2021); Pennisi and Ruggeri (2017, 2020); Pennisi (2021); Ruggeri
and Sugiyama ( 2021) but, as first step, we consider only the Euler equations for describing the contribute of the
material. So the whole set of field equations here considered is

0 k
kt FF  (Mass Conservation) (1)

iki
k

i
t qFF   (Momentum Conservation)

i
ikll

k
ll

t qGG  2  (Energy Conservation)

0 kkt jq  (Charge Conservation)

  0 j
kij

k
i

t EB  (Faraday’s Conservation)

  i
j

kij
k

i
t jHD   (Ampere-Maxwell’s Law)

0 k
k B  (Gauss Magenetic law)

qDk
k   (Gauss Electric Law)

Here the independent variables are the mass density F, the momentum density Fi, the energy density Gll, the
magnetic field in the empty space Bi (or magnetic induction), the electric field in materials Di (or electric
induction) and the free charge density q.

The other quantities are constitutive functions of the independent variables; they are the flux of mass Fk, the
momentum flux Fki, the energy flux Gkll, the free electric current ji, the electric field in the empty space Ei and the
magnetic field in materials Hi. Moreover, kij is the Levi-Civita symbol. The right hand sides of (1)2,3 are due to
the presence of the Lorentz force, with

 iii BE


^

Obviously, Equation (1)4 is a consequence of (1)6,8 but we prefer to retain it for the following reason:
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The derivative with respect to xi of (1)5 is 0)(  i
it B  so that it will suffice to impose Equation (1)7 on the

initial manifold and, as a consequence, it will be satisfied also outside it. Similarly, the derivative with respect

to xi of (1)6 gives 0)(  qDi
it  which is now a consequence of Equation (1)4 so that it will suffice to impose

Equation (1)8 on the initial manifold.

There is no need to introduce an equation for the polarization Pi and the magnetization Mi because they are
already expressed in terms of the above independent variables through the definitions

i
j

iji
j

ijii HBMEDP   )(, 1 (2)

with ij and ij invertible matrices.

Similarly, we can define the total charge density qT and the total current density i
Tj  from

      i
Ta

jaikj
kj

ij
tj

kj
k jBEqTE   )(, 1 (3)

After that, from Equations (2) it follows

  ii
Tj

ikj
k

i
t jjMP  ,

qqTPk
k 

and these are not new balance equations but simply the definitions of the non free charge density qT – q and

of the non free electric current ii
T jJ  . In the case without polarization and magnetization all the charges and

all the currents are free. Moreover, from Pi = 0, Mi = 0 and from Equations (2) we deduce

a
iai

j
iji BHED )(, 1  (4)

and the Maxwell’s equations (1)5–8 become

      i
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kj
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t jBEEB 



 1,0 

  qEB a
ka

k
k

k  ,0

These are called the Maxwell’s equations in homogeneous and isotropic media. Now we see the meaning
of the definition (3) compared with Equations (1)6,8: qT and jT are the charge and the current density we would
have if the media was homogeneous and isotropic.

If ij = 0
ij, ij = 0

ij with 0  (electric permittivity) and 0 (magnetic permeability) constants, the Maxwell’s
equations become
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Moreover, Maxwell discovered, by using the values of 0 and µ0 known from experiments in the empty

space, that the quantity 
00

1

 in the empty space is exactly equal to the speed of light c. In this case the above

equations become the Maxwell’s equations in empty space. In the more general case,
00

1

 can be considered

as the speed of light in the material (Obviously, it is less than c). From these considerations it is evident that the
above Equations (1) are the most general and we can study them.
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In Section 2 we will impose on Equations (1)1–8 the relativity principle and the existence of a supplementary
conservation law. One of the results is a restriction on the law connecting the magnetic field in the empty
space and the electric field in materials to the electromotive force 

  and its dual X
  We will find that a scalar

function h  exists such that B
  and D

  are derivatives of h  with respect to two lagrange multipliers related

with 
  and X

 .

More precisely, since Equations (1)7,8 are evolutive constraints, we will apply to the present system the
methodology already known in literature for this case, such as, Strumia (1988), Boillat (1994), Pennisi (1997).
In Section 3, by using the methodology of Ruggeri and Strumia (1981) and Ruggeri (1989), this will transform
our system in the symmetric hyperbolic form with all its consequent good mathematical and physical properties.
In Section 4 we will study the wave equations for our field equations, and in Section 5 we will compare our
results with others already known in literature.

2. Existence of a Supplementary Conservation Law
First of all, it is useful to perform the following change of variables from (E i , H i) to ( i , Xi ):

   iiiiii DvHXBvE


^,^  (5)

because i  is proportional to the Lorentz force and can be called the electromotive force; consequently, it

doesn’t depend on the observer. For this reason it is preferable to take i  as variable instead of Ei. This fact

justifies the choice (5)1. As a matter of parallelism it is preferable to take  iii DvHX


^ as variable instead

of Hi and this justifies the choice (5)2. Moreover, we know that, under a transformation from a reference frame

to another one, moving with respect to the previous one of a translational motion with velocity iBv ,
 and Di

transform as pseudo-vectors (that is, as vectors but only under the orthonormal transformations which preserve
the orientation). Regarding F, Fi, Gll and the fluxes Fki, Gkll we use the decomposition in Arima et al. (2012), that is

F = F , Fi
 = Fvi , Gll = Fv2 + mll , Fki = Fvkvi +Mki , Gkll = Fv2vk + 2 vpMkp + mllvk + mkll ,

where F, mll, Mki and mkll don’t depend on the velocity.

Now we are ready to introduce the supplementary conservation law which must old for all the solutions of
the field equations and it is

 k
kt hh

Without the presence of the electromagnetic field and the further condition   0, this is the entropy
principle; in the presence of the electromagnetic field we don’ t demand a physical meaning of this condition,
except for the fact that it leads to a symmetric hyperbolic system. By using Liu’s theorem (Liu, 1972), it is
equivalent to assume the existence of Lagrange multipliers µ, i, ll, , µi, vi such that

i
i

i
i

ll
ll

i
i dDvdBdqdGdFdFdh   (6)
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   i
ill

i
i

i
i vqjv 2

where the scalar functions   and  are present to take into account the evolutive constraints (1)7,8. Now
Equation (6)1 in the independent variables F, vi, E, Bi, Di and by assuming that h doesn’t depend on vi, gives

,ˆ,,2,ˆ 2
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llillill 






  (7)

i
i

i
i D

h
v

B
h

q
h












 ,, 



S. Pennisi  / Int.J.Pure&App.Math.Res. 1(1) (2021) 1-20 Page 5 of 20

Since h is a scalar function not depending on vi, so we may deduce that also ̂ , ll,  , µi and vi don’t depend
on vi.

Similarly, by imposing that 
 

0

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i

kk

v
hvh

 we obtain
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  2ˆ0

By substituting here Es and Hs from (5), this relation becomes
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where we have used the identity 
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on vi and it seems obviuos to take jk = qvk. So the last relation, by using (7), becomes
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which can be used to deduce Mik. After that, (6)1,2 imply that
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where we have used (7)2, (5) and the above mentioned identity. Since these expressions must not depend on the

velocity, it follows that r
r

r
r vvv   ,  except for additional terms not depending on vi which we assume,

for the sake of simplicity, to be zero. As a consequence of these results, we see that (6)3 becomes  = 0.

Aiming to obtain a symmetric system according to the ideas of [49], we introduce now the 4-potentials
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In this way Equations (6)1,2 become

,i
i

i
i

ll
ll

i
i dvDdBqddGdFFdhd  

 dDdBdvHdEdjdGdFdFhd kk
ij

kij
ij

kijk
ll

kll
i

kikk  (10)
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r vvv   ,  and Equations (5), (7), (8). In particular, this last one becomes

02  ikikki
ll

ki vDBMh  (13)

which defines Mki.

So, up to now, we have found h  and 
ll

k
kk hhh




2
ˆ  which depends on the scalars  ,,ˆ ll  and on the

vectors ii v, . For the Representation Theorems (Pennisi and Trovato, 1989; and Pennisi, 1998), we have then
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11

3

22

3

12

3 











Y
h

Y
h

Y
h

 Then h3 depends only

on ll (From Equation (12) it cannot depend on the other scalars). So Equation (15) now simplifies in

jjjjsr
krs

ll

kll hXvhv
h

m 
 3,3

3 , 



 (16)

This result gives physical meaning to the Lagrange multipliers j and j; they are parallel to j and Xj; they
can be also equal to them if h3 = 1.

We see also that, from (11) it follows:

i

i

i

i

ll

hDhBhqhmhF ll

 




















 ,,,,
ˆ (17)

The last two of these show the only restriction given by the existence of a supplementary conservation law:
The functions relating Bi and Di to i and i are not arbitrary but gradients of a scalar function h  with respect
to i and i. Moreover, the material objectivity principle is satisfied.

The final result for kh is

  sr
krs

ll
ll

k
k vhhh 





 32 (18)
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Coming back to Equations (10) we may rewrite them using the compact notation A to denote all the
Lagrange multipliers; so we obtain

,,
A

k

A

kkA

A

k

A

A DBFhhF






 













 (19)

i.e., 
i

i
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i
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i
i hDhBhqhhGhFhF


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
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
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






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














 ,,,
)(4ˆ

,
2ˆ

,
ˆ 2  (20)

,
222)(4ˆ

,
2ˆ 2
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k
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





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

,
)(2)2()(22 22
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ll

r
rk

ll

r
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sr
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llll
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k
llkll DBhhGG























  ,)(
2

]2,
2

]2,
2 3

[
3

[
s

ksi
ll

ll

k
i

j
kij

s
kis

ll
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k
i

j
kij

ll

k
k hDHhBEqj 






















where we have used

ll

r

r
ll

r

r
ll

r
r v













2

,
2

,
4

ˆ 





We note that (20)11,12, thanks to (5), confirm the above defined (16)2,3.

3. The Hyperbolicity Requirement
Let us use Equations (19) to obtain FA and FkA; after that, we see that the field Equations (1)1–6 become

Ak
k

A

k
k

A
Bk

BA

k

BA

k

BA

k

Bt
BA

pDBDBhh



















































222222

If we add to this Equation (1)7 multiplied by 
A





and (1)8 multiplied by 
A





, it becomes

A

A
Bk

BA

k

BA

k

BA

k

Bt
BA

qpDBhh












 

























 2222

(21)

Because the matrixes coefficients of Bt and Bk  are symmetrix with respect to the multi-index A, B, for

the hyperbolicity of the system (21) it suffices that the matrix 
BA

h
 
2

is negative defined (Boillat and Ruggeri,

1997; Muller and Ruggeri, 1998), i.e., that h  is a concave function of the variables A . In other words, we add

to Equations (1)1–6 a linear combination of (1)7,8 and, after that, we leave out (1)7,8; this can be done because they

are now consequences of (21). In fact, by writing this new set explicitly, it reads

0 k
kt FF (22)

,
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k
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k
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i
k

kt qqDBFF 




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


,
2

2
)(2)(2)(2 222
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ll

r
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k
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r
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k
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r
rkll

k
ll

t qqDBGG













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,0 k
kjtq
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2

)(  k
k

ll

i

j
kij

k
i

t BEB



,0
2

)(  k
k

ll

i

j
kij

k
i

t DHD



where we have used .
2

qj
ll

i
i




  Now, the derivatives with respect to xi of (22)5,6 are

    0
2

)(,0
2

)( 






















 qDqDBB k

k
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i

i
k

kt
k

k
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i

i
k

kt 





 (23)

The first one of these equations is obtained with the following passages:


















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k
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i

i
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k
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i
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i
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kt BBEB






22
)(

where in the first passage we have substituted i
t B  from (22)5 and in the second passage we have used the

identity jik
kij E = 0. Similarly, we have

 



















 qDjjqDHqD k

k
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i

i
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k
i
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i
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k
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i
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kij

i
k

kt 








222
)(

where in the first passage we have substituted i
t D from (22)6 and qt  from (22)4 while in the second passage

we have used the identity jik
kij H = 0. Moreover, we have used again .

2
qj

ll

i




  The result (23) shows that

it suffices to impose (1)7,8 only in the initial manifold and, after that, they will be satisfied also outside of it as
a conequence of (22)3–6; for this reason they can be left out of our field equations.

It remains now to investigate the concavity of the function h  and this will be the argument of the next
subsection.

3.1. On the Concavity of h

Let us see under what conditions the quadratic from BA
AA

hQ 
 



2

 is negative defined. Now we have

ll
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i
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i
ll vhhvvhvhQ 
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





 
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After some calculations, it becomes 12 QFQ i
ill    with
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So Q is negative defined if and only if Q1 is negative defined. By expliciting its expression, we have

with222 2
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We evaluate now the coefficients of the differentials in the reference frame where   and v  have the

components    ;0,,,0,0, 211 vvv 


  the terms containing 3  or 3v  are
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So we may deduce that Q1 can be negative definite only if the following matrix is definite negative



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(25)

Regarding the concavity requirement for all the function h, we can resume what follows:

1. A necessary and sufficient condition for the concavity of all the function h is that the matrix (25) is negative
defined and also the quadratic form Q1 is definite negative.

2. The matrix (25) must be negative definite; this is a necessary condition in order to have that Q1 is negative
definite.

3. A sufficient condition ensuring that Q is negative definite is that the matrix (25) is negative definite and h

is a non convex function of .,,,,,ˆ 221211 YYYll 
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In fact, the expression Q1 is sum of
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(which is negative defined in our hypothesis) and of Q2. If we evaluate the coefficients of its differentials in
the above reference frame where   and v

  have the components    0,,,0,0, 211 vvv 


 , we see that its
expression is equivalent to the following one
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In our hypothesis their sum is not positive; if it is zero, then both the quadratic forms are zero. The first one

of these will imply .0,0  i
i  By subtituting this result in the second one, we obtain

.0,0,0ˆ   ll

It is important to remark this aspect because, in the case of an homogeneous and isotropic
media with constant electric permittivity and magnetic permeability, we have that
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 is not negative definite but it is identically zero; but our condition

is satisfied also in this case because h is concave function of  ,,ˆ ll and because (26) is negative defined. To
explicitate better this particular case, we treat it in the folowing subsection.

3.2. The Particular Case of an Homogeneous and Isotropic Media
In this case we have

iiii BHDE
00

1,1


 (27)

By substituting these Ei and Hi in (5) and by using (17)4,5, we find

b
a

iab

i

i

b
a

iab

i

i hvhXhvh



























00

1,1

By using (16)2,3 these expressions become

b
a

iab

i

i

b
a

iab

i

i hvhhhvhh






























0

3
0

3
1,1

(28)

The dependence of these equations on the velocity va shows that Equations (27) hold only in the reference
frame comoving with the fluid. So Equations (28) must be replaced with their values in va = 0, i.e.,

i

i

i

i hhhh















0
3

0
3

1,1

from which it follows:

),,ˆ(*)(
2
1),,ˆ(*)(

2
1

1102203003  llll
i

i
i

i hYYhhhh  (29)

After that, Equations (17)4,5 give ;, 3030
iiii vhDhB   for Equations (16)2,3 these expressions become

iiii DXB  00 ,  , i.e., for Equations (5),     



 



 

iiiiii BvEDDvHB


^,^ 00  .
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So we have found

DvBHBvDE


^1,^1
00


 (30)

which generalize Equations (27) to any reference frame and coincide with them in the reference frame
comoving with the fluid.

By using (29), we see that the matrix (25) becomes













03

03

0
0



h

h

which is definite negative if h3 > 0. In the particular case with h3  = 1, the quadratic form Q, considered
above, becomes

i
i

i
ill

ll

i
ill hhhhhvvFQ 








 0303

**ˆ
ˆ
*2 


































which is clearly negative defined.

4. Wave Equations for Maxwell’s Equations
let us consider the wave equations for the system (21) in the case

  )()(,,ˆ* 22111 YhYhhh ll   (31)

Taking into account of (17) and of (7)2, they are

0.
ˆ
*

ˆ
*).( 















 vdnhhdnv 











 

















ll

iii hhhdnvdnvhvhdnv



2

*.
ˆ
*

ˆ
*).( 21

0).(*).(
22

2

11

1 
























ll

i

ll

i
dnv

Y
hdn

Y
h
















 































 vhhhdnvdnhvhhvhdnv
llllll




 2122 *..*

ˆ
**

ˆ
*).(

0).(2).(2
22

2

11

1 



































ll

r
r

ll

r
r vdn

Y
hvdn

Y
h











0.**).( 













 vdnhhdnv





0).(2.22).(
11

1

11

1

11

1 


















 s
kis

k
ii dnvdn

Y
hvdn

Y
h

Y
hdnv i 



0).(2.22).(
22

2

22

2

22

2 


















 s
ksi

k
iii dnvdn

Y
hvdn

Y
h

Y
hdnv 


(32)

Now we add to (32)2 the equation (32)1 multiplied by –vi; so it becomes
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0).().(
2

*)(
ˆ
*).(

22

2

11

121 






























 






ll

i
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i
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ii vdnv
Y
hdn

Y
hhhhdnvdhnv








(33)

Similarly, we add to (32)3 the Equation (32)1 multiplied by  –v2 and the Equation (33) multiplied by  –2vi; so
it becomes

vdnhhhhhnv
llllll

 .***).( 21







 





















0).(2).(
22

2

11

1 







 r
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r
r
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r
dn

Y
hdn

Y
h 








(34)

We note that in the new system (32)1,4,5,6 - (33) , (34), the velocity is present only through its differential dvi.
We note also that  is there present only through v . n  so that we obtain wave velocities relative to the
normal component of the fluid velocity. Moreover, (32)1,4, (33), (34) multiplied by –2ll, (32)5,6 can be written in
the compact form


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
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
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

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
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



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with
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It is here evident the symmetric form of the system, even if we are not using all the Lagrange multipliers as
variables.

We find immediately a first eigenvalue of the problem, i.e.,  nv


. .

In fact, for every solution of the equation 0ˆ
ˆ

**















dhdh
 different from zero, we have that

,0,,ˆ llddd   0,0,0  jjj dvddv  is an eigenvector of the problem corresponding to this eigenvalue
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(We note that, from (20)5,6 it follows 
j

j
iii d

Y
hd
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1 42

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
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iii dvvv

Y
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

which are zero in the present case; so even if we have not imposed the constraints 0,0  k
k

k
k dDndBn

corresponding to Equations (1)7,8, they came out from the other equations). This property holds also in absence

of the electromagnetic field; it is true that in this case the variable d  isn’t present, but in this case we have also

j
ll

j nhhb 
















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*

3  so that, for every solution of the system

0,0**ˆ
ˆ
*






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







 j
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vdndhhdh 





we have a solution of the system; since there are 3 free unknowns, we have that  nv


.  is an eigenvalue
with multiplicity at least 3.

If  nv


. , the last two equations of the system (35), contracted with ni, give

   0.4|2 2
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






 j

jj dn
Y

hn
Y
h




; so also in the general case,

even if we have not imposed the constraints 0,0  k
k

k
k dDndBn corresponding to Equations (1)7,8, they came

out from the other equations.

To find the eigenvalues with  nv


.  we can obtain llddd  ,,ˆ  from the first 3 equations of the  system

(35) and substitute them in the last 3 equations for the determination of .,,, jjj dvddv 

To avoid too complicated expressions, we prefer to consider the particular case with 0.,0.  nvn


 and

(29) with h3 = 1 and 00 ,  constant. In this way we have ,
2
1,

2
1

22021101 YhYh   iiii vDB 00 ,   .

We evaluate our equations in the reference frame with ).0,0,1(n
  Here 0.,0.  nvn


 become 0,0 11  v .

Coming back to the previous eigenvalue  nv


. , we see that in the present case the first 3 equations of the
system (35) are equivalent to d v1 = 0, Equation (35)4 with i = 2, 3 are identities, (35)5 is equivalent to d2 = 0,
 d3 = 0 and (35)6 is equivalent to d2 = 0, d3 = 0, while Equation (35)4 with i = 1 becomes

0***ˆ
ˆ
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So we have only a scalar equation on the 7 unknowns .,,,,,,ˆ 1132  dddvdvddd ll  We conclude that

the eigenvalue nv


.  has multiplicity 6 in the present case.

Two other eigenvalues are

0000

1.,1.





  nvnv


(36)

In fact, if 32 ,  dd  are linked only by

  0.^).(0  


dnnv
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we see that ,0,0,0,0,0,0 11  dvddvddd j
ll 

 ,).( 3
0

2  dnvdv




2
0

3 ).(  dnvd


  is an eigenvector of the problem. Moreover, ,0^
0

0


 



 n  for the eigenvalue (36)1

there is no constraint on 2d and 3d  so that it has at least multiplicity 2.

Similarly, if ,0^
0

0


 



 n  for the eigenvalue (36)2 there is no constraint on 2d and 3d  so that it has

at least multiplicity 2. The result (36) is very important because, as we have said in the introduction, experiments

lead to consider 
00

1
 as the speed of light in the material; here we have found that it is true except that it is

the relative velocity with respect to relative reference frame comoving with the fluid or, more precisely, with

respect to the material wave front. This fact shows the reasonableness in choosing h3 = 1, otherwise this result
would not have been achieved.

To find other eigenvalues besides  nv


.  and (36), we note that (35)4 with i = 2, 3 give dv2 = 0, dv3 = 0 and
(35)5,6 with i = 1 give d1 = 0, d1 = 0 (as expected). After that, (35)5,6 with i = 2, 3 become

,0).( 32
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 (37)

We use the first two of these equations to obtain dv2, dv3 and substitute them in the other two equations from
which we obtain

    ,).(^).(1 1
00

12
00 vdnvnnvd 






    ,).(^).(1 1
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


 (38)

(The second one of these equations expresses (37)1,2 modified by using (38)1; we observe also that (38)

multiplied scalarly with n  shows that d 0,0 11  dvd  are contained in (38)). By substituting these results in
(35)1–3 and (35)4 with i = 1, we obtain the system

  




































































































































































0

0

0

0ˆ

).(1
)()().(.^2***

ˆ
*

).(

**
**

ˆ
*

.

*
**

ˆ
*

.
ˆ
*

ˆ
*

ˆ
*

ˆ
*

1

2
00

).(2
2

0
2

021
2

21

2

222

2

2

22

22

2

2

00 dv

d

d

d

nv
vnvnvhhhhhh

nv

hhhh
hhh

nv

h
hhh

nv

h
hhh

ll

nv

llll

llll

llllll

ll

ll

ll









































  (39)
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where we have divided the first 3 equations by ).( nv


 . To express the determinant of the matrix on the
left hand side, let us call Ai4 the algebraic complements of the elements in its fourth coulumn; after that, this

determinant becomes   12
00

1 ).(1).(
  nvnv


  multiplied by the left hand side of the following

equation

 
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
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
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0
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 (40)

which is an equation to determine the last eigenvalues.

We note that, if vna  ^
0

0




   with a = + 1, the last two terms of (40) become
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 which is a root also of the

other temrs of (40). Vice versa, if we calculate Equation (40) in  
00
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 anv 
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, it becomes
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^
0
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So this is the only case in which (36) and (40) have a common root.

Finally, we observe now that the other eigenvalue nv . isn’t a root of (40). To prove this fact, let us call
||bij|| the matrix extracted from that on (39) by dropping out its last line and its last coulumn and let us call
|Bij|| its adjoint matrix matrix, i.e., with Bij the algebraic complement of bij ; moreover, let be Xi defined by

llll

hhhhXhXhX


21321 **,*,
ˆ
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 . Then  Equation (39) calculated in nv . becomes
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and this is impossibile because 0
ˆ

*
1 




 FhX
 , the matrix|| bij|| is negative definite and, as a

consequence, its adjoint|| Bij|| is positive definite.

So we have found that

• If 






^
0

0 n , then the wave velocities are nv


. with multiplicity 6, 
00

1.


  nv


with multiplicity

2,  
00

1.


  nv


 with multiplicity 1 and the other 3 eigenvalues of (40),
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• If vn


^
0

0




  , then the wave velocities are nv


.  with multiplicity 6, 
00

1.


  nv  with multiplicity

2,  
00

1.


  nv  with multiplicity 1 and the other 3 eigenvalues of (40),

• If vn 
^

0

0




  , then the wave velocities are nv


.  with multiplicity 6, 
00

1.


  nv  with multiplicity

1, and the other 4 eigenvalues of (40).

5. Comparison with Previous Notable Results in Literature
First of all we emphasize that in all the articles cited below the Maxwell Equations are not coupled with the
field equations for materials, so that the results obtained in the present article are more general and contain
them only as particular cases.

• The paper, Born and Infeld (1934)  is very important but seems to belong to the context of general relativity
and of quantistic mechanics; moreover, it is connected to the string theory. One of its result is the Born-
Infeld Lagrangian and the upper bound E2  k, with k = const. > 0.

We avoid this framework because the field equations for materials must belong to the same context and
literature for them is present in a simpler framework. So the present work is partially less sophisticated
than this one for what regards the electromagnetic component of the field equations, even if it leaves out no
aspect of Born and Infeld (1934); but our work is anyway more general because it contains also the component
of field equations for materials. For this reason it was necessary to reach a compromise between the two and
use the same notation for both sets of field equations. We also preferred leaving the notation at a level that
would allow practical applications more easily. It is not excluded that this work can be implemented in the
future to achieve the same level of refinement.

• In Donato and Ruggeri (1972) discontinuity equations are discussed but with Maxwell Equations without
current, free charge and without the field equations for materials. For this ground their results can be
compared only with the present ones calculated in d 0,0,0,0,0ˆ  vvdddd ll


 .

After that we see that their closure is just a special case of the present with HHB


)( 2 and ED


 where
is considered constant.

We note the condition (3’) which is assumed on page 289 of this article. We see now that it is a consequence
of the present concavity requirement. In fact, the present model gives that of Donato and Ruggeri (1972)

when h has the form )(
2
1

1122 YFYh   and it follows 
11

2 2)(
Y
FH




 . Consequently, the requirement

for the matrix (25) to be positive definite becomes 0,0   . But also (24) must be negative definite; in the
present case this condition becomes
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where in the second passages we have used the reference frame where )0,0,(HH 


; we see that it is
negative definite if and only if
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024
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2









Y
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Y
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11




Y
F

and this is condition (3’) of Donato and Ruggeri (1972).

Also the speeds of propagation wave (14) and (15) of Donato and Ruggeri (1972)  correspond to those found
here at the end of the previous section but in the particular case 0 = 0.

• In Ruggeri (1973) the sufficient conditions which make all discontinuity-wave propagation-speed real and

non vanishing are analyzed. The closure HHB


)( 2 and EED


)( 2  is more general than that of the
previous article but less general than the present one. The Pignedoli’s conditions 4a) and 4d) on page 285
are compatible with the present concavity of h ; 4b) and 4c) are necessary and sufficient conditions for the

existence of h  such that 
i

i

i

i

H
hB

E
hD








 ,  which has been found later in Boillat et al. (1994), we have

proved here that this property holds also in the presence of the field equations for the material. The only
difference now is that h  may depend also on mass density and energy density of the material, besides its
dependence on the electromagnetic tensor; moreover, the derivatives of h  with respect to Ei and Hi must be

replaced by derivatives of h  with respect to i and Xi.

In Ruggeri (1973), Equations (23) and (31), the wave velocities have been found under the particular

assumption that En


^  is orthogonal to Hn


^ . If we write the above wave equations in this hypothesis, we
see that it yields the same result.

• In Boillat et al. (1994) it is shown how to obtain hyperbolic systems compatible with an entropy, especially
when it consists of one scalar and one vectorial function. The Maxwell Equations are considered but

without charge-current densities. The generating vector is kj
ijki HEch   and is said that one can take

c = 1, without restriction. By comparing them with (18) we see the same result but calculated in 0v


. (The
constant c of this article corresponds to the constant h3 of the present one). In section E) they use the

constitutive relations HHB


)( 2 and EED


)( 2  which are an improvement of that in Donato and
Ruggeri (1972) but still a particular case of the present one.

The article Gibbons and  Herdeiro (2001) has the same characteristics of Born and Infeld (1934). from which
it starts; for this reason our comments are the same. But in any case we appreciate that the Boillat metric and
the spacetime metric are used. In particular, the propagation of fluctuations in a non trivial background
field is described by means of two cones, one for the Einstein Geometry and the other one for the effective
geometry governed by the Boillat metric.

Exact stationary solutions are analyzed. Blons are considered, which are static finite energy solutions and
differ from solitons for the fact that have distributional sources and also singularities.

In Gibbons  and  Herdeiro (2001) Maxwell equations are used only as an application example of several
inequalities that have been obtained for the components of

   , with  a general Lagrangian function.

Moreover, wave velocities and characteristic shocks are studied with particular attention to the generalized
Born-Infeld Lagrangian. From the last two lines of page 3471 we note that E

 and B
  are taken as Lagrange

multipliers, while we have taken   and X
  in this role because this choice preserves the material frame

objectivity; obviously, the two choices are possible if calculated in 0


v .
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Conclusion
Maxwell’s equations in materials coupled with Euler equations for polyatomic gases have been here considered.
By imposing the existence of a supplementary conservation law, a scalar function hhas been found such that

i

i

i

i hD
X
hB








 , where BvE

 ^  is the electromotive force and DvHX


^  its dual. In this way

all the set of field equations can be written in the symmetric hyperbolic form, by using the already known
literature on hyperbolic systems with evolutive constraints. Aim of a future research is to find the relativistic
counterpart of the present study.
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