

A New M odel for Polyatomic G asesin an Electromagnetic Field

S. Pennisi ${ }^{1 *}$
${ }^{1}$ Dipartimento di Matematica ed Informatica, Universit'a di Cagliari, Cagliari, Italy. E-mail: spennisi@unica.it

Article Info

Volume 1, Issue 1, October 2021
Received : 26 A pril 2021
A ccepted : 07 September 2021
Published: 05 October 2021
doi: 10.51483/IJPA M R.1.1.2021.1-20

Abstract

Significant progress has recently been made in the field of polyatomic gases, in particular by Professors T Ruggeri, M Sugiyama and collaborators. But so far it has not yet been seen how they interact with an electromagnetic field. This is realized in the present paper. As a first step, we consider here the case when the gas is described only by the Euler Equations and the electromagnetic field by Maxwell's Equations in materials. To find the field equations, a supplementary conservation law is imposed which is the entropy principle for the Euler Equations, while for Maxwell's Equations is the energy; this is useful because in this way the whole set of equations becomes a symmetric hyperbolic system as usual in Extended Thermodynamics. One of the results is a restriction on the law connecting the magnetic field in theempty space and theelectric field in materials to the electromotive force and its dual: they are the gradients of a scal ar function. Obviously, two Maxwell's equations are not evolutive (The Gauss magnetic and electric laws).

Keyw ords: Polyatomic gases, Extended thermodynamics, M axwell's Equations
©2021 S. Pennisi. This is an open access articleunder the CC BY license (https:/ / creativecommons.org/ licenses/ by/ 4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, providealink to theCreativeCommonslicense, and indicateif changes weremade.

1. Introduction

In this article, we try to put together the new knowledges available from Extended Thermodynamics (ET) (Born and Infeld, 1934; Donato and Ruggeri, 1972; Liu and M "uller, 1972; Ruggeri, 1973; Liu and M "uller, 1983; A mendt and Weitzner, 1985; Liu et al., 1986; A nileand Pennisi, 1991; Carrisi, 2011; Boillat et al., 1994; M "uller and Ruggeri, 1998; Gibbons and Herdeiro, 2001; Boillat and Ruggeri, 2004; Carrisi et al., 2004; Carrisi, 2013; Carrisi et al., 2014; Carrisi and Pennisi, 2014; Carrisi et al., 2015) (concerning field fied equations that meet the hyperbolic requirement) and extensiveliterature on Maxwell's equations in matter. So far in theET models, such equations contain theinfluence of the electromagnetic field only through Lorentz 's force (see, A mendt and Weitzner, 1985; A nile and Pennisi, 1991; Carrisi, 2011); likewise, in the articles on Maxwell's equations in matter, the latter are not coupled with the equations for matter and even less with those for polyatomic gases. Since there is to be expected that they affect each other, it is natural that they should be modeled with a singleset of equations. It is also expected that, in the absenceof an electromagnetic field, this set of equations must coincide with thoseal ready known of ET and that, in the absence of equations for the

[^0]matter of ET, such equation set must coincide or contain as particular cases the known knowledge about Maxwell's equations in matter. This result is achieved in this article. Indeed, here we consider only the 5 moments model as ET component equations, but the extension to the case of several moments will be straightforward becausealmost all models in ET takeas thebenchmark of equilibrium just that with 5 moments.

The articles (see, Born and Infeld, 1934; Donato and Ruggeri, 1972; Ruggeri, 1973; Boillat et al., 1994; Gibbond and Heeder ro, 2001; Boillat and Ruggeri, 2004) deservea particular attention, so in Section 5 wewill analyzethe model presented herein thelight of the knowledges presented in thosearticles. Let's now citeother articles from which wemoved. To this regard weliketo cite(Liu and Muller, 1972) wherea very complicated theory was presented for magnetizableand polarizablefluids; for example two new equations werepresented for the magnetization and for the polarization. We will see here that this is not necessary because those equations are consequences of theremaining ones. But at that time Extended Thermodynamics was not fully established as today, so wehave now moreopportunities to take advantage of thenew knowledge.

In (Carrisi et al., 2004) we find an attempt to improve(Liu and Muller, 1972), by using an extended set of independent variables and of corresponding equations as usual in Extended Thermodynamics; but many ad hoc hypothesis were introduced and theresults werenot fully satisfactory. In (Strumia, 1992) this problems wereconsidered but without using thew holeset of Maxwell's equations and without considering themjointly with the field equations for thematerial because only a particular result was searched.

On theother hand, Maxwell's equations in theempty spaceareeasier; so they have fully investigated from thepresent point of view as in Pennisi (1996) and Arimat al. (2012). The goal of thepresent articleisto find the corresponding resultsfor Maxwell's equations coupled with thoseof thematerial. To thisend, wetakeadvantage of thenew knowledges appeared recently in literaturefor polyatomic gases such as, Pavi 'cet al. (2013), A rima et al. (2012 and 2014), Carrisi et al. (2015), Ruggeri and Sugiyama (2015), Carrisi (2015), Carrisi and Pennisi (2016), Carrisi et al. (2016, 2017, 2019, 2020, 2021); Pennisi and Ruggeri (2017, 2020); Pennisi (2021); Ruggeri and Sugiyama (2021) but, as first step, we consider only theEuler equations for describing the contribute of the material. So thewholeset of field equations hereconsidered is
$\partial_{t} F+\partial_{k} F^{k}=0$ (MassConservation)
$\partial_{t} F^{i}+\partial_{k} F^{k i}=-q \epsilon^{i}$ (Momentum Conservation)
$\partial_{t} G^{l l}+\partial_{k} G^{k l l}=-2 q \epsilon^{i} v_{i}$ (Energy Conservation)
$\partial_{t} q+\partial_{k} j_{k}=0$ (Charge Conservation)
$\partial_{t} B^{i}+\partial_{k}\left(-\epsilon^{k i j} E_{j}\right)=0$ (Faraday's Conservation)
$\partial_{t} D^{i}+\partial_{k}\left(\epsilon^{k i j} H_{j}\right)=-j^{i}$ (Ampere-Maxwell's Law)
$\partial_{k} B^{k}=0$ (Gauss Magenetic law)
$\partial_{k} D^{k}=q$ (Gauss Electric Law)
Herethe independent variables arethemass density F, themomentum density F^{1}, theenergy density $\mathrm{G}^{\prime \prime}$, the magnetic field in the empty space B^{i} (or magnetic induction), the electric field in materials D^{i} (or electric induction) and thefreecharge density q.

Theother quantities areconstitutivefunctions of theindependent variables; they are theflux of mass F^{k}, the momentum flux $F^{k i}$, theenergy flux $G^{k l 1}$, thefreeelectric current j^{j}, the electric field in theempty space $E^{\text {i }}$ and the magneticfield in materials H^{i}. M oreover, $\epsilon^{\text {kij }}$ is theLevi-Civita symbol. Theright hand sides of $(1)_{2,3}$ aredueto the presence of the Lorentz force, with

$$
-\epsilon^{i}=E^{i}+(\vec{v} \wedge \vec{B})^{i}
$$

Obviously, Equation (1) is a consequence of (1) 6.8 $^{\text {b }}$ but we prefer to retain it for thefollowing reason:

The derivative with respect to x_{i} of $(1)_{5}$ is $\partial_{t}\left(\partial_{i} B^{i}\right)=0$ so that it will sufficeto impose Equation $(1)_{7}$ on the initial manifold and, as a consequence, it will besatisfied also outsideit. Similarly, the derivativewith respect to x_{i} of $(1)_{6}$ gives $\partial_{t}\left(\partial_{i} D^{i}-q\right)=0$ which is now a consequenceof Equation (1) $)_{4}$ so that it will suffice to impose Equation (1) ${ }_{8}$ on theinitial manifold.

Thereis no need to introducean equation for the polarization Pi^{i} and the magnetization M^{i} becausethey are already expressed in terms of the aboveindependent variables through thedefinitions

$$
\begin{equation*}
P^{i}=D^{i}-\epsilon^{i j} E_{j}, M^{i}=\left(\mu^{-1}\right)^{i j} B_{j}-H^{i} \tag{2}
\end{equation*}
$$

with $\epsilon^{i j}$ and $\mu^{i j}$ invertiblematrices.
Similarly, we can definethe total charge density q_{T} and thetotal current density j_{T}^{i} from
$\partial_{k}\left(\epsilon^{k j} E_{j}\right)=q T,-\partial_{t}\left(\epsilon^{i j} E_{j}\right)+\partial_{k}\left\lfloor\epsilon^{i k j}\left(\mu^{-1}\right)^{j a} B_{a}\right\rfloor=j_{T}^{i}$
A fter that, from Equations (2) it follows

$$
\begin{aligned}
& \partial_{t} P^{i}+\partial_{k}\left(\epsilon^{i k j} M_{j}\right)=j_{T}^{i}-j^{i}, \\
& -\partial_{k} P^{k}=q T-q
\end{aligned}
$$

and thesearenot new balanceequations but simply thedefinitions of thenon freechargedensity $q T-q$ and of thenon freeelectric current $J_{T}^{i}-j^{i}$. In thecasewithout polarization and magnetization all the charges and all the currents arefree. M oreover, from $\mathrm{P}^{\mathrm{i}}=0, \mathrm{M}^{i}=0$ and from Equations (2) wededuce

$$
\begin{equation*}
D^{i}=\epsilon^{i j} E_{j}, \quad H^{i}=\left(\mu^{-1}\right)^{i a} B_{a} \tag{4}
\end{equation*}
$$

and theM axwell's equations $(1)_{5-8}$ become

$$
\begin{aligned}
& \partial_{t} B^{i}+\partial_{k}\left(-\epsilon^{k i j} E_{j}\right)=0, \quad \partial_{t}\left(\epsilon^{i j} E_{j}\right)+\partial_{k}\left[\epsilon^{k i j}\left(\mu^{-1}\right)^{j a} B_{a}\right]=-j^{i} \\
& \partial_{k} B^{k}=0, \quad \partial_{k}\left(\epsilon^{k a} E_{a}\right)=q
\end{aligned}
$$

Thesearecalled theM axwell's equations in homogeneous and isotropic media. N ow weseethemeaning of the definition (3) compared with Equations $(1)_{6,8}: q_{T}$ and j_{T} arethechargeand thecurrent density wewould haveif themedia was homogeneous and isotropic.

If $\epsilon^{\mathrm{ij}}=\epsilon_{0} \delta^{\mathrm{ij}}, \mu^{\mathrm{ij}}=\mu_{0} \delta^{\mathrm{ij}}$ with ϵ_{0} (electric permittivity) and μ_{0} (magnetic permeability) constants, theMaxwell's equations become

$$
\begin{aligned}
& \partial_{\mathrm{t}} \mathrm{~B}^{\mathrm{i}}+\partial_{\mathrm{k}}\left(-\epsilon^{\mathrm{kij}} \mathrm{E}_{\mathrm{j}}\right)=0, \quad \partial_{\mathrm{t}}\left(\mathrm{E}^{\mathrm{i}}\right)-\frac{1}{\epsilon_{0} \mu_{\mathrm{o}}} \partial_{\mathrm{k}}\left(\epsilon^{i \mathrm{kj}} \mathrm{~B}_{\mathrm{j}}\right)=\frac{\mathrm{j}^{\mathrm{i}}}{\epsilon_{0}} \\
& \partial_{k} B^{k}=0, \quad \partial_{k}\left(E^{k}\right)=\frac{q}{\epsilon_{0}}
\end{aligned}
$$

M oreover, M axwell discovered, by using the values of ϵ_{0} and μ_{0} known from experiments in theempty space, that thequantity $\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}$ in theempty spaceis exactly equal to thespeed of lightc. In this casetheabove equations becometheM axwell'sequations in empty space. In themoregeneral case, $\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}$ can beconsidered as thespeed of light in thematerial (Obviously, it is less thanc). Fromtheseconsiderations it is evident that the aboveEquations (1) are the most general and we can study them.

In Section 2 wewill imposeon Equations $\left(1_{1-8}\right.$ therelativity principleand the existence of a supplementary conservation law. One of the results is a restriction on the law connecting the magnetic field in the empty space and theelectric field in materials to theelectromotive force $\vec{\epsilon}$ and its dual \vec{X} Wewill find that a scalar function h^{\prime} exists such that \vec{B} and \vec{D} arederivatives of h^{\prime} with respect to two lagrange multipliers related with $\vec{\epsilon}$ and \vec{X}.

M ore precisely, since Equations $(1)_{7,8}$ are evolutive constraints, we will apply to the present system the methodology al ready known in literaturefor this case, such as, Strumia (1988), Boillat (1994), Pennisi (1997). In Section 3, by using themethodology of Ruggeri and Strumia (1981) and Ruggeri (1989), this will transform our system in thesymmetric hyperbolic form with all its consequent good mathematical and physical properties. In Section 4 we will study the wave equations for our field equations, and in Section 5 we will compare our results with others already known in literature.

2. Existence of a Supplementary Conservation Law

First of all, it is useful to perform thefollowing change of variables from ($\left.\mathrm{E}^{i}, H^{i}\right)$ to $\left(\epsilon^{i}, X^{i}\right)$:

$$
\begin{equation*}
-\epsilon^{i}=E^{i}+(\vec{v} \wedge \vec{B})^{i}, \quad X^{i}=H^{i}+(\vec{v} \wedge \vec{D})^{i} \tag{5}
\end{equation*}
$$

because $-\epsilon^{i}$ is proportional to the Lorentz force and can be called the electromotiveforce; consequently, it doesn't depend on the observer. For this reason it is preferable to take ϵ^{i} as variableinstead of E^{i}. This fact justifies the choice (5). A s amatter of parallelism it is preferableto take $X^{i}=-H^{i}+\left(\overrightarrow{\mathrm{V}}^{\wedge} \vec{D}\right)^{i}$ as variableinstead of H^{\prime} and this justifies thechoice $(5)_{2}$. M oreover, weknow that, under atransformation froma referenceframe to another one, moving with respect to the previous one of a translational motion with velocity $\overrightarrow{\mathrm{v}}, \mathrm{B}^{\mathrm{i}}$ and D^{i} transform aspseudo-vectors (that is, as vectors but only under theorthonormal transformations which preserve theorientation). Regarding $\mathrm{F}, \mathrm{F}^{\mathrm{i}}, \mathrm{G}^{\prime \prime}$ and the fluxes $\mathrm{Fk}^{\mathrm{ki}}, \mathrm{G}^{k l}$ weusethedecomposition in A rimaet al. (2012), that is
$F=F, F^{i}=F v^{i}, G^{\prime \prime}=F v^{2}+m^{\prime \prime}, F^{k i}=F v^{k} v^{i}+M^{k i}, G^{k l}=F v^{2} v^{k}+2 v_{p} M^{k p}+m^{\prime \prime} v^{k}+m^{k l}$,
where $F, \mathrm{~m}^{\mathrm{l}}, \mathrm{M}{ }^{\mathrm{ki}}$ and $\mathrm{m}^{\mathrm{kll}}$ don't depend on thevelocity.
Now weareready to introducethesupplementary conservation law which must old for all the solutions of thefield equations and it is

$$
\partial_{\mathrm{t}} \mathrm{~h}+\partial_{\mathrm{k}} \mathrm{~h}^{\mathrm{k}}=\sigma
$$

Without the presence of the electromagnetic field and the further condition $\sigma \geq 0$, this is the entropy principle; in the presence of theelectromagnetic field wedon' t demand a physical meaning of this condition, except for the fact that it leads to a symmetric hyperbolic system. By using Liu's theorem (Liu, 1972), it is equivalent to assumethe existence of Lagrangemultipliers $\mu, \lambda_{i}, \lambda_{\| \prime}, \vartheta, \mu_{i}, v_{i}$ such that

$$
\begin{align*}
& \mathrm{dh}=\mu \mathrm{dF}+\lambda_{i} \mathrm{dF}^{\mathrm{i}}+\lambda_{\|} \mathrm{dG} \mathrm{I}^{\|}+\vartheta \mathrm{dq}+\mu_{i} \mathrm{~dB}^{\mathrm{i}}+\mathrm{v}_{\mathrm{i}} \mathrm{dD}^{\mathrm{i}} \tag{6}\\
& \mathrm{dh}^{\mathrm{k}}=\mu \mathrm{dF}^{\mathrm{k}}+\lambda_{\mathrm{i}} \mathrm{dF}^{\mathrm{ki}}+\lambda_{\|} \mathrm{dG}^{\mathrm{kl}}+\vartheta \mathrm{dj}^{\mathrm{k}}-\mu_{\mathrm{i}} \mathrm{E}^{\mathrm{kj}} \mathrm{dE}_{\mathrm{j}}+\mathrm{v}_{\mathrm{i}} \epsilon^{\mathrm{kjj}} \mathrm{dH}_{\mathrm{j}}+\psi \mathrm{dB}^{\mathrm{k}}+\eta \mathrm{dD}^{\mathrm{k}} \\
& \sigma=-v_{i} j^{i}+q\left(\lambda_{i} \epsilon^{i}+2 \lambda_{l l} v_{i} \epsilon^{i}+\eta\right)
\end{align*}
$$

where the scalar functions ψ and η are present to take into account the evolutive constraints (1) $)_{7,8^{\circ}}$ N ow Equation (6) in the independent variables $F, V^{i}, E, B^{i}, D^{\prime}$ and by assuming that h doesn't depend on v^{i}, gives

$$
\begin{equation*}
\mu=\hat{\mu}+\lambda_{\|} v^{2}, \lambda_{\mathrm{i}}=-2 \lambda_{\|} \mathrm{v}_{\mathrm{i}}, \lambda_{\|}=\frac{\partial \mathrm{h}}{\partial \mathrm{~m}_{\|}}, \hat{\mu}=\frac{\partial \mathrm{h}}{\partial \mathrm{~F}}, \tag{7}
\end{equation*}
$$

$$
\vartheta=\frac{\partial \mathrm{h}}{\partial \mathrm{q}}, \mu_{\mathrm{i}}=\frac{\partial \mathrm{h}}{\partial \mathrm{~B}_{\mathrm{i}}}, \mathrm{v}_{\mathrm{i}}=\frac{\partial \mathrm{h}}{\partial \mathrm{D}_{\mathrm{i}}}
$$

Sinceh is a scalar function not depending on v^{i}, so wemay deducethat also $\hat{\mu}, \lambda_{\| \prime}, \vartheta, \mu_{i}$ and v_{i} don't depend on v_{i}.

Similarly, by imposing that $\frac{\partial\left(h^{k}-h v^{k}\right)}{\partial v^{i}}=0$ weobtain

$$
0=\hat{\mu} \mathrm{F} \delta^{i \mathrm{k}}+\lambda_{\|}\left(2 \mathrm{M}^{\mathrm{ki}}+\mathrm{m}^{\prime \prime} \delta^{i \mathrm{k}}\right)-\mathrm{h} \delta^{\mathrm{ik}}+\vartheta \frac{\partial \mathrm{j}^{\mathrm{k}}}{\partial v_{\mathrm{i}}}-\mu_{\mathrm{r}} \epsilon^{\mathrm{krs}} \frac{\partial \mathrm{E}_{\mathrm{s}}}{\partial v_{\mathrm{i}}}+\mathrm{v}_{\mathrm{r}} \mathrm{E}^{\mathrm{krs}} \frac{\partial \mathrm{H}_{\mathrm{s}}}{\partial \mathrm{v}_{\mathrm{i}}}
$$

By substituting here E_{5} and H_{s} from (5), this relation becomes

$$
0=\hat{\mu} \mathrm{F} \delta^{i \mathrm{i}}+\lambda_{11}\left(2 \mathrm{M}^{\mathrm{ki}}+\mathrm{m}^{11} \delta^{\mathrm{ik}}\right)-\mathrm{h} \delta^{\mathrm{ik}}+\vartheta \frac{\partial \mathrm{j}^{\mathrm{k}}}{\partial v_{i}}-\mu_{\mathrm{i}} \mathrm{~B}^{\mathrm{k}}-\mathrm{v}^{\mathrm{i}} \mathrm{D}^{\mathrm{k}}+\left(\mu_{\mathrm{r}} \mathrm{~B}^{\mathrm{r}}+\mathrm{v}_{\mathrm{r}} \mathrm{D}^{r}\right) \delta^{\mathrm{ik}},
$$

wherewe haveused theidentity $\in^{k r s} \epsilon_{s i a}=2 \delta_{i}^{[k} \delta_{a}^{r]}=2 \delta_{[i}^{k} \delta_{a]}^{r}$. This result shows that $\frac{\partial \mathrm{j}^{\mathrm{k}}}{\partial v_{\mathrm{i}}}$ does not depend on v_{i} and it seems obviuos to takejk $=q v^{k}$. So the last relation, by using (7), becomes

$$
\begin{equation*}
0=\left(F \frac{\partial h}{\partial F}+m^{\prime \prime} \frac{\partial h}{\partial m^{\prime \prime}}+q \frac{\partial h}{\partial q}+B_{r} \frac{\partial h}{\partial B_{r}}+D^{r} \frac{\partial h}{\partial D_{r}}-h\right) \delta^{i k}+2 \frac{\partial h}{\partial m^{\prime \prime}} M^{i k}-\mu^{i} B^{k}-v^{\prime} D^{k} \tag{8}
\end{equation*}
$$

which can beused to deduceM ${ }^{\text {ik. }}$. After that, (6) $)_{1,2}$ imply that

$$
\begin{aligned}
& \frac{\partial\left(h^{k}-h v^{k}\right)}{\partial B_{i}}=\lambda_{11} \frac{\partial m^{k \|}}{\partial B_{i}}+\mu_{r} \epsilon^{k j j} \frac{\partial \epsilon_{j}}{\partial B_{i}}-v_{r} \epsilon^{k j j} \frac{\partial x_{j}}{\partial B_{i}}+\left(\psi-\mu_{r} v^{r}\right) \delta^{i k}, \\
& \frac{\partial\left(h^{k}-h v^{k}\right)}{\partial D_{i}}=\lambda_{11} \frac{\partial m^{k l l}}{\partial D_{i}}+\mu_{r} \epsilon^{k r j} \frac{\partial \epsilon_{j}}{\partial D_{i}}-v_{r} \epsilon^{k j j} \frac{\partial x_{j}}{\partial D_{i}}+\left(\eta-v_{r} v^{r}\right) \delta^{i k}
\end{aligned}
$$

wherewehaveused $(7)_{2^{\prime}}$ (5) and the abovementioned identity. Sincetheseexpressionsmust not depend on the velocity, it follows that $\psi=\mu_{\mathrm{r}} \mathrm{v}^{\mathrm{r}}, \eta=\mathrm{v}_{\mathrm{r}} \mathrm{v}^{\mathrm{r}}$ except for additional terms not depending on v_{i} which weassume, for the sake of simplicity, to bezero. A s a consequence of theseresults, weseethat (6) ${ }_{3}$ becomes $\sigma=0$.

Aiming to obtain a symmetric system according to the ideas of [49], weintroducenow the 4 -potentials $h^{\prime}=-h+\mu F+\lambda_{i} F^{i}+\lambda_{l l} G^{l l}+\vartheta q+\mu_{i} B^{i}+v_{i} D^{i}$,
$h^{\prime k}=-h^{k}+\mu F^{k}+\lambda_{i} F^{k i}+\lambda_{\| l} G^{I \prime}+\gamma_{j}{ }^{k}-\mu_{i} \epsilon^{k i j} E_{j}+v_{i} \epsilon^{k i j} H_{j}+\psi B^{k}+\eta D^{k}$
In thisway Equations (6) ${ }_{1,2}$ become

$$
\begin{align*}
& d h^{\prime}=F d \mu+F^{i} d \lambda_{i}+G^{l l} d \lambda_{l l}+q d \vartheta+B^{i} d \mu_{i}+D^{i} d v_{i}, \\
& d h^{\prime k}=F^{k} d \mu+F^{k i} d \lambda_{i}+G^{k l l} d \lambda_{l l}+j^{k} d \vartheta-\epsilon^{k j} E_{j} d \mu_{i}+\epsilon^{k i j} H_{j} d v_{i}+B^{k} d \psi+D^{k} d \eta \tag{10}
\end{align*}
$$

By using $(7)_{1,2}$ weseethath depends on μ and λ_{i} only by means of $\hat{\mu}=\mu-\frac{\lambda_{i} \lambda^{i}}{4 \lambda_{l l}}$. By using (9) $)_{1}$, weseethat also h^{\prime} hasthis property and (10), becomes

$$
\begin{equation*}
d h^{\prime}=F d \hat{\mu}+m^{l} d \lambda_{l l}+q d \vartheta+B^{i} d \mu_{i}+D^{i} d v_{i} \tag{11}
\end{equation*}
$$

FromEquations (10) and (11) weobtain also

$$
d\left(h^{\prime k}+h^{\prime} \frac{\lambda^{k}}{2 \lambda_{\|}}\right)=\left(h^{\prime} \delta^{k i}+2 \lambda_{\|} M^{k i}-B^{k} \mu^{i}-D^{k} v^{i}\right) d\left(\frac{\lambda_{i}}{2 \lambda_{\|}}\right)+m^{k \|} d \lambda_{\|}
$$

$$
\begin{equation*}
+\epsilon^{k i j} \epsilon_{j} d \mu_{i}-\epsilon^{k i j} X_{j} d v_{i}=m^{k l l} d \lambda_{l l}+\epsilon^{k i j} \epsilon_{j} d \mu_{i}-\epsilon^{k i j} X_{j} d v_{i} \tag{12}
\end{equation*}
$$

wherewehaveused also $\psi=\mu_{r} v^{r}, \eta=v_{r} v^{r}$ and Equations (5), (7), (8). In particular, this last onebecomes

$$
\begin{equation*}
h^{\prime} \delta^{k i}+2 \lambda_{l l} M^{k i}-B^{k} \mu^{i}-D^{k} v^{i}=0 \tag{13}
\end{equation*}
$$

which defines $M{ }^{\text {ki. }}$.
So, up to now, wehavefound h^{\prime} and $\hat{h}^{\prime k}=h^{\prime k}+h^{\prime} \frac{\lambda^{k}}{2 \lambda_{l l}}$ which depends on the scalars $\hat{\mu}, \lambda_{\|}, \vartheta$ and on the vectors μ_{i}, v_{i}. For the Representation Theorems (Pennisi and Trovato, 1989; and Pennisi, 1998), wehavethen

$$
\begin{equation*}
\hat{h}^{\prime k}=h_{1} \mu^{k}+h_{2} v^{k}+h_{3} \in^{k r s} \mu_{r} v_{s} \tag{14}
\end{equation*}
$$

and h^{\prime}, h_{i} arefunctions of $\hat{\mu}, \lambda_{l l}, \vartheta, Y_{11}=\mu_{i} \mu^{i}, Y_{12}=\mu_{i} v^{i}, Y_{22}=v_{i} v^{i}$. After that, Equation (12) becomes

$$
\begin{align*}
\mathrm{m}^{\mathrm{klI}}= & \frac{\partial \mathrm{h}_{1}}{\partial \lambda_{\| I}} \mu^{\mathrm{k}}+\frac{\partial \mathrm{h}_{2}}{\partial \lambda_{\|}} v^{\mathrm{k}}+\frac{\partial \mathrm{h}_{3}}{\partial \lambda_{\| I}} \epsilon^{\mathrm{krs}} \mu_{\mathrm{r}} \mathrm{v}_{\mathrm{s}}, \\
\epsilon^{\mathrm{kij}} \in_{\mathrm{j}}= & \mathrm{h}_{1} \delta^{\mathrm{ki}}+\mu^{\mathrm{k}}\left(2 \frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}_{11}} \mu^{\mathrm{i}}+\frac{\partial \mathrm{h}_{1}}{\partial \mathrm{Y}_{12}} v^{\mathrm{i}}\right)+v^{\mathrm{k}}\left(2 \frac{\partial \mathrm{~h}_{2}}{\partial \mathrm{Y}_{11}} \mu^{\mathrm{i}}+\frac{\partial \mathrm{h}_{2}}{\partial \mathrm{Y}_{12}} v^{\mathrm{i}}\right) \tag{15}\\
& +\epsilon^{\mathrm{krs}} \mu_{\mathrm{r}} v_{\mathrm{s}}\left(2 \frac{\partial \mathrm{~h}_{3}}{\partial \mathrm{Y}_{11}} \mu^{\mathrm{i}}+\frac{\partial \mathrm{h}_{3}}{\partial \mathrm{Y}_{12}} v^{\mathrm{i}}\right)+\mathrm{h}_{3} \in^{\mathrm{kis}} v_{\mathrm{s}} \\
\epsilon^{\mathrm{kij}} \mathrm{X}_{\mathrm{j}}= & \mathrm{h}_{2} \delta^{\mathrm{ki}}+\mu^{\mathrm{k}}\left(\frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}_{12}} \mu^{\mathrm{i}}+2 \frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}_{22}} v^{\mathrm{i}}\right)+v^{\mathrm{k}}\left(\frac{\partial \mathrm{~h}_{2}}{\partial \mathrm{Y}_{12}} \mu^{\mathrm{i}}+2 \frac{\partial \mathrm{~h}_{2}}{\partial \mathrm{Y}_{22}} v^{\mathrm{i}}\right) \\
& +\epsilon^{\mathrm{krs}} \mu_{\mathrm{r}} v_{\mathrm{s}}\left(\frac{\partial \mathrm{~h}_{3}}{\partial \mathrm{Y}_{12}} \mu^{\mathrm{i}}+2 \frac{\partial \mathrm{~h}_{3}}{\partial \mathrm{Y}_{22}} v^{\mathrm{i}}\right)+\mathrm{h}_{3} \in^{\mathrm{kri}} \mu_{\mathrm{r}}
\end{align*}
$$

In the referenceframe with $\mu^{i} \equiv\left(\mu^{1}, 0,0\right), v_{i} \equiv\left(v^{1}, v^{2}, 0\right)$, the components 33 of $(15)_{2,3}$ giveh $_{1}=0, h_{2}=0$. The components 23and 13 of their symmetric parts give $\frac{\partial h_{3}}{\partial Y_{12}}=0, \frac{\partial h_{3}}{\partial Y_{22}}=0, \frac{\partial h_{3}}{\partial Y_{11}}=0$. Then h_{3} depends only on $\lambda_{1 \mid}$ (From Equation (12) it cannot depend on the other scalars). So Equation (15) now simplifies in

$$
\begin{equation*}
m^{k l l}=\frac{\partial h_{3}}{\partial \lambda_{l l}} \epsilon^{k r s} \mu_{r} v_{s}, \in_{j}=h_{3} v_{j,} X_{j}=h_{3} \mu_{j} \tag{16}
\end{equation*}
$$

This result gives physical meaning to theLagrangemultipliers v_{j} and μ_{j}; they are parallel to \in_{j} and X_{j}; they can be also equal to them if $h_{3}=1$.

Wesee al so that, from (11) it follows:

$$
\begin{equation*}
\mathrm{F}=\frac{\partial \mathrm{h}^{\prime}}{\partial \hat{\mu}}, \mathrm{m}^{\prime \prime}=\frac{\partial \mathrm{h}^{\prime}}{\partial \lambda_{\| I}}, \mathrm{q}=\frac{\partial \mathrm{h}^{\prime}}{\partial \vartheta}, \mathrm{B}^{\mathrm{i}}=\frac{\partial \mathrm{h}^{\prime}}{\partial \mu_{\mathrm{i}}}, \mathrm{D}^{\mathrm{i}}=\frac{\partial \mathrm{h}^{\prime}}{\partial v_{\mathrm{i}}} \tag{17}
\end{equation*}
$$

Thelast two of theseshow the only restriction given by theexistenceof a supplementary conservation law: The functions relating B^{i} and D^{i} to μ_{i} and v_{i} are not arbitrary but gradients of a scalar function h^{\prime} with respect to μ_{i} and v_{i}. M oreover, thematerial objectivity principleis satisfied.

Thefinal result for $h^{\prime k}$ is

$$
\begin{equation*}
h^{\prime k}=h^{\prime} \frac{-\lambda^{k}}{2 \lambda_{l l}}+h_{3}\left(\lambda_{l l}\right) \in^{k r s} \mu_{r} v_{s} \tag{18}
\end{equation*}
$$

Coming back to Equations (10) we may rewrite them using the compact notation λ_{A} to denote all the Lagrangemultipliers; so weobtain

$$
\begin{align*}
& \mathrm{F}^{\mathrm{A}}=\frac{\partial \mathrm{h}^{\prime}}{\partial \lambda_{\mathrm{A}}}, \frac{\partial \mathrm{~h}^{\prime}}{\partial \lambda_{\mathrm{A}}}=\mathrm{F}^{\mathrm{KA}}+\mathrm{B}^{\mathrm{k}} \frac{\partial \psi}{\partial \lambda_{\mathrm{A}}}+\mathrm{D}^{\mathrm{k}} \frac{\partial \eta}{\partial \lambda_{\mathrm{A}}}, \tag{19}\\
& \text { i.e., } F=\frac{\partial h^{\prime}}{\partial \hat{\mu}}, F^{i}=\frac{\partial h^{\prime}}{\partial \hat{\mu}} \frac{-\lambda^{i}}{2 \lambda_{l l}}, G^{l l}=\frac{\partial h^{\prime}}{\partial \hat{\mu}} \frac{\lambda_{r} \lambda^{r}}{4\left(\lambda_{l l}\right)^{2}}+\frac{\partial h^{\prime}}{\partial \lambda_{l l}}, q=\frac{\partial h^{\prime}}{\partial \vartheta}, B^{i}=\frac{\partial h^{\prime}}{\partial \mu_{i}}, D^{i}=\frac{\partial h^{\prime}}{\partial v_{i}} \tag{20}\\
& F^{k}=\frac{\partial h^{\prime}}{\partial \hat{\mu}} \frac{-\lambda^{k}}{2 \lambda_{l l}}, F^{k i}=\frac{\partial h^{\prime}}{\partial \hat{\mu}} \frac{\lambda^{k} \lambda^{i}}{4\left(\lambda_{l l}\right)^{2}}-\frac{h^{\prime}}{2 \lambda_{l l}} \delta^{k i}+B_{k} \frac{\mu^{i}}{2 \lambda_{l l}}+D^{k} \frac{v^{i}}{2 \lambda_{l l}}, \\
& G^{k l l}=G^{l l} \frac{-\lambda^{k}}{2 \lambda_{l l}}+h^{\prime} \frac{\lambda^{k}}{2\left(\lambda_{l l}\right)^{2}}+\frac{\partial h_{3}}{\partial \lambda_{l l}} \epsilon^{k r s} \mu_{r} v_{s}-B^{k} \frac{\mu_{r} \lambda^{r}}{\left(2 \lambda_{l l}\right)^{2}}-D^{k} \frac{v_{r} \lambda^{r}}{2\left(\lambda_{l l}\right)^{2}}, \\
& j^{k}=q \frac{-\lambda^{k}}{2 \lambda_{\|}},-\epsilon^{k j j} E_{j}=2 B^{[i} \frac{\left.-\lambda^{k}\right]}{2 \lambda_{\|}}+h_{3}\left(\lambda_{\|}\right) \epsilon^{\mathrm{kis}} v_{\mathrm{s}}, \epsilon^{\mathrm{kj}} \mathrm{H}_{\mathrm{j}}=2 D^{[i} \frac{\left.-\lambda^{\mathrm{k}}\right]}{2 \lambda_{\|}}+h_{3}\left(\lambda_{\|}\right) \epsilon^{\mathrm{ksi}} \mu_{\mathrm{s}},
\end{align*}
$$

wherewehaveused

$$
\hat{\mu}=\mu-\frac{\lambda_{\mathrm{r}} \lambda^{r}}{4 \lambda_{\|}}, \psi=\mu_{\mathrm{r}} \frac{-\lambda^{r}}{2 \lambda_{\|}}, \eta=\mathrm{v}_{\mathrm{r}} \frac{-\lambda^{r}}{2 \lambda_{\|}}
$$

Wenotethat (20) 11,122 , thanksto (5), confirm the above efined (16) 2,3 $^{\text {. }}$

3. The Hyperbolicity Requirement

Let us useEquations (19) to obtain F^{A} and $F^{k A}$; after that, weseethat thefield Equations (1$)_{1-6}$ become

$$
\frac{\partial^{2} h^{\prime}}{\partial \lambda_{A} \partial \lambda_{\mathrm{B}}} \partial_{\mathrm{t}} \lambda_{\mathrm{B}}+\left(\frac{\partial^{2} \mathrm{~h}^{\prime k}}{\partial \lambda_{\mathrm{A}} \partial \lambda_{\mathrm{B}}}-\mathrm{B}^{\mathrm{k}} \frac{\partial^{2} \psi}{\partial \lambda_{\mathrm{A}} \partial \lambda_{\mathrm{B}}}-\mathrm{D}^{\mathrm{k}} \frac{\partial^{2} \eta}{\partial \lambda_{\mathrm{A}} \partial \lambda_{\mathrm{B}}}\right) \partial_{\mathrm{k}} \lambda_{\mathrm{B}}-\frac{\partial^{2} \psi}{\partial \lambda_{\mathrm{A}}} \partial_{\mathrm{k}} \mathrm{~B}^{\mathrm{k}}-\frac{\partial^{2} \eta}{\partial \lambda_{\mathrm{A}}} \partial_{\mathrm{K}} \mathrm{D}^{\mathrm{k}}=\mathrm{p}^{\mathrm{A}}
$$

If weadd to this Equation (1) $)_{7}$ multiplied by $\frac{\partial \psi}{\partial \lambda_{\mathrm{A}}}$ and (1) $)_{8}$ multiplied by $\frac{\partial \eta}{\partial \lambda_{A}}$, it becomes

$$
\begin{equation*}
\frac{\partial^{2} h^{\prime}}{\partial \lambda_{A} \partial \lambda_{B}} \partial_{\mathrm{t}} \lambda_{\mathrm{B}}+\left(\frac{\partial^{2} \mathrm{~h}^{\prime k}}{\partial \lambda_{\mathrm{A}} \partial \lambda_{\mathrm{B}}}-\mathrm{B}^{\mathrm{k}} \frac{\partial^{2} \psi}{\partial \lambda_{\mathrm{A}} \partial \lambda_{\mathrm{B}}}-\mathrm{D}^{\mathrm{k}} \frac{\partial^{2} \eta}{\partial \lambda_{\mathrm{A}} \partial \lambda_{\mathrm{B}}}\right) \partial_{\mathrm{k}} \lambda_{\mathrm{B}}=\mathrm{p}^{\mathrm{A}}+\mathrm{q} \frac{\partial \eta}{\partial \lambda_{\mathrm{A}}} \tag{21}
\end{equation*}
$$

Becausethematrixes coefficients of $\partial_{t} \lambda_{B}$ and $\partial_{k} \lambda_{B}$ aresymmetrix with respect to themulti-index A, B, for thehyperbolicity of thesystem (21) it sufficesthat thematrix $\frac{\partial_{2} h^{\prime}}{\partial \lambda_{A} \partial \lambda_{B}}$ is negativedefined (Boillat and Ruggeri, 1997; M uller and Ruggeri, 1998), i.e, that h^{\prime} is a concavefunction of the variables λ_{A}. In other words, weadd to Equations $(1)_{1-6}$ a linear combination of $(1)_{7,8}$ and, after that, weleaveout $(1)_{7,8}$ this can bedone because they arenow consequences of (21). In fact, by writing this new set explicitly, it reads

$$
\begin{align*}
& \partial_{\mathrm{t}} \mathrm{~F}+\partial_{\mathrm{k}} \mathrm{~F}^{\mathrm{k}}=0 \tag{22}\\
& \partial_{\mathrm{t}} \mathrm{~F}+\partial_{\mathrm{k}} \mathrm{~F}^{\mathrm{k}}-\frac{\mu^{i}}{2 \lambda_{\|}} \partial_{\mathrm{k}} \mathrm{~B}^{\mathrm{k}}-\frac{v^{\mathrm{i}}}{2 \lambda_{\|}} \partial_{\mathrm{k}} \mathrm{D}^{\mathrm{k}}=-\mathrm{q} \frac{v^{i}}{2 \lambda_{\|}}+\mathrm{q} \epsilon^{i}, \\
& \partial_{\mathrm{t}} \mathrm{G}^{\prime \prime}+\partial_{\mathrm{k}} \mathrm{G}^{\mathrm{k} \|}+\frac{\lambda_{\mathrm{r}} \mu^{r}}{2\left(\lambda_{\|}\right)^{2}} \partial_{\mathrm{k}} \mathrm{~B}^{\mathrm{k}}+\frac{\lambda_{\mathrm{r}} v^{r}}{2\left(\lambda_{\|}\right)^{2}} \partial_{\mathrm{k}} \mathrm{D}^{\mathrm{k}}=\frac{\lambda_{\mathrm{r}} v^{r}}{2\left(\lambda_{\|}\right)^{2}} q-2 q \epsilon^{\mathrm{i}} \frac{\lambda_{i}}{2 \lambda_{\|}},
\end{align*}
$$

$$
\begin{aligned}
& \partial_{t} q+\partial_{k j}^{k}=0 \\
& \partial_{t} B^{i}+\partial_{k}\left(-\epsilon^{k i j} E_{j}\right)-\frac{\lambda^{i}}{2 \lambda_{\|}} \partial_{k} B^{k}=0 \\
& \partial_{t} D^{i}+\partial_{k}\left(\epsilon^{k i j} H_{j}\right)-\frac{\lambda^{i}}{2 \lambda_{\| I}} \partial_{k} D^{k}=0
\end{aligned}
$$

wherewe haveused $j^{i}=\frac{\lambda^{i}}{2 \lambda_{l l}} q$. Now, thederivatives with respect to x_{i} of $(22)_{5,6}$ are

$$
\begin{equation*}
\partial_{t}\left(\partial_{k} B^{k}\right)+\partial_{i}\left[\frac{-\lambda^{i}}{2 \lambda_{\| I}}\left(\partial_{k} B^{k}\right)\right]=0, \quad \partial_{t}\left(\partial_{k} D^{k}-q\right)+\partial_{i}\left[\frac{-\lambda^{i}}{2 \lambda_{\| I}}\left(\partial_{k} D^{k}-q\right)\right]=0 \tag{23}
\end{equation*}
$$

Thefirst oneof theseequations is obtained with thefollowing passages:

$$
\partial_{t}\left(\partial_{k} B^{k}\right)=\partial_{i}\left(\epsilon^{k i j} \partial_{k} E_{j}+\frac{\lambda^{i}}{2 \lambda_{\|}} \partial_{k} B^{k}\right)=\partial_{i}\left[\frac{\lambda^{i}}{2 \lambda_{\|}} \partial_{k} B^{k}\right]
$$

where in the first passage we have substituted $\partial_{t} B^{i}$ from (22) $)_{5}$ and in the second passage we have used the identity $\epsilon^{k i j} \partial_{i k} E_{j}=0$. Similarly, wehave

$$
\partial_{t}\left(\partial_{k} D^{k}-q\right)=\partial_{i}\left(-\epsilon^{k i j} \partial_{k} H_{j}+\frac{\lambda^{i}}{2 \lambda_{\| I}} \partial_{k} D^{k}+\frac{-\lambda^{i}}{2 \lambda_{\| I}} q-j^{i}\right)+\partial_{k} j^{k}=\partial_{i}\left[\frac{\lambda^{i}}{2 \lambda_{\| I}}\left(\partial_{k} D^{k}-q\right)\right]
$$

wherein thefirst passage wehave substituted $\partial_{t} D^{i}$ from (22) and $\partial_{t} q$ from (22) ${ }_{4}$ whilein the second passage wehaveused the identity $\epsilon^{k i j} \partial_{i k} H_{j}=0$. M oreover, wehaveused again $j^{i}=\frac{\lambda}{2 \lambda_{l l}} q$. Theresult (23) showsthat it suffices to impose $(1)_{7,8}$ only in theinitial manifold and, after that, they will be satisfied also outside of it as a conequenceof $(22)_{3-6}$; for this reason they can beleft out of our field equations.

It remains now to investigate the concavity of the function h^{\prime} and this will be the argument of the next subsection.

3.1. On the Concavity of h^{\prime}

Let us seeunder what conditionsthequadratic from $\mathrm{Q}=\frac{\partial^{2} h^{\prime}}{\partial \lambda_{A} \partial \lambda_{A}} \delta \lambda_{\mathrm{A}} \delta \lambda_{\mathrm{B}}$ is negative defined. N ow we have

$$
\begin{aligned}
\mathrm{Q}= & \delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \hat{\mu}}\right) \delta\left(\hat{\mu}+\lambda_{\|} \mathrm{v}^{2}\right)+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \hat{\mu}} \mathrm{v}^{\mathrm{i}}\right) \delta\left(-2 \lambda_{\|} \mathrm{v}^{\mathrm{i}}\right)+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \lambda_{\|}}+\frac{\partial \mathrm{h}^{\prime}}{\partial \hat{\mu}} \mathrm{v}^{2}\right) \delta \lambda_{\|} \\
& +\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \vartheta}\right) \delta \vartheta+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \mu_{\mathrm{i}}}\right) \delta \mu_{\mathrm{i}}+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial v_{\mathrm{i}}}\right) \delta v_{\mathrm{i}}
\end{aligned}
$$

After some calculations, it becomes $\mathrm{Q}=-2 \lambda_{\|} \mathrm{F} \delta v_{i} \delta v^{\mathrm{i}}+\mathrm{Q}_{1}$ with

$$
\mathrm{Q}=\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \hat{\mu}}\right) \delta \hat{\mu}+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \lambda_{\| I}}\right) \delta \lambda_{\|}+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \vartheta}\right) \partial \vartheta+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \mu_{\mathrm{i}}}\right) \delta \mu_{\mathrm{i}}+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial v_{\mathrm{i}}}\right) \delta v_{\mathrm{i}}
$$

So Q isnegative defined if and only if Q_{1} is negative defined. By expliciting its expression, wehave

$$
\begin{align*}
& \mathrm{Q}_{1}=2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{11}} \delta \mu^{\mathrm{i}} \delta \mu_{\mathrm{i}}+2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{22}} \delta v^{\mathrm{i}} \delta v_{\mathrm{i}}+2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{12}} \delta \mu^{\mathrm{i}} \delta v_{\mathrm{i}}+\mathrm{Q}_{2} \text { with } \tag{2}\\
& Q_{2}-\frac{\partial^{2} h^{\prime}}{\partial \hat{\mu}^{2}}(\delta \hat{\mu})^{2}+2 \frac{\partial^{2} h^{\prime}}{\partial \hat{\mu} \partial \lambda_{l l}} \delta \hat{\mu} \delta \lambda_{l l}+2 \frac{\partial^{2} h^{\prime}}{\partial \hat{\mu} \partial \vartheta} \delta \hat{\mu} \delta \vartheta+4 \frac{\partial^{2} h^{\prime}}{\partial \hat{\mu} \partial Y_{l l}} \delta \hat{\mu}\left(\mu^{i} \delta \mu_{i}\right)+2 \frac{\partial^{2} h^{\prime}}{\partial \hat{\mu} \partial Y_{12}} \delta \hat{\mu}\left(v^{i} \delta \mu_{i}\right) \\
& +2 \frac{\partial^{2} h^{\prime}}{\partial \hat{\mu} \partial Y_{12}} \delta \hat{\mu}\left(\mu^{i} \delta v_{i}\right)+4 \frac{\partial^{2} h^{\prime}}{\partial \hat{\mu} \partial Y_{22}} \delta \hat{\mu}\left(v^{i} \delta v_{i}\right)+\frac{\partial^{2} h^{\prime}}{\partial \lambda_{l l}^{2}}\left(\delta \lambda_{l l}\right)^{2}+2 \frac{\partial^{2} h^{\prime}}{\partial \lambda_{l l} \partial \vartheta} \delta \lambda_{l l} \partial \vartheta \\
& +4 \frac{\partial^{2} h^{\prime}}{\partial \lambda_{l l} \partial Y_{11}} \delta \lambda_{l l}\left(\mu^{i} \delta \mu_{i}\right)+2 \frac{\partial^{2} h^{\prime}}{\partial \lambda_{l l} \partial \lambda_{12}} \delta \lambda_{l l}\left(v^{i} \delta \mu_{i}\right)+2 \frac{\partial^{2} h^{\prime}}{\partial \lambda_{l l} \partial \lambda_{12}} \delta \lambda_{l l}\left(\mu^{i} \delta v_{i}\right) \\
& +4 \frac{\partial^{2} h^{\prime}}{\partial \lambda_{l l} \partial Y_{22}} \delta \lambda_{l l}\left(v^{i} \delta v_{i}\right)+2 \frac{\partial^{2} h^{\prime}}{\partial \vartheta^{2}}(\delta \vartheta) 2+4 \frac{\partial^{2} h^{\prime}}{\partial \vartheta \partial Y_{11}} \delta \vartheta\left(\mu^{i} \delta \mu_{i}\right)+2 \frac{\partial^{2} h^{\prime}}{\partial \vartheta \partial Y_{12}} \partial \vartheta\left(v_{i} \partial \mu_{i}\right) \\
& +2 \frac{\partial^{2} h^{\prime}}{\partial \vartheta \partial \mathrm{Y}_{12}} \delta \vartheta\left(\mu^{\mathrm{i}} \delta v_{\mathrm{i}}\right)+4 \frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial \vartheta \partial \mathrm{Y}_{22}} \delta \vartheta\left(v^{\mathrm{i}} \partial v_{\mathrm{i}}\right)+4 \frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial\left(\mathrm{Y}_{11}\right)^{2}}\left(\mu_{\mathrm{i}} \delta \mu^{\mathrm{i}}\right)^{2} \\
& +2 \frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{11} \partial Y_{12}}\left(\mu_{\mathrm{i}} \delta \mu^{\mathrm{i}}\right)\left(\mu_{\mathrm{j}} \delta v^{\mathrm{j}}\right)+4 \frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{11} \partial \mathrm{Y}_{12}}\left(\mu_{\mathrm{i}} \delta \mu_{\mathrm{i}}\right)\left(v_{\mathrm{j}} \delta \mu^{\mathrm{j}}\right)+8 \frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{11} \partial \mathrm{Y}_{12}}\left(\mu_{\mathrm{i}} \delta \mu^{\mathrm{i}}\right)\left(v_{\mathrm{j}} \delta v^{\mathrm{j}}\right) \\
& +\frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial\left(\mathrm{Y}_{12}\right)^{2}}\left(\mu_{\mathrm{i}} \delta v^{\mathrm{i}}\right)^{2}+2 \frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial\left(\mathrm{Y}_{12}\right)^{2}}\left(\mu_{\mathrm{i}} \delta v^{i}\right)\left(v_{\mathrm{j}} \delta \mu^{\mathrm{j}}\right)+4 \frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{12} \partial \mathrm{Y}_{22}}\left(\mu_{\mathrm{i}} \delta v^{\mathrm{i}}\right)\left(v_{\mathrm{j}} \delta v^{\mathrm{j}}\right) \\
& +\frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial\left(\mathrm{Y}_{12}\right)^{2}}\left(v_{\mathrm{i}} \delta \mu^{\mathrm{i}}\right)^{2}+4 \frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{12} \partial \mathrm{Y}_{22}}\left(v_{\mathrm{i}} \delta v^{\mathrm{i}}\right)\left(v_{\mathrm{j}} \delta \mu^{\mathrm{j}}\right)+4 \frac{\partial^{2} \mathrm{~h}^{\prime}}{\partial\left(\mathrm{Y}_{22}\right)^{2}}\left(v_{\mathrm{i}} \delta v^{\mathrm{i}}\right)^{2}
\end{align*}
$$

We evaluate now the coefficients of the differentials in the reference frame where $\vec{\mu}$ and \vec{v} have the components $\vec{\mu} \equiv\left(\mu_{1}, 0,0\right), \vec{v} \equiv\left(v_{1}, v_{2}, 0\right)$; theterms containing $\delta \mu_{3}$ or δv_{3} are
$2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{11}}\left(\delta \mu_{3}\right)^{2}+2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{22}}\left(\delta v_{3}\right)^{2}+2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{12}}\left(\delta \mu_{3}\right)\left(\delta v_{3}\right)$
So we may deduce that Q_{1} can benegative definite only if thefollowing matrix is definitenegative

$$
\left(\begin{array}{cc}
2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{11}} & \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{12}} \tag{25}\\
\frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{12}} & 2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{22}}
\end{array}\right)
$$

Regarding theconcavity requirement for all thefunction h^{\prime}, wecan resumewhat follows:

1. A necessary and sufficient condition for the concavity of all the function h^{\prime} is that thematrix (25) is negative defined and also thequadratic form Q_{1} is definite negative.
2. Thematrix (25) must benegative definite; this is a necessary condition in order to havethat Q_{1} is negative definite.
3. A sufficient condition ensuring that Q is negative definite is that thematrix (25) is negative definite and h^{\prime} is a non convex function of $\hat{\mu}, \lambda_{l l}, \vartheta, Y_{11}, Y_{12}, Y_{22}$.

In fact, the expression Q_{1} is sum of

$$
\begin{equation*}
2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{X}_{11}} \delta \mu_{\mathrm{i}} \delta \mu^{\mathrm{i}}+2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{22}} \delta v_{\mathrm{i}} \delta v^{\mathrm{i}}+2 \frac{\partial \mathrm{~h}^{\prime}}{\partial \mathrm{Y}_{12}} \delta \mu_{\mathrm{i}} \delta v^{\mathrm{i}} \tag{26}
\end{equation*}
$$

(which is negative defined in our hypothesis) and of Q_{2}. If weevaluatethecoefficients of its differentials in the abovereferenceframe where $\vec{\mu}$ and \vec{v} havethecomponents $\vec{\mu} \equiv\left(\mu_{1}, 0,0\right), \vec{v} \equiv\left(v_{1}, v_{2}, 0\right)$, we see that its expression is equivalent to thefollowing one

$$
\mathrm{Q}_{2}=\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \hat{\mu}}\right) \delta \hat{\mu}+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \lambda_{\mathrm{u}}}\right) \delta \lambda_{\mathrm{u}}+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \vartheta}\right) \delta \vartheta+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \mathrm{Y}_{11}}\right) \delta \mathrm{Y}_{11}+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \mathrm{Y}_{12}}\right) \delta \mathrm{Y}_{12}+\delta\left(\frac{\partial \mathrm{h}^{\prime}}{\partial \mathrm{Y}_{22}}\right) \delta \mathrm{Y}_{22}
$$

In our hypothesis their sum is not positive; if it is zero, then both thequadraticformsarezero. Thefirst one of these will imply $\delta \mu_{i}=0, \delta v^{i}=0$. By subtituting this result in the second one, we obtain $\delta \hat{\mu}=0, \delta \lambda_{l l}=0, \delta \vartheta=0$.

It is important to remark this aspect because, in the case of an homogeneous and isotropic media with constant electric permittivity and magnetic permeability, we have that $\delta\left(\frac{\partial h^{\prime}}{\partial Y_{11}}\right) \delta Y_{11}+\delta\left(\frac{\partial h^{\prime}}{\partial Y_{12}}\right) \delta Y_{12}+\delta\left(\frac{\partial h^{\prime}}{\partial Y_{22}}\right) \delta Y_{22}$ isnot negativedefinite but it is identically zero; but our condition is satisfied also in this casebecause h^{\prime} is concavefunction of $\hat{\mu}, \lambda_{l l}, \vartheta$ and because(26) is negativedefined. To explicitatebetter this particular case, we treat it in thefolowing subsection.

3.2. The P articular Case of an H omogeneous and Isotropic M edia

In this casewehave

$$
\begin{equation*}
\mathrm{E}^{\mathrm{i}}=\frac{1}{\varepsilon_{0}} \mathrm{D}^{\mathrm{i}}, \mathrm{H}^{\mathrm{i}}=\frac{1}{\mu_{0}} \mathrm{~B}^{\mathrm{i}} \tag{27}
\end{equation*}
$$

By substituting these E^{i} and H^{i} in (5) and by using (17) 4, $^{\prime}$, wefind

$$
-\varepsilon^{i}=\frac{1}{\varepsilon_{0}} \frac{\partial h^{\prime}}{\partial v_{i}}+\varepsilon^{i a b} v_{a} \frac{\partial h^{\prime}}{\partial \mu_{b}}, \quad X^{i}=-\frac{1}{\mu_{0}} \frac{\partial h^{\prime}}{\partial \mu_{i}}+\varepsilon^{i a b} v_{a} \frac{\partial h^{\prime}}{\partial v_{b}}
$$

By using (16) 2,3 these expressions become

$$
\begin{equation*}
-\mathrm{h}_{3} v^{\mathrm{i}}=\frac{1}{\varepsilon_{0}} \frac{\partial \mathrm{~h}^{\prime}}{\partial v_{\mathrm{i}}}+\varepsilon^{\mathrm{iab}} \mathrm{v}_{\mathrm{a}} \frac{\partial \mathrm{~h}^{\prime}}{\partial \mu_{\mathrm{b}}}, \mathrm{~h}_{3} \mu^{\mathrm{i}}=-\frac{1}{\mu_{0}} \frac{\partial \mathrm{~h}^{\prime}}{\partial \mu_{\mathrm{i}}}+\varepsilon^{\mathrm{iab}} \mathrm{v}_{\mathrm{a}} \frac{\partial \mathrm{~h}^{\prime}}{\partial v_{\mathrm{b}}} \tag{28}
\end{equation*}
$$

The dependence of theseequations on the velocity v_{a} showsthat Equations (27) hold only in the reference framecomoving with thefluid. So Equations (28) must bereplaced with their values in $v_{a}=0$, i.e.,

$$
-\mathrm{h}_{3} v^{\mathrm{i}}=\frac{1}{\varepsilon_{0}} \frac{\partial \mathrm{~h}^{\prime}}{\partial v_{\mathrm{i}}}, \quad \mathrm{~h}_{3} \mu^{\mathrm{i}}=-\frac{1}{\mu_{0}} \frac{\partial \mathrm{~h}^{\prime}}{\partial \mu_{\mathrm{i}}}
$$

from which it follows:

$$
\begin{equation*}
\mathrm{h}^{\prime}=-\frac{1}{2} \mathrm{~h}_{3}\left(\varepsilon_{0} v_{\mathrm{i}} v^{\mathrm{i}}+\mu_{0} \mu_{\mathrm{i}} \mu^{\mathrm{i}}\right)+\mathrm{h} *\left(\hat{\mu}, \lambda_{11}, \vartheta\right)=-\frac{1}{2} \mathrm{~h}_{3}\left(\varepsilon_{0} \mathrm{Y}_{22}+\mu_{0} \mathrm{Y}_{11}\right)+\mathrm{h} *\left(\hat{\mu}, \lambda_{11}, \vartheta\right) \tag{29}
\end{equation*}
$$

After that, Equations (17) 4, $^{\text {g }}$ give $B^{i}=-\mu_{0} h_{3} \mu^{i}, D^{i}=-\varepsilon_{0} h_{3} v^{i}$; for Equations (16) 2,3 theseexpressions become $B^{i}=-\mu_{0} X^{i}, D^{i}=-\varepsilon_{0} \varepsilon^{i}$, i.e., for Equations(5), $B^{i}=\mu_{0}\left[H^{i}-(\vec{v} \wedge \vec{D})^{i}\right], D^{i}=\varepsilon_{0}\left[E^{i}+(\vec{v} \wedge \vec{B})^{i}\right]$.

So wehavefound

$$
\begin{equation*}
\overrightarrow{\mathrm{E}}=\frac{1}{\varepsilon_{0}} \overrightarrow{\mathrm{D}}-\overrightarrow{\mathrm{v}} \wedge \overrightarrow{\mathrm{~B}}, \overrightarrow{\mathrm{H}}=\frac{1}{\mu_{0}} \overrightarrow{\mathrm{~B}}+\overrightarrow{\mathrm{V}} \wedge \overrightarrow{\mathrm{D}} \tag{30}
\end{equation*}
$$

which generalize Equations (27) to any reference frame and coincide with them in the reference frame comoving with thefluid.

By using (29), we seethat thematrix (25) becomes

$$
\left(\begin{array}{cc}
-h_{3} \mu_{0} & 0 \\
0 & -h_{3} \mu_{0}
\end{array}\right)
$$

which is definite negative if $h_{3}>0$. In the particular case with $h_{3}=1$, the quadratic form Q, considered above, becomes

$$
\mathrm{Q}=-2 \lambda_{\|} \mathrm{F} \delta \mathrm{v}_{\mathrm{i}} \delta \mathrm{v}^{\mathrm{i}}+\delta\left(\frac{\partial \mathrm{h}^{*}}{\partial \hat{\mu}}\right) \delta \hat{\mu}+\delta\left(\frac{\partial \mathrm{h}^{*}}{\partial \lambda_{\| I}}\right) \delta \lambda_{\| I}+\delta\left(\frac{\partial \mathrm{h}^{*}}{\partial \vartheta}\right) \delta \vartheta-\mathrm{h}_{3} \mu_{0} \delta \mu_{\mathrm{i}} \delta \mu^{\mathrm{i}}-\mathrm{h}_{3} \varepsilon_{0} \delta v_{\mathrm{i}} \delta v^{\mathrm{i}}
$$

which is clearly negative defined.

4. Wave Equations for Maxwell's Equations

let us consider thewave equations for thesystem (21) in the case

$$
\begin{equation*}
h^{\prime}=h *\left(\hat{\mu}, \lambda_{11}, \vartheta\right)+h_{1}\left(Y_{11}\right)+h_{2}\left(Y_{2}\right) \tag{31}
\end{equation*}
$$

Taking into account of (17) and of (7) $)_{2}$, they are

$$
\begin{align*}
& (-\lambda+\vec{v} \cdot \vec{n}) d\left(\frac{\partial h^{*}}{\partial \hat{\mu}}\right)+\frac{\partial h^{*}}{\partial \hat{\mu}} \vec{n} \cdot d \vec{v}=0 \\
& (-\lambda+\vec{v} \cdot \vec{n}) d\left(\frac{\partial h^{*}}{\partial \hat{\mu}} v^{i}\right)+\frac{\partial h^{*}}{\partial \hat{\mu}} v^{i} \vec{n} \cdot d \vec{v}-n^{i} d\left(\frac{h^{*}+h_{1}+h_{2}}{2 \lambda_{l l}}\right) \\
& +\frac{\partial \mathrm{h}_{1}}{\partial \mathrm{Y}_{11}}(\vec{\mu} \cdot \vec{n}) \mathrm{d}\left(\frac{\mu^{\mathrm{i}}}{\lambda_{11}}\right)+\frac{\partial \mathrm{h}_{2}{ }^{*}}{\partial \mathrm{Y}_{22}}(\overrightarrow{\mathrm{v}} \cdot \vec{n}) \mathrm{d}\left(\frac{v^{\mathrm{i}}}{\lambda_{11}}\right)=0 \\
& (-\lambda+\vec{v} \cdot \vec{n}) d\left(\frac{\partial h^{*}}{\partial \hat{\mu}} v^{2}+\frac{\partial h^{*}}{\partial \lambda_{\|}}\right)+\left(\frac{\partial h^{*}}{\partial \hat{\mu}} v^{2}+\frac{\partial h^{*}}{\partial \lambda_{\|}}\right) \vec{n} \cdot d \vec{v}-\vec{n} \cdot d\left(\frac{h^{*}+h_{1}+h_{2}}{\lambda_{\|}} \vec{v}\right) \\
& +2 \frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}_{11}}(\vec{\mu} \cdot \vec{n}) \mathrm{d}\left(\frac{\mu^{\mathrm{r}} \mathrm{v}_{\mathrm{r}}}{\lambda_{\| 1}}\right)+2\left(\frac{\partial \mathrm{~h}_{2}}{\partial \mathrm{Y}_{22}}\right)(\vec{r} \cdot \vec{n}) \mathrm{d}\left(\frac{v^{\mathrm{r}} \mathrm{v}_{\mathrm{r}}}{\lambda_{\| 1}}\right)=0 \\
& (-\lambda+\vec{v} \cdot \vec{n}) d\left(\frac{\partial h^{*}}{\partial \vartheta}\right)+\frac{\partial h^{*}}{\partial \vartheta} \vec{n} . d \vec{v}=0 \\
& (-\lambda+\overrightarrow{\mathrm{v}} \cdot \vec{n}) \mathrm{d}\left(2 \frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}_{11}} \mu^{i}\right)+2 \frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}_{11}} \mu^{i} \cdot \vec{n} . \mathrm{d} \overrightarrow{\mathrm{v}}-2 \frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}_{11}}(\vec{\mu} \cdot \vec{n}) \mathrm{d} v^{i}+\mathrm{n}_{\mathrm{k}} \epsilon^{\mathrm{kis}} \mathrm{~d} v_{\mathrm{s}}=0 \\
& (-\lambda+\vec{v} \cdot \vec{n}) d\left(2 \frac{\partial h_{2}}{\partial \mathrm{Y}_{22}} v^{i}\right)+2 \frac{\partial h_{2}}{\partial \mathrm{Y}_{22}} v^{i} \cdot \vec{n} \cdot d \vec{v}-2 \frac{\partial h_{2}}{\partial \mathrm{Y}_{22}}(\vec{v} \cdot \vec{n}) d v^{i}+n_{k} \epsilon^{k \operatorname{si}} d \mu_{\mathrm{s}}=0 \tag{32}
\end{align*}
$$

Now weadd to (32) the equation (32) multiplied by -vi; so it becomes

$$
\begin{equation*}
(-\lambda+\vec{v} \cdot \vec{n}) \frac{\partial h^{*}}{\partial \hat{\mu}^{\prime}} d\left(v^{i}\right)-n^{i} d\left(\frac{h^{*}+h_{1}+h_{2}}{2 \lambda_{\| 1}}\right)+\frac{\partial h_{1}}{\partial \mathrm{Y}_{11}}(\vec{\mu} \cdot \vec{n}) d\left(\frac{\mu^{i}}{\lambda_{\| 1}}\right)+\frac{\partial h_{2}}{\partial \mathrm{Y}_{22}}(\vec{v} \cdot \vec{n}) d\left(\frac{v^{i}}{\lambda_{\| 1}}\right)=0 \tag{33}
\end{equation*}
$$

Similarly, we add to (32) $)_{3}$ the Equation (32) multiplied by $-v^{2}$ and theEquation (33) multiplied by $-2 v^{i}$; so it becomes

$$
\begin{align*}
& (-\lambda+\overrightarrow{\mathrm{v}} \cdot \overrightarrow{\mathrm{n}})\left(\frac{\partial \mathrm{h}^{*}}{\partial \lambda_{\| I}}\right)+\left(\frac{\partial \mathrm{h}^{*}}{\partial \lambda_{\|}}-\frac{\mathrm{h}^{*}+\mathrm{h}_{1}+\mathrm{h}_{2}}{\lambda_{\| I}}\right) \overrightarrow{\mathrm{n}} \cdot \mathrm{~d} \overrightarrow{\mathrm{v}} \\
& +\frac{\partial \mathrm{h}_{1}}{\partial \mathrm{Y}_{11}}(\vec{\mu} \cdot \vec{n}) \frac{\mu^{r}}{\lambda_{\| I}} \mathrm{~d} v^{\mathrm{r}}+2 \frac{\partial \mathrm{~h}_{2}}{\partial \mathrm{Y}_{22}}(\vec{v} \cdot \vec{n}) \frac{v^{r}}{\lambda_{\| I}} \mathrm{~d} v_{\mathrm{r}}=0 \tag{34}
\end{align*}
$$

Wenotethat in the new system (32) 1,4,5,6 - (33) , (34), the velocity is present only through its differential dvi. We noteal so that λ is there present only through $-\lambda+\vec{v} \cdot \vec{n}$ so that we obtain wave velocities relative to the normal component of thefluid velocity. M oreover, (32) 1,4 $^{\prime}$ (33), (34) multiplied by $-2 \lambda_{1 \mid}$, (32) 5 $_{5,6}$ can bewritten in thecompact form

$$
\left(\begin{array}{cccccc}
(-\lambda+\vec{v} \cdot \vec{n}) \frac{\partial^{2} h^{*}}{\partial \hat{\mu}^{2}} & (-\lambda+\vec{v} \cdot \vec{n}) \frac{\partial^{2} h^{*}}{\partial \hat{\mu} \partial \vartheta} & (-\lambda+\vec{v} \cdot \vec{n}) \frac{\partial^{2} h^{*}}{\partial \hat{\mu} \partial \lambda_{11}} & b_{1 j} & 0 & 0 \tag{35}\\
(-\lambda+\vec{v} . \vec{n}) \frac{\partial^{2} h^{*}}{\partial \vartheta \partial \hat{\mu}} & (-\lambda+\vec{v} \cdot \vec{n}) \frac{\partial^{2} h^{*}}{\partial \vartheta^{2}} & (-\lambda+\vec{v} \cdot \vec{n}) \frac{\partial^{2} h^{*}}{\partial \vartheta \partial \lambda_{11}} & b_{2 j} & 0 & 0 \\
(-\lambda+\vec{v} \cdot \vec{n}) \frac{\partial^{2} h^{*}}{\partial \lambda_{\| I} \partial \hat{\mu}} & (-\lambda+\vec{v} \cdot \vec{n}) \frac{\partial^{2} h^{*}}{\partial \lambda_{\| 1} \partial \vartheta} & (-\lambda+\vec{v} \cdot \vec{n}) \frac{\partial^{2} h^{*}}{\partial \lambda_{11}^{2}} & b_{3 j} & 0 & 0 \\
b_{1 i} & b_{2 i} & b_{3 i} & a_{11}^{i j} & a_{12}^{i j} & a_{13}^{i j} \\
0 & 0 & 0 & a_{12}^{j i} & a_{22}^{j i} & a_{23}^{i i} \\
0 & 0 & 0 & a_{13}^{j i} & a_{23}^{j i} & a_{33}^{j i}
\end{array}\right)\left(\begin{array}{l}
d \hat{\mu} \\
d \vartheta \\
d \lambda_{\| I} \\
d v^{j} \\
d \mu^{j} \\
d v^{j}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

with

$$
\begin{aligned}
& \mathrm{b}_{1 \mathrm{j}}=\frac{\partial \mathrm{h}^{*}}{\partial \hat{\mu}^{\prime}} \mathrm{n}_{\mathrm{j}}, \mathrm{~b}_{2 \mathrm{j}}=\frac{\partial \mathrm{h}^{*}}{\partial \vartheta} \mathrm{n}_{\mathrm{j}} \\
& b_{3 j}=\left(\frac{\partial h^{*}}{\partial \lambda_{l l}}-\frac{h^{*}+h_{1}+h_{2}}{\lambda_{l l}}\right) n_{j}+2 \frac{\partial h_{1}}{\partial Y_{11}}(\vec{\mu} \cdot \vec{n}) \frac{\mu_{j}}{\lambda_{l l}}+2 \frac{\partial h_{2}}{\partial Y_{22}}(\vec{v} \cdot \vec{n}) \frac{v_{j}}{\lambda_{11}} \\
& \mathrm{a}_{11}^{\mathrm{ij}}=-2 \lambda_{11}(-\lambda+\overrightarrow{\mathrm{v}} . \bar{n}) \frac{\partial \mathrm{h}^{*}}{\partial \vec{\mu}} \delta^{\mathrm{ij}}, \mathrm{a}_{12}^{\mathrm{ij}}=\frac{\partial \mathrm{h}_{1}}{\partial \mathrm{Y}_{11}} \mathrm{n}^{\mathrm{i}} \mu_{\mathrm{j}}-2 \frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}}(\vec{\mu} \cdot \vec{n}) \delta^{\mathrm{ij}} \\
& \mathrm{a}_{11}^{\mathrm{ij}}=2 \frac{\partial \mathrm{~h}_{2}}{\partial \mathrm{Y}_{22}} n^{\mathrm{i}} v_{\mathrm{j}}-2 \frac{\partial \mathrm{~h}_{2}}{\partial \mathrm{Y}_{22}}(\vec{v} \cdot \vec{n}) \delta^{\mathrm{ij}}, \mathrm{a}_{22}^{\mathrm{ij}}=(-\lambda+\overrightarrow{\mathrm{v}} \cdot \vec{n})\left(2 \frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}_{11}} \delta^{\mathrm{ij}}+4 \frac{\partial^{2} \mathrm{~h}_{1}}{\partial \mathrm{Y}_{11}^{2}} \mu^{\mathrm{i}} \mu^{\mathrm{j}}\right) \\
& \mathrm{a}_{23}^{\mathrm{ij}}=\mathrm{n}_{\mathrm{k}} \in^{\mathrm{kij}}, a_{33}^{\mathrm{ij}}=(-\lambda+\overrightarrow{\mathrm{v}} \cdot \bar{n})\left(2 \frac{\partial \mathrm{~h}_{2}^{2}}{\partial \mathrm{Y}_{22}^{2}} \delta^{\mathrm{ij}}+4 \frac{\partial^{2} \mathrm{~h}_{2}}{\partial \mathrm{Y}_{22}^{2}} v^{\mathrm{i}} v^{\mathrm{j}}\right)
\end{aligned}
$$

It is hereevident thesymmetric form of thesystem, even if weare not using all the Lagrangemultipliers as variables.

Wefind immediately a first eigenvalue of theproblem, i.e., $\lambda=\vec{v} . \vec{n}$.
In fact, for every solution of the equation $\frac{\partial h^{*}}{\partial \hat{\mu}} d \hat{\mu}+\frac{\partial h^{*}}{\partial \vartheta} d \vartheta=0$ different from zero, we have that $d \hat{\mu}, d \vartheta, d \lambda_{l l}=0, \quad d \nu^{j}=0, d \mu^{j}=0, d \nu^{j}=0$ is an eigenvector of the problem corresponding to this eigenvalue
(Wenotethat, from (20) 5. $_{6}$ it follows $d B^{i}=2 \frac{\partial h_{1}}{\partial Y_{11}} d \mu^{i}+4 \frac{\partial^{2} h_{1}}{\partial Y_{11}^{2}} \mu^{i} \mu_{j} d \mu^{j}$ and $d D^{i}=2 \frac{\partial h_{2}}{\partial Y_{22}} d v^{i}+4 \frac{\partial^{2} h_{1}}{\partial Y_{22}^{2}} v^{i} v_{j} d v^{j}$ which are zero in the present case; so even if we have not imposed the constraints $n_{k} d B^{k}=0, n_{k} d D^{k}=0$ corresponding to Equations (1) $)_{7,8}$, they cameout from theother equations). This property holds also in absence of theelectromagnetic fied; it is true that in thiscase the variable $d \vartheta$ isn't present, but in this casewehave also $b_{3 j}=\left(\frac{\partial h^{*}}{\partial \lambda_{11}}-\frac{h^{*}}{\lambda_{l l}}\right) n_{j}$ so that, for every solution of thesystem

$$
\frac{\partial h^{*}}{\partial \hat{\mu}} \mathrm{~d} \hat{\mu}+\left(\frac{\partial h^{*}}{\partial \lambda_{\|}}-\frac{h^{*}}{\lambda_{\|}}\right) \mathrm{d} \lambda_{\|}=0, n_{j} d v^{j}=0
$$

wehave a solution of the system; sincethere are3free unknowns, we havethat $\lambda=\vec{v} . \vec{n}$ is an eigenvalue with multiplicity at least 3 .

If $\lambda \neq \overrightarrow{\mathrm{v}} . \overrightarrow{\mathrm{n}}$, the last two equations of thesystem (35), contracted with n_{i}, give
$\left(2 \frac{\partial \mathrm{~h}_{1}}{\partial \mathrm{Y}_{11}} \mathrm{n}_{\mathrm{j}} \left\lvert\,+4 \frac{\partial^{2} \mathrm{~h}_{1}}{\partial \mathrm{Y}_{21}^{2}}(\vec{\mu} . \overrightarrow{\mathrm{n}}) \mu_{\mathrm{j}}\right.\right) \mathrm{d} \mu^{\mathrm{j}}=0$ and $\left(2 \frac{\partial \mathrm{~h}_{2}}{\partial \mathrm{Y}_{22}} \mathrm{n}_{\mathrm{j}}+4 \frac{\partial^{2} \mathrm{~h}_{2}}{\partial \mathrm{Y}_{22}^{2}}(\vec{\rightharpoonup} \cdot \overrightarrow{\mathrm{n}}) v_{\mathrm{j}}\right) \mathrm{d} v^{\mathrm{j}}=0$; so also in thegeneral case, even if wehavenot imposed theconstraints $n_{k} d B^{k}=0, n_{k} d D^{k}=0$ corresponding to Equations (1) $)_{7,8^{\prime}}$, they came out from theother equations.

To find the eigenvalues with $\lambda \neq \vec{v} . \vec{n}$ we can obtain $d \hat{\mu}, d \vartheta, d \lambda_{l l}$ from the first 3 equations of the system (35) and substitute them in the last 3 equations for the determination of $\lambda, d \nu^{j}, d \mu^{j}, d \nu^{j}$.

To avoid too complicated expressions, weprefer to consider theparticular case with $\vec{\mu} \cdot \vec{n}=0, \vec{v} \cdot \vec{n}=0$ and (29) with $h_{3}=1$ and ε_{0}, μ_{0} constant. In this way wehave $h_{1}=-\frac{1}{2} \mu_{0} Y_{11}, h_{2}=-\frac{1}{2} \varepsilon_{0} Y_{22}, B^{i}=-\mu_{0} \mu^{i}, D^{i}=-\varepsilon_{0} v^{i}$.

Weevaluateour equations in thereferenceframewith $\vec{n} \equiv(1,0,0)$. Here $\vec{\mu} \cdot \vec{n}=0, \vec{v} \cdot \vec{n}=0$ become $\mu^{1}=0, v^{1}=0$.
Coming back to the previous eigenvalue $\lambda=\vec{v} . \bar{n}$, wesee that in thepresent casethefirst 3 equations of the system (35) are equivalent to $\mathrm{v}^{1}=0$, Equation $(35)_{4}$ with $i=2$, 3 areidentities, (35) is equivalent to $\mathrm{d}^{2}=0$, $\mathrm{d} \nu^{3}=0$ and $(35)_{6}$ is equivalent to $\mathrm{d} \mu^{2}=0, \mathrm{~d} \mu^{3}=0$, whileEquation $(35)_{4}$ with $\mathrm{i}=1$ becomes

$$
\frac{\partial \mathrm{h} *}{\partial \hat{\mu}} \mathrm{~d} \hat{\mu}+\frac{\partial \mathrm{h} *}{\partial \vartheta} \mathrm{~d} \vartheta+\left(\frac{\partial \mathrm{h} *}{\partial \lambda_{\|}}-\frac{\mathrm{h} *+\mathrm{h}_{1}+\mathrm{h}_{2}}{\lambda_{\|}}\right) \mathrm{d} \lambda_{\|}=0
$$

So wehave only a scalar equation on the 7 unknowns $\mathrm{d} \hat{\mu}, \mathrm{d} \vartheta, \mathrm{d} \lambda_{\|}, \mathrm{dv} v^{2}, \mathrm{dv}{ }^{3}, \mathrm{~d} \mu^{1}, \mathrm{~d} \nu^{1}$. We conclude that theeigenvalue $\lambda=\vec{v} . \tilde{n}$ has multiplicity 6 in the present case.

Two other eigenvalues are

$$
\begin{equation*}
\lambda=\overrightarrow{\mathrm{v}} . \vec{n}+\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}, \lambda=\overrightarrow{\mathrm{v}} . \vec{n}-\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}} \tag{36}
\end{equation*}
$$

In fact, if $d \mu^{2}, d \mu^{3}$ arelinked only by

$$
\left[\vec{\mu}-\varepsilon_{0}(-\lambda+\vec{v} \cdot \vec{n}) \vec{n} \wedge \vec{v}\right] \cdot d \vec{\mu}=0
$$

weseethat $\mathrm{d} \vec{\mu}=0, \mathrm{~d} \vartheta=0, \mathrm{~d} \lambda_{\|}=0, \mathrm{dv} \mathrm{v}^{\mathrm{j}}=0, \mathrm{~d} \mu^{1}=0, \mathrm{dv}{ }^{1}=0, d v^{2}=-\mu_{0}(-\lambda+\overrightarrow{\mathrm{v}} . \vec{n}) \mathrm{d} \mu^{3}$,
$\mathrm{d} \nu^{3}=\mu_{0}(-\lambda+\overrightarrow{\mathrm{v}} . \vec{n}) \mathrm{d} \mu^{2}$ is an eigenvector of the problem. Moreover, $\vec{\mu}+\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \overrightarrow{\mathrm{n}} \wedge \vec{v}=\overrightarrow{0}$, for theeigenvalue(36) there is no constraint on $d \mu^{2}$ and $d \mu^{3}$ so that it has at least multiplicity 2 .

Similarly, if $\vec{\mu}-\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \vec{n} \wedge \vec{v}=\overrightarrow{0}$, for the eigenvalue (36) $)_{2}$ there is no constraint on $d \mu^{2}$ and $d \mu^{3}$ so that it has at least multiplicity 2. Theresult (36) is very important because, aswe havesaid in theintroduction, experiments lead to consider $\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}$ as the speed of light in thematerial; herewehavefound that it istrueexcept that it is the relative velocity with respect to relative referenceframe comoving with thefluid or, more precisely, with respect to the material wave front. This fact shows thereasonableness in choosing $h_{3}=1$, otherwisethis result would not havebeen achieved.

To find other eigenvalues besides $\lambda=\overrightarrow{\mathrm{v}} . \overline{\mathrm{n}}$ and (36), we notethat (35) with $\mathrm{i}=2,3$ givedv$v^{2}=0, \mathrm{dv}^{3}=0$ and $(35)_{5,6}$ with $i=1$ gived $\mu^{1}=0, \mathrm{~d} \nu^{1}=0$ (as expected). After that, (35) ${ }_{5,6}$ with $\mathrm{i}=2$, 3 become

$$
\begin{align*}
& -\mu_{0} \mu^{2} \mathrm{~d} v^{1}-\mu_{0}(-\lambda+\overrightarrow{\mathrm{v}} . \vec{n}) \mathrm{d} \mu^{2}+\mathrm{d} v^{3}=0, \\
& -\mu_{0} \mu^{3} d v^{1}-\mu_{0}(-\lambda+\vec{v} \cdot \vec{n}) d \mu^{3}-d v^{2}=0, \\
& -\varepsilon_{0} v^{2} d v^{1}-\varepsilon_{0}(-\lambda+\vec{v} \cdot \vec{n}) d v^{2}-d \mu^{3}=0, \\
& -\varepsilon_{0} v^{3} \mathrm{~d} v^{1}-\varepsilon_{0}(-\lambda+\vec{v} . \vec{n}) \mathrm{d} v^{3}+\mathrm{d} \mu^{3}=0 \tag{37}
\end{align*}
$$

Weuse thefirst two of these equations to obtain $d v^{2}, d v^{3}$ and substitutethem in theother two equations from which we obtain

$$
\begin{align*}
& \mathrm{d} \vec{\mu}=\left[1-\varepsilon_{0} \mu_{0}(-\lambda+\overrightarrow{\mathrm{v}} . \vec{n})^{2}\right]^{-1}\left[-\vec{n} \wedge \vec{v}+\mu_{0}(-\lambda+\vec{v} . \vec{n}) \vec{\mu}\right] \varepsilon_{0} \mathrm{~d} \mathrm{v}^{1}, \\
& d \vec{v}=\left[1-\varepsilon_{0} \mu_{0}(-\lambda+\vec{v} . \vec{n})^{2}\right]^{-1}\left[{ }_{n} \wedge \vec{\mu}+\varepsilon_{0}(-\lambda+\vec{v} \cdot \vec{n}) \vec{v}\right] \mu_{0} d v^{1}, \tag{38}
\end{align*}
$$

(The second one of these equations expresses (37) 1,2 modified by using (38) $)_{1}$; we observe also that (38) multiplied scalarly with \vec{n} shows that $d \mu^{1}=0, d \nu^{1}=0$ arecontained in (38)). By substituting theseresults in $(35)_{1-3}$ and $(35)_{4}$ with $i=1$, weobtain thesystem

$$
\left(\begin{array}{cccc}
\frac{\partial^{2} h^{*}}{\partial \hat{\mu}^{2}} & \frac{\partial^{2} h^{*}}{\partial \hat{\mu} \partial \vartheta} & \frac{\partial^{2} h^{*}}{\partial \hat{\mu} \partial \lambda_{l l}} & \frac{\frac{\partial h^{*}}{\partial \hat{\mu}}}{-\lambda+\vec{v} \cdot \vec{n}} \tag{39}\\
\frac{\partial^{2} h^{*}}{\partial \vartheta \partial \hat{\mu}} & \frac{\partial^{2} h^{*}}{\partial \vartheta^{2}} & \frac{\partial^{2} h^{*}}{\partial \vartheta \partial \lambda_{l l}} & \frac{\frac{\partial h^{*}}{\partial \vartheta}}{-\lambda+\vec{v} \cdot \vec{n}} \\
\frac{\partial^{2} h^{*}}{\partial \lambda_{l l} \partial \hat{\mu}} & \frac{\partial^{2} h^{*}}{\partial \lambda_{l l} \partial \vartheta} & \frac{\partial^{2} h^{*}}{\partial \lambda_{l l}^{2}} & \frac{\partial h^{*}-\frac{h^{*}+h_{1}+h_{2}}{\lambda_{l l}}}{(-\lambda+\vec{v} \cdot \vec{n})} \\
\frac{\partial^{2} h^{*}}{\partial \hat{\mu}} & \frac{\partial h^{*}}{\partial \vartheta} & \frac{\partial h^{*}}{\partial \lambda_{l l}}-\frac{h^{*}+h_{1}+h_{2}}{\lambda_{l l}} & \frac{\left.-2 \vec{v} \hat{\mu} \cdot \vec{\mu} \cdot \vec{n}+(-\lambda+\vec{v} \cdot \hat{n})-\mu_{0}(\vec{\mu})^{2}+\varepsilon_{0}(\vec{v})^{2}\right]}{1-\varepsilon_{0} \mu_{0}(-\lambda+\vec{v} \cdot \vec{n})^{2}}
\end{array}\right)\left(\begin{array}{l}
d \hat{\mu} \\
d \vartheta \\
d \lambda_{l l} \\
0 \\
0 \\
d v^{1}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right.
$$

wherewehavedivided thefirst 3 equations by $(-\lambda+\vec{v} . \vec{n})$. To express thedeterminant of the matrix on the left hand side, let us call $\mathrm{A}_{\mathrm{i} 4}$ the algebraic complements of the elements in its fourth coulumn; after that, this determinant becomes $(-\lambda+\vec{v} . \vec{n})^{-1}\left[1-\varepsilon_{0} \mu_{0}(-\lambda+\vec{v} . \vec{n})^{-2}\right]^{-1}$ multiplied by the left hand side of the following equation

$$
\begin{align*}
& {\left[1-\varepsilon_{0} \mu_{0}(-\lambda+\overrightarrow{\mathrm{v}} . \vec{n})^{2}\right]\left[\frac{\partial \mathrm{h}^{*}}{\partial \hat{\mu}} \mathrm{~A}_{14}+\frac{\partial \mathrm{h}^{*}}{\partial \vartheta} \mathrm{~A}_{24}+\left(\frac{\partial \mathrm{h}^{*}}{\partial \lambda_{\| I}}-\frac{\mathrm{h}^{*}+\mathrm{h}_{1}+\mathrm{h}_{2}}{\lambda_{\| I}}\right) \mathrm{A}_{34}\right]} \\
& -2 \lambda_{l l}(-\lambda+\vec{v} \cdot \vec{n})^{2}\left[1-\varepsilon_{0} \mu_{0}(-\lambda+\vec{v} \cdot \vec{n})^{2}\right] A_{44}+2 \varepsilon_{0} \mu_{0} \vec{v} \wedge \vec{\mu} \cdot \vec{n}(-\lambda+\vec{v} \cdot \vec{n}) A_{44} \\
& -\varepsilon_{0} \mu_{0}(-\lambda+\overrightarrow{\mathrm{v}} \cdot \vec{n})^{2}\left[\mu_{0}(\vec{\mu})^{2}+\varepsilon_{0}(\overrightarrow{\mathrm{v}})^{2}\right] \mathrm{A}_{44}=0 \tag{40}
\end{align*}
$$

which is an equation to determine the last eigenvalues.
Wenotethat, if $\vec{\mu}=\mathrm{a} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \vec{n} \wedge \overrightarrow{\mathrm{~V}}$ with $\mathrm{a}=+1$, the last two terms of (40) become
$2\left(\varepsilon_{0}\right) \mu_{0}(\vec{v})^{2}(-\lambda+\overrightarrow{\mathrm{V}} . \vec{n}) \mathrm{A}_{44}\left(-\lambda+\overrightarrow{\mathrm{V}} . \vec{n}+\frac{a}{\sqrt{\varepsilon_{0} \mu_{0}}}\right)$ which iszero for $\lambda=\vec{v} \cdot \vec{n}+\frac{a}{\sqrt{\varepsilon_{0} \mu_{0}}}$ which is a root also of the other temrs of (40). Vice versa, if we calculate Equation (40) in $\lambda=\vec{v} . \vec{n}+\frac{a}{\sqrt{\varepsilon_{0} \mu_{0}}}$, it becomes

$$
\begin{aligned}
& -A_{44}\left[-2 a \sqrt{\varepsilon_{0} \mu_{0}}\left(v^{2} \mu^{3}-v^{3} \mu^{2}\right)+\mu_{0}\left(\mu^{2}\right)^{2}+\mu_{0}\left(\mu^{3}\right)^{2}+\varepsilon_{0}\left(v^{2}\right)^{2}+\varepsilon_{0}\left(v^{3}\right)^{2}\right] \\
& \quad=-A_{44}\left(\sqrt{\mu_{0}} \mu^{2}+a \sqrt{\varepsilon_{0}} v^{3}\right)^{2}+\left(\sqrt{\mu_{0}} \mu^{3}-a \sqrt{\varepsilon_{0}} v^{2}\right)^{2}=0
\end{aligned}
$$

Since A_{44} isnegativedefined, this is possibleonly if $\mu^{2}=-\mathrm{a} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} v^{3}, \mu^{3}=\mathrm{a} \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} v^{2}$, i.e., if $\vec{\mu}=a \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \vec{n}^{\wedge} \vec{\nu}$. So this is theonly case in which (36) and (40) havea common root.

Finally, we observenow that the other eigenvalue $\lambda=\vec{v} \cdot \vec{n}$ isn't a root of (40). To prove this fact, let us call $\left\|b_{i j}\right\|$ the matrix extracted from that on (39) by dropping out its last lineand its last coulumn and let us call $\left|B_{i j}\right| \mid$ its adjoint matrix matrix, i.e., with $B_{i j}$ the algebraic complement of $b_{i j}$; moreover, let be X^{\prime} defined by $\mathrm{X}^{1}=\frac{\partial \mathrm{h}^{*}}{\partial \hat{\mu}}, \mathrm{X}^{2}=\frac{\partial \mathrm{h}^{*}}{\partial \vartheta}, \mathrm{X}^{3}=\frac{\partial \mathrm{h}^{*}}{\partial \lambda_{\|}}-\frac{\mathrm{h}^{*}+\mathrm{h}_{1}+\mathrm{h}_{2}}{\lambda_{\|}}$. Then Equation (39) calculated in $\lambda=\vec{v} \cdot \vec{n}$ becomes $0=\frac{\partial h^{*}}{\partial \hat{\mu}} A_{14}+\frac{\partial h^{*}}{\partial \vartheta} A_{24}+\left(\frac{\partial h^{*}}{\partial \lambda_{\|}}-\frac{h^{*}+h_{1}+h_{2}}{\lambda_{\| I}}\right) A_{34}=\sum_{i, j}^{1, \ldots, 3} B_{i j} X^{i} X^{j}$
and this is impossibile because $X^{1}=\frac{\partial h^{*}}{\partial \hat{\mu}}=F \neq 0$, the matrix\| $b_{i j} \|$ is negative definite and, as a consequence, its adjoint|| $\mathrm{B}_{\mathrm{ij}} \|$ is positive definite.

So wehavefound that

- If $\vec{\mu}=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \vec{n} \wedge \vec{v}$, then thewave velocities are $\lambda=\overrightarrow{\mathrm{v}} . \overrightarrow{\mathrm{n}}$ with multiplicity $6, \lambda=\overrightarrow{\mathrm{v}} . \overrightarrow{\mathrm{n}}-\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$ with multiplicity

2, $\lambda=\vec{v} . \vec{n}+\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$ with multiplicity 1 and theother 3eigenvalues of (40),

- If $\vec{\mu}=\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \vec{n} \wedge \vec{v}$, then thewavevelocities are $\lambda=\overrightarrow{\mathrm{v}} . \vec{n}$ with multiplicity $6, \lambda=\overrightarrow{\mathrm{v}} \cdot \vec{n}+\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$ with multiplicity 2, $\lambda=\overrightarrow{\mathrm{v}} . \vec{n}-\frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$ with multiplicity 1 and theother 3 eigenvalues of (40),
- If $\vec{\mu} \neq \pm \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} \vec{n}^{\wedge} \vec{v}$, then thewavevelocitiesare $\lambda=\overrightarrow{\mathrm{v}} . \vec{n}$ with multiplicity $6, \lambda=\overrightarrow{\mathrm{v}} . \overrightarrow{\mathrm{n}} \pm \frac{1}{\sqrt{\varepsilon_{0} \mu_{0}}}$ with multiplicity 1 , and theother 4 eigenvalues of (40).

5. Comparison with Previous Notable Results in Literature

First of all weemphasize that in all the articles cited below the M axwell Equations arenot coupled with the field equations for materials, so that theresults obtained in the present articlearemoregeneral and contain them only as particular cases.

- Thepaper, Born and Infeld (1934) is very important but seemsto belong to the context of general relativity and of quantistic mechanics; moreover, it is connected to the string theory. One of its result is the BornInfeld Lagrangian and theupper bound $\mathrm{E}^{2} \leq \mathrm{k}$, with $\mathrm{k}=$ const. >0.
We avoid this framework becausethefield equations for materials must belong to the same context and literaturefor them is present in a simpler framework. So the present work is partially less sophisticated than this onefor whatregards theelectromagnetic component of thefield equations, even if it leaves out no aspect of Born and Infeld (1934); but our work is anyway moregeneral becauseit contains also the component of field equations for materials. For this reason it was necessary to reach a compromisebetween the wo and use the samenotation for both sets of field equations. Weal so preferred leaving thenotation at a level that would allow practical applicationsmoreeasily. It is not excluded that thiswork can beimplemented in the futureto achievethesamelevel of refinement.
- In Donato and Ruggeri (1972) discontinuity equations arediscussed but with Maxwell Equations without current, free charge and without the field equations for materials. For this ground their results can be compared only with the present ones calculated in $\mathrm{d} d \hat{\mu}=0, d \lambda_{l l}=0, d \vartheta=0, d \vec{v}=0, \vec{v}=0$.

After that we sethat their closureisjust a special case of the present with $\vec{B}=\mu\left(H^{2}\right) \vec{H}$ and $\vec{D}=\in \vec{E}$ where isconsidered constant.

Wenotethe condition (3^{\prime}) which is assumed on page 289 of this article. We seenow that it is a consequence of the present concavity requirement. In fact, thepresent model gives that of Donato and Ruggeri (1972) when h^{\prime} has theform $h^{\prime}=-\frac{1}{2} Y_{22}+F\left(Y_{11}\right)$ and it follows $\mu\left(H^{2}\right)=2 \frac{\partial F}{\partial Y_{11}}$. Consequently, the requirement for thematrix (25) to bepositive definitebecomes $\in>0, \mu<0$. But also (24) must benegative definite; in the present casethis condition becomes

$$
\begin{aligned}
& \left(4 \frac{\partial^{2} \mathrm{~F}^{2}}{\partial \mathrm{Y}_{11}^{2}} \mathrm{H}_{\mathrm{i}} \mathrm{H}_{\mathrm{j}}+2 \frac{\partial \mathrm{~F}}{\partial \mathrm{Y}_{11}} \delta_{\mathrm{ij}}\right) \delta \mathrm{H}_{\mathrm{i}} \delta \mathrm{H}_{\mathrm{j}}-\in \delta \mathrm{E}_{\mathrm{i}} \delta \mathrm{E}_{\mathrm{i}} \\
& =\left(4 \frac{\partial^{2} \mathrm{~F}}{\partial \mathrm{Y}_{11}^{2}} \mathrm{H}^{2}+2 \frac{\partial \mathrm{~F}}{\partial \mathrm{Y}_{11}}\right)\left(\delta \mathrm{H}_{1}\right)^{2}+2 \frac{\partial \mathrm{~F}}{\partial \mathrm{Y}_{11}}\left[\left(\delta \mathrm{H}_{2}\right)^{2}+\left(\delta \mathrm{H}_{3}\right)^{2}\right] \in \delta \mathrm{E}_{\mathrm{i}} \delta \mathrm{E}_{\mathrm{i}}
\end{aligned}
$$

where in the second passages we have used the reference frame where $\vec{H} \equiv(H, 0,0)$; we see that it is negativedefinite if and only if
$4 \frac{\partial^{2} F}{\partial Y_{11}^{2}} H^{2}+2 \frac{\partial F}{\partial Y_{11}}<0$ and $\frac{\partial F}{\partial Y_{11}}<0$
and this is condition (3') of Donato and Ruggeri (1972).
Also thespeeds of propagation wave(14) and (15) of Donato and Ruggeri (1972) correspond to thosefound here at theend of the previous section but in the particular case $\varepsilon_{0}=0$.

- In Ruggeri (1973) the sufficient conditions which make all discontinuity-wavepropagation-speed real and non vanishing are analyzed. The closure $\vec{B}=\mu\left(H^{2}\right) \vec{H}$ and $\vec{D}=\varepsilon\left(E^{2}\right) \vec{E}$ is more general than that of the previous article but less general than the present one. ThePignedoli's conditions 4a) and 4d) on page 285 arecompatible with the present concavity of h^{\prime}; 4b) and 4c) arenecessary and sufficient conditionsfor the existence of h^{\prime} such that $D^{i}=\frac{\partial h^{\prime}}{\partial E_{i}}, B^{i}=\frac{\partial h^{\prime}}{\partial H_{i}}$ which has been found later in Boillat et al. (1994), wehave proved here that this property holds also in thepresence of thefield equations for thematerial. Theonly differencenow isthat h^{\prime} may depend also on mass density and energy density of thematerial, besides its dependenceon theelectromagnetictensor; moreover, thederivatives of h^{\prime} with respect to E_{i} and H_{i} must be replaced by derivatives of h^{\prime} with respect to ε_{i} and X_{i}.
In Ruggeri (1973), Equations (23) and (31), the wave velocities have been found under the particular assumption that $\vec{n} \wedge \vec{E}$ is orthogonal to $\vec{n} \wedge \vec{H}$. If wewritetheabove waveequationsin this hypothesis, we seethat it yields the sameresult.
- In Boillat et al. (1994) it is shown how to obtain hyperbolic systems compatiblewith an entropy, especially when it consists of one scalar and one vectorial function. The Maxwell Equations are considered but without charge-current densities. The generating vector is $h^{\prime i}=c \varepsilon^{i j k} E_{j} H_{k}$ and is said that one can take $c=1$, without restriction. By comparing them with (18) weseethe same result but calculated in $\vec{v}=0$. (The constant c of this article corresponds to the constant h_{3} of the present one). In section E) they use the constitutive relations $\vec{B}=\mu\left(H^{2}\right) \vec{H}$ and $\overrightarrow{\mathrm{D}}=\in\left(\mathrm{E}^{2}\right) \vec{E}$ which are an improvement of that in Donato and Ruggeri (1972) but still a particular case of the present one.
ThearticleGibbons and Herdeiro (2001) has the samecharacteristics of Born and Infeld (1934). from which itstarts; for this reason our comments arethe same But in any casewe appreciatethat the Boillat metric and the spacetimemetric are used. In particular, the propagation of fluctuations in a non trivial background field is described by means of two cones, onefor the Einstein Geometry and theother onefor the effective geometry governed by theBoillatmetric.

Exact stationary solutions areanalyzed. Blons are considered, which arestatic finiteenergy solutions and differ from solitons for thefact that havedistributional sources and al so singularities.
In Gibbons and Herdeiro (2001) Maxwell equations are used only as an application example of several inequalities that have been obtained for the components of
$T^{\alpha}{ }_{\beta}=q^{r}{ }_{\beta} \frac{\partial \mathcal{L}}{\partial q_{\psi}^{r}}-\delta^{\alpha}{ }_{\beta} \mathcal{L}$, with \mathcal{L} a general Lagrangian function.
M oreover, wavevelocities and characteristicshocks arestudied with particular attention to thegeneralized Born-Infeld Lagrangian. From thelast two lines of page 3471 we notethat \vec{E} and \vec{B} aretaken as Lagrange multipliers, whilewe havetaken $\vec{\in}$ and \vec{X} in this role because this choice preserves the material frame objectivity; obviously, thetwo choices are possibleif calculated in $\overrightarrow{\mathrm{v}}=\overrightarrow{0}$.

Conclusion

Maxwell'sequations in materials coupled with Euler equations for pol yatomic gases havebeen hereconsidered. By imposing the existence of a supplementary conservation law, a scalar function h^{\prime} has been found such that $B^{i}=\frac{\partial h^{\prime}}{\partial X_{i}}, D^{i}=\frac{\partial h^{\prime}}{\partial \epsilon_{i}}$ where $-\vec{\epsilon}=\vec{E}+\vec{v} \wedge \vec{B}$ is theelectromotive force and $\vec{X}=-\vec{H}+\vec{v} \wedge \vec{D}$ its dual. In this way all the set of field equations can be written in the symmetric hyperbolic form, by using the already known literatureon hyperbolic systems with evolutiveconstraints. Aim of a futureresearch is to find the relativistic counterpart of the present study.

References

A mendt P., and Weitzner H. (1985). Relativistic covariant warm charged fluid beam modeling. Physics of Fluids, 28, 949-957.
A nileA.M., and Pennisi S (1991). Fluid models for relativistic electron beams, an independent derivation. Physics of Fluids B, 3 (3), 1091-1103.
A rima, T., Taniguchi, S., Ruggeri, T., and Sugiyama, M . (2012). Extended Thermodynamics of densegases. Continuum M ech. Thermodyn, 24, 271-292.
Arima, T., Mentrelli, A., and Ruggeri, T. (2014). M ol ecular Extended Thermodynamics of Rarefied Polyatomic Gases and WaveVel ocities for Increasing N umber of M oments. A nn. Phys. 345, 111-132.
A rima, T., Barbera, E., Brini, F., and Sugiyama, M. (2014). The role of thedynamic pressure in stationary heat conduction of a rarefied polyatomic gas. Phys. Lett. A , 378, 2695-2700.
Boillat, G., and Ruggeri, T. (1997). M oment equations in the kinetic theory of gases and wave velocities. Continuum M ech. Thermodyn., 9, 205-212. doi: 10.1007/ s001610050066.
Boillat, G., and Ruggeri, T. (2004). Energy M omentum, Wave Vel ocitieand Characteristic Shocks in Euler's Variational Equations with A pplication to theBorn-infeld Theory. Journal of M athematical Physics, 45(9), 3468-3478.
Boillat, G. (1994). Sur I' Elimination des constraints involutives. C. R. A cad. Sci. Paris, 318(11) , 1053-1058.
Boillat, G., Dafermos, C.M., Lax, P.D., and Liu, T.P. (1994). Recent mathematical methods in nonlinear wave propagation, LectureN otes in M athematics, 1640, 27-33.
Born M ., Infeld C. (1934). Proc. R. Soc. London A 144, 425.
Carrisi M.C. (2011). A further condition in theextended macroscopic approach to relativistic gases, IJPAM (International Journal of Pureand A pplied M athematics), 67(3), 259-289.
Carrisi, M.C., Demontis, F., Pennisi, S., and Scanu, A. (2004). A kinetictypeextended model for polarizableand magnetizablefluids. In Proceedings of Scientific Computing in Electrical Engineering 2004; A nileA.M., Al'i G., M ascali G., (Eds.). Springer, 2004; pp. 295-300.
Carrisi, M.C., Pennisi, S., and Ruggeri, T. (2021). Maxwellian iteration of a causal relativistic model of polyatomic gases and evaluation of bulk, shear viscosity and heat conductivity. A nnals of Physics, 428, 428 (2021) 168447 doi: 10.1016/ j.aop.2021.168447.
Carrisi, M.C., and Pennisi, S. (2013). Extended Thermodynamics of Charged Gaseswith M any M oments: A n AlternativeClosure. J. M ath. Phys., 54 (9), 09301:1-15, doi: 10.1063/ 1.4821086.
Carrisi, M.C., Pennisi, S., and Ruggeri, T. (2014). TheLagrangian view-point compared with the Eulerian one, in the framework of Extended Thermodynamics. A cta A ppl. M ath., 132, 199-212, doi:10.1007/ s10440-014-9921-0.
Carrisi, M.C., and Pennisi, S. (2014). Wavespeeds in themacroscopic relativistic extended model with many moments. M eccanica, 49, 1493-1506, doi: 10.1007/ s11012-014-9933-x.
Carrisi, M.C., Farci, A., Obounou, M., and Pennisi, S. (2015). Relativistic Extended Thermodynamicsfromthe Lagrangian view-point. Ricerchedi M atematica, 64, 357-376, doi: 10.1007/ s11587-015-0244-x.

Carrisi, M.C., and Pennisi, S. (2015). A 18Moments M odel for DenseGases: Entropy and Galilean Relativity Principles Without Expansions. Entropy, 17 pp. 214-230. DOI: 10.3390/ el7010214.

Carrisi, M.C., and Pennisi, S. (2015). Extended thermodynamics for densegases up to whatever order. Int. Journal of N on-Linear M ech. , 77, 74-84, doi: 10.1016/ ijnonlinmec.2015.07.011.
Carrisi, M.C., Pennisi, S., Ruggeri, T., and Sugiyama, M. (2015). Extended thermodynamics of densegases in the presence of dynamic pressure, Ricerchedi M atematica, 64, 403-419, doi: 10.1007/ s11587-015-0247-7.

Carrisi, M.C., Pennisi, S., and Sellier, J.M. (2016). Extended thermodynamics of densegases with at least 24 moments, Ricerche di M atematica, 65, 505-522, doi: 10.1007/ s11587-016-0271-2.
Carrisi, M.C., Pennisi, S., and Sellier, J.M. (2016). Extended thermodynamics of dense gases with many moments - The macroscopic approach, Int. Journal of N on-Linear M ech., 84 (2016), 12-22, doi: 10.1016/ j.ijnonlinmec.20156.04.003.

Carrisi, M.C., Tchame, R.E., Obounou, M., and Pennisi, S. (2016). An exact solution for the macroscopic approach to Extended thermodynamics of densegases with many moments, IJ PA M , 106, 171-189, doi: 10.12732/ ijpam.v106i1.13.

Carrisi, M.C., Pennisi, S., and Sellier, J.M (2016). A kinetic typeexact solution for Extended Thermodynamics of densegases with many moments. Journal of computational and theoretical transport , 45(3), 162-173, doi: 10.1080/ 23324309.2016.1149079.

Carrisi, M .C., Tchame, R.E., Obounou, M., and Pennisi, S. (2016). A numberable set of exact solutions for the macroscopic approach to Extended thermodynamics of polyatomic gases with many moments. A dvances in M athematical Physics, 2016, 1-8, doi: 10.1155/ 2016/ 1307813.

Carrisi, M .C., Enoh Tchame, R., Obounou, M., and Pennisi, S. (2017). The general exact solution for themany moments macroscopic approach to Extended thermodynamics of polyatomic gases. IJPA M , 112 (4), 827849, doi: 10.12732/ ijpam.v112i4.13.
Carrisi, M.C., Pennisi, S., and Ruggeri, T. (2019). Production terms in rel ativistic extended thermodynamics of gaswith internal structurevia a new BGK model. Ann. Phys., 405, 298-307. doi: 10.1016/ j.aop.2019.03.025.
Carrisi, M.C., Pennisi, S., and Ruggeri, T. (2019). Integrability properties for relativistic extended thermodynamics of polyatomic gas. RicercheM at., 68, 57-73. doi: 10.1007/ s11587-018-0385-9.
Carrisi, M.C., and Pennisi, S. (2020). Hyperbolicity of a model for polyatomic gases in relativistic extended thermodynamics. Continuum M ech. Thermodyn., 32, 1435-1454. doi: 10.1007/ s00161-019-00857-0.
Carrisi, M.C., Enoh Tchame, R., Obounou, M ., and Pennisi, S. (2021). Extended Thermodynamics for dense gases up to whatever order and with only some symmetries. Entropy, 17, 7052-7075. DOI: 10.3390/ el7107052.
Donato, A., and Ruggeri T (1972). Onde di discontinuit'a e condizioni di eccezionalit'a per materiali ferromagntici, A ccademia N azional edei Lincé, SerieVIII, LIII, fasc. 3-4.
Friedrichs, K.O. (1974). On thelaws of relativistic electro-magneto-fluid dynamics. Comm. PueA ppl . M ath. 27, 749-808. doi: 10.1002/ cpa. 3160270604.
Gibbons G.W., and Herdeiro C.A.R. (2001). Born-Infeld theory and string causality, Physical Review D , 63, 064006-1 to 064006-18.

Liu, I.-S., and M üller, I. (1972). On the thermodynamics and thermostatics of fluids in electromagnetic fields. A rch. R at. M ech. A nal., 46, 149-176. doi: 10.1007/ BF00250689.
Liu, I-S. (1972). Method of LagrangeM ultipliers for Exploitation of theEntropy Principle Arch. Rat. M ech. A nal., 46, 131-148. doi: 10.1007/ BF00250688.
Liu, I.-S., and M uller, I. (1983). Extended Thermodynamics of Classical and DegenerateI deal Gases. A rch. R at. M ech. A nal ., 83, 285-332.
Liu, I.-S., Muller, I., and Ruggeri T. (1986). Relativistic thermodynamics of gases. A nn. Phys., 169, 191-219.
M"uller, I., and Ruggeri, T. (1998). Rational Extended Thermodynamics, $2^{\text {nd }}$ edn.; Springer Tracts in Natural Philosophy. Springer, New York, NY, USA.

Pavić, M., Ruggeri, T., and Simic, S. (2013). Maximum entropy principlefor rarefied polyatomic gases. Physica A, 392, 1302-1317.
Pennisi, S., and Trovato M. (1987). On theirreducibility of Professor G.F. Smith's representationsfor isotropic functions. Int. J. Engng. Sci., 25, 1059-1065. doi: 10.1016/ 0020-7225(87)90097-8.
Pennisi, S. (1996). Extended approaches to covariant Maxwell electrodynamics. Continuum M ech. Thermodyn. 8, 143-151.
Pennisi, S. (1997). Hyperbolic systems with constrained field variables. A covariant and extended approach. Bollettino U.M .I., 11-B, 851-870.

Pennisi, S. (1998). Representationstheorems for isotropic functions. Extension to the case of pseud otensors. Ricerchedi M atematica, 47, 181-204.
Pennisi, S., and Ruggeri, T. (2017). Relativistic extended ehermodynamics of rarefied polyatomic gases. Ann. Phys., 377, 414-445. doi: 10.1016/ j.aop.2016.12.012.
Pennisi, S., and Ruggeri, T. (2020). Classical Limit of Relativistic Moments Associated with Boltzmann? Chernikov Equation: Optimal Choice of M oments in Classical Theory. Journal of Statistical Physics, 179, 231-246. doi: 10.1007/ s10955-020-02530-2.
Pennisi, S. (2021). Consistent Order Approximations in Extended Thermodynamics of Polyatomic Gases. Journal of N ature, Science and Technology, 2, 12-21 doi: 10.36937/ janset.2021.002.003.
Ruggeri, T. (1973). Sulla propagazione di onde elettromagnetiche di discontinuit'a in mezzi non lineari, Istituto Lombardo (Rend. Sc.) A , M eccanica eFisica matemati ca, 107, 283-297.
Ruggeri, T., and Strumia, A. (1981). M ain Field and Convex Covariant Density for Quasi-Linear Hyperbolic Systems. R el ativistic Fluid D ynami cs. A nn. Inst. H. Poincar'e, 34, 65-84.
Ruggeri, T. (1989). Galilean invariance and entropy principle for systems of balance laws. The structure of Extended Thermodynamics. C ontinuum M ech. Thermodyn., 1, 3-20.
Ruggeri, T., and Sugiyama, M. (2015). Rational Extended Thermodynamics beyond the M onatomic Gas. Springer: Berlin/ H eidel berg, Germany.

Ruggeri, T., and Sugiyama, M. (2021). Classical and Relativistic Rational Extended Thermodynamics of Gases, Springer: 197 H eidelberg, N ew Y ork, Dordrecht, London, ISBN 978-3-030-59143-4.
Strumia, A. (1988). Wave propagation and symmetyric hyperbolic systems of conservation laws with constrained field variables. II. Symmetric hyperbolic systems with constrained fields. N uov Cim. B., 101: B, 19-37 .doi: 10.1007/ BF02828067.

Strumia, A. (1992).Wavepropagation in relativistic extended thermodynamics of a charged fluid. C ontinuum M ech. Thermodyn., 4, 199-211.

Cite this article as: S. Pennisi (2021). A New Model for Polyatomic Gases in an Electromagnetic Field. Internatioanal Journal of Pure and A pplied M athematics Research. 1(1), 1-20. doi: 10.51483/ / IJPAM R.1.3.2021.1-20.

[^0]: *Corresponding author: S. Pennisi, Dipartimento di M atematica ed Informatica, Universit'a di Cagliari, Cagliari, Italy. E-mail: spennisi@unica.it

