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Abstract: Composite indicators (CIs), i.e., combinations of many indicators in a unique synthetizing
measure, are useful for disentangling multisector phenomena. Prominent questions concern indica-
tors’ weighting, which implies time-consuming activities and should be properly justified. Landscape
fragmentation (LF), the subdivision of habitats in smaller and more isolated patches, has been studied
through the composite index of landscape fragmentation (CILF). It was originally proposed by us as
an unweighted combination of three LF indicators for the study of the phenomenon in Sardinia, Italy.
In this paper, we aim at presenting a weighted release of the CILF and at developing the Hamletian
question of whether weighting is worthwhile or not. We focus on the sensitivity of the composite
to different algorithms combining three weighting patterns (equalization, extraction by principal
component analysis, and expert judgment) and three indicators aggregation rules (weighted average
mean, weighted geometric mean, and weighted generalized geometric mean). The exercise provides
the reader with meaningful results. Higher sensitivity values signal that the effort of weighting leads
to more informative composites. Otherwise, high robustness does not mean that weighting was not
worthwhile. Weighting per se can be beneficial for more acceptable and viable decisional processes.

Keywords: composite indicators; weighting; aggregation; sensitivity; worthwhileness

1. Introduction

The study of complex phenomena requires the adoption of frameworks enabling
multisector assessment of a variety of aspects. A typical solution is provided by the use
of composite indicators (CIs), i.e., combinations of many indicators often structured in
nested hierarchical ensembles, in diverse fields of knowledge, including environmental
science and sustainability [1], vulnerability and climate changes [2], socioeconomics [3],
and engineering [4]. The design of CIs is a critical process, which presents scientific and
technical issues, even though it cannot be reduced to a unique pass par tout procedure [5].
In the public domain, the criticalities are even more evident since CIs influence or enter
decision-making support systems concerning the use of funding for addressing specific
policies [6]. In this respect, CIs support the ranking of a set of entities (countries, counties,
municipalities, homogeneous zones, etc.), termed decision-making units (DMUs), that can
be positively or negatively affected by the consequential distribution of resources. Final
rankings depend on the variety of choices adopted to frame the indicators, though. The
selection of indicators is crucial—different pools of indicators lead to different CIs. In
addition, the same indicators may be combined, according to different algorithms leading
to different expression of the CI. Algorithms usually include two elements—(i) the rule
of indicator aggregation and (ii) the weighting of the indicators (see the review by Greco
et al. [7]). A CI can be adopted in decision making when it is reliable, i.e., it is stable.
In the other way around, a lower robustness is a sign that the modified CI conveys new
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information and prompts further assessment of the reasons why some inputs influence the
CI. Thus, the sensitivity of the CI versus the algorithms used for its design and construction
should be accurately assessed [8]. Sensitivity analysis is a powerful instrument and can be
used to address properly the Hamletian question concerning the opportunity to introduce
the weights or not.

In the domain of landscape analysis and planning, several metrics have been designed
and applied to the assessment of landscape fragmentation (LF), the phenomenon of subdi-
vision of habitats in smaller and more isolated patches (see the review by Wang et al. [9]).
LF jeopardizes the normal evolution of animal species since it reduces the home range,
i.e., the possibility to move freely in a favorite habitat. LF can be triggered by natural and
human drivers, such as the construction of infrastructures and settlements. The indicators
of LF provide a useful indication to effectively addressing green-based urban and regional
management and planning. In a scientific panorama, in which contributions on composite
indicators of LF are still rare, De Montis et al. [10] propose the composite index of landscape
fragmentation (CILF). CILF combines three LF indicators bearing the same importance
(i.e., weight)—the infrastructural fragmentation index (IFI), the urban fragmentation index
(UFI), and the mesh size density (Seff). This composite is applied to the assessment of LF
processes through 51 landscape units of the island of Sardinia, Italy, and provides a basis
for addressing defragmentation policies.

In this paper, we aim at presenting a weighted release of the CILF applied to the
assessment of LF in Sardinia in 2003. We focus on the sensitivity of the composite to
different algorithms combining three weighting patterns (equal weights, principal com-
ponent analysis-based weights, and expert judgment-based weights) and three indicators
aggregation rules (weighted average mean, weighted geometric mean, and weighted gen-
eralized geometric mean). We assess the sensitivity of the weighted CILF by measuring the
volatility of the position in ranking assumed by the DMUs (i.e., the landscape units). Since
the weighting implies a significant amount of extra work, we are interested in ascertaining
whether the weighting—i.e., the time-consuming elaborations on the importance of the
indicators—is a worthwhile exercise.

2. State-of-the-Art Summary

Many scientists have built and applied composite indicators to the assessment of
complex phenomena in several domains. In addition, they often propose frameworks,
in which indicators are aggregated and weighted, according to a variety of patterns.
Additionally, they are confronted with the sensitivity of the composite upon the different
ways they are obtained. With respect to application field, indicator algorithm structuring,
and sensitivity analysis, we comment on the contribution provided by a selection of essays,
which are scrutinized in Table A1 (in Appendix A), according to focus, composite and
component indicators, method, data, and details about the weights.

A very prominent stream of research studies deals with sustainability. Babcicky
et al. [1] illustrate the re-engineering of the environmental sustainability index (ESI). The
equivalized ESI is obtained through a weighted summation and supplies a rank with higher
robustness. Dulvy et al. [11] develop a marine biodiversity threat indicator, which was
calculated from the weighted average of the threat scores of individual fishes species in each
year. Foster et al. [12] construct a measure able to gauge the robustness of country rankings
associated with some well-known composite indicators—the human development index
(HDI), the index of economic freedom (IEF), and the environmental performance index
(EPI). Zhou et al. [13] recalculate the HDI using a multiplicative optimization approach to
reduce subjectivity in defining the weights for the sub-indicators. Hassan [14] focuses on the
sustainability of a region by building the total index of sustainability (TIS). The composite
is constructed through multi-attribute utility theory as a weighted summation, where the
weights represent the marginal variation of preference corresponding to the change of an
attribute value. Huang et al. [15] review nine urban sustainability indicators (USIs), with
respect to the three pillars of sustainability—weak and strong sustainability, aggregation
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and weighting, and spatialization. Kurtener et al. [16] assess agricultural land suitability
through a composite indicator obtained by applying fuzzy logic. Munda and Saisana [8]
develop a sensitivity analysis of a composite indicator of regional sustainability with respect
to different indicator aggregation patterns. The authors consider weighted linear formula,
nonlinear and non-compensatory multicriteria analysis, and data envelopment analysis
(DEA), which is used to extract the weights. Pert et al. [17] study vegetal conditions in
Australia by building a 25-point scale composite threat index combining five indicators
normalized with a five-point scale. The aggregation rule is the unweighted summation
because the indicators are considered of equal importance.

Given the relevance of the topic for this paper, some studies focus on landscape.
Paracchini et al. [18] assess rural landscape through the societal landscape awareness
indicator. The composite is based on three dimensions and six indicators. The indicators are
normalized according to the min–max formula and aggregated according to the unweighted
summation. Schüpbach et al. [19] focus on the impact of individual farms on visual
landscape quality in Switzerland, according to the agricultural life cycle assessment (ALCA).
They build the composite landscape indicator (CLI) by combining two sub-indicators. The
aggregation rule consists of the unweighted summation: sub-indicators are assigned the
same importance.

Another important set of articles tackle the questions connected to climate change. Ah-
san et al. [2] construct the socioeconomic vulnerability index (SeVI) to assess climate change
vulnerability in southwestern coastal Bangladesh. SeVI is obtained by aggregating the com-
ponent indicators into a unique measure through weighted summation. Bastin et al. [20]
develop the directional leakiness index (DLI), a composite index based on remotely sensed
imagery. A component indicator concerning the patch size is obtained through weighted
summation considering the importance of each patch size class. Christensen et al. [21]
focus on methods useful for weighting regional climate models (RCMs). The authors
considered six model performance indices and examined three ways for combining them
into one weight per regional climate model. Garriga and Pérez Foguet [22] propose a
revision of the water poverty index (WPI). The new index is studied with a combination of
different aggregation rules and weighting, and a sensitivity analysis is applied. Weights are
obtained through expert judgment and multivariate (principal component) analysis. The
best aggregation function implies a principal component analysis (PCA)-based selection
of indicators and a weighted geometric mean of subindices. Machado and Ratick [23]
consider the sensitivity of a composite index of vulnerability to flooding with respect to
four aggregation rules—weighted linear combination (WLC), ordered weighted average
(OWA), DEA, and compromise programming (CP). Salvati and Zitti [24] focus on land
degradation by applying the land vulnerability index (LVI). LVI combines three dimensions
and nine indicators, according to the weighted summation rule. Szlafsztein and Sterr [25]
build the coastal vulnerability index (CVI) to assess the vulnerability of coastal zones. CVI
combines two dimensions through an unweighted summation. Each dimension is obtained
as weighted summation aggregation of 16 indicators.

The next cluster gathers essays concerning socioeconomic issues. Busu and Busu [3]
construct the Shannon entropy composite index (SECI). The SECI is obtained as a weighted
summation of simple indicators processed through an algorithm based on Shannon entropy.
Lee and Lim [26] propose a composite for forecasting the daily change of the Korea compos-
ite stock price index (KOSPI). Manthalu et al. [27] focus on a composite indicator obtained
through a weighted summation of 27 indicators. Weights are calculated through PCA.
Rahman [28] analyses the sensitivity of a quality of life index (QOLI) to two aggregation
and weighting patterns—the first, a PCA-based weighted summation, and the second, the
unweighted summation of Borda scores. The composite combines eight indicators and
is calculated for 43 developing countries. Ferrant et al. [29] evaluate gender inequality
through the multidimensional gender inequality index (MGII). The MGII is obtained as a
weighted summation of the squares of subcomponent indices measuring eight dimensions
of inequality.
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The last group of essays attains engineering. Gerpott and Ahmadi [4] propose a
revision of the Information and telecommunication technologies development index (IDI),
a composite showing 3 sub-indices and 11 indicators. This study aims at tuning the set of
weights to maximize the reliability of IDI, with respect to its ability to gauge the achieve-
ment of socioeconomic targets. Gitelman et al. [30] study a composite index that combines
the main dimensions characterizing the road safety pyramid. The authors combine the indi-
cators applying principal component analysis and factor analysis to obtain weights in five
trials. Rocco et al. [31] develop a composite indicator by considering the ordered weighted
averaging aggregation approach. Sharifuddin [32] focuses on the energy security index
(ESI) combining five dimensions (availability, stability, affordability, consumption efficiency,
and environmental impact), 13 elements, and 35 indicators. Indicators, elements, and di-
mension scores are normalized between 0 and 1 and aggregated according to unweighted
summation for every level but the indicator tier. Shen et al. [33] construct a composite road
safety performance indicator, combining seven indicators through normalization in the
interval 0–1 and weighted summation aggregation rule.

The analysis of the literature provides the reader with some leitmotiv that is worth
being recalled. Oftentimes, scientists have attempted to revise and re-engineer already
existing composite indicators with more sophisticated algorithms, including the introduc-
tion of weights meant as the importance of the indicators. This has implied usually a great
methodological and applicative effort, which has not necessarily led to a better or finer
release of the composite. A variety of weighting frameworks has been adopted to extract
figures representing the importance of each indicator: some methods focus on the percent-
age share of information embedded in each indicator, while others on the elaboration of the
judgment of selected experts. The weighting is a relevant part of the indicator aggregation
rule that can be compensatory, i.e., allowing the balancing of opposite performances in
two or more indicators, or not. A cornerstone phase of the composite indicator assessment
consists of the sensitivity analysis, which scrutinizes the changes of the output, i.e., the
final ranking, with respect to the variation of the input, i.e., the weighting and aggregation
patterns. If the changes are negligible, the ranking is stable, and the composite is robust.
As a corollary, if the comparison of the resulting ranking of a composite with its weighted
release reveals low volatility, the weighted composite does not add much to the picture
already provided by the unweighted composite indicators. Otherwise, in presence of high
sensitivity, the analyst deals with a weighted composite that describes a richer outline of the
phenomenon at hand. This is clearly a sign that the weighting effort has been worthwhile.

3. Methods

The experimented method is a complement of the framework presented by De Montis
et al. [10], who build, apply, and evaluate the robustness of the composite index of landscape
fragmentation (CILF) with respect to the volatility of the ranking of 51 landscape units (LUs)
established by the Regional Landscape Plan of Sardinia (RLP) [34]. De Montis et al. [10] (i)
considered a complete spatial data set, which consisted of human settlements and transport
and mobility infrastructures (roads and railways), (ii) applied the generalized geometric
mean (GGM) as aggregation algorithm, and (iii) performed a sensitivity analysis of the
findings to assess the robustness of CILF.

CILF is designed as a three-indicator unweighted composite, according to the scheme
proposed by the Organisation for Economic Co-operation and Development (OECD) [35]
and Nardo and Saisana [5]. The scheme includes the following steps: theoretical framework,
variables, normalization, aggregation, and robustness and sensitivity [10]. Since we now
focus on a weighted release of the CILF, we add a new step concerning the assessment of
values representing the importance of the indicators. The simulated theoretical framework
consists of aiding a decisional process, in which stakeholders are interested in managing
landscape fragmentation starting from a unique simple measure (namely, the CILF) melting
three major determinants, i.e., transport and mobility infrastructures, human settlements,
and subdivision per se. The indicators selected for measuring those determinants are the
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infrastructural fragmentation index (IFI), the urban fragmentation index (UFI), and the
effective mesh density (Seff). In Table 1, we resume their main characteristics and rationales.

Table 1. Synopsis of the indicators combined in the composite index of landscape fragmentation (CILF) (after De Montis
et al. [10]).

Indicator Formula Variables Meaning References

IFI IFI = NP ∑n
1 LiOi

A

P: perimeter (m) of the
landscape unit (LU); N:

number of patches; Li: length
(m) of the road or railway trait

with the exclusion of
discontinuities; Oi: occlusion

coefficient (dimensionless)
measuring the resistance to

crossing the infrastructure; A:
extension (sqm) of the LU area.

It measures LF due to
transport and mobility

infrastructures that constitute a
barrier to the movement of
terrestrial animal species.

[36,37]

UFI
UFI =

(
∑n

1 Aurbi
A

)
×(

∑n
1 pi

2
√

π ∑n
1 Aurbi

) Aurbi and pi: surface area and
perimeter of the i-th

urbanized area.

It gauges the effects of urban
settlements (soil consumption

and negative effects on
depletion of habitat, flora,

and fauna).

[38–40]

Seff

se f f =
1

Me f f
; Me f f =

A ∗ C;C =
n
∑

i=1

(
Ai
A

)2

Ai: surface area of the i-th
patch; Meff: effective mesh size;

C: connectivity coefficient
measuring the probability that
two random points are directly

connectable.

It measures the patch density
(number of patches included in

a 1 sqkm area).
[41,42]

Variables have been calculated by applying advanced geographical analysis and pro-
cessing spatial data sets in shapefile in the GIS environment provided by QGIS
(https://www.qgis.org/it/site/) and standard spreadsheet programs (Microsoft Excel). In-
formation concerning the geography of Sardinia and—typically—polygonal elements was
obtained by processing the land use map available for free at the institutional website of
the regional administration. Sardinia Geoportal is the interface of the regional geographic
information system and the related spatial data infrastructure.

Indicators are expressed in different measurement units and need to be normalized.
In this case, we chose the min–max transformation rescaling the original values into figures
calculating the distance from the minimum normalized with respect to the range of the
original indicator. We selected this model because it was chosen by De Montis et al. [10] for
designing the baseline release of the CILF.

The next step concerns the indicator weighting, where components are attributed a
value measuring the relevance of the issue represented by the indicator. As often presented
in the literature, weights are obtained according to two main procedures—quantitative
statistical calculations and expert judgment. The first procedure implies the scrutiny of the
matrix of indicator values through multivariate statistical analysis, for instance, the widely
adopted in the literature principal component analysis (PCA) and factor analysis (FA), and
the association of weights values to each indicator depending on the percentage share of
variance explained. In this respect, weights are referred to the variable loading calculated by
means of factor analysis for the prevalent (i.e., explaining most of the variance) component.
This procedure is based on the analysis of the results of an online questionnaire proposed
to a panel of selected individuals. The survey aims at understanding the characteristics of
the sample (position, age, education, familiarity with LF) and the importance attributed to
each indicator. Interviewees are requested to express the level of importance, according to
a five-step Likert-type scale (very low, low, medium, high, and very high). This method
was introduced in psychology by Likert and is currently widely used [43–45]. Following

https://www.qgis.org/it/site/
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El Gibari et al. [46], the weights for the ith indicator are extracted by (i) calculating the
arithmetic mean of the judgments mwi; (ii) computing the adjusted weights defined as
awi = 1.5(mwi−1) to be applied in a multiplicative environment, where the ratio between two
consecutive elements of the Likert-type scale is constant and equal to 1.5; and (iii) rescaling
the adjusted weights so that they sum up to 1.

The next step consists of the selection of the patterns of indicators’ aggregation. We
used the weighted version of three algorithms selected by De Montis et al. [10] for the CILF,
as detailed in Table 2.

Table 2. The indicators’ aggregation rules used for designing the weighted release of the CILF*.

Aggregation Rule Level of
Compensation Formula Variables

Weighted arithmetic
mean (WAM) Full

n
∑
1

wi Ii;
n
∑
1

wi = 1

Wi: weight of the i-th
indicator Ii; n:

number of indicators;
β: compensation

parameter.

Weighted geometric
mean (WGM) None

n
∏
1

Ii
wi ;

n
∑
1

wi = 1

Weighted generalized
geometric mean

(WGGM)
Partial β

√
n
∑
1

wi Ii
β;

n
∑
1

wi = 1

The three algorithms are designed to yield composite indicators with full (weighted
arithmetic mean (WAM), no (weighted arithmetic mean (WGM), and partial (weighted
generalized geometric mean (WGGM) compensation between the indicators. WGGM-
based aggregation rules merge compensatory (i.e., an increase of one indicator can be
balanced by the decrease of another indicator) and non-compensatory frameworks [47].
The parameter β is set greater than zero and attaining a maximum of 1 (corresponding
to the arithmetic mean allowing full compensation among the indicators). Following De
Montis et al. [10], we chose an intermediate framework by setting β = 0.50.

The final step regards sensitivity analysis to ascertain the level of robustness of the
composite with respect to different weighting and aggregation patterns. We performed
sensitivity analysis by verifying the variability of the position occupied by each decision-
making unit (DMU), according to the various rankings resulting from the different com-
posites obtained. Since we are interested in the variation of the position in the ranking
and not in its increase or decrease, we slightly modify what was proposed in other stud-
ies [10,48]. Thus, we set as a general measure of divergence GD between two rankings the
absolute value of the average shift in the ranking (GD = |ASR|), where |ASR| obeys the
following formula:

|ASR| = ∑m
1
(∣∣Rank1

i − Rank2
i

∣∣)
m

, (1)

where m is the number of DMUs, and Ranki
1 and Ranki

2 stand for the position occupied by
the i-th DMU, according to composite 1 and, respectively, composite 2. The higher the GD
is, the higher the sensitivity of the CI to changes in the way indicators are weighted and
aggregated; otherwise, the lower the GD, the higher the robustness. Final outcomes do not
change much when selecting different frameworks. However, statistics that suggest, on
average, a given outcome are many times partially or totally contradicted by the analysis of
average shifts in the ranking (|SR|) reported by individual DMUs. Thus, we add the study
of measures of specific divergence (SD), namely, the maximum absolute shift in the ranking
(|SR|max), the share of higher than five positions absolute shifts in the ranking (|SSR|>5),
and the share of higher than 10 positions absolute shifts in the ranking (|SSR|>10). These
metrics provide the analysts with detection of the DMUs mostly affected by selecting a
given CILF expression versus another one. The higher the SD matrices are, the higher the
volatility of the CILF selected with respect to other composites.
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4. Application and Results: A Weighted Composite Indicator of Landscape Fragmentation

In this section, we apply the methodology explained above to the assessment of
a weighted release of the CILF. We simulate a decisional environment, where relevant
stakeholders—including the Autonomous Regional Administration—are interested in
managing LF in the 51 (27 coastal and 24 internal) LUs established by the RLP [34], the
main strategic regional plan of Sardinia, Italy (Figure 1A). Sardinia shows a surface area of
about 24,000 km2; thus, is the second largest Italian island. The island is scarcely populated,
however, since it has about 1.6 million inhabitants. Sardinia is an autonomous region with
special power in landscape management and planning. Decision makers can be assisted by
the interpretation of the values CILF of the LUs, which are selected as decision-making
units (DMUs) of this exercise; the spatial pattern of the LUs is illustrated in Figure 1B.
While De Montis et al. [10] monitored the variation from 2003 to 2008, we refer just to the
initial year 2003 for comparing the unweighted CILF to two weighted releases. Indicators
have been obtained by processing spatial information described in Table 3.
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Figure 1. (A) The red circle identifies the location of Sardinia (Italy), in the context of the western
Mediterranean basin. (B) The decision-making units consist of the 51 landscape units of the RLP of
Sardinia. The thick line divides coastal from interior LUs.

Table 3. Spatial data set used for calculating the indicators of landscape fragmentation (LF).

Key Elements Data Year Scale Source Website

Patches, human
settlements

Land Use map of
Sardinia, areas

2003 1:25,000
Sardinia Geoportal,

Autonomous Region of
Sardinia

http://www.
sardegnageoportale.

it/Linear
infrastructures

Land Use map of
Sardinia, linear

elements

Indicator values have been normalized, according to the min–max transformation,
and projected in the range of 0–1.

Weights have been obtained, according to the two methods, and are reported in Table 4.

http://www.sardegnageoportale.it/
http://www.sardegnageoportale.it/
http://www.sardegnageoportale.it/
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Table 4. Indicators weights obtained by extraction method.

Method Weights

IFI UFI Seff

Equal weights (EW) 0.333 0.333 0.333
Principal Component

Analysis (PCA) 0.453 0.387 0.159

Expert judgment (EJ) 0.352 0.350 0.298

The second set of weights has been computed by applying PCA to the min–max
normalized values of the indicators. A preliminary check of the determinant (equal to
0.48) indicates that the structure of the dataset justifies the application of PCA. The Keiser–
Meyer–Olkin (KMO) test (suitability measure equal to 0.34) reveals a limited utility of
PCA; this is expected for a dataset with a reduced number of variables. The Bartlett test
(significance equal to 0) indicates that the variables are poorly correlated. We have extracted
three components, as reported in Table 5.

Table 5. Components extracted by initial eigenvalue and percentage of variance explained.

Initial Eigenvalues

Component Total Percentage of Variance Explained

1 1.609 53.62
2 1.128 37.59
3 0.264 8.78

Component 1 explains the largest share of variance (nearly 54%) and has been selected
for the extraction of the variable loading values for the indicators, as indicated in Table 6.

Table 6. Variable loading values obtained for component 1.

Indicators Variable Loading Values

IFI 0.931
UFI 0.796
Seff 0.328

Variable loading values have been normalized in the triplet reported in Table 4 so that
their sum is equal to 1.

The third set of weights has been obtained by processing the results of an online
questionnaire submitted to selected stakeholders in January 2021. The link to the question-
naire was sent to scientists of the two universities of Sardinia, public officials belonging
to Sardinian municipalities, and associates to the professional boards of the engineers of
the province of Cagliari and agronomists of the provinces of Sassari and Oristano. The
questionnaire was completed by 165 individuals. Most of them were academics (45%),
freelance professionals (31%), and public officials (15%). The sample includes persons
36–50 (40%) and 51–65 (44%) years of age. The level of education was generally high: 53%
of the respondents held a masters’ degree and 45% a post lauream degree. Most of the
respondents (50%) declared to have a medium level of acquaintance with LF, 25% a high
level, 16% a low level, while 8% admitted having never heard of the concept. Weights vary
depending on the many segmentation of the audience interviewed because academics may
have a different perception of the phenomenon, compared to freelance professionals. In
this study, we do not inspect these variations.

In Table A2 in Appendix B, we gather the values of the CILF obtained for 2003,
with min–max normalization of the indicators, and different combinations of weighting
and aggregation rules. We now apply sensitivity analysis to understand the volatility
of the various rankings focusing on two issues, namely, (i) the influence of weighting
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patterns, being equal the aggregation rule and (ii) the influence of aggregation rules,
being equal the weighting pattern. The resulting figures are shown in Table A3 in
Appendix B, where the detailed absolute values of the shift in rankings are reported
for each DMU. In Tables 7 and 8 and Figures 2 and 3, we report the GD and SD metrics.

Table 7. Sensitivity analysis of CILF (2003). Rankings are compared pairwise keeping fixed the
aggregation rules and changing the weighting patterns.

n Changing Weighting Patterns for Fixed Aggregation Rules

WAM WGM WGGM

EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

|ASR| 2.98 0.90 2.20 0.90 0.90 0.00 3.33 0.94 2.59
|SR|max 14 5 9 5 5 0 16 6 12
|SR|>5 9.80% 0.00% 3.92% 0.00% 0.00% 0.00% 21.57% 1.96% 9.80%
|SR|>10 1.96% 0.00% 0.00% 0.00% 0.00% 0.00% 3.92% 0.00% 1.96%

Table 8. Sensitivity analysis of CILF (2003). Rankings are compared pairwise keeping fixed the
weighting patterns and changing the aggregation rules.

n Changing Aggregation Rules for Fixed Weighting Patterns

EW PCA EJ

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

|ASR| 5.39 2.16 3.59 4.61 2.59 2.80 5.20 2.16 3.51
|SR|max 36 11 25 22 13 10 31 12 19
|SR|>5 39.22% 7.84% 21.57% 31.37% 11.76% 11.76% 31.37% 3.92% 19.61%
|SR|>10 13.73% 1.96% 5.88% 9.80% 1.96% 0.00% 13.73% 1.96% 5.88%
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The analysis of the |SR| indicates that the less volatile aggregation rule is the WGM—
in this domain, the most robust comparison concerns the interplay between composites
obtained with weights extracted through PCA and expert judgment elaboration. In this
case, |ASR|, |SR|max, |SR|>5, and |SR|>10 are equal to 0. Slightly higher figures are
associated with the other two comparisons within the WGM aggregation rule and the
equal weight (EW) vs. expert judgment (EJ) comparisons within the WAM and the WGGM
aggregation rules. The most volatile interplays are EW vs. PCA comparisons with WGGM
and WAM aggregation rules.

As for the assessment of the impact of the change of aggregation rule keeping the
weighting patterns fixed, much higher figures are obtained—a clear sign of a higher
sensitivity of the resulting rankings to the different ways the indicators are weighted. The
most robust is the WAM vs. WGGM comparison with EW and EJ weighting patterns, even
though |SR|>5 = 7.84% is a sign of local perturbations. The most volatile comparison is
WAM vs. WGM with the EJ weighting pattern.

5. Discussion

In this section, we discuss the outcomes of this paper with respect to the premises
presented in the introduction.

First, in the framework of the assessment of LF throughout Sardinian LUs, we are
interested to check whether the weighted versions of the CILF perform better—i.e., add
more information—than its unweighted releases (all weights equal). We would like to stress
that the development of both weight assessments implies demanding and time-consuming
activities, such as the mobilization of scientific knowledge, the application of sophisticated
methods and algorithms, the design, test, and submission of ad hoc questionnaires, the
selection of the target audience, etc. Weighting is never for free because it implies costs,
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which are also difficult to evaluate precisely in advance. Thus, it is not surprising that
scientists question the worthiness of the weighting effort. In our exercise, we obtained
the weights following two streams of research. According to the first set of contributions
(for instance, Huang et al. [15]), we opted for an “objective” quantitative assessment
of the importance of the indicators, which are calculated as the percentage of variance
(information) explained. This is an informational weighting method that yields values
by processing characteristics embedded in the indicators’ dataset. The PCA-based triplet
of weights reported in Table 4 signs a clear prevalence of IFI and UFI with respect to the
Seff. This per se diverges from the scenario represented by the equalization of the weights.
According to a stream of contributions (see [43,46]), we have calculated another weight
triplet applying a “subjective” assessment that considers the judgment of a set of selected
experts. This triplet is representative of the average judgment of the experts and may vary
when considering a different set of participants. The endorsers of subjective assessment
frameworks question that quantitative PCA-based methods may be too neutral and abstract
for policy and decision makers. In addition, they point out that a clear presentation of
subjective assessment methods may strengthen the acceptability and viability of weighted
CIs. In our case, the expert judgment-based weight triplet (see Table 4) converges to the
scenario with all weights equal. Therefore, an argument purely focused on the values of
the weight triplets would suggest that the first process of weighting was more worthwhile
than the second because the first one potentially leads to a different picture with respect to
the situation described by the unweighted CILF (all weights equal). However, we need to
widen our perspective to complete the assessment of the influence of the algorithm on the
new release of the CILF. Thus, we have jointly analyzed the combined impacts of both the
weighting pattern and the aggregation rule.

Therefore, as for the argument concerning the evidence of the complete sensitivity
analysis, it does not show us a monochrome picture and needs to be carefully interpreted.
If we consider the outcomes reported in Tables 7 and 8, the figures do not address a
monolithic message. In the first case, figures suggest that sensitivity is overall contained
(|ASR| < 2.98 and many other SR statistics equal to zero). The high robustness emerging
is a sign that—keeping the aggregation rule constant—CILF is not sensibly affected by
changes in the weighting pattern. Thus, from this point of view, the weighting effort was
not worthwhile. Similar evidence has been discussed by some of the selected contributions
(by, for instance [12,21]). A different picture arises when we consider the outcomes reported
in Table 8. In this case, sensitivity measures show a much higher range (|ASR| < 5.39,
|SR|max < 36, |SR|>5 < 39.22%, and |SR|>10 < 13.73%). This means that keeping the
weighting patterns constant and allowing changes in aggregation rules produce sensibly
different rankings. Therefore, under these lenses, weighting was a worthwhile process, as
documented by another set of selected contributions ([1,4,22]). In line with what Foster
et al. [12] found for the weighted releases of the HDI, IEF, and the EPI, the exercise
developed in this paper documents a controversial outcome: some CIs are robust and
some others are not. This means that weighting is sometimes (i.e., for some releases of the
weighted CILF) justified, while at other times, is not.

6. Conclusions

In this paper, we have developed the Hamletian question revolving on whether
to introduce weights or not in the design of composite indicators. We examined the
impact of using two weighting extraction modes on the CILF, an unweighted composite
indicator proposed by De Montis et al. [10] for measuring landscape fragmentation. We
have focused on the sensitivity of the CILF to different indicator aggregation rules and
weighting patterns. The analysis provides us with twofold outcomes. Even though high
sensitivity is associated with lower robustness, in our case, it signals that the new composite
conveys richer information, i.e., that the weighting has been worthwhile. The analysis of
the SR statistics reveals higher values when rankings are compared pairwise changing
aggregation rules and fixing the weighting patterns (Table 8). In this case, the weighted
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versions of the CILF embed new information and lead to different rankings—a circumstance
that justifies the adoption of the composites and the effort for introducing the weights.
The cases reported in Table 7 describe a panorama, in which low sensitivity values would
support that the new weighted composites do not add much to the information provided
by the original CILF and that the weighting has not been worthwhile.

However, this can be questionable since weighting per se adds advantages, as intan-
gible as they may be. There are processual benefits connected to a procedure based on
composites with weights extracted through both PCA and EJ. PCA provides important
indications on the structure of the information contained in the indicators and may support
the choice of “objective” weights. EJ-driven weights convey per se a powerful symbolic
meaning, which can increase political awareness and endorsement for the widest possible
viability of the composite. This holds also in our case, where the weights triplet obtained
with EJ does not diverge much from the EW triplet. Still, it represents the combination
of the opinions of many individuals representing sometimes the sentiment of relevant
political parties or stakeholders. EJ-driven weighted composites often are accepted with
higher appreciation in deliberative contexts, where PCA-based weights may be perceived
as abstract constructs of meaningless technicality.

As a general message, this paper confirms that the design of a composite indicator is
context specific and never a neutral activity and weighting processes are time and resources
consuming. The main practical implication is that the cornerstones of the procedure must
be clarified step by step so that the audience (institutional partners, decision-makers,
stakeholders, etc.) can adhere to and use the composite indicator with full awareness of
its impacts. In this respect, the development and correct communication of sensitivity
analyses are fundamental.

In this study, we have developed the analyses under precise assumptions; thus,
the outcomes have some limitations we would like to clarify for departing with further
research studies. Firstly, we have tested the method on the CILF, a composite combining
three indicators. The method—with the same steps and procedures—can be exported to
other composites, but the results may be affected by the different structure of the indicator
nesting and pattern and some adjustments may be required. Additionally, PCA statistics
vary, in front of a higher number of indicators; and the extraction of EJ-driven weights
may lead to diverse patterns when judging the importance of a larger number of indicators.
Secondly, we have considered the CILF proposed by De Montis et al. [10] as a possible
combination of three out of all the available measures of LF. However, we are aware
that different formulations of the CILF may be obtained by including a larger number of
indicators with a multi-layer nested structure. Thirdly, we have addressed the weighted
CILF by choosing the min–max rescaling of the original indicators. Different courses
of action would have followed a selection of alternative normalization patterns (Borda
distance, standardization, ratio to the maximum, etc.). Similarly, we have focused on the
GGM aggregation rule calibrated on a fixed compensation parameter β. We are aware that
sensitivity analysis can be directed also to the assessment of the interplay between the
composite and a changing compensation of the indicators. We will delve into this in future
studies. Fourthly, EJ weights are extracted through the method proposed by El Gibari [46]
and the Likert scale. Other methods can be selected for processing expert judgment (see,
among others, the regime method by Hinloopen and Nijkamp [49], the analytical hierarchy
process by Saaty [50], and goal programming and DEA methods [51,52]). This choice
has its impacts on the entire study, which would have implied different data harvesting
procedures and outcomes with the selection of a different EJ processing framework. Fifthly,
regardless of the EJ processing pattern, we have extracted a unique weight triplet from
the consideration of the entire dataset of answers provided by the experts. However,
experts can be profiled by profession, age, education, and familiarity with LF issues in
different clusters, which may be associated to many corresponding weight triplets. Finer
sensitivity analyses may be applied to understand the influence of experts profiling on the
weights and, overall, on the composite indicator. In addition, the sample was designed for
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including academics and professionals, i.e., individuals with a presumably medium-high
familiarity with technical aspects connected to LF management and planning. However,
this composition could not correspond to the characterization of a typical deliberative body
operating in the public domain, where the share of decision makers with no exposure to LF
issues might be greater. Further research will be directed to seek the most suitable profile
of candidate stakeholders.
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Appendix A

Table A1. Scrutiny of relevant essays by focus, composite and component indicators, method, data, and details about the
weights.

Author
(Year) Focus On Composite and

Component Indicators Method Data Details about
the Weights

Ahsan and
Warner [2]

Vulnerability to
climate change.

Socioeconomic
Vulnerability Index

(SeVI) combining three
dimensions (adaptive

capacity, sensitivity, and
exposure), 5 domains,

and 27 indicators.

Qualitative approach
to the Rapid Rural

Appraisal and
discussion in seven

focus groups. SeVI is
obtained as

weighted average of
the three dimensions
and is normalized in

the interval 0–1.

Data on communities in
south-western coastal

Bangladesh was
collected through

household survey on
vulnerability aspects:
demography, society,

economy, perception of
climate risk, and

geography.

The weights of
the dimensions

are obtained
through

follow-up
workshops.

Babcicky
et al. [1] Sustainability.

Equivalised
Environmental

Sustainability Index
(ESI). ESI combines three

out of the five
components of the
original ESI and 10

variables.

Equivalised ESI is a
weighted release of

the original
composite indicator

ESI.

Most recent 2005 ESI
data for world countries.

Weights are
calculated

through factor
analysis.
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Table A1. Cont.

Author
(Year) Focus On Composite and

Component Indicators Method Data Details about
the Weights

Bastin et al.
[20]

Landscapes
function to

retain
resources.

Directional Leakiness
Index (DLI) including

four dimensions gauged
by landscape metrics:
landscape leakiness

index, weighted mean
patch size, lacunarity
index, and proximity

index.

DLI is obtained as a
linear weighted

summation of the
dimensions.

Images drawn from
Specterra Systems

digital multi-spectral
video (DMSV), whose

spatial distortion is
removed through

automated techniques.

In the
weighted mean

patch size, a
weight for each
patch size class

is computed.

Busu and
Busu [3]

Circular
economy
processes.

Shannon Entropy
Composite Index (SECI)
combining recycling rate
and economic growth of
the EU member states.

The SECI is obtained
following four steps:
data standardization,

weights
computation,

weights
standardization, and

ranking.

The data on 28 European
member states are
drawn from The

Statistical Office of the
European Union.

Weights
represent the
importance of
the component

indicators.

Christensen
et al. [21]

Weighting
regional

climate models
(RCM).

Combining individual
metrics (indices) into
one weight per RCM.

Model weighting
grounded on

multiple
performance metrics

in an ensemble of
RCM simulations.

Reference datasets
processed in 15

simulations at 13
institutes for the metrics:
ERA40, CRU TS1.2, and

EOBS2.0. ISCCP-D2.

RCM weights
are obtained
through six

model
performance
metrics. Total

weight is
processed in

three different
ways.

Dulvy et al.
[11]

Marine
biodiversity

loss.

Composite indicator of
threat including rate and

extent of decline.

Indicators are
aggregated through

weighted
summation.

Data on 23 see fish
species are drawn from
the North Sea English

groundfish survey data
for 1982–2001.

Individual
species threat

categorizations
were weighted
as vulnerable =
1, endangered

= 2, and
critically

endangered =
3.

Ferrant et al.
[29]

Gender
inequality.

The Multidimensional
Gender Inequalities

Index (MGII) considers
eight dimensions
(identity, physical

integrity, intra-family
laws, political activity,

education, health, access
to economic resources,
and economic activity)
and many variables.

MGII is obtained as
weighted

summation of the
squares of the
dimensions.

Dimensions are
gauged by

correlation analysis
(Kendall Tau-B test),

standardization,
aggregation (via

unweighted
summation),

rescaling in the
interval 0–1.

Data on 109 developed
and developing

countries are drawn
from Women’s

Indicators and Statistics
Database of the United

Nations,
Cingranelli-Richards
(CIRI) Human Rights

Data, World Bank
Development Indicators,

and Gender
Development and

Institutions (OECD).

Weights are
extracted
through

Multiple Corre-
spondence
Analysis

(MCA) and
mean the

relative share
of variance

explained by
each

dimension.
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Table A1. Cont.

Author
(Year) Focus On Composite and

Component Indicators Method Data Details about
the Weights

Foster et al.
[12]

Robustness
analysis of
Composite

Indices versus
different sets of

weights.

Robustness analysis is
applied to three indices:

the Human
Development Index

(HDI) with three
subcomponents, the
Index of Economic

Freedom (IEF) with 10
subcomponents, and the

Environmental
Performance Index (EPI)

with various level of
aggregation.

Dominance and
prevalence analyses
are applied to assess

the type of
dominance relation

between two
countries. Full

dominance (C0) is
established if the
order in ranking

cannot be reversed
by using any set of

weights. Otherwise,
dominance relation
(Cr) holds, only if a
subset of weights is

selected. The
measure of

robustness (r*)
ranges between 0

and 1 (for fully
robust relations). To

consider all the
comparisons, a

prevalence function
p(r) is considered

based on the entire
cumulative

distribution of
robustness levels.

P(r) is the proportion
of comparisons, for

which Cr applies: for
C0, p(0) = 1.

HDI data for 177
countries in 1998 and

2004. IEF for 157
countries in 2007. EPI

for 149 countries in 2007.

All possible
combinations
of weights are

considered.

Garriga and
Pérez Foguet

[22]

Sensitivity
analysis of
composite

indicators of
water stress
and scarcity.

Water Poverty Index
(WPI) with five

dimensions: resources,
access, capacity, use, and

environment.

Sensitivity analysis
is applied to assess

the variability of
WPI vs. aggregation

and weighting
patterns. The best

combination implies
a PCA-based
selection of

indicators and a
weighted geometric
mean of subindices.

Data on Turkana district,
Kenya are drawn from

the Government of
Kenya and UNICEF

(2006).

Weights are
obtained by

expert
judgment and

principal
component

analysis.



Appl. Sci. 2021, 11, 3208 16 of 27

Table A1. Cont.

Author
(Year) Focus On Composite and

Component Indicators Method Data Details about
the Weights

Gerpott and
Ahmadi [4]

Sensitivity
analysis of a
composite

indicator of the
Status of

Information
and Telecom-
munication

Technologies
(ICT).

ICT Development Index
(IDI) by the International

Telecommunication
Union (ITU). IDI

includes three
sub-indices and eleven

indicators.

A revision of the IDI
is proposed by

means of partial
least squares (PLS)

and structural
equation modeling

(SEM) techniques. A
sensitivity analysis is

applied to
investigate the

variability of the
rank with respect to

weighting and
aggregation.

ITU World
Telecommunication/

ICT Indicators database.
Statistics and

supplemented by
estimates which were

provided by the ITU in
case that the UNESCO
files did not contain an

indicator value.

Weights are
calculated to
minimize the

difference
between the
IDI and the

growth rate of
the gross
domestic

product per
capita.

Gitelman
et al. [30] Road safety.

The composite index of
country road safety

combines four
dimensions and many

indicators: policy
performance (road safety

programs), final road
safety outcomes (fatality

rates, scope of traffic
injury), intermediate

outcomes (wearing rates
of seat belts,

crashworthiness, and
composition of vehicle
fleet, alcohol-impaired

driving), and
background

characteristics of
countries (motorization

level, population
density).

The composite
combines the main
layers of the road

safety pyramid and
is obtained by

applying PCA and
Factor Analysis in

five trials.

Data on 27 European
countries are drawn

from various databases
maintained by the

European Transport
Safety Council, and

Organization for
Economic Co-operation

and development,
International Transport

Forum.

Weights are
extracted
through
Principal

Component
Analysis and

Common
Factor

Analysis.

Hassan [14] Sustainability
of a region.

Total Index of
Sustainability (TIS) is

based on three
indicators (economy,

society, and
environment), which

include several criteria.

Multi-attribute
utility theory is

applied to construct
the TIS as a weighted

summation.

Data on GDP, solid
waste, income disparity,

and crime rate. An
example for three
countries is made.

The weights
represent the
change in the

strength of
preferences as

an attribute
varies from the

worst to the
best level.
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Table A1. Cont.

Author
(Year) Focus On Composite and

Component Indicators Method Data Details about
the Weights

Huang et al.
[15]

Urban
sustainability.

Nine Urban
Sustainability Indicators

(USIs): Ecological
Footprint (EF), Green
City Index (GCI), City
Development Index

(CDI), Environmental
Performance Index (EPI),

Genuine Progress
Indicator (GPI), Genuine

Savings (GS), Human
Development Index

(HDI), Happy Planet
Index (HPI), Wellbeing
Index (WI), Sustainable

Society Index (SSI).

USIs are reviewed
and classified, with
respect to the three

pillars of
sustainability, weak

and strong
sustainability,

aggregation and
weighting, and
spatialization.

No specific data set is
recalled nor used.

In some cases
(CDI, EPI, SSI,
and WI), the
aggregation
rule is the
weighted
average.

Whenever
possible,

quantitative
methods (PCA,
FA, DEA, AHP,

CA) are
recommended

to calculate
weights.

Kurtener
et al. [16]

Agricultural
land suitability.

Combined Fuzzy
Indicator (CFI) is

obtained as an
aggregation of

Individual Fuzzy
Indicators (IFIs)

including concentration
of carbon (C) and
phosphorous (P).

The method follows
a typical fuzzy logic

framework with
phases for

structuring, fuzzy
modeling,

computation, and
evaluation.

Data from an
experimental

agricultural field on the
Elm Creek watershed in

Bell County, Texas
(USA).

CFI is obtained
through

weighted
summation of

IFI values.

Lee and Lim
[26]

Forecasting the
change of the
daily Korea
composite
Stock Price

Index (KOSPI).

The composite is
obtained processing
values of three basic
indicators: Relative

Strength Index (RSI),
Commodity Channel

Index (CCI), and
Current Price Position

(CPP).

The authors apply
the non-overlap area

distribution
measurement

method based on the
neural network with

weighted fuzzy
membership

functions (NEWFM).

KOSPI data drawn from
2928 trading days from

January 1989 to
December 1998.

The weights
are calculated
according to
the NEWFM.

Machado and
Ratick [23]

Prioritizing
mitigation and

adaptation
strategies for
reducing the

vulnerability to
global

environmental
change (GEC).

Composite index of
vulnerability to flooding

based on the
combination of three

dimensions (exposure,
sensitivity, and adaptive

capacity) and six
constituent indicators,

i.e., exposed population,
exposed area, forecasted

frequency of floods,
landscape disturbance,

protection from financial
loss, and financial

resources.

Review of four
aggregation rules:
Weighted Linear

Combination (WLC),
Ordered Weighted
Average (OWA),

Data Envelopment
Analysis (DEA), and

Compromise
Programming (CP).

An example is set to
assess vulnerability to

flooding of 48
hydrological subregions
in northeastern United
States. Many datasets

are considered to
construct the constituent
indicators including the

National Land Cover
Database, US Census,
and National Flood
Insurance Program

dataset.

Weights are
calculated

according to
the four

aggregation
rules.

Manthalu
et al. [27]

Socio-economic
status for

addressing
resource

allocation by
the health

care system.

Composite indicator of
need including 27

indicators clustered in 6
dimensions.

The composite is
obtained by

aggregating the
indicators through a

weighted
summation rule.

Malawi Multiple
Indicator Cluster Survey

(2006).

Weights are
calculated by

PCA.
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Table A1. Cont.

Author
(Year) Focus On Composite and

Component Indicators Method Data Details about
the Weights

Munda
and

Saisana
[8]

Sensitivity of
indicators of

regional
sustainability.

Composite indicator of
regional sustainability with

a tree nested framework
including three dimensions
(environment, society, and

economy) and 29 indicators.

Sensitivity analysis
is applied to assess

the variability of
resulting rankings
obtained through

different aggregation
rules: weighted

linear summation,
nonlinear and

non-compensatory
multicriteria

analysis, and data
envelopment

analysis (DEA).

Data on Spanish, Italian
and Greek 25 NUTS 3
areas are drawn from
the regional database

REGIO of Eurostat and
the Spanish National

Statistical Office.

Weights
(importance of
the indicators)

are
region-specific

and are
calculated

through DEA.

Paracchini
et al. [18]

Agricultural
landscape.

Societal landscape
awareness indicator with

three dimensions (protected
areas, rural tourism, and

quality of products) and six
indicators.

The dimensions are
normalized to a 0–10
range with min-max

transformation.
Aggregation rule

consists of the
unweighted average.
Two case studies are

developed for
Europe (NUTS2

level) and the region
of Alentejo, Portugal

(LAU12 level).

Indicators are nurtured
by several datasets on

Natura2000 sites, World
Heritage UNESCO sites,

European nationally
designated areas,

International Union for
Conservation of Nature

category V—World
Protected Areas:

CORINE 2000 land
cover map, Farm
Structure Survey
(Eurostat), Farm

Accountancy Data
Network (European

Commission), the
DOOR database

(European Commission),
and the database on

VQPRD wines
(European Commission).

Dimensions
and indicators
have the same

weight.

Pert et al.
[17]

Vegetation
conditions.

Composite threat index
combining five indicators:

fragmentation of forest
cover, urbanization, weeds,

feral animals, and road
density.

The indicators are
normalized in a

five-point scale and
aggregated through

unweighted
summation in a

twenty-five-point
scale composite
indicator value.

Datasets include
Landsat 7 satellite

imagery, satellite images,
density of weed species,
feral animals, and roads.

Indicators have
the same

importance.

Rahman
[28]

Sensitivity
analysis of

indicators of
quality of life.

Quality of Life Index (QOLI)
combining eight indicators

(causal variables): per capita
income, life expectancy at
birth, infant mortality rate,

prevalence of child
malnutrition, access to

sanitation, access to safe
drinking water, adult illiteracy

rate, and the per capita
commercial energy use.

The sensitivity
analysis of QOLI

with respect to two
aggregations and

weighting is applied.
The first is weighted

summation with
PCA-based weights;
the second one is the

Borda-based
unweighted
summation.

Data for 43 developing
countries are drawn

from the World
Development Indicators.

Weights are
extracted as
percentual
variances

explained or
are considered
of equal value.
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Author
(Year) Focus On Composite and

Component Indicators Method Data Details about
the Weights

Rocco et al.
[31]

Security of the
energy supply.

Composite indicator for
measuring security of

the energy supply
combining indicators on
energy intensity of the

Gross Domestic Product,
carbon intensity,

primary production, etc.

The composite is
obtained through the
Ordered Weighted
Averaging (OWA)
aggregation rule.

Data based on the
findings obtained with

the PRIMES model.

The weights
are extracted

through
regularly

increasing
monotonic
quantifiers.

Salvati and
Zitti [24]

Land
degradation
vulnerability.

Land Vulnerability
Index (LVI) combining

three dimensions
(climate and soil,

landscape, and human
pressure) and nine

indicators.

LVI is obtained
through the

weighted
summation

aggregation rule.
Indicators are
normalized
according to

min–max linear
transformation.

Indicators are nurtured
by a dataset concerning

377 municipalities of
Latium, Italy (for the

time series: 1970, 1980,
1990, and 2000).

Weights are
extracted
through

Multiway Data
Analysis

(MDA) and
correspond to
the percentage

of variance
explained by

each indicator.

Schüpbach
et al. [19]

Impact of
individual

farms on visual
landscape

quality.

Composite Landscape
Indicator (CLI)
combining two
sub-indicators:

aggregated diversity
indicator (ADI) and

area-weighted
preference value

(AWPV).

CLI is studied in the
framework of

Agricultural Life
Cycle Assessment

(ALCA).
Sub-indicators are

normalized and
aggregated by an

unweighted
summation.

Data on farm structure
are drawn from the

Swiss Federal Office for
Statistics; preference

data from a nationwide
survey of 4000 randomly
selected households in
Switzerland; reference

groups data from
agriculture-related

environmental
objectives (AEO) regions

and the Agricultural
Production Zones

(APZ).

The two
sub-indicators
are given the
same weight.

Sharifuddin
[32]

Energy
security.

Energy Security Index
(ESI) combining five

dimensions (availability,
stability, affordability,

consumption efficiency,
and environmental

impact), 13 elements,
and 35 indicators.

Indicators are
normalized in the

range 0–1 (based on
the normal
probability

distribution) and
aggregated

according to
weighted

summation.

Datasets on five South
East Asia countries are

drawn mostly from
International Energy

Agency, Energy
Information

Administration, and
Asia Pacific Energy

Research Centre.

Weights are
equal for

dimensions
and elements.
For indicators,
the weights are

indicated by
specified
formulas.
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Author
(Year) Focus On Composite and

Component Indicators Method Data Details about
the Weights

Shen et al.
[33] Road safety.

Composite road safety
performance indicator

(RSPI) combining seven
indicators

(alcohol/drugs, speed,
protective system,
visibility, vehicle,

infrastructure, and
trauma care).

RSPI is obtained by
normalizing the
indicators in the
range [0–1] and

aggregating them
through a weighted
summation. RSPI is
tuned to minimize
the deviation from
the number of road
fatalities by a neural

network trained
with the Levenberg-

Marquardt
rule.

Data concerning 21
European countries are

drawn from the
European SafetyNet

project.

Weights are
obtained using

a gating
network

(two-layer
feed-forward

network).

Szlafsztein
and Sterr [25]

Vulnerability to
natural

hazards.

Coastal Vulnerability
Index (CVI) combining

two dimensions (natural
and socioeconomic

vulnerability) and 16
indicators/variables.

CVI is processed by
a GIS-based method
including spatial and

non-spatial data
collection, data input
and preprocessing,
data storage and

processing, and data
output. CVI is

obtained by linear
overlay mapping.

Indicators are nurtured
by several datasets

(satellite images,
regional and detailed

maps, statistical records)
maintained by many
agencies (Brazilian

Institute of Geography
and Statistics, Brazilian

Institute of Spatial
Research, Library of the
University Federal Parà,

etc.).

Weights of the
dimensions are

set equal.
Weights of the
indicators are
differentiated,
according to
the relevance

of each
indicator.

Zhou et al.
[13]

Optimization
of the weighted

product
aggregation

rule in
composite
indicators.

Human Development
Index (HDI) combining

three dimensions.

The authors
recalculate the HDI
(for 2005) applying

the weighted
product method and

multiplicative
optimization

approach.

Data on 27 countries of
Asia and the Pacific

region are drawn from
Human development

report 2007/2008
(United Nations

Development
Programme).

100 sets of
weights are
randomly

generated; two
sets are
selected
through

proportion
constraints.

Appendix B

Table A2. CILF values by LUs of Sardinia. The composite is obtained according to different weighting patterns and indicator
aggregation rules.

CILF (2003)

Weighting Rule Equal Weights PCA Expert Judgement

Aggregation
Rule

WAM WGM WGGM WAM WGM WGGM WAM WGM WGGM

Landscape Units

n Name

1 Golfo di
Cagliari

0.42 0.25 0.35 0.32 0.24 0.25 0.40 0.24 0.33

2 Nora 0.16 0.06 0.11 0.16 0.06 0.10 0.16 0.06 0.11

3 Chia 0.17 0.00 0.09 0.09 0.00 0.04 0.16 0.00 0.08
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Table A2. Cont.

CILF (2003)

Weighting Rule Equal Weights PCA Expert Judgement

Aggregation
Rule

WAM WGM WGGM WAM WGM WGGM WAM WGM WGGM

Landscape Units

n Name

4 Golfo di
Teulada

0.07 0.02 0.04 0.04 0.02 0.02 0.06 0.02 0.03

5 Anfiteatro del
Sulcis

0.11 0.07 0.09 0.09 0.07 0.07 0.10 0.07 0.09

6 Carbonia e Isole
sulcitane

0.52 0.36 0.44 0.51 0.35 0.41 0.52 0.35 0.44

7 Bacino
metallifero

0.16 0.08 0.12 0.17 0.09 0.12 0.16 0.09 0.12

8 Arburese 0.08 0.05 0.06 0.06 0.05 0.05 0.07 0.05 0.06

9 Golfo di
Oristano

0.55 0.36 0.47 0.67 0.39 0.62 0.58 0.39 0.50

10 Montiferru 0.08 0.06 0.07 0.06 0.05 0.05 0.07 0.05 0.06

11 Planargia 0.11 0.10 0.10 0.09 0.09 0.08 0.11 0.09 0.10

12 Monteleone 0.05 0.00 0.03 0.04 0.00 0.02 0.05 0.00 0.03

13 Alghero 0.17 0.15 0.16 0.18 0.15 0.17 0.17 0.15 0.16

14 Golfo
dell’Asinara

0.70 0.47 0.60 0.86 0.52 0.80 0.73 0.51 0.64

15 Bassa valle del
Coghinas

0.35 0.12 0.25 0.26 0.11 0.17 0.33 0.11 0.24

16 Gallura costiera
nord-

occidentale

0.07 0.04 0.05 0.06 0.04 0.05 0.06 0.04 0.05

17 Gallura costiera
nord-orientale

0.47 0.35 0.41 0.57 0.37 0.54 0.49 0.37 0.44

18 Golfo di Olbia 0.43 0.27 0.35 0.50 0.29 0.44 0.45 0.29 0.37

19 Budoni-
S.Teodoro

0.31 0.13 0.23 0.28 0.12 0.19 0.31 0.12 0.23

20 Monte Albo 0.13 0.09 0.11 0.12 0.09 0.10 0.13 0.09 0.11

21 Baronia 0.07 0.07 0.07 0.08 0.07 0.08 0.08 0.07 0.07

22 Supramonte di
Baunei e
Dorgali

0.05 0.02 0.04 0.03 0.02 0.02 0.05 0.02 0.03

23 Ogliastra 0.11 0.06 0.08 0.12 0.07 0.09 0.11 0.06 0.09

24 Salto di Quirra 0.05 0.02 0.04 0.05 0.02 0.03 0.05 0.02 0.04

25 Bassa valle del
Flumendosa

0.19 0.07 0.13 0.12 0.06 0.08 0.17 0.06 0.12

26 Castiadas 0.11 0.05 0.09 0.09 0.04 0.06 0.11 0.04 0.08

27 Golfo orientale
di Cagliari

0.33 0.14 0.22 0.37 0.14 0.25 0.34 0.14 0.23

28 Sulcis 0.06 0.02 0.04 0.05 0.02 0.04 0.06 0.02 0.04

29 Valle del Cixerri 0.07 0.04 0.06 0.07 0.04 0.05 0.07 0.04 0.06
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Table A2. Cont.

CILF (2003)

Weighting Rule Equal Weights PCA Expert Judgement

Aggregation
Rule

WAM WGM WGGM WAM WGM WGGM WAM WGM WGGM

Landscape Units

n Name

30 Basso
Campidano

0.61 0.21 0.45 0.49 0.19 0.31 0.59 0.19 0.43

31 Serpeddì-
Monte
Genis

0.07 0.01 0.03 0.03 0.00 0.01 0.06 0.00 0.02

32 Gerrei 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

33 Parteolla
Trexenta

0.17 0.15 0.16 0.18 0.15 0.17 0.17 0.15 0.16

34 Campidano 0.16 0.11 0.14 0.19 0.12 0.17 0.17 0.12 0.14

35 Monte Linas 0.09 0.07 0.08 0.07 0.07 0.06 0.09 0.07 0.08

36 Regione delle
giare basaltiche

0.25 0.14 0.20 0.32 0.16 0.28 0.26 0.16 0.22

37 Flumendosa-
Sarcisano-

Araxisi

0.10 0.07 0.09 0.12 0.08 0.12 0.11 0.08 0.09

38 Regione dei
tacchi calcarei

0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

39 Gennargentu e
Mandrolisai

0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02

40 Media valle del
Tirso

0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09

41 Altopiani di
Macomer

0.11 0.08 0.10 0.13 0.09 0.12 0.11 0.09 0.10

42 Valli del Rio
Isalle e Liscoi

0.13 0.08 0.11 0.16 0.09 0.14 0.14 0.09 0.12

43 Supramonti
interni

0.04 0.02 0.03 0.03 0.02 0.02 0.04 0.02 0.03

44 La valle del Rio
Mannu

0.04 0.03 0.03 0.03 0.03 0.02 0.04 0.03 0.03

45 Altopiani e Alta
Valle del Tirso

0.02 0.00 0.01 0.02 0.00 0.02 0.02 0.00 0.01

46 Marghine-
Goceano

0.06 0.03 0.05 0.05 0.03 0.04 0.06 0.03 0.05

47 Meilogu 0.07 0.07 0.07 0.08 0.07 0.08 0.07 0.07 0.07

48 Logudoro 0.09 0.08 0.08 0.10 0.08 0.10 0.09 0.08 0.09

49 Piana del Rio
Mannu di Ozieri

0.11 0.06 0.08 0.13 0.07 0.11 0.11 0.07 0.09

50 Anglona 0.08 0.03 0.06 0.07 0.03 0.05 0.08 0.03 0.06

51 Massiccio del
Limbara

0.10 0.04 0.06 0.11 0.04 0.08 0.10 0.04 0.07
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Table A3. Shift in ranking absolute values for each LU. Values are obtained through a pairwise comparison of rankings connected to CILF based on three weighting patterns and three
indicator aggregation rules. Volatility is studied by fixing aggregation rules (first nine columns from the left) and weighting patterns (second nine columns).

Changing Weighting Patterns for Fixed Aggregation Rules Changing Aggregation Rules for Fixed Weighting Patterns

WAM WGM WGGM EW PCA EJ

N EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

1 1 0 1 0 0 0 1 0 1 1 0 1 2 0 2 1 0 1

2 0 1 1 1 1 0 4 1 3 11 0 11 12 4 8 13 2 11

3 14 5 9 0 0 0 16 6 10 36 11 25 22 13 9 31 12 19

4 4 1 3 2 1 0 9 1 8 7 3 4 4 8 4 7 3 4

5 2 1 1 4 3 0 8 4 4 2 4 2 1 2 3 0 1 1

6 0 0 0 1 1 0 1 1 2 1 0 1 0 1 1 0 1 1

7 3 1 2 2 2 0 1 0 1 0 2 2 5 2 3 3 1 4

8 2 0 2 0 0 0 0 1 1 2 0 2 4 2 2 2 1 3

9 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0

10 5 3 2 0 0 0 0 1 1 2 0 2 7 5 2 5 2 3

11 7 4 3 1 0 0 5 1 4 7 2 5 14 4 10 11 5 6

12 2 0 2 0 0 0 0 0 0 4 1 3 6 3 3 4 1 3

13 1 2 1 1 1 0 1 0 1 6 2 4 4 2 2 3 0 3

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 3 1 2 1 1 0 6 0 6 5 0 5 3 3 0 5 1 6

16 3 2 1 0 0 0 2 0 2 6 2 4 3 1 2 4 0 4

17 2 0 2 1 1 0 2 1 1 1 0 1 0 0 0 2 1 1

18 1 0 1 0 0 0 2 0 2 1 0 1 0 1 1 1 0 1

19 0 0 0 0 0 0 1 1 0 2 1 3 2 0 2 2 0 2

20 0 0 0 1 0 0 2 1 1 4 2 2 4 0 4 4 1 3

21 4 2 2 2 2 0 5 0 5 10 4 6 8 5 3 10 2 8
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Table A3. Cont.

Changing Weighting Patterns for Fixed Aggregation Rules Changing Aggregation Rules for Fixed Weighting Patterns

WAM WGM WGGM EW PCA EJ

N EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

22 3 1 2 1 1 0 4 1 3 0 0 0 2 1 3 0 0 0

23 1 2 1 2 1 0 6 2 4 5 5 0 5 0 5 6 5 1

24 3 1 2 1 1 0 0 1 1 0 2 2 2 1 1 0 2 2

25 10 1 9 3 3 0 12 0 12 15 3 12 8 5 3 17 2 15

26 5 3 2 0 0 0 6 2 4 12 5 7 7 6 1 9 4 5

27 2 1 1 0 0 0 1 1 0 2 1 1 4 2 2 3 1 2

28 2 0 2 0 0 0 1 0 1 1 1 2 3 0 3 1 1 2

29 1 1 0 1 1 0 1 0 1 1 0 1 1 0 1 1 1 0

30 4 0 4 0 0 0 3 2 1 5 1 4 1 0 1 5 3 2

31 5 1 4 0 0 0 3 1 2 9 9 0 4 7 3 8 9 1

32 0 0 0 1 1 0 6 2 4 8 0 8 9 6 3 9 2 7

33 1 1 0 1 1 0 0 0 0 6 2 4 4 1 3 4 1 3

34 4 1 3 1 1 0 2 0 2 2 2 0 1 0 1 2 1 1

35 4 2 2 3 3 0 1 1 2 6 1 7 7 2 5 5 2 3

36 2 0 2 2 2 0 4 0 4 1 0 1 1 2 1 3 0 3

37 6 2 4 0 0 0 5 1 4 5 4 1 1 3 4 3 3 0

38 3 0 3 0 0 0 3 1 2 11 4 7 8 4 4 11 5 6

39 3 0 3 2 2 0 6 0 6 3 0 3 2 3 1 5 0 5

40 1 1 0 2 1 0 1 0 1 14 6 8 12 6 6 12 5 7

41 5 2 3 2 2 0 5 1 4 4 2 2 1 2 1 4 1 3

42 3 0 3 3 2 0 4 2 2 t2 0 2 3 1 4 0 2 2

43 3 0 3 0 1 0 2 1 1 1 0 1 3 1 2 0 1 1
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Table A3. Cont.

Changing Weighting Patterns for Fixed Aggregation Rules Changing Aggregation Rules for Fixed Weighting Patterns

WAM WGM WGGM EW PCA EJ

N EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

EW vs.
PCA

EW vs.
EJ

PCA
vs. EJ

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

WAM
vs.

WGM

WAM
vs.

WGGM

WGM
vs.

WGGM

44 2 0 2 1 1 0 0 0 0 6 1 5 7 3 4 5 1 4

45 0 0 0 0 0 0 3 0 3 2 0 2 2 3 1 2 0 2

46 2 0 2 0 0 0 1 0 1 4 3 1 2 2 0 4 3 1

47 5 0 5 2 2 0 4 0 4 11 5 6 8 4 4 13 5 8

48 5 1 4 1 1 0 5 3 2 10 3 7 4 3 1 8 5 3

49 6 2 4 5 5 0 9 5 4 5 3 2 6 0 6 2 0 2

50 2 0 2 0 0 0 0 0 0 7 5 2 5 3 2 7 5 2

51 4 0 4 1 1 0 6 2 4 8 7 1 11 5 6 7 5 2
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