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Abstract This work deals with a fully parabolic chemotaxis model with nonlinear produc-
tion and chemoattractant. The problem is formulated on a bounded domain and, depending
on a specific interplay between the coefficients associated to such production and chemoat-
tractant, we establish that the related initial-boundary value problem has a unique classical
solution which is uniformly bounded in time. To be precise, we study this zero-flux problem{

ut = �u − ∇ · (f (u)∇v) in � × (0, Tmax),

vt = �v − v + g(u) in � × (0, Tmax),
(♦)

where � is a bounded and smooth domain of Rn, for n ≥ 2, and f (u) and g(u) are reason-
ably regular functions generalizing, respectively, the prototypes f (u) = uα and g(u) = ul ,
with proper α, l > 0. After having shown that any sufficiently smooth u(x,0) = u0(x) ≥ 0
and v(x,0) = v0(x) ≥ 0 produce a unique classical and nonnegative solution (u, v) to prob-
lem (♦), which is defined on � × (0, Tmax) with Tmax denoting the maximum time of exis-
tence, we establish that for any l ∈ (0, 2

n
) and 2

n
≤ α < 1 + 1

n
− l

2 , Tmax = ∞ and u and v are
actually uniformly bounded in time.

The paper is in line with the contribution by Horstmann and Winkler (J. Differ. Equ.
215(1):52–107, 2005) and, moreover, extends the result by Liu and Tao (Appl. Math. J.
Chin. Univ. Ser. B 31(4):379–388, 2016). Indeed, in the first work it is proved that for
g(u) = u the value α = 2

n
represents the critical blow-up exponent to the model, whereas in

the second, for f (u) = u, corresponding to α = 1, boundedness of solutions is shown under
the assumption 0 < l < 2

n
.
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1 Introduction and Motivations

Most of this article is dedicated to the following Cauchy boundary problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut = �u − ∇ · (f (u)∇v) in � × (0, Tmax),

vt = �v − v + g(u) in � × (0, Tmax),

uν = vν = 0 on ∂� × (0, Tmax),

u(x,0) = u0(x), v(x,0) = v0(x) x ∈ �̄,

(1)

defined in a bounded and smooth domain � of Rn, with n ≥ 2, and formulated through some
functions f = f (s) and g = g(s), sufficiently regular in their argument s ≥ 0, and further
regular initial data u0(x) ≥ 0 and v0(x) ≥ 0. Additionally, the subscript ν in (·)ν indicates the
outward normal derivative on ∂�, whereas Tmax the maximum time up to which solutions
to the system are defined.

The two partial differential equations appearing above generalize

ut = �u − ∇ · (u∇v) and vt = �v − v + u, in � × (0, Tmax), (2)

proposed in the pioneer papers by Keller and Segel ([10, 11]) to model the dynamics of
populations (as for instance cells or bacteria), arising in mathematical biology. Precisely,
by indicating with u = u(x, t) a certain particle density at the position x and at the time
t , the equations describe how the aggregation impact from the coupled cross term u∇v,
related to the chemical signal v = v(x, t) (initially distributed accordingly to the law v0(x) =
v(x,0), as in (1)), may contrast the natural diffusion (associated to the Laplacian operator,
�u) of the cells, organized at the initial time through the configuration u0(x) = u(x,0). In
particular, such an attractive impact might influence the motion of the cells so strongly even
to lead the system to its chemotactic collapse (blow-up at finite time with appearance of δ-
formations for the particle density). In the literature there are many contributions dedicated
to the comprehension of this phenomenon. In this regard, in [9, 18] the reader can find an
extensive theory dealing with the existence and properties of global, uniformly bounded
or blow-up (local) solutions to the Cauchy problem associated to (2), and endowed with
homogeneous Neumann boundary conditions (exactly as in (1), and biologically modeling
an impermeable domain), especially in terms of the initial mass of the particle distribution,
i.e., m = ∫

�
u0(x)dx. Indeed, the mass of the bacteria, preserved in time for this model,

appears as a critical parameter (see, for instance, [5, 18, 25]); more exactly, for n ≥ 2, the
value mc = 4π establishes that when m < mc global in time solutions are expected, whereas
when m > mc blow-up solutions may be detected.

The size of the initial distribution is not the only factor capable to influence the chemotac-
tic behavior of the cells toward their self-organization. Other elements may also take sensi-
tively part in this process; the impacts of the diffusion and/or of the chemoattractant, weaker
or stronger (for instance, if in (2) the cross-diffusion term u∇v is replaced by χu∇v, for
some χ > 0, then even for initial distribution u0 with subcritical mass, the system exhibits
blow-up at finite time whenever χ increases), the presence of external sources affecting the
cells’ density, or the law of the signal production from the chemical, dictated by the cells
themselves: to a high (low) segregation corresponds a high disorganization (organization) in
the motion of the particles. Herein we are interested in the analysis concerning the mutual
interplay between the actions from the chemoattractant and the segregation rates. In such
sense problem (1) is an example of chemotaxis model combining these aspects, exactly
as specified: the chemosensitivity function f (u) describes how the population aggregates,
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through the interaction with the chemical, and directs its movement in the direction of the
gradient of v. In our problem f (u) generalizes uα , for some α even covering superlinear
powers; as said, the larger α the higher is the attraction between each cell, leading the sys-
tem to undesired instabilities. On the other hand, the second equation indicates that the
chemical signal is produced according to the law of g(u), which as well has as prototype ul ,
with l smaller than 1. Naturally, this has a segregation impact on the model weaker than the
case with g(u) = u, especially at large particle densities (see [6, 16, 17] an related references
therein); as conceivable, the gathering phenomena of the original model are dampened and
more smoothness to the system is supplied.

Before giving our precise objectives in respect of the analysis above developed, let us
mention the result which, mainly, inspires and justifies this investigation: For g(u) = u

and f (u) ∼= uα , it is shown that the value α = 2
n

decides whether model (1) manifests or
not blow-up scenarios. Specifically, with n ≥ 2, for α ∈ (0, 2

n
) all solutions are global and

uniformly bounded, whereas the same does not apply for α > 2
n

. In fact, (a) for α > 2
and any n ≥ 2, (b) for α ∈ (1,2), n ∈ {2,3} and technical assumptions on f , (c) for
α ∈ ( 2

n
,1) and n ∈ {2,3} or (d) for α ∈ ( 2

n
, 2

n−2 ) and n ≥ 4 (also in this case combined
with further assumptions on f ), there are initial data (u0, v0) leading to unbounded solu-
tions (see [7]).

By continuing within the confines of Keller–Segel models with linear production, when
the diffusion is not linear, i.e. �u = ∇ · ∇u reads ∇ · (D(u)∇u), for n ≥ 2 the asymp-
totic behavior of the ratio f (u)

D(u)
∼= uα for large values of u indicates that if α ∈ (0, 2

n
) any

(u0, v0) produces uniformly bounded classical solutions to problem (1) (see [21]), whilst for
α > 2

n
blow-up solutions either in finite or infinite time can be constructed, even for arbi-

trarily small initial data (see [26]). Moreover, the insight about the quantitative role of the
diffusion of the cells on their evolution reads as follows: for D(u) ∼= um−1 and f (u) ∼= uα ,
m,α ∈ R, it is established in [1, 2] (for the fully parabolic case) and in [28] (for the simpli-
fied parabolic-elliptic one; vt = 0 in the second equation) that α < m + 2

n
− 1 is condition

sufficient and necessary in order to ensure global existence and boundedness of solutions.
(For completeness, we also refer to [14], where an estimate for the blow-up time of un-
bounded solutions to the simplified model is derived.) Unlike the case where D(u) = 1 and
f (u) = u where the critical mass mc is n-independent, the above criterion implies that the
size of the initial mass may have no crucial role on the existence of global or local-in-time
solutions to nonlinear diffusion chemotaxis-systems. Conversely, the key factor is given by
some specific interplay between the coefficients m,α and the dimension n; this is especially
observed at high dimensions, for which a magnification of the diffusion parameter to com-
pensate instability effects is required. A similar consideration, appropriately reinterpreted
in that context, will be given below when the exponent associated to the nonlinear signal
production is introduced.

Complementary, as far as nonlinear segregation chemotaxis models are concerned, when
in problem (1) the case f (u) = u is considered, uniformly boundedness of all its solutions
is proved in [13] for g(u) ∼= ul , with 0 < l < 2

n
. (We also mention [19] for an analysis of

a related model with logistic-type terms.) Moreover, by resorting to a simplified parabolic-
elliptic version in spatially radial contexts, for f (u) = u and the second equation reduced to
0 = �v − μ(t) + g(u), with g(u) ∼= ul and μ(t) = 1

|�|
∫

�
g(u(·, t)), it is known (see [27])

that the same conclusion on the boundedness continues valid for any n ≥ 1 and 0 < l < 2
n

,
whereas for l > 2

n
blow-up phenomena may appear. (See also [23] for analyses concerning

a chemotaxis model with signal-dependent sensitivity and sublinear production.)
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2 Presentation of the Main Result and Comparison with a Simplified
Model. Plan of the Paper

2.1 Claim of the Main Result

In accordance to what discussed above, we wish to contribute to completion of a picture
yet fragmentary in the literature by addressing situations concerning system (1) that, to our
knowledge, are not yet studied. To this aim, from now on these assumptions, respectively
identifying the actions associated to the chemoattractant and to the segregation of the chem-
ical signal, are fixed:

f ∈ C2([0,∞)), f (0) = 0 and f (s) ≤ Ksα, for some K,α > 0 and all s ≥ 0,

(3)
and

g ∈ C1([0,∞)) and 0 ≤ g(s) ≤ K0s
l, for some K0, l > 0 and all s ≥ 0. (4)

In particular, with a specific view to what analyzed in the frame of [7], linear productions
of the chemical may be sufficient to generate blow-up solutions when the impact from the
chemoattractant, favoring gatherings in the motion of the species, is superquadratic, in any
dimension, superlinear and subquadratic, in low dimensions, and sublinear in higher. Thus
the following question seems meaningful:

◦ May a sublinear signal segregation of the chemical enforce globability of solutions for
superlinear chemosensitivitiy even in high dimensions?

Our result positively addresses this issue in the sense that independently of the initial data,
by weakening in an inversely proportional way to the dimension the impact associated to
the production rate of the chemical, the uniform-in-time boundedness of solutions to model
(1) is ensured, even for superlinear thrusts from the chemoattractant.

What said is formally claimed in this

Theorem 2.1 Let � be a bounded and smooth domain of Rn, with n ≥ 2. Moreover, let f

and g fulfill (3) and (4), respectively, with l ∈ (0, 2
n
) and α satisfying

2

n
≤ α < 1 + 1

n
− l

2
. (5)

Then, for any nontrivial (u0, v0) ∈ C0(�̄)×C1(�̄), with u0 ≥ 0 and v0 ≥ 0 on �̄, there exists
a unique pair of nonnegative functions (u, v) ∈ (C0(�̄×[0,∞))∩C2,1(�̄×(0,∞)))2 which
solve problem (1) and satisfy for some C > 0

‖u(·, t)‖L∞(�) + ‖v(·, t)‖L∞(�) ≤ C for all t > 0.

Remark 1 We make these considerations:

• For α = 1 assumption (5) is simplified into l ∈ (0, 2
n
). Subsequently, our analysis is an

extension of that developed in [13], in the sense that Theorem 2.1 recovers [13, Theorem
1.1] when f (u) = u in problem (1).

• From l ∈ (0, 2
n
), the comparison with the limit linear signal production model for system

(1), makes sense only in two-dimensional settings; for l = 1 the upper bound in assump-
tion (5) reads α < 1, and Theorem 2.1 is consistent with [7, Theorem 4.1].
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Fig. 1 Illustration comparing for some values of the dimension n the regions in the lα-plane where both
parabolic-parabolic (PP, green sector) and parabolic-elliptic (PE, cyan sector) models from problem (1) pos-
sess uniformly bounded solutions. The superlinear (α > 1) and sublinear (α < 1) chemoattractant zones are
also marked. The vertical orange lines (at l = 1) indicate the values of α > 2

n for which the PP version of the
system admits blowing up solutions (see, again, [7]). For the PE case, it seems conceivable (see, again, [27])
that in the horizontal red lines (α = 1 and l > 2

n ) the same conclusion may be true. (Color figure online)

• Since [7, Theorem 4.1] is applicable for any n ≥ 2 whenever α < 2
n

and l = 1, a fortiori it
holds true for l ∈ (0, 2

n
); this is the sole reason why we consider in our analysis α ≥ 2

n
.

• Considering that for linear production and nonlinear diffusion (with parameter m) models
we discussed that the condition for boundedness reads α < m + 2

n
− 1, from assumption

(5) one can observe that the parameter l associated to the nonlinear segregation plays an
opposite role with respect m: given α, for high values of n, smaller (larger) values of l

(m) are needed to ensure globability and boundedness.

2.2 A View to the Parabolic-Elliptic Case

When the parabolic-parabolic problem (1) is simplified into parabolic-elliptic, with equation
for the chemical replaced by 0 = �v − v +g(u), assumption (5) becomes sharper; precisely
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2
n

≤ α < 1 + 2
n

− l, which requires for compatibility only the restriction l ∈ (0,1). We high-
lights this aspect in Fig. 1, where we overlap the regions defined by the interplay between
α and l in both models; to be more precise, we also distinguish the zones with superlinear
chemoattractant (α > 1) and sublinear chemoattractant (α < 1). (In the same figure we also
spend some words for the blow-up cases.) We understand that the observed gap between
the range of parameters is not only justified by some technical reasons (see Remark 3 at the
end of the paper, where few mathematical indications are given) but also by biological ones.
Indeed, the fact that in the simplified version the values of v(·, t) only depend on the values
of u(·, t) at the same time, is a strong modeling assumption. It corresponds to the situation
where the signal responses to the concentration of the particles much faster than the organ-
isms do to the signal; in particular, such difference in the relative adjustment of the bacteria
and the chemoattractant makes that the last one reaches its equilibrium instantaneously.

2.3 Organization of the Paper

The rest of the paper is structured in this way. Section 3 is concerned with the local existence
question of classical solutions to (1) and some of their properties. Some general inequalities
are included in Sect. 4. They are mainly devoted to establish how to ensure globability and
boundedness of local solutions using their boundedness in some proper Sobolev spaces;
a key cornerstone in this direction is the procedure to fix the corresponding exponents of
theses spaces (Sect. 4.2). Finally, the mentioned bound is derived in Sect. 5, which also
includes the proof of Theorem 2.1.

3 Existence of Local-in-Time Solutions and Main Properties

Let us dedicate to the existence of classical solutions to system (1). It is shown that such
solutions are at least local and, additionally, satisfy some crucial estimates.

Lemma 3.1 (Local existence) Let � be a bounded and smooth domain of Rn, with n ≥ 2.
Moreover, let f and g fulfill (3) and (4), respectively, with l ∈ (0, 2

n
) and α satisfying (5).

Then, for any nontrivial (u0, v0) ∈ C0(�̄)×C1(�̄), with u0 ≥ 0 and v0 ≥ 0 on �̄, there exist
Tmax ∈ (0,∞] and a unique pair of nonnegative functions (u, v) ∈ (C0(�̄ × [0, Tmax)) ∩
C2,1(�̄ × (0, Tmax)))

2, such that this dichotomy criterion holds true:

either Tmax = ∞ or lim sup
t→Tmax

(‖u(·, t)‖L∞(�) + ‖v(·, t)‖L∞(�)) = ∞. (6)

In addition, the u-component obeys the mass conservation property, i.e.∫
�

u(x, t)dx =
∫

�

u0(x)dx = m > 0 for all t ∈ (0, Tmax), (7)

whilst for some c0 > 0 the v-component is such that

‖v(·, t)‖W1,n(�) ≤ c0 on (0, Tmax). (8)

Proof We just mention that the conclusions concerning the local-in-time well-posedness
as well as the dichotomy criterion (6), can be established by straightforward adaptations of
widely used methods involving an appropriate fixed point framework and standard parabolic
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regularity theory; we can adequately cite [7, Theorem 3.1], for the case g(u) = u, and [23,
Lemma 3.1], for g as in our hypotheses. Moreover, comparison arguments apply to yield
both u,v ≥ 0 in � × (0, Tmax).

On the other hand, the mass conservation property easily comes by integrating over �

the first equation of (1), in conjunction with the boundary and initial conditions.
Finally, the last claim is derived as follows. From the assumption 0 < l < 2

n
, we can first

of all fix n
2 < γ < n complying with γ ≤ 1

l
. In this way, through the Hölder inequality,

taking in mind (4) and the mass conservation property (7), we have∫
�

g(u)γ ≤ K
γ

0

∫
�

uγ l ≤ K
γ

0 mγl|�|1−γ l for all t < Tmax. (9)

Henceforth, we can also pick 1
2 < ρ < 1 such that ζ = 1 −ρ − n

2 ( 1
γ

− 1
n
) > 0. Subsequently,

since by means of the representation formula for v we have

v(·, t) = et(�−1)v0 +
∫ t

0
e(t−s)(�−1)g(u(·, s))ds for all t ∈ (0, Tmax),

with the aid of smoothing properties related to the Neumann heat semigroup (et�)t≥0 (see
Sect. 2 of [7] and Lemma 1.3 of [25]), we obtain for some λ1 > 0 and CS > 0

‖v(·, t)‖W1,n(�) ≤ e−t‖et�v0‖W1,n(�)+
∫ t

0
‖e(t−s)(�−1)g(u(·, s))‖W1,n(�)ds

≤ CS‖v0‖W1,n(�)+CS

∫ t

0
‖(−� + 1)ρe(t−s)(�−1)g(u(·, s))‖Ln(�)ds

≤ CS‖v0‖W1,n(�)+CS

∫ t

0
(t − s)

−ρ− n
2 ( 1

γ − 1
n )

e−λ1(t−s)‖g(u(·, s))‖Lγ (�)ds.

(10)

As a consequence, the introduction of the Gamma function � infers∫ t

0
(t − s)

−ρ− n
2 ( 1

γ − 1
n )

e−λ1(t−s)ds ≤ λ
−ζ

1 �(ζ ),

which combined with bounds (9) and (10) conclude the proof. �

In the sequel of the paper with (u, v) we will refer to the gained local classical solution
to problem (1), and we might tacitly avoid to mention that such solution is produced by the
initial data (u0, v0).

4 Preliminaries: Inequalities and Parameters

With the local solution (u, v) to problem (1) at disposal, its uniform boundedness on
(0, Tmax) is achieved when uniform-in-time bound for u in some Lp-norm and for |∇v|2
in some Lq -norm, with proper p and q , is derived. This will be obtained by constructing an
absorption inequality satisfied by the functional

y(t) := 1

p(p − 1)

∫
�

(u + 1)p + 1

q

∫
�

|∇v|2q for all t ∈ (0, Tmax). (11)
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In particular, the entire procedures requires, first, to adequately manipulate inequalities re-
sulting by differentiating y(t) with respect to the time and, secondly, to figure out how to
choose the parameters p and q . In view of its decisive role, this second part will be discussed
with some details after this subsection.

4.1 Some Algebraic and Functional Inequalities

This three coming lemmas will be used in the next logical steps. We start by considering
a suitable version of the Gagliardo–Nirenberg interpolation inequality, commonly used to
treat nonlinearities appearing in the diffusion and/or chemosensitivity terms (see [20, 22,
24]), and successively by recalling a particular boundary integral employed to deal with
terms defined in non-convex domains.

Lemma 4.1 (Gagliardo–Nirenberg inequality) Let � be a bounded and smooth domain of

R
n, with n ≥ 1, and 0 < q≤ p ≤ ∞ satisfying 1

2 ≤ 1
n
+ 1

p
. Then, for a =

1
q

− 1
p

1
q

+ 1
n − 1

2
, there exists

CGN = CGN(p,q,�) > 0 such that

‖w‖Lp(�) ≤ CGN(‖∇w‖a

L2(�)
‖w‖1−a

Lq(�) + ‖w‖Lq(�)) for all w ∈ W 1,2(�) ∩ Lq(�).

Proof See [12, Lemma 2.3]. �

Lemma 4.2 Let � be a bounded and smooth domain of Rn, with n ≥ 1, and q ∈ [1,∞).
Then for any η > 0 there is Cη > 0 such that for any w ∈ C2(�) satisfying ∂w

∂ν
= 0 on ∂�,

as well as
∫

�
|∇w| ≤ L0, for some L0 > 0, this inequality holds:

∫
∂�

|∇w|2q−2 ∂|∇w|2
∂ν

≤ η

∫
�

|∇|∇w|q |2 + Cη.

Proof A more general proof can be found in [8, Propostion 3.2]. More precisely, by iden-
tically retracing the steps between expressions (3.7) and (3.9) in [8, Propostion 3.2], when
the value of s therein (see (ii) in (3.2)) is as in our assumptions 1, we arrive at (3.10), so
concluding by invoking Young’s inequality. (When � is convex, the left hand side of the
inequality is nonpositive; see [3, Appendix] and [21, Lemma 3.2].) �

Thanks to the next results (variants of Young’s inequality), products of powers will be
estimated by suitable sums involving their bases and powers of sums controlled by sums of
powers.

Lemma 4.3 Let a, b ≥ 0 and d1, d2 > 0 such that d1 + d2 < 1. Then for all ε > 0 there
exists c > 0 such that

ad1bd2 ≤ ε(a + b) + c.

Moreover, for further d3, d4 > 0, it is possible to find positive d5 and d such that

ad3 + bd4 ≥ 2−d5(a + b)d5 − d.

Proof We show the first inequality, the proof of the second being similar. By applying
Young’s inequality with conjugate exponents 1

d1
and 1

1−d1
, we obtain for any ε1 > 0 and

some c1(ε1) > 0 that

ad1bd2 = ad1(b
d2

1−d1 )1−d1 ≤ ε1a + c1(ε1)b
d2

1−d1 .
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Moreover, due to d2
1−d1

< 1, a further application of the same inequality to the latter power

provides for every positive ε2 and proper c2(ε2) > 0 this relation: c1(ε1)b
d2

1−d1 ≤ ε2b+c2(ε2).
By putting together the two inequalities and choosing ε1 = ε2, the first part of the lemma is
concluded. All the details of the second inequality can be found in [15, Lemma 3.3]. �

4.2 The Right Procedure in Fixing the Parameters p and q

In this sequence of lemmas, we will verify that the mutual relation between the parameters
α in (3) and l in (4), i.e. relation (5), is such that the mentioned parameters p and q may be
chosen in the appropriate way to make sure our general machinery work.

Lemma 4.4 For any n ∈ N, with n ≥ 2, let l ∈ (0, 2
n
) and α comply with assumption (5).

Then there exist 1 < θ < n
n−2 and μ > n

2 such that

l(2μ − 1)

4μ − n
<

n(θ + 1 − 2αθ) + 2θ

2nθ + n2 − n2θ
. (12)

Proof We first point out that for n = 2, 1 < θ < n
n−2 indicates that θ might also be fixed

large as we want; despite that, this is not the case, and we will take θ always sufficiently
close to 1.

Precisely, for n ≥ 2, 1 < θ < n
n−2 implies that 2nθ + n2 − n2θ > 0, and we can consider

θ > 1 small enough so to have n(θ + 1 − 2αθ) + 2θ > 0. Hence the function

h(θ,μ) := l(2μ − 1)

4μ − n
− n(θ + 1 − 2αθ) + 2θ

2nθ + n2 − n2θ
,

is the difference of two positive terms. Now, from our assumptions

lim
μ→+∞h(1,μ) =

( l

2
− 1 + α − 1

n

)
< 0,

and the claim is proved by means of continuity arguments. �

Lemma 4.5 Let the hypotheses of Lemma 4.4 be satisfied, and 1 < θ < n
n−2 and μ > n

2 be
therein fixed. Then there is qr ∈ [1,∞) such that for all q > qr one has this compatibility
relation:

−2l(nq + μ(4 + n2 − 2n(2 + q)))

n(4μ − n)
= f1(q) < f2(q)

= q(2n(θ + 1 − 2αθ) + 4θ) + 2nθ(α − 1)(n − 2)

2nθ + n2 − n2θ
.

(13)

Proof Some easy computations show that for any n ≥ 2 the claim follows once it is estab-
lished that for 1 < θ < n

n−2 and μ > n
2 as in the hypotheses, and for

A = A(θ,μ) = 2l(2μ − 1)

4μ − n
, C = C(θ,μ) = 2n(θ + 1 − 2αθ) + 4θ

2nθ + n2 − n2θ
,

B = B(θ,μ) = 2lμ(n − 2)2

n(4μ − n)
, D = D(θ,μ) = 2nθ(1 − α)(n − 2)

2nθ + n2 − n2θ
,
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Fig. 2 By setting k(θ,μ;q) := A − C − B
q + D

q , from inequality (14) we intend to find qr such that for
some θ and μ we have that k(θ,μ;q) < 0 for all q > qr . Let θ close to 1 and μ sufficiently large be taken
from Lemma 4.4. As a consequence, inequality (12) leads to A− C < 0, whereas B −D ∈ R. In particular,

given that ∂k(·,·;q)
∂q

= B−D
q2 and limq→+∞ k(·, ·;q) = A− C, the illustration shows the qualitative behavior

of the function k(θ,μ;q) for these values of θ and μ, assuming the nontrivial situation B − D < 0. (If,
indeed, θ and μ infer B −D ≥ 0, k is negative for all q .) Then, by indicating with qr = B−D

A−C the root of k,
any q ∈ (qr ,∞) satisfies relation (14). (In order to clarify the role of μ and θ , we observe that for n = 2 the
chain of inequality in (13) is more manageable; in fact, it reads lq < q(2θ − 2αθ + 1), directly coming from
l < 2θ −2αθ +1, corresponding to (12) when n = 2, and it is μ-independent and true for some θ approaching
1, once α < 3−l

2 from (5) is considered). (Color figure online)

there are q ≥ 1 entailing

A− B
q

< C − D
q

. (14)

As we justify and explain it in Fig. 2, the above occurs whenever A− C < 0. �

Lemma 4.6 Let the hypotheses of Lemma 4.4 be satisfied, and 1 < θ < n
n−2 and μ > n

2 be
therein fixed. Then there are p ∈ [1,∞) and q ∈ [1,∞) such that

a1 =
np

2 (1 − 1
(p+2α−2)θ

)

1 − n
2 + np

2

, a2 = nq( 1
n

− 1
2θ ′ )

1 − n
2 + q

,

a3 =
np

2l
(1 − 1

2μ
)

1 − n
2 + np

2l

, a4 = nq( 1
n

− 1
2(q−1)μ′ )

1 − n
2 + q

,

κ1 =
np

2 (1 − 1
p
)

1 − n
2 + np

2

, κ2 = q − n
2

1 − n
2 + q

,

belong to the interval (0,1) and, additionally, imply that these other relations hold true:

β1 + γ1 = p − 2 + 2α

p
a1 + 1

q
a2 ∈ (0,1) and β2 + γ2 = 2l

p
a3 + q − 1

q
a4 ∈ (0,1). (15)

Proof For θ , μ, l and α as in our hypotheses, the conjugate exponents θ ′ and μ′ satisfy
θ ′ > n

2 and μ′ < n
n−2 . Now, let p > max{2 + 1

θ
,

2(n−2)lμ

n
, 2θ(α−1)(n−2)

n−θ(n−2)
} = p0 and qr from

Lemma 4.5, and note that any q > qr is such that (f1(q), f2(q)) is not empty thanks to
compatibility (13). Henceforth, in view of f ′

1(q) > 0 and f ′
2(q) > 0, we might enlarge q so
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to have f1(q) < p0 < f2(q) for some q > qr ; subsequently, this procedure always allows us
to consider p and q fulfilling

⎧⎨
⎩

q > max
{

(n−2)

n
θ ′, n

2μ′ + 1, 2nθ(α−1)(2−n)

2n(θ+1−2αθ)+4θ
, qr

}
p > max

{
2 + 1

θ
,

2(n−2)lμ

n
, 2θ(α−1)(n−2)

n−θ(n−2)

} and also complying with
p ∈ (f1(q), f2(q)).

(16)

Our aim is to show that such restrictions suffice to prove the claim. Straightforward rea-
soning justify that some of the first relations in (16) imply a1, a2, a3, a4, κ1, κ2 ∈ (0,1). The
remaining two inequalities in (15) are, conversely, less direct. Indeed, if it can be immedi-
ately inferred that p−2+2α

p
a1 + 1

q
a2 and 2l

p
a3 + q−1

q
a4 are positive, the other bound requires

tedious computations associated to f1(q) and f2(q). More exactly, algebraic rearrangements
give

p − 2 + 2α

p
a1 + 1

q
a2 − 1

= n2(2(α − 1)θ + p(θ − 1)) + 2n(q(−2αθ + θ + 1) − θ(2α + p − 2)) + 4qθ

θ(n(p − 1) + 2)(n − 2(q + 1))
, (17)

and

2l

p
a3 + q − 1

q
a4 − 1 = np(n − 4μ) − 2l

(
μ

(
n2 − 2n(q + 2) + 4

) + nq
)

μ(n − 2(q + 1))(l(n − 2) − np)
. (18)

To see that expression (17) is negative, we notice from the constrains on p,q, θ and μ that
the denominator is negative, so by imposing

n2(2(α − 1)θ + p(θ − 1)) + 2n(q(−2αθ + θ + 1) − θ(2α + p − 2)) + 4qθ > 0,

we obtain

p(n2θ − n2 − 2nθ) > 4αθn − 4nθ − 4qθ − 2n2θ(α − 1) − 2nq(θ + 1 − 2αθ). (19)

This, taking into account the negativity of n2θ − n2 − 2nθ , is equivalent to find q such that

4αθn − 4nθ − 4qθ − 2n2θ(α − 1) − 2nq(θ + 1 − 2αθ) < 0 or also

q >
2nθ(α − 1)(2 − n)

2n(θ + 1 − 2αθ) + 4θ
,

which is fulfilled by virtue of the choice on q and since the considered θ complies with
2n(θ + 1 − 2α) + 4θ > 0. Subsequently, from (19) we have that

p <
q(2n(θ + 1 − 2αθ) + 4θ) + 2nθ(α − 1)(n − 2)

n2 + 2nθ − n2θ
(20)

is satisfied for p and q as in (16).
Let us now turn our attention to (18). Unlike the previous case, we immediately see that

the denominator is positive and, again by invoking (16), it holds that

p > −2l(nq + μ(4 + n2 − 2n(2 + q)))

n(4μ − n)
. (21)

�
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Remark 2 Let us spend some words on how to treat the introduced parameters p and q

in accordance with our overall purposes. This technical detail makes the analysis of the
present work different and in some sense more thorough with respect those presented in
many references above mentioned; therein, indeed, no undesired smallness assumption on
p, generally, appears. (Let us specify that bounds from above for p may limit the validity of
certain results on Keller–Segel-type systems only to low-dimensional settings: for instance,
the proof of both [23, Lemma 2.2] and [4, Lemma 4.6] requires p ∈ (1,2), and this in turn
makes that the relative analyses are exclusively confined to two-dimensional domains.)

(i) Taking the “lower extremes” for q in (qr ,∞) and for p in (f1(q), f2(q)), as specified
in Lemma 4.6, might not be appropriate when dealing with other computations where
they are involved. In particular, as we will perform in the last step toward the proof of
Theorem 2.1, it could be necessary to enlarge each one of this values in order to ensure
the validity of certain inequalities/inclusions. Despite that, we understand that some
care is needed when this procedure has to be adopted; indeed, p cannot be taken large
as we want independently by q , but this is possible when the order f1(q) < p < f2(q)

related to relation (13) is preserved. (This was already imposed in the same Lemma
4.6.)

(ii) In support to the previous item, we point out that even though asymptotically we have⎧⎨
⎩

p−2+2α

p
a1 = n(θ(2α+p−2)−1)

θ(n(p−1)+2)
↗ 1 increasing with p,

1
q
a2 = n−2θ ′

θ ′(n−2(q+1))
↗ 0 decreasing with q,

and

⎧⎨
⎩

2l
p
a3 = l(1−2μ)n

μ(l(n−2)−np)
↗ 0 decreasing with p,

q−1
q

a4 = n−2μ′(q−1)

μ′(n−2(q+1))
↗ 1 increasing with q,

this is not sufficient to ensure that there exists a couple (p, q) for which both
p−2+2α

p
a1 + 1

q
a2 < 1 and 2l

p
a3 + q−1

q
a4 < 1 are satisfied. Surely each one of this in-

equality holds true for two different couples, let’s say (p0, q0) and (p1, q1), but the
identification of a single (p, q) producing simultaneously those inequalities requires
the extra condition p ∈ (f1(q), f2(q)), intimately linked to the main assumption (5).

5 Deriving Uniform-in-Time Lp × Lq -Bounds for (u, |∇v|2). Proof of the
Main Result

The coming lemma provides a uniform-in-time bound on (0, Tmax) for u in Lp(�) and for
|∇v|2 in Lq(�).

Lemma 5.1 Under the hypotheses of Lemma 3.1, we have the following conclusion: For
some p ∈ (1,∞) and q ∈ (1,∞) there exists L > 0 such that

‖u(·, t)‖Lp(�) + ‖∇v(·, t)‖L2q (�) ≤ L for all t < Tmax.

Proof With θ , μ, p and q as in Lemma 4.6, the validity of all the computations along this
lemma is justified.

As announced, let us differentiate with respect to the time y(t) defined in (11) and split
the resulting derivations in three main steps, altogether yielding the proof.
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Estimating 1
p(p−1)

d
dt

∫
�
(u + 1)p on (0,Tmax) We take (u+1)

p−1

p−1
as test function for the

first equation in (1), so that by integrating by parts we obtain, also in view of the no-flux
boundary conditions, that

1

p(p − 1)

d

dt

∫
�

(u + 1)p

= 1

p − 1

∫
�

(u + 1)p−1∇ · ∇u − 1

p − 1

∫
�

(u + 1)p−1∇ · (f (u)∇v) (22)

= −
∫

�

(u + 1)p−2|∇u|2 +
∫

�

(u + 1)p−2f (u)∇u · ∇v on (0, Tmax).

Through an application of Young’s inequality and (3), the latter term reads

∫
�

(u + 1)p−2f (u)∇u · ∇v ≤ 1

2

∫
�

(u + 1)p−2|∇u|2 + K2

2

∫
�

(u + 1)p+2α−2|∇v|2

for all t ∈ (0, Tmax),

(23)

and the second integral at the right-hand side is estimated by the Hölder inequality so to
have

∫
�

(u + 1)p+2α−2|∇v|2 ≤
(∫

�

(u + 1)(p+2α−2)θ

) 1
θ
(∫

�

|∇v|2θ ′
) 1

θ ′
on (0, Tmax). (24)

Now (recall that p > 2−2α by virtue of (16)) we can apply Lemma 4.1 with p = 2(p−2+2α)θ

p
,

q = 2
p

and, once the following inequality (used in the sequel without mentioning)

(x + y)s ≤ 2s(xs + ys) for any x, y ≥ 0 and s > 0

is also considered, we obtain for every t ∈ (0, Tmax)

(∫
�

(u + 1)(p+2α−2)θ

) 1
θ

= ‖(u + 1)
p
2 ‖

2(p+2α−2)
p

L
2(p+2α−2)

p θ
(�)

≤ c1‖∇(u + 1)
p
2 ‖

2(p+2α−2)
p a1

L2(�)
‖(u + 1)

p
2 ‖

2(p+2α−2)
p (1−a1)

L
2
p (�)

(25)

+ c1‖(u + 1)
p
2 ‖

2(p+2α−2)
p

L
2
p (�)

,

where c1 > 0 depends on CGN , and with a1 ∈ (0,1) taken from Lemma 4.6. As a conse-
quence, by observing that the mass conservation property (7) implies the boundedness of

(u + 1)
p
2 in L∞((0, Tmax);L 2

p (�)), from (25) we have that for some c2 > 0 and β1 ∈ (0,1)

deduced from Lemma 4.6

(∫
�

(u + 1)(p+2α−2)θ

) 1
θ

≤ c2

(∫
�

|∇(u + 1)
p
2 |2

)β1

+ c2 for every t < Tmax. (26)
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In a similar way, we can again invoke the Gagliardo–Nirenberg inequality, with an evident
choice of p and q, to have for some c3 > 0 and a2 ∈ (0,1) as in Lemma 4.6

(∫
�

|∇v|2θ ′
) 1

θ ′
= ‖|∇v|q‖

2
q

L
2θ ′
q (�)

≤ c3‖∇|∇v|q‖
2
q a2

L2(�)
‖|∇v|q‖

2
q (1−a2)

L
n
q (�)

+ c3‖|∇v|q‖
2
q

L
n
q (�)

for all t < Tmax.

In particular, by exploiting (8), we entail that (taking in mind γ1 ∈ (0,1) from Lemma 4.6)

(∫
�

|∇v|2θ ′
) 1

θ ′
≤ c4

(∫
�

|∇|∇v|q |2
)γ1

+ c4 for all t ∈ (0, Tmax), (27)

with some computable c4 > 0, also in terms of c0.
Subsequently, by collecting (23), (24) and adjusting the product between (26) and (27)

by means of the Young inequality, relation (22) becomes

1

p(p − 1)

d

dt

∫
�

(u + 1)p + 1

2

∫
�

(u + 1)p−2|∇u|2

≤ c5

(∫
�

|∇(u + 1)
p
2 |2

)β1
(∫

�

|∇|∇v|q |2
)γ1

(28)

+ 1

2p2

∫
�

|∇(u + 1)
p
2 |2 + q − 1

3q2

∫
�

|∇|∇v|q |2 + c5

for all t ∈ (0, Tmax) and some c5 > 0.

Estimating 1
q

d
dt

∫
�

|∇v|2q on (0,Tmax) First, by applying the identity �|∇v|2 = 2∇v ·
∇�v + 2|D2v|2, we arrive for all x ∈ � and t ∈ (0, Tmax) at

(|∇v|2)t = �|∇v|2 −2|D2v|2 −2|∇v|2 +2∇g(u)·∇v = 2∇v ·∇�v−2|∇v|2 +2∇g(u)·∇v.

With such a relation in mind, by using |∇v|2q−2 as test function, a differentiation of the
second equation of problem (1) implies that on (0, Tmax) this estimate holds:

1

q

d

dt

∫
�

|∇v|2q = −(q − 1)

∫
�

|∇v|2q−4|∇|∇v|2|2 +
∫

∂�

|∇v|2q−2 ∂|∇v|2
∂ν

− 2
∫

�

|∇v|2q−2|D2v|2 − 2
∫

�

|∇v|2q + 2
∫

�

|∇v|2q−2∇g(u) · ∇v.

Now, by relying on bound (8), some L0 > 0 providing
∫

�
|∇v| ≤ L0 exists; henceforth, an

application of Lemma 4.2 allows us to find Cη > 0 such that for some suitable η > 0 we
have

1

q

d

dt

∫
�

|∇v|2q + (q − 1)

∫
�

|∇v|2q−4|∇|∇v|2|2 + 2
∫

�

|∇v|2q−2|D2v|2 + 2
∫

�

|∇v|2q

(29)

≤ η

∫
�

|∇|∇v|q |2 + Cη + 2
∫

�

|∇v|2q−2∇g(u) · ∇v on (0, Tmax).
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By integrating by parts the latter integral above and using Young’s inequality, we get

2
∫

�

|∇v|2q−2∇g(u) · ∇v

= −2(q − 1)

∫
�

g(u)|∇v|2q−4∇v · ∇|∇v|2 − 2
∫

�

g(u)|∇v|2q−2�v

≤ (q − 1)

2

∫
�

|∇v|2q−4|∇|∇v|2|2 + 2(q − 1)

∫
�

(g(u))2|∇v|2q−2

+ 2

n

∫
�

|∇v|2q−2|�v|2 + n

2

∫
�

(g(u))2|∇v|2q−2 on (0, Tmax),

(30)

where

2

n

∫
�

|∇v|2q−2|�v|2 ≤ 2
∫

�

|∇v|2q−2|D2v|2

due to the pointwise inequality |�v|2 ≤ n|D2v|2. Henceforth, by exploiting (30) and recall-
ing assumption (4), we can rephrase (29) as

1

q

d

dt

∫
�

|∇v|2q +
(

2(q − 1)

q2
− η

)∫
�

|∇|∇v|q |2 ≤ c6

∫
�

(u + 1)2l|∇v|2q−2 on (0, Tmax),

(31)
where c6 is a positive constant depending also on K0. Let us now estimate the last integral
in the previous bound. By employing the Hölder inequality, we first obtain the following
estimate

∫
�

(u + 1)2l|∇v|2q−2 ≤
(∫

�

(u + 1)2lμ

) 1
μ

(∫
�

|∇v|2(q−1)μ′
) 1

μ′
on (0, Tmax), (32)

whereas by relying on Lemma 4.1, we find a constant c7 > 0, depending on CGN , such that
for a3 ∈ (0,1) from Lemma 4.6 we arrive at

(∫
�

(u + 1)2lμ

) 1
μ

= ‖(u + 1)
p
2 ‖

4l
p

L
4μl
p (�)

≤ c7‖∇(u + 1)
p
2 ‖

4l
p a3

L2(�)
‖(u + 1)

p
2 ‖

4l
p (1−a3)

L
2l
p (�)

(33)

+ c7‖(u + 1)
p
2 ‖

4l
p

L
2l
p (�)

on (0, Tmax).

On the other hand, by arguing as before, we infer for some c8 > 0, β2 ∈ (0,1) in Lemma
4.6 and by the finiteness of ‖(u + 1)

p
2 ‖

L
2l
p (�)

(immediately coming from (7) in view of

0 < l < 2
n

< 1)

(∫
�

(u + 1)2lμ

) 1
μ

≤ c8

(∫
�

|∇(u + 1)
p
2 |2

)β2

+ c8 for all t ∈ (0, Tmax). (34)

(Let us note that in (33) we have intentionally applied the Gagliardo–Nirenberg inequality
with exponent q = 2l

p
only for exhibiting reasons; indeed, the expression of B in Lemma
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4.5 appears more compact than the one that would be obtained by considering the optimal
exponent q= 2

p
. This does not preclude the sharpness of the assumption because, since μ is

taken indefinitely large, the exponent p has the control on a3, and not q.)
At this point, by making use again of the Lemma 4.1, positive constants c9 and c10 imply

(∫
�

|∇v|2(q−1)μ′
) 1

μ′
= ‖|∇v|q‖

2(q−1)
q

L
2(q−1)

q μ′
(�)

≤ c9‖∇|∇v|q‖
2(q−1)

q a4

L2(�)
‖|∇v|q‖

2(q−1)
q (1−a4)

L
n
q (�)

+ c9‖|∇v|q‖
2(q−1)

q

L
n
q (�)

on (0, Tmax),

(∫
�

|∇v|2(q−1)μ′
) 1

μ′
≤ c10

(∫
�

|∇|∇v|q |2
)γ2

+ c10 for every t ∈ (0, Tmax), (35)

where, once more through Lemma 4.6, γ2 ∈ (0,1) and a4 ∈ (0,1).
Finally, by plugging relations (32), (34) and (35) into bound (31), a further application

of Young’s inequality gives

1

q

d

dt

∫
�

|∇v|2q +
(

2(q − 1)

q2
− η

)∫
�

|∇|∇v|q |2

≤ c11

(∫
�

|∇(u + 1)
p
2 |2

)β2
(∫

�

|∇|∇v|q |2
)γ2

+ 1

2p2

∫
�

|∇(u + 1)
p
2 |2 + q − 1

3q2

∫
�

|∇|∇v|q |2 + c11 for all t < Tmax,

(36)

c11 being a proper positive constant.

Combining Terms: The Absorptive Inequality on (0,Tmax) Adding the two contribu-
tions from (28) and (36) yields for some c12 > 0

d

dt

(
1

p(p − 1)

∫
�

(u + 1)p + 1

q

∫
�

|∇v|2q

)
+ 1

p2

∫
�

|∇(u + 1)
p
2 |2

+
(

4(q − 1)

3q2
− η

)∫
�

|∇|∇v|q |2 (37)

≤ c12

(∫
�

|∇(u + 1)
p
2 |2

)β1
(∫

�

|∇|∇v|q |2
)γ1

+ c12

(∫
�

|∇(u + 1)
p
2 |2

)β2
(∫

�

|∇|∇v|q |2
)γ2

+ c12 on (0, Tmax),

where accordingly to Lemma 4.6, the coefficients β1 + γ1 ∈ (0,1) and β2 + γ2 ∈ (0,1).
Therefore we can apply the first inequality of Lemma 4.3 to (37) so to write for any ε > 0
and some c(ε) > 0 the above two products of powers as

ε

∫
�

|∇(u + 1)
p
2 |2 + ε

∫
�

|∇|∇v|q |2 + c(ε) on (0, Tmax).
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If now we fix ε > 0 and η > 0 so small to ensure that c̃ = 1
p2 −ε > 0 and ĉ = 4(q−1)

3q2 −η−ε >

0, a positive constant c13 producing

d

dt

(
1

p(p − 1)

∫
�

(u + 1)p + 1

q

∫
�

|∇v|2q

)
+ c̃

∫
�

|∇(u + 1)
p
2 |2

+ ĉ

∫
�

|∇|∇v|q |2 ≤ c13 on (0, Tmax),

(38)

can be computed. Again by employing twice the Gagliardo–Nirenberg inequality, we have
for κ1 ∈ (0,1) and κ2 ∈ (0,1) derived in Lemma 4.6, and suitable large c14 > 0, that these
estimates hold true for all t ∈ (0, Tmax):∫

�

(u + 1)p = ‖(u + 1)
p
2 ‖2

L2(�)
≤ c14‖∇(u + 1)

p
2 ‖2κ1

L2(�)
‖(u + 1)

p
2 ‖2(1−κ1)

L
2
p (�)

+ c14‖(u + 1)
p
2 ‖2

L
2
p (�)

,

and ∫
�

|∇v|2q = ‖|∇v|q‖2
L2(�)

≤ c14‖∇|∇v|q‖2κ2
L2(�)

‖|∇v|q‖2(1−κ2)

L
n
q (�)

+ c14‖|∇v|q‖2

L
n
q (�)

.

The already used mass conservation property and the boundedness of ‖v(·, t)‖W1,n(�), pro-
vide some positive constant c15 such that∫

�

(u + 1)p ≤ c15

(∫
�

|∇(u + 1)
p
2 |2

)κ1

+ c15 for all t ∈ (0, Tmax), (39)

and ∫
�

|∇v|2q ≤ c15

(∫
�

|∇|∇v|q |2
)κ2

+ c15 on (0, Tmax). (40)

Consequently, by collecting (39) and (40), we can rewrite (38) in the following way

d

dt

(
1

p(p − 1)

∫
�

(u + 1)p + 1

q

∫
�

|∇v|2q

)
+ c16

(∫
�

(u + 1)p

) 1
κ1 + c16

(∫
�

|∇v|2q

) 1
κ2

≤ c17 on (0, Tmax),

with positive constants c16, c17.
From all of the above, we invoke the second inequality in Lemma 4.3, so to see that the

function y = y(t) satisfies this initial value problem{
y ′(t) + c18y

κ(t) ≤ c19 on (0, Tmax),

y(0) = y0 = 1
p(p−1)

∫
�
(u0(x) + 1)pdx + 1

q

∫
�

|∇v0(x)|2qdx,

with suitable constants κ, c18, c19 > 0. This leads to the conclusion for appropriate L > 0
since standard ODE comparison arguments give

y(t) ≤ max

{
y0,

(
c19

c18

) 1
κ

}
for every t < Tmax . �
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With these gained bounds, we exploit a general boundedness result to quasilinear
parabolic equations (see [21]) so to ensure uniform-in-time boundedness of the local so-
lution (u, v) to system (1).

Proof of Theorem 2.1 Let (u, v) be the local classical solution to (1). Upon enlarging p and
q accordingly to what said in item (i) of Remark 2, we can obtain that the term f (u)∇v ∈
L∞((0, Tmax);Lq1(�)), for some q1 > n + 2. So we conclude thanks to Lemma 5.1, [21,
Lemma A.1] and the dichotomy criterion (6). �

Remark 3 (Some hints about the parabolic-elliptic model) Let us consider the equations

ut = �u − ∇ · (f (u)∇v) and 0 = �v − v + g(u), in � × (0, Tmax), (41)

endowed with homogeneous Neumann boundary conditions, nontrivial initial data u(x,0) =
u0(x) ≥ 0, where f and g comply with assumptions in Theorem 2.1. Similarly to what
already done, we have

1

p(p − 1)

d

dt

∫
�

(u + 1)p = 1

p − 1

∫
�

(u + 1)p−1∇ · ∇u − 1

p − 1

∫
�

(u + 1)p−1∇ · (f (u)∇v)

= −
∫

�

(u + 1)p−2|∇u|2 +
∫

�

(u + 1)p−2f (u)∇u · ∇v

≤ −
∫

�

(u + 1)p−2|∇u|2

+ KK0

p + α − 1

∫
�

(u + 1)p+α+l−1 on (0, Tmax).

This estimate is essentially the same than that derived in [27, §4] so that, as therein, in order
to take advantage from a combination of the Gagliardo–Nirenberg and Young’s inequali-
ties, one has to impose α − 1 + l < 2

n
(coinciding, exactly as discussed in Sect. 2.2, with

the parabolic-elliptic version of assumption (5)); consequently, the integral KK0
p+α−1

∫
�
(u +

1)p+α+l−1 can be suitably treated. Standard procedures, successively, provide that u ∈
L∞((0, Tmax);Lp(�)) for arbitrarily large p > 1, and hence also g ∈ L∞((0, Tmax);Lp(�))

for any l ∈ (0,1). Finally, elliptic regularity theory applied to the second equation in prob-
lem (41) infers uniform bound of ∇v, on (0, Tmax), so that u and v are uniformly bounded
for all t > 0.

We note that the necessary regularity of ∇v is gained only by differentiating
∫

�
(u + 1)p ,

by using the initial-boundary value problem (41) and, solely, the mass conservation property;
neither an estimate like that in (8) is a priory needed nor the analysis of the term

∫
�

|∇v|2q ,
involving the extra parameter q , has to be developed.
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