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MINIMAL SYMPLECTIC ATLASES OF HERMITIAN

SYMMETRIC SPACES

ROBERTO MOSSA AND GIOVANNI PLACINI

Abstract. In this paper we estimate the minimal number of Darboux charts

needed to cover a Hermitian symmetric space of compact type M in terms

of the degree of their embeddings in CP
N . The proof is based on the recent

work of Y. B. Rudyak and F. Schlenk [20] and on the symplectic geometry

tool developed by the first author in collaboration with A. Loi and F. Zuddas

[14]. As application we compute this number for a large class of Hermitian

symmetric spaces of compact type.

1. Introduction and statements of the main results

Consider the open ball of radius r,

B2n(r) = {(x, y) ∈ R
2n |

n
∑

j=1

x2
j + y2j < r2}

in the standard symplectic space (R2n, ω0), where ω0 =
∑n

j=1 dxj ∧ dyj . In [20] Y.

B. Rudyak and F. Schlenk introduced the invariant SB(M,ω) for a closed symplectic

manifold (M,ω) of dimension 2n defined by:

SB(M,ω) := min{k |M = B1 ∪ · · · ∪ Bk},

where Bj is the image of a Darboux chart ϕ(B2n(rj)) ⊂ M . This is the minimal

number of symplectic charts needed to cover (M,ω). The problem of estimating this

number is closely related to two other problems, namely computing the Gromov

width cG(M,ω) and the Lusternik-Schnirelmann category cat(M) of M . While

the latter can be often computed or estimated very well, computing the former is

an open and delicate matter. The Gromov width of a 2n-dimensional symplectic

manifold (M,ω), introduced in [7], is defined as

cG(M,ω) = sup
{

πr2
∣

∣ ∃ ϕ :
(

B2n(r), ω0

)

→ (M,ω)
}
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where ϕ is a symplectic embedding.

By Darboux’s theorem cG(M,ω) is a positive number or ∞. Computations and

estimates of the Gromov width for various examples can be found in [2, 3, 4, 5, 7,

8, 10, 11, 14, 15, 16, 17, 18, 19, 21, 24].

We adopt the following notation from [14].

Notation: From now on we shall use the shortening HSSCT to denote a Hermitian

symmetric space of compact type. Further, throughout the paper we shall denote by

ωFS the canonical symplectic (Kähler) form on an irreducible HSSCT normalized so

that ωFS(B) ∈ {−π, π} when B is a generator of H2(M,Z), and by A the generator

for which ωFS(A) = π.

The following theorem and its two corollaries are the main results of this paper.

Theorem 1. Let (M,ωFS) be a 2n-dimensional HSSCT and let f : M →֒ CPN be

any holomorphic isometric immersion of M in CPN endowed with the Fubini–Study

form ω. Then

(i) If deg(f) ≥ 2n, then SB(M,ωFS) = deg(f) + 1

(ii) If deg(f) < 2n, then max{n+ 1, deg(f) + 1} ≤ SB(M,ωFS) ≤ 2n+ 1.

As holomorphic isometric immersion f : M →֒ CPN we can take, for example,

the coherent states map described in Section 1.1. In particular when M is the

complex Grassmannian one can take f equal to the Plücker embedding. We recall

the definition of degree of a holomorphic immersion in Section 2.1, while in Section

2.2 we compute it for all irreducible HSSCT.

The proof of Theorem 1 is based on the results obtained by Y. B. Rudyak and

F. Schlenk in [20] about minimal atlases for compact symplectic manifolds together

with the explicit computation of the Gromov width given by the first author in

collaboration with A. Loi and F. Zuddas in [14] and the properties of the symplectic

duality map introduced by A. J. Di Scala and A. Loi in [6] which, in particular,

give us a symplectic embedding of the noncompact dual (Ω, ω0) of (M,ωFS) into

(M,ωFS).

Using the explicit computation of the volume of a classical domain (Ω, ω0) given

by L. K. Hua in [9], we are able to prove the following corollary, which extends the

computation of SB for the Grassmannians given in [20] to any classical irreducible

HSSCT. Before stating the corollary, we recall that a classical irreducible HSSCT

is one of the following quotients of compacts Lie groups:

Ik,s = SU(s)/S (U(k)× U(s− k)) ,

IIs = SO(2s)/U(s),

IIIs = Sp(s)/U(s),
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IVs = SO(s+ 2)/SO(s)× SO(2).

Corollary 2. Let (M,ωFS) be a classical irreducible HSSCT of dimension 2n.

Then we have:

SB(Ik,s) = deg(f) + 1, for (k = 2 and s ≥ 7) or k ≥ 3 (1)

SB(IIs) = deg(f) + 1, for s ≥ 6

SB(IIIs) = deg(f) + 1, for s ≥ 5

n+ 1 ≤ SB(IVs) ≤ 2n+ 1, for s ≥ 2.

Otherwise, we have

max{n+ 1, deg(f) + 1} ≤ SB(M,ωFS) ≤ 2n+ 1.

In the rank one case (i.e. M = CPn), we can set f equal to the identity map,

so that deg(f) = 1. On the other hand, [20, Corollary 5.8] tells us that

SB(CP
n, ωFS) = n+ 1.

The second corollary is a straightforward consequence of Theorem 1:

Corollary 3. Let (M1 × M2, ωFS) be a product of HSSCT of dimension 2n. If

M1 ×M2 is different from CP 1 × CPn−1 and CP 2 × CP 2, then

SB(M1 ×M2, ωFS) = deg(f) + 1,

where f : M1 ×M2 →֒ CPN is any holomorphic isometric immersion. Otherwise,

we have

max{n+ 1, deg(f) + 1} ≤ SB(M,ωFS) ≤ 2n+ 1.

Acknowledgments. The authors would like to thank Professor Andrea Loi for his

help and various stimulating discussions and Professor Felix Schlenk for his interest

in our work and his valuable comments.

1.1. The coherent states map. It is well know that an HSSCTM is a simply con-

nected Kähler–Einstein manifold with strictly positive scalar curvature. Therefore

the integrality of ωFS

π
implies the existence of a polarizing holomorphic hermitian

line bundle (L, h) on M such that c1(L) = [ωFS

π
] and the Ricci curvature of h sat-

isfies Ric(h) = ωFS

π
(where Ric(h) = − i

2π ∂∂ log (h (σ, σ)) in a local trivialization

σ : U ⊂ M → L). Consider the space H0(L) consisting of global holomorphic

sections s of L which are bounded with respect to

〈s, s〉 = ‖s‖ =

∫

M

h (s(x), s(x))
ωn

n!
.
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AsH0(L) 6= {0}, given an orthonormal basis {s0, . . . , sN} ⊂ H0(L) (with respect

〈·, ·〉), it is well defined the coherent states map, given by f : M → CPN

f(x) = [s0(x) : · · · : sN (x)] .

The Fubini–Study form ω of CPN (normalized so that ω(B) ∈ {−π, π}, when B is

a generator of H2(CP
N ,Z)) is given by

ω =
i

2
∂∂ log





N
∑

j=0

|Zj |
2



 ,

it follows that

f∗ω =
i

2
∂∂ log





N
∑

j=0

|sj(x)|
2



 =
i

2
∂∂ log

(

∑N

j=0 h (sj(x), sj(x))

h(σ(x), σ(x))

)

= −
i

2
∂∂ log (h(σ(x), σ(x))) +

i

2
∂∂ log





N
∑

j=0

h (sj(x), sj(x))





πRic(h) +
i

2
∂∂ log ǫ(x) = ωFS +

i

2
∂∂ log ǫ(x),

where ǫ : M → R is the so called ǫ-function defined by

ǫ(x) =
N
∑

j=0

h (sj(x), sj(x)) ,

one can prove that the ǫ-function (see e.g. [12, Theorem 4.3]) is invariant with

respect the action of the group of holomorphic isometric transformation of (M,ωFS)

which act transitively on M . Therefore the ǫ-function is constant and we conclude

that

f∗ω = ωFS.

2. Proofs of Theorem 1, Corollary 2 and Corollary 3

Consider the following lower bound for SB(M,ω) given by

Γ(M,ω) :=

⌊

V ol(M,ω)n!

cG(M,ω)n

⌋

+ 1,

where ⌊x⌋ denote the maximal integer smaller than or equal to x. The following

theorem summarizes the results about minimal atlases obtained in [20] that we need

in the proof of Theorem 1.

Theorem A (Rudyak–Schlenk [20]). Let (M,ω) be a compact connected 2n-dimensional

symplectic manifold.

i) If Γ(M,ω) ≥ 2n+ 1, then SB(M,ω) = Γ(M,ω).

ii) If Γ(M,ω) < 2n+ 1 then max{n+ 1, deg(f) + 1} ≤ SB(M,ω) ≤ 2n+ 1.
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2.1. Proof of Theorem 1. We start recalling the definition of the degree of an

holomorphic immersion f : M → CPN . Suppose that dim(M) = 2n < 2N , by

Sard’s Theorem there exists a point q /∈ f(M). Up to unitary transformation of

CPN we can suppose q to be the point of coordinates [1, 0, . . . , 0]. Consider the

projection pk : CP
k \ {q} → CPk−1, pk([Z0, . . . , Zk]) = [Z1, . . . , Zk] and define the

map F : M → CPn by F = p̃ ◦ f , where p̃ = pn+1 ◦ · · · ◦ pN . The degree deg(f) of f

is by definition the degree deg(F ) of the map F , which is the integer number such

that

F∗[M ] = deg(F )[CPn] ∈ H2n(CP
n,Z). (2)

What we need about deg(f) is summarized in the following Lemma:

Lemma 4. (W. Wirtinger [23], M. Barros, A. Ros, [1]) The degree deg(f) is a

positive integer such that

Vol(M) = deg(f)Vol(CPn), (3)

where deg(f) = 1 iff M is totally geodesic and deg(f) = 2 iff f is congruent to the

standard embedding of the quadric.

The proof follows from Theorem A once one observes that the volume of any

n-dimensional projective variety X , with holomorphic embedding f : X →֒ CPN ,

is given by

Vol(X,ωFS) = deg(f)Vol(CPn, ωFS), (4)

Vol(CPn) = πn

n! and that the Gromov width of any HSSCT (see [14]) is given by

cG(M,ωFS) = π.

2.2. Proof of Corollary 2. Consider (Ω, ω0), the noncompact dual of (M,ωFS).

In [6, Theorem 1.1] it is proved the existence of a global symplectomorphism

Φ : (Ω, ω0) → (M \ Cutp(M), ωFS)

where Cutp(M) is the cut locus of (M,ωFS) with respect to a fixed point p ∈ M

(see also [13]). Thus Vol(M,ωFS) = Vol(Ω, ω0). On the other hand the explicit

expression of the volume Vol(Ω, ω0) can be found in L. K. Hua [9] and by (4) we

are able to write the expression of deg(f) associated to any classical HSSCT, as

follows.

Let Ik,s be a HSSCT of type I, namely the Grassmannian of k-planes in Cs.

Notice that the dimension is 2n = 2(s− k)k and that rank(Ik,s) = k. We have that

deg(fk,s) =
Vol(Ik,s, ωFS)

Vol(CP (s−k)k, ωFS)
=

=
1! 2! . . . (s− k − 1)! 1! 2! . . . (k − 1)! ((s− k)k)!

1! 2! . . . (s− 1)!
. (5)
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The case Ik,s was already done by Rudyak–Schlenk [20] and we obtain(1) by [20,

Corollary 5.10]. Moreover they prove that

SB(I2,4) ∈ {5, 6}

SB(I2,5) ∈ {7, 8, 9, 10}.

Let IIs be an irreducible HSSCT of the second type. The complex dimension is

given by ns =
(s−1)s

2 . We have,

deg(fIIs) =
s(s− 1)

2
!

2! 4! . . . (2s− 4)!

(s− 1)! s! . . . (2s− 3)!
.

In order to apply Theorem 1 we need to study when

deg(fIIs)

ns

≥ 2

One can see that the inequality is satisfied for s = 6 and that
deg(fIIs )

ns
<

deg(fIIs+1
)

ns+1

for any s ≥ 6.

Let IIIs be an irreducible HSSCT of the third type. The complex dimension is

given by ns =
(s+1)s

2 . We have,

deg(fIIIs) =
s(s+ 1)

2
!

2! 4! . . . (2s− 2)!

s! (s+ 1)! (s+ 2)! . . . (2s− 1)!
.

Arguing as before we see that
deg(fIIIs )

ns
≥ 2 for any s ≥ 6.

Let IVs be an irreducible HSSCT of the fourth type (namely the complex

quadric). Assume s > 3 (if s = 1 or s = 2 we have respectively IV1 = CP1 or

IV2 = CP1 × CP1). By Lemma 4, deg(f) = 2. As n = s ≥ 3, the result follows by

(ii) of Theorem 1.

2.3. Proof of Corollary 3. Let ω1
FS and ω2

FS be the Fubini-Study forms asso-

ciated to M1 and M2. Since the associated volume form satisfies (with abuse of

notation) vωFS
= vω1

FS

∧ vω2
FS

, we have Vol(M1 ×M2) = Vol(M1)Vol(M2). By (4)

we get:

deg(f) =
(n1 + n2)!

n1!n2!
deg(f1) deg(f2),

where nj is the complex dimension ofMj , j = 1, 2 and f , f1 and f2 are holomorphic

isometric immersions of M1×M2, M1 and M2. In order to apply (i) of Theorem 1,

we have to check when

deg(f1) deg(f2)
(n1 + n2 − 1)!

n1!n2!
≥ 2. (6)

First notice that when deg(f1) ≥ 2 or deg(f2) ≥ 2, since (n1+n2−1)!
n1!n2!

≥ 1, the

inequality (6) is satisfied.
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Assume now that deg(f1) = deg(f2) = 1. By Lemma 4, f1, f2 are totally geo-

desic, this force M1 and M2 to have rank 1, that is M1 = CPn1 and M2 = CPn2 .

Moreover it is easy to see that (6) is satisfied if and only if n1 ≥ 3 and n2 ≥ 2 or

n1 ≥ 2 and n2 ≥ 3. The proof is complete.

Remark 5. When M = CP 1 × CPn−1,CP 2 × CP 2 we are not able to compute

SB(M,ωFS). Even for the simple case of CP 1 × CP 1 we know (private communi-

cation with F. Schlenk) that one can construct a covering by 4 symplectic balls but

we still do not know if this number can be reduced to 3.
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