
Vol.:(0123456789)
1 3

Environ Monit Assess         (2021) 193:448  
https://doi.org/10.1007/s10661-021-09204-w

Heavy metal and metalloid accumulation in wild brown 
trout (Salmo trutta L., 1758 complex, Osteichthyes: 
Salmonidae) from a mountain stream in Sardinia 
by ICP‑OES

Angioni Alberto   · Corrias Francesco · Alessandro Atzei · 
Sabatini Andrea   · Palmas Francesco   · Lai Carla · Russo Mariateresa   

Received: 23 November 2020 / Accepted: 7 June 2021 
© The Author(s) 2021

emission spectroscopy (ICP-OES) in both the guts and 
the edible part (EP, muscle + skin) of brown trout. The 
results, expressed as μg g−1, showed different levels of 
accumulation in the EP and guts, following the series 
Cu > Zn > Ba > Al > Sr > Fe > Pb and Fe > Al > Hg > 
As > Mn > Cu > Ba > B > Zn > Pb, respectively. PCA 
analysis showed a fairly good correlation between the 
total lipid and SAFA content and Cd, Hg, and Pb accu-
mulation in the gut. Non-carcinogenic risk assessment, 
expressed as THQ (target hazard quotient), showed 
values far below 1 for all metals in muscles, while high 
As and Hg contamination of the gut draws attention to 
possible health risks which should be discarded from 
the fish before consumption.  TR (target cancer risk) 
values showed alarmingly high values for As and Cd 
when the fish were consumed entirely (gut + EP), while 
Pb levels were far below the safety levels.

Abstract   This paper reports heavy metal and met-
alloid accumulation in wild brown trout (Salmo trutta 
L., 1758 complex) raised in freshwater and uncontami-
nated Sardinia system (Italy). Metals are widespread 
pollutants of aquatic systems, and their contamination 
can originate from anthropogenic activities such as 
industrial waste, agricultural and domestic environ-
ments, and geochemical release. Fish has a relevant 
position within the human diet; moreover, fishes can 
accumulate metals, making them a valuable tool as 
biomarkers for risk assessment studies. The concentra-
tion of 22 metals and metalloids after chemical diges-
tion was assessed by inductively coupled plasma-optic 

Summary  Brown trout represent an attractive speciesfor 
the evaluation of heavy metal and metalloid contamination. 
The THQ valuescalculated for the single metals showed no 
adverse effects when the gut was discarded from the fish 
beforeeating.
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Introduction

Heavy metals are naturally occurring element pre-
sent in trace amounts that can contaminate animals, 
vegetables, and fish along the food chain and are 
a problem for human safety (Masindi & Muedi, 
2018). Maximum levels of heavy metals have 
been set in foodstuffs (EC 1881/2006, 2020; EC 
629/2008, 2020), together with the official method 
of analysis (EURL, 2012).

Fish and other water organisms can be affected 
by water pollution, mainly accumulating chemical 
substances that remain in the water columns for a 
relatively long time (Gündoğdu & Erdem, 2008). 
Metals can positively affect organisms; however, 
they can also affect fish’s biochemical functions 
in terms of growth, reproduction, and wellbeing 
(Wang et al., 2017a, b).

The concentration of heavy metals in fish has 
been extensively studied over the past several dec-
ades. Researchers have shown that the degree of 
metal accumulation in fish is dependent on the metal 
type, fish species, age, sex, geographical distribu-
tion, and tissue (Petrovic et  al., 2013; Ptashynski 
et al., 2002).

Fish and seafood products are primary components 
of the human diet due to their nutrients, showing high 
levels of healthy polyunsaturated fatty acids of the 
ω3 series (EPA and DHA), which are associated with 
a reduced heart disease risk (Corrias et  al., 2020a; 
Psota et al., 2006; Wang et al., 2017a, b), micronutri-
ents, and high-quality protein (Garcia-Esquinas et al., 
2019; Harris et al., 2008; Lee et al., 2008; Mohanty 
et al., 2019).

In Italy, an average fish consumption of 
30.9 ± 0.6  kg/per capita was calculated in 2017 
(Eumofa, 2020). Italy was the first producer of salmo-
nids in the EU, and Oncorhynchus mykiss (Pastorino 
& Prearo, 2015) represents the first fish from aqua-
culture, with 35,100 tons produced in 2017. Trout 
farming in Sardinia is carried out by a few small fam-
ily producers, for a total harvest of 1 ton per year. To 
date, the only small-scale fish farm (Sadali fish farm) 

producing trout fry was entirely devoted to the pro-
duction of Mediterranean native trout for experimen-
tal reintroduction programmes (Sabatini et al., 2011, 
2018).

Since the 1970s, an evident progressive reduc-
tion in native trout presence in the original areas has 
been observed (Cottiglia, 1968). In Sardinia, the riv-
ers host two non-native species: rainbow trout (Onco‑
rhynchus mykiss) and brown trout of North Atlantic 
origin (Salmo trutta). The introduction of brown trout 
carried out with stocking programmes determined a 
genetic admixture between native and foreign trout 
belonging to the Salmo trutta complex (Berrebi et al., 
2019; Sabatini et  al., 2006, 2011; Splendiani et  al., 
2019).

In Sardinia, trout populations are exposed to 
anthropogenic stressors such as habitat fragmenta-
tion, limited water resources, and habitat pollution. 
However, a limited salmonid population is currently 
concentrated in the central-eastern part of Sardinia, 
where medium–low temperatures, flow regimens, 
and null or very low anthropic pollution character-
ize these habitats (Palmas et  al., 2017). In this con-
text, trout species represent an appealing model to 
assess the biological impact of environmental and 
geochemical contamination in freshwater ecosystems 
(Bajc et al., 2005; Davidson et al., 2009; Gündoğdu & 
Erdem, 2008; Linde et al., 1996, 2001).

This paper reports a contamination study of a profile 
of 22 metals and metalloids by ICP-OES of the edible 
part (EP) (muscle plus skin) and guts in wild samples 
(Salmo trutta L., 1758 complex, sensu; Bernatchez 
et  al., 1992) collected from a mounting freshwater 
stream in an uncontaminated site in Sardinia. Moreo-
ver, it evaluated the non-carcinogenic (THQ) and car-
cinogenic (TR) human health risks associated with fish 
consumption. Finally, analysis of total protein, lipids, 
and fatty acids was carried out on fish muscles and gut 
for compositional studies.

Materials and methods

Study area and sample collection

Ten wild adult brown trout samples (> 10 cm TL) were 
collected in June 2018 from a headwater tributary 
of Flumendosa River (Ermolinus Stream, 39°52ʹN, 
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9°23ʹE) located in the Montarbu Forest (Sardinia, 
Italy) (Fig.  1). The number of fish was determined 
following the indications in the USEPA Guidelines 
(USEPA, 2000).

The stream is characterized by clear, well-
oxygenated water, a moderately fast current, and 
the presence of waterfalls jumps, riffles runs, and 
pools. Moreover, the stream bed consists of sand, 
gravel, stones, and carbonate rocks. The carbonated 
part of the stream is characterized by travertine 
deposition (calcium carbonate) that occurs in vari-
ous forms, cementing substrate particles in small 
dams. The abiotic parameters, water temperature, 

pH, water dissolved oxygen concentration, and 
water conductivity were recorded using a multi-
parameter probe (In Situ Inc. Smart Troll MP). 
Trout fish were captured using low-frequency, 
pulsed DC electrofishing. Stunned fishes were 
immediately killed by spiking the brain (WOAH, 
2019), held in iceboxes and transported to the labo-
ratory. Finally, samples were frozen until analysis.

Sample preparation

Brown trout were measured wet for total length (TL, 
cm), from the snout tip to the fork of the tail to the 

Fig. 1   Rio Ermolinus, 
Montarbu Forest, and 
anthropogenic pressure 
classes in Sardina, Italy
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nearest 0.1  mm, using a manual calliper, and body 
weight (BW, g) was also determined. Then, the fish 
were dissected using a sharp stainless-steel scalpel, 
and all internal organs, including the intestine, stom-
ach, liver, heart, kidneys, and swim bladder, were col-
lected, weighed, and homogenized in a stainless-steel 
blender. The rest of the fish was separated from the 
head and homogenized in a stainless-steel blender. 
Before analysis, fish were stored in the refrigerator at 
5  °C to avoid deterioration. Samples were then sub-
jected to preparation for the analysis.

Chemicals

Hexane, ethyl ether, petroleum ether, and methanol 
were of analytical grade (Sigma Aldrich Chemie, 
Germany). HNO3 67-(69%), 30% H2O2 solution, 
and standards of Al, AS, B, Ba, Be, Cd, Co, Cr, Cu, 
Fe, Hg, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Te, Ti, V, and 
Zn were of ICP grade (Carlo Erba Reagents Milan, 
Italy). HCl (34–37%) of super-pure quality (Romil Spa 
Cambridge, England), H2SO4 (95–98%), anhydrous 
Na2SO4, CuSO45H2O, NaOH (32%), H2SO4 0.5  N, 
NaOH 0.5  N, methyl red, NaCl, MgSO4, and KOH 
were of analytical grade (Sigma Aldrich Chemie, Ger-
many). A marine oil FAME mix analytical standard 
was purchased from Restek (Bellefonte, PA). Double-
deionized water was obtained with a Milli-Q water 
purification system (Millipore, Bedford, MA, USA).

Moisture and ash

Ten grams of homogenized EP and 5 g of gut sam-
ple were weighed in a porcelain crucible and dried 
at 100  °C in a thermostatic heater (Argolab, Milan, 
Italy) for 24  h to reach a constant weight, and ana-
lyzed for moisture content assessment. Samples were 
then heated to 500  °C for 5 h for carbonization and 
ash analysis. The moisture and ash contents were cal-
culated as a percentage of the fresh weight (FW).

Total protein

According to the Kjeldahl digestion method, total 
protein was analyzed by using a BUCHI K-424 diges-
tion unit and a BUCHI K314 distillation unit. Two 
grams of fresh homogenate EP and gut were weighed 
in a Speed-Digester flask and processed according to 
the method. Twenty millilitres of H2SO4 concentrate, 

0.5  g of sodium sulfate, and a tip of copper sulfate 
were added to the mineralization flask. After miner-
alization, the solution was left to cool, and 50 mL of 
Milli-Q H2O was added. When the solution reached a 
light blue colour, the flask was inserted into the distil-
lation unit, and a concentrated solution of NaOH was 
added directly to the distiller. The distillation process 
started when the sample solution reached a brownish-
black colour. Then, 100–150  mL of distillate was 
collected, and a known quantity of 0.5 N plus a few 
drops of methyl red were added. After distillation, 
quantitative analysis was performed by acid–base 
titration using 0.5 N NaOH.

% protein = ((a-b) * c * 100 * K)/g sample.
a: mL of 0.5 N H2SO4 added to the collection flask.
b: mL of titrant used (10 mL of NaOH 0.5 N).
c: conversion factor mL of H2SO4 0.5  N in g of 

nitrogen (0.007).
K: general nitrogen-protein conversion factor (6.25).

Total lipid

One gram of fresh homogenized EP and gut were 
accurately weighed and extracted using the rapid 
extraction system for solid–liquid extraction Sox-
therm (C-Gerhardt, Analytical Systems, Konigswin-
ter, Germany) with a 150-mL mixture of ethylic ether/
petroleum ether (1/1). The fat content was determined 
gravimetrically by weighing the boiling flask after 
evaporation from the extracting solvents.

Fatty acid analysis

Fatty acid analysis was carried out according to Angioni 
and Addis (2014). Briefly: 1  g of EP and gut were 
weighed in a 15-mL screw-capped falcon tube, and then 
2 mL of hexane, 1 g of NaCl, and 0.5 g of MgSO4 were 
added. The falcon tube was shaken for 3 min in a vor-
tex, shaken for 15  min with a rotary shaker, and then 
centrifuged at 4000 rpm for 10 min (10 °C temperature). 
Transesterification was carried out as follows: 500 µL of 
hexane extract and 200 µL of alcoholic potash (KOH 2 N 
in MeOH) were heated and agitated in a vortex for 4 min. 
The organic phase was injected into the GC–MS instru-
ment for analysis. A TRACE GC ULTRA Single Quad 
DSQ mass detector (Thermo Finnigan, Milan, Italy) 
equipped with a COMBI PAL autosampler (CTC Ana-
lytics, Zwingen, Switzerland), and a split/splitless injec-
tor was used. The analytical column was a Varian Factor 
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Four VFWAX column (60 m × 0.25 mm i.d. × 0.25-µm 
film thickness) (Varian, Milan, Italy); helium was the 
carrier gas at 1 mL/min. The sample (1 µL) was injected 
in splitless mode (1  min). The mass spectrometer was 
operated with electron impact (EI) ionization and posi-
tive mode, with a solvent delay of 5.5 min. The injector, 
ion source, and transfer line temperatures were 50, 200, 
and 250  °C, respectively. Peak identification was per-
formed comparing full mass spectra (50–550 m/z) and 
retention times (r.t.) from authentic standards and NIST 
MS Spectra Library (NIST/EPA/NIH Mass Spectral 
Library, 2017, Ver. 2.3).

Heavy metal and metalloid analysis

Approximately 0.2 g of ash was accurately weighed and 
digested with 1.25 mL of 67% HNO3, 3.75 mL of 34% 
HCl and 1 mL of 30% H2O2 in closed polytetrafluoroeth-
ylene (PTFE) tubes using a CEM MARS 6 microwave 
digestion system (CEM SRL, Italy). A one-stage protocol 
was used as follows: heating time, 13 min; pressure, 100 
PSI; and power, 600 W. After digestion, the solution was 
left to cool at room temperature, placed in a 10-mL flask, 
diluted to the mark with double-deionized water, and fil-
tered through a 0.45-μm nitrocellulose membrane filter. 
Control solvent samples were simultaneously prepared to 
avoid false positives and contamination during analysis. 
Hg and As sample preparations were carried out using 
an Agilent VGA-77 instrument (Agilent, Milan, Italy) 
according to the manufacturer instructions (Beach, 2010; 
Evans et al., 2010). Analysis was carried out using a Var-
ian 710ES ICP optical emission spectrometer (Agilent, 
Milan, Italy), according to Corrias et  al. (2020b). Each 
measurement was conducted in triplicate. The limits of 
detection (LODs) and the limits of quantitation (LOQs) 
were calculated as three and ten times the standard devia-
tion reading of the blank sample signal, respectively. 
Calibration curves were calculated with five points start-
ing from the LOQ value and were considered acceptable 
when r2 ≥ 0.995.

Risk assessment

Non‑carcinogenic risk evaluation

The target hazard quotients (THQ) index was applied 
to assess the potential non-cancer risk associated with 
consumption of the trout sampled and calculated fol-
lowing the USEPA guidelines (1989) (1):

The average body weight for an adult consumer 
of 67  kg and an average fish intake rate (IR) of 
0.036  kg/day for a person (FAO, 2020) were con-
sidered for the THQ calculation (SI trout Table A).  
The reference doses (RfDs) for oral intake were 
obtained from the (Integrated Risk Information Sys-
tem 2020; USEPA, 2010). The THQ values were cal-
culated for the traditional edible part and the sum of  
EP and the gut. THQ values exceeding “1” indicate 
a potential health risk to consumers (USEPA, 1989). 
Regarding Hg, we considered the RfD of methyl 
mercury, assuming that all mercury found was in 
this organic form (MeHg).

Carcinogenic risk evaluation

As Cd and Pb are known to pose a risk of cancer 
(IARC, 2012). IARC has classified MeHg as “possi-
bly carcinogenic to humans” (IARC, 2012), whereas 
the US Environmental Protection Agency (USEPA) 
has established that evidence of MeHg carcinogenic-
ity in humans is insufficient. Indeed, the rationale 
of the carcinogenicity in experimental animals was 
restricted; therefore, the USEPA has designated 
MeHg as a Group C material (possible human carcin-
ogen). Since the CPSo (Carcinogenic Potency Slope 
oral) of Cr and Hg has not been published by the 
USEPA, TR (Target Cancer Risk) was calculated only 
for As (CPSo = 1.5 mg/kg/day), Cd (CPSo = 6.3 mg/
kg/day), and Pb (CPSo = 8.5 × 10−3  mg/kg/day) 
(USEPA, 2010). The risk of cancer was estimated 
as the probability of an individual developing cancer 
over a lifetime as a result of exposure to potential car-
cinogens using the target cancer risk (TR) (2):

The exposure duration (average lifetime) was set 
at 83 years, the average life expectancy (both sexes) 
in Italy. Acceptable risk levels for carcinogens have 
been set in the range from 10−4 to 10−6.

Statistical analysis

Analysis of variance (ANOVA) was carried out with 
XLSTAT software (Addinsolf LTD, Version 19.4). 
Mean comparisons of the effects of treatments were 

(1)THQ = EFxEDxIRxC∕RfDxBWxAT
n

(2)TR = EFxEDxIRxCPoxC∕BWxATc
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calculated by Fisher’s least significant difference test 
at p ≤ 0.05. ICP-OES, GC/MS fatty acid, and lipid 
analysis data were analyzed with SIMCA 14 (Umet-
rics AB, Umea, Sweden) for principal component 
analysis (PCA). The coefficient of determination (R2) 
was considered to evaluate the correlation between 
the lipid fraction and metals accumulation (Atherton 
et al., 2006).

Results

Samples of brown trout ranged from 83.52 to 140.48 g 
in body weight (BW) and from 15.19 to 25.53  cm 
in total length (TL), while the gut weight ranged 
from approximately 10.56 ± 8.91  g (± RSD). The 
EP’s water and ash contents were 74.83 ± 1.38 and 
2.66 ± 11.21  g/100  g FW, respectively, which were 
slightly higher than the gut content (Table  1). Pro-
tein and lipids accounted in for 17.84 ± 3.19 g/100 g 
FW and 4.67 ± 19.26  g/100  g FW (g ± RSD%), 
respectively (Table  1), whereas in the gut were 
11.51 ± 8.09, and 2.23 ± 19.10 (g ± RSD%). SAFAs 
(36.64 ± 4.35%) and MUFAs (36.00 ± 4.41%) 
were the most abundant fatty acids, followed by 
PUFAs (27.34 ± 4.20%) (Table  2). Gut fatty acid 
followed PUFA > MUFA > SAFA, accounting for 
37.74 ± 8.78%, 23.92 ± 13.35% and 14.67 ± 8.81%, 
respectively (Table 2).

The C16 and C18 families were the most repre-
sented among SAFAs, MUFAs, and PUFAs. C18:3α 
(4.79 ± 10.55%), EPA (2.56 ± 11.29%), and DHA 
(1.14 ± 13.64) were also present in considerable 
amounts (Table 3); ω3 families accounted 8.84 ± 7.07%; 
and ω6 fatty acids accounted for 15.75 ± 6.40%, leading 
to a ω3/ω6 ratio of 0.56 ± 6.15 in EP, whereas in the gut 
ω3 accounted 21.13 ± 11.80% and ω6 16.61 ± 10.12%, 
with a ratio ω3/ω6 1.28 ± 12.22% (Table 2).

The ICP-OES method allowed the detection and 
quantitation of 22 metals, with calibration curves 

with correlation coefficients ranging from 0.9922 
to 0.9999, and LOQ values suitable for the analysis 
and in line with literature data (Wenzl et  al., 2016) 
(Table  4). Be, Co, Mo, Sb, Sn, and Te were not 
detected in any samples. The detected metals and 
metalloids showed high variability among the dif-
ferent fishes. Fe, Al, Hg, As, and Mn showed rela-
tively high gut concentrations, with residue values 
of 226.98 ± 39.18, 80.69 ± 41.90, 12.23 ± 16.16, 
10.57 ± 44.03, and 8.39 ± 32.67  μg· g−1 (± RSD%), 
respectively. In contrast, the other metals and met-
alloids showed values in the range of 0.03 ± 25.02 
(Cd) and 4.89 ± 65.56 μg· g−1 (Cu) (Table 4). The EP 
showed general values always below the gut, with the 
most abundant metals being Cu (1.19 ± 60.87 μg g−1), 
Zn (0.97 ± 15.96 μg g−1), Ba (0.80 ± 38.48 μg g−1), Al 
(0.70 ± 55.10  μg  g−1), and Sr (0.67 ± 16.70  μg  g−1). 
Moreover, As, B, Ni, and Ti were absent in the edible 
part (Table 4).

Non-carcinogenic risk assessment calculated 
considering a regular intake of approximately 
0.036  kg/day fish resulted in THQ values below 1 
for each metal in the EP, with maximum and mini-
mum values ranging from 4.30 × 10−1 (Hg) and 
2.87 × 10−5 (Cr), respectively (Table  5). Also, the 
intake of EP plus the gut showed the minimum 

Table 1   Chemical-physical parameters of the fish used in the experiment

* g/100 g ± RSD%

Average weight Humidity Ash Total protein Total lipid
g ± RSD% % whole fish g/100 g FW* g/100 g FW g/100 g FW g/100 g FW

Muscles 93.51 ± 17.41 89.44 ± 1.05 74.83 ± 1.38 2.66 ± 11.21 17.84 ± 3.19 4.67 ± 19.26
Gut 11.02 ± 18.79 10.56 ± 8.91 70.07 ± 2.29 2.10 ± 8.15 11.51 ± 8.09 2.23 ± 19.10

Table 2   Fatty acid composition (%) of trout muscles collected 
from Sardinia mounting streams

Muscles Gut

Σ saturated 36.64 ± 4.35 14.67 ± 8.81
Σ Monounsaturated 36.00 ± 4.41 23.92 ± 13.35
Σ polyunsaturated 27.34 ± 4.20 37.74 ± 8.78
Σ FFA 0.026 ± 6.54 -
PUFA/SAFA 0.75 ± 14.48 2.59 ± 12.11
Σɷ3 (%) 8.84 ± 7.07 21.13 ± 11.80
Σɷ 6 (%) 15.75 ± 6.40 16.61 ± 10.12
ɷ3/ɷ6 0.56 ± 6.15 1.28 ± 12.22
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THQ values for Cr (7.16 × 10−5) and maximum val-
ues for As and Hg of 18.93 and 66.14, respectively 
(Table 5).

Carcinogenic risk expressed as TR showed values 
for Cd and Pb of 1.02 × 10−4 and 9.13 × 10−7 in the 
EP and 2.03 × 10−4 and 4.06 × 10−6 in the EP + gut. 
As residues in the EP were below the LOQ of the 
analytical method, the TR calculated for the total 

fish was ascribable only to the gut’s contamination 
(8.52 × 10–3).

Principal component analysis (PCA) was used to 
verify the correlation between metals and metalloid 
accumulation and the lipidic or fatty acid amount in 
the gut and EP. The analysis of PCA biplot score and 
loadings for gut showed that the samples of trout had 
an uneven composition (Fig.  2); however, the lipid 
fraction showed a fairly good correlation with Cd 
(0.7207) and Hg (0.7557). The PCA biplot loadings 
showed for total lipids a significant influence along 
the PC2 axis of the variable Hg, Cd, and Pb, whereas 
Cd and Pb contribute for SAFA and Cd and Hg for 
MUFA; PUFAs were not correlated to heavy metal 
accumulation in the gut (Fig. 3a).

Correlation analysis for EP showed a fairly good 
correlation among total lipids (between 0.539 and 
0.7877), Cd, Pb, Cu, Fe, and Cr, whereas MUFA 
showed a low correlation with Cd (0.4737) and 
Hg (0.4312), PUFA a negative correlation with Al 
(− 0.6481) and Cd (− 0.4805), and SAFA had no cor-
relation with metals accumulation. The most influenc-
ing variables for total lipids loadings were Cd, Pb, and 
Cu along the PC1 axis and MUFA Cd, Hg, and Zn. 
SAFA and PUFA fell in the PC1 negative loadings 
and did not influence metals accumulation (Fig. 3b).

PCA emphasizes the differences in accumulation 
between the two matrices; Pb and Hg were the most 
discriminating along the PC1 axis, while Cd was the 
most discriminating on the PC2 axis (Fig. 2).

Discussion

Wild brown trout in nature usually feed on inver-
tebrates belonging to terrestrial and aquatic com-
munities (Fochetti et  al., 2003). Feeding patterns 
affect both lipid and protein profiles in a relevant 
way (Oz, 2016). Therefore, the profile of fatty acids 
can change drastically, and the degree of correla-
tion with the diet is not always unambiguous (Oz, 
2019; Aziz et  al., 2013; Trbovic et  al., 2012; Bell 
& Dick, 2004). Sardinian brown trout mainly feed 
on aquatic insects (Massidda et  al., 2008), which 
present fatty acid compositions with comparable 
amounts of SAFAs and MUFAs and low levels of 
PUFAs (Fontaneto et  al., 2011; Kiyashko et  al., 
2004; Shipley et al., 2012), reflecting the composi-
tion found in this paper.

Table 3   Fatty acid composition (%) of the lipid fraction 
extracted from the muscles of the brown trout

Fatty acid Trout muscles

C14:0 3.36 ± 13.76
anteiso C15:0 0.44 ± 14.18
C15:0 + isomer 0.39 ± 16.79
anteiso C16 0.13 ± 16.46
C16:0 25.61 ± 4.92
C17:0 0.10 ± 17.07
C17:0 anteiso C18 0.47 ± 13.13
C18:0 5.29 ± 8.18
C20:0 0.17 ± 9.80
C14:1 0.21 ± 12.25
C16:1 14.31 ± 12.82
C16:1 n9 7 methyl 0.49 ± 11.95
C17:1 0.50 ± 17.25
C18:1c 16.52 ± 13.31
C18:1 Δ11 3.60 ± 9.47
C20:1 0.36 ± 17.13
C16:2 1.20 ± 7.54
C18:2 14.28 ± 6.61
C18:2n6c 0.33 ± 12.65
C18:3 0.24 ± 39.66
C18:3α 4.79 ± 10.55
C18:4n3 0.62 ± 12.31
C20:2 0.45 ± 12.08
C20:3 0.27 ± 13.76
C20:4 0.70 ± 15.43
C20:3n3 (11–14-17) 0.13 ± 15.14
C20:4n3 0.22 ± 16.51
C20:5 EPA 2.56 ± 11.29
C22:5 0.42 ± 13.74
C22:6 DHA 1.14 ± 13.64
MonoM (9,5) FA 0.009 ± 12.75
Dime (9,5) FA 0.001 ± 23.87
DiMe (11,3) FA 0.011 ± 14.38
MonoM (11,5) FA 0.0004 ± 14.93
Dime (11,5) FA 0.005 ± 9.57
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The bioaccumulation of persistent contaminants 
in living organisms depends on on-site pollution, 
detoxification rate, and metabolism (Jakimska et  al., 

2011). This phenomenon directly affects both fish tis-
sues and organs, leading to increased fish mortality 
due to exceeding acute limits (Davidson et al., 2009; 

Table 4   Concentration of metals and metalloids (μg g−1, FW) in guts and muscle of brown trout

Metal λ MRL, μg g−1 LOQ, μg g−1 Linear regression equation R2 Gut, μg g−1 ± RSD Muscle, μg g−1 ± RSD

Al 237.3 0.10 y = 717.36x + 12.11 0.9990 80.69 ± 41.90 0.70 ± 55.10
AS 188.98 0.10 y = 79.21x − 11.44 0.9996 10.57 ± 44.03  < LOQ
B 249.77 0.025 y = 5251x + 789.8 0.9997 2.80 ± 36.32  < LOQ
Ba 493.40 0.005 y = 8019–417.3 0.9995 4.22 ± 16.70 0.80 ± 38.48
Be 313.04 0.005 y = 114,687x − 10,873 0.9989  < LOQ  < LOQ
Cd 226.50 0.05 0.005 y = 15,189x + 3513 0.9922 0.03 ± 25.02 0.03 ± 18.65
Co 228.61 0.025 y = 2213x − 3.07 0.9998  < LOQ  < LOQ
Cr 267.71 0.005 y = 10,136x − 23 0.9999 0.12 ± 27.14 0.08 ± 23.95
Cu 324.75 0.01 y = 17,524x − 363 0.9997 4.89 ± 65.56 1.19 ± 60.87
Fe 259.94 0.01 y = 3069x + 150 0.9995 226.98 ± 39.18 0.30 ± 34.79
Hg 194.16 0.50 0.05 y = 397x + 47 0.9998 12.23 ± 16.16 0.08 ± 14.89
Mn 257.61 0.005 y = 108,182x − 588 0.9996 8.39 ± 32.67 0.04 ± 22.33
Mo 204.59 0.10 y = 450x − 46 0.9959  < LOQ  < LOQ
Ni 216.55 0.025 y = 1699x − 19 0.9997 0.11 ± 44.40  < LOQ
Pb 220.35 0.3 0.05 y = 329x + 16 0.9989 0.69 ± 48.42 0.20 ± 48.85
Sb 217.58 0.50 y = 46x − 10 0.9981  < LOQ  < LOQ
Sn 189.92 0.50 y = 79x + 1 0.9990  < LOQ  < LOQ
Sr 407.77 0.005 y = 827,346x + 17,943 0.9991 0.38 ± 15.49 0.67 ± 16.70
Te 214.28 0.50 y = 116x + 7 0.9974  < LOQ  < LOQ
Ti 336.12 0.10 y = 14,629x + 1965 0.9989 1.12 ± 19.96  < LOQ
V 292.40 0.005 y = 14,788x − 37 0.9998 0.14 ± 27.77 0.01 ± 26.34
Zn 213.85 0.025 y = 5027x − 50 0.9991 0.78 ± 25.19 0.97 ± 15.96

Table 5   Target hazard quotients (THQ) and target cancer risk (TR) caused by consuming brown trout muscles and gut

Metal RfD, mg/kg/day THQ muscles THQ gut + muscle CPS, mg/kg/day TR muscles TR gut + muscle

Al 1.0 3.76 × 10−04 4.37 × 10−02 - - -
AS 3.0 × 10−04 - 18.93 1.5 - 8.52 × 10−3

B 2.0 × 10−01 - 7.52 × 10−03 - - -
Ba 2.0 × 10−01 2.15 × 10−03 1.35 × 10−02 - - -
Cd 1.0 × 10−03 1.61 × 10−02 3.22 × 10−02 6.3 1.02 × 10−4 2.03 × 10−4

Cr 1.5 2.87 × 10−05 7.16 × 10−05 - - -
Cu 4.0 × 10−02 1.60 × 10−02 8.17 × 10−02 - - -
Fe 7.0 × 10−01 2.30 × 10−04 1.74 × 10−01 - - -
Hg 1.0 × 10−04 4.30 × 10−01 66.14 - - -
Mn 1.4 × 10−01 1.54 × 10−04 3.24 × 10−02 - - -
Ni 2.0 × 10−02 - 2.96 × 10−03 - - -
Pb 3.5 × 10−03 3.07 × 10−02 1.37 × 10−01 8.5 × 10−03 9.13 × 10−7 4.06 × 10−6

Sr 6.0 × 10−01 6.00 × 10−04 9.40 × 10−04 - - -
Ti - - - - - -
V 9.0 × 10−03 5.97 × 10−04 8.96 × 10−03 - - -
Zn 3.0 × 10−01 1.74 × 10−03 3.13 × 10−03 - - -
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Pasha, 2016). Also, a transfer of contaminants to 
humans through the food chain may occur. Biomoni-
toring studies represent a necessary tool to evaluate 
the environmental behaviour of elements potentially 
harmful for both humans and other living organisms 
(Corrias et  al., 2020b). Anthropogenic activities are 
considered the primary source of metal pollution in 
aquatic ecosystems. Thus, several studies in the lit-
erature deal with human activities’ effect on environ-
mental wellbeing, especially concerning heavy metal 
pollution from industrial waste (Gaur et  al., 2020; 
Masindi & Muedi, 2018).

Data on the bioaccumulation of metals and metal-
loids in aquatic organisms related to the surrounding 
environment’s natural and geological characteris-
tics are still lacking. However, some data showed an 
increased concentration of metals in volcanic soils 
and surrounding groundwater (Andronico et al., 2009; 
Buat-Menard & Arnold, 1978; Favalli et  al., 2004). 
Cyclic siliciclastic depositions characterize the Mon-
tarbu area in the water basin. Stratigraphy showed 
episodic deposition of carbonate beds and volcanic 
products (Costamagna, 2019). Mica from the phyl-
losilicate family formed by parallel sheets of silicate 
that characterize the Ermolinus River shows residues 
of Al, K, Mn, Fe, Zn and Ca (Charette & Sholkovitz, 
2006). Moreover, volcanic terrains can show high Ba, 
As, and Hg levels from the Earth’s crust and poured 

onto the ground over centuries through volcanic erup-
tions (WHO, 2011).

The Ermolinus River is in the inner part of 
the Montarbu forest, which is an area with shal-
low anthropogenic class pressure (Fig.  1), is hard 
to reach, and is not subjected to wind coming from 
polluted areas. The chemical-physical characteris-
tics of the Ermolinus stream showed ideal values for 
life in freshwater streams, indicating a healthy eco-
system. With a temperature of 15.2  °C in the May/
June period, Ermolinus river water showed good 
resilience to the atmospheric temperature (20  °C) 
(SI Trout Table B). The pH at 7.5 was in the mid-
dle of the range for potable freshwater established 
by the OMS (6.5–8.5) and was weakly basic (WHO, 
2007). The pH value influences metals’ solubility; 
Fe and Cu are more soluble at pH values < 7, and Al 
and Zn are more soluble at pH values > 10. Moreo-
ver, this value corresponds to the pH of fish blood 
and therefore maintains the body’s homeostasis. The 
dissolved oxygen content was 8.33 mg/L, within the 
suggested range of 7–11 mg/L (Rounds et al., 2013). 
Mountain rivers, belonging from rainfalls and melt-
ing snow, show conductivity values below 50 μS/cm, 
while levels above 500 μS/cm can be found in low-
land rivers, where inorganic matter can accumulate 
from sediments and natural origin. The conductiv-
ity value detected in the Ermolinus River (648 µS/

Fig. 2   The analysis of PCA biplot score and loadings
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Fig. 3   The PCA biplot loadings. a Correlation of PUFAs to heavy metal accumulation in the gut. b Influence of SAFA and PUFA in 
metal accumulation
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cm) was slightly higher than the suggested levels for 
freshwater streams (50–500 μS/cm) and showed that 
the water in the ponds belongs to springs that extract 
minerals from rocks, enriching the mineral content 
in the water (White, 2010) and probably influencing 
metal accumulation in trout.

As expected, the levels of the 22 metals and met-
alloids reported in the present study showed both a 
different distribution and concentration ratio among 
the gut and EP. Residue levels were higher in the gut 
than in the EP for all compounds except for Sr and 
Zn. Indeed, gut samples included the liver and other 
organs that accumulate metallothionein proteins; 
these proteins are involved in homeostatic regulation 
and the detoxification process from heavy metals and 
can react strongly with metals (Wang et al., 2014). Al, 
Mn, Fe, Cu, and Zn are essential elements because 
of their important role in biological systems. Mn’s 
absence results in severe skeletal and reproductive 
aberrations in mammals (Sivaperumal et  al., 2007). 
Cu is a part of several enzymes and is necessary for 
haemoglobin’s biosynthesis with Fe (WHO, 1989). 
Zn is an essential trace metal for preventing retarded 
growth, loss of taste and hypogonadism, and fertil-
ity decrease (Sivaperumal et  al., 2007). Cr, Ni, and 
V are considered essential metals involved in glucose 
metabolism (Cr), normal growth and reproduction in 
animals and humans (Ni), and cell growth and essen-
tial components of some enzymes (V) (Ahmed et al., 
2016). However, when consumed in high amounts, it 
can result in severe toxicity (Calabrese et  al., 1985; 
Malik et  al., 2010). In contrast, Sr, Ba, B, and Ti’s 
biological functions in organisms are still poorly 
understood, and they are considered non-essential 
metals (Carvalho et  al., 2005). The most abundant 
metals in the EP and the gut followed the series Cu 
> Zn > Ba > Al > Sr > Fe > Pb and Fe > Al > Hg > As 
> Mn > Cu > Ba > B > Zn > Pb, respectively. Cd, Cr, 
Hg, Mn, and V were present only in trace amounts in 
the EP, whereas Cd, Cr, Ni, and V were detected in 
the gut.

Metals such as As, Cd, Pb, and Hg do not play 
any metabolic function. In contrast, these metals are 
considered toxic elements and harmful for humans, 
even at low concentrations, when ingested over a long 
period (Tchounwou et  al., 2012). According to the 
European Commission, the allowed limits for Cd, Pb, 
and Hg in fish for human consumption are 0.05, 0.3, 
and 0.5  μg  g−1, respectively (EC 1881/2006, 2020; 

EC 629/2008, 2020). In this study, the EP samples 
always showed values lower than the EU Regula-
tion limits. In contrast, considering the gut, Hg and 
Pb showed values 24 times and 2.3 times higher than 
their MRLs, respectively.

Among the metals and metalloids found in trout 
samples, only thirteen were investigated by other 
authors. Cd, Cu, Pb, Hg, and Zn were the most stud-
ied in brown trout, while only a few papers investi-
gated the amounts of As, Ba, Co, Cr, Fe, Mn, Ni, and 
V. Analysis was carried out on the muscles and the 
liver, showing values higher in the liver than in the 
muscles for most compounds (Table 6). The Cd con-
tent ranged from 0.02 to 0.04 μg g−1 in this study, in 
both the EP and gut, with average values similar to 
those found by Dvorak et al. (2016) in brown trout in 
the Czech Republic but markedly lower than those 
found in other surveys (Table  6). The average lev-
els of Cu were similar to those found by Linde et al. 
(2004) and Monna et al. (2011) but lower than those 
found by Vitek et al. (2007) in muscles. Moreover, the 
Cu levels found in the gut were markedly lower than 
those detected by other authors in the liver (Table 6).

In contrast, Hg gut levels were much higher than 
those found in the liver in other studies (Table  6). 
Pb showed variable values among the different stud-
ies available, while Zn was consistently lower in our 
study. Cr and Ni showed similar values to those found 
by Vitek et al. (2007). Arsenic was studied in rainbow 
trout (Varol et al., 2017; Robinson et al., 1995), show-
ing a similar concentration to that in our study, while  
in carp (Jiang et al., 2014), much higher levels were 
detected. The comparison of literature data with those 
found in this study clearly showed that metals’ accu-
mulation is fish dependent and site-dependent. How-
ever, it is uncommon to find high levels of As and Hg 
in fish from unpolluted areas, such as in this study. 
We can tentatively explain this situation considering 
the geomorphology of the studied site, which showed 
a derivation from a volcanic eruption that could have 
led to the release of many metals such as arsenic and 
mercury (Ma et al., 2019; Witt et al., 2008).

PCA analysis highlighted a different relation 
between fats and metals’ accumulation. Total lipids in 
the gut were the most connected with Cd, Hg, and Pb 
accumulation, with SAFA fraction the closest among 
fatty acids. Likewise, EP total lipid loadings were influ-
enced by Cd and Pb, with MUFA showing a sufficient 
correlation with Hg and Pb amounts. A significant 
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number of papers studied the effect of heavy metals on 
the amount of protein and lipids in fish muscles; only 
a few data were reported on the correlation between 
fatty acid of total lipid content and metals accumula-
tion. Khoshnoud et al. (2011) reported a study on two 
fish species of the Persian Gulf, recording a negative 
correlation with PUFA% for Pb (− 0.507). Moreover, 
Rajeshkumar and Li (2018) reported the correlation 
between metals’ accumulation and the tissue not differ-
entiating among lipids. They found a high correlation 
among Cd, Pb, and internal organs such as the liver.

The THQ values calculated for individual metals 
showed no harmful values for human health, consider-
ing a conventional portion of approximately 0.036 kg/
day EP for a person weighing 67  kg. Thus, the cal-
culated daily intake was below that of the respec-
tive reference dose, and these metal levels would not 
cause any deleterious effect during an entire lifetime. 
However, some people eat the entire fish (EP + gut), 
discarding only the head (with the gills) and the back-
bone; therefore, we calculated the THQ values for the 
entire fish (EP + gut). In this case, the values for As 
and Hg largely exceeded 1 (Table 5). Severe contami-
nation of the gut draws attention to possible health 
risks and should be avoided. The EP’s total THQ was 
below 1 (0.49), showing no harmful human health val-
ues considering all metals and metalloids in the fish.

Arsenic, cadmium, and lead have been classified 
by the International Agency for Research on Cancer 
(2012) as both carcinogenic and non-carcinogenic. 
Considering whole fish consumption, the TR values 
for As were more significant than 1 × 10–5 (Table 5), 
suggesting a significant cancer risk due to ingestion 
of As could exist. Although the carcinogenic effects 
of As exposure are not yet clear, it has been proposed 
that the As-mediated intracellular biosynthesis of 
reactive oxygen species, such as free radicals, may 
be involved in the carcinogenic process induced via 
DNA damage. Cancer risk was also possible through 
Cd exposure since its TR values ranged from 10−5 
in both cases (Table  5). Finally, no risk related to 
Pb ingestion seemed possible since its TR value was 
4.06 × 10−6 in the gut and 9.13 × 10−7 in the EP.

Conclusions

The present investigation confirmed that trout bio-
accumulate metals at different rates in the gut and 
muscles. Moreover, the data obtained confirmed that n.
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freshwater, even if far from industrial and anthropo-
genic activities, can lead to the accumulation of heavy 
metals related to the site’s geochemical morphology.

Trout fish were collected from an area originat-
ing from a volcanic eruption, followed by siliciclastic 
depositions in the water basin and complex geomor-
phology, leading to high levels of Al, As, Cu, Ba, Fe, 
Hg, and Mn in the riverbed.

However, THQ values were below the limit, and 
non-carcinogenic risk to humans was not associated 
with the consumption of the EP of brown trout from 
the selected freshwater site. When fish are consumed 
with the gut, adverse effects cannot be excluded due to 
the high levels of As and Hg accumulated in the gut.

The estimated target cancer risk calculated for As, 
Cd, and Pb showed no risk if only the EP was con-
sumed, but attention should be given to the levels of 
As and Cd when consuming the entire fish.

If high, harmful metal concentrations are detected, 
the amounts of fish consumed should be reconsidered.
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