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Abstract: This paper summarizes a mathematical model for the industrial heating and cooling
processes of a steel workpiece corresponding to the steering rack of an automobile. The general
purpose of the heat treatment process is to create the necessary hardness on critical parts of the
workpiece. Hardening consists of heating the workpiece up to a threshold temperature followed by a
rapid cooling such as aquaquenching. The high hardness is due to the steel phase transformation
accompanying the rapid cooling resulting in non-equilibrium phases, one of which is the hard micro-
constituent of steel, namely martensite. The mathematical model describes both processes, heating
and cooling. During the first one, heat is produced by Joule’s effect from a very high alternating cur-
rent passing through the rack. This situation is governed by a set of coupled PDEs/ODEs involving
the electric potential, the magnetic vector potential, the temperature, the austenite transformation,
the stresses and the displacement field. Once the workpiece has reached the desired temperature,
the current is switched off an the cooling stage starts by aquaquenching. In this case, the governing
equations involve the temperature, the austenite and martensite phase fractions, the stresses and
the displacement field. This mathematical model has been solved by the FEM and 2D numerical
simulations are discussed along the paper.

Keywords: steel hardening; thermomechanical problem; phase transitions; nonlinear coupled system
of PDEs/ODEs; finite element method

1. Introduction and Description of the Industrial Procedure

This work deals with the thermomechanical modeling and the numerical simulation
of metallurgical phase transitions of steel during an industrial heat treating.

Iron and steel production has a very long history that probably dates back to some
millennia. For instance, Asian swords are legendary. They are straight and had double
edged blades. The popularity of these swords can be explained by their extreme hardness,
obtained through a traditional heating-cooling process. Hardness implies an increasing of
brittleness, so that not both blade edges are hardened but only one of them, leaving the
other one resistant to breakage.

Presently, steel represents a very important source of innovation. In fact, its toughness,
good versatility and excellent processing properties make it one of the most commonly
used in Engineering or as a building material.

Steel is an iron-based alloy containing small amounts of carbon and possibly some
other elements. In the automotive industry, carbon content in steel lies between 0.2 wt%
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and 2.1 wt% and, together with other elements, represents the fundamental hardening
agent, very useful to prevent dislocation motion and propagation, therefore increasing
mechanical strength. It is possible to control the hardness, ductility and tensile strength
of steel by changing the amount of carbon and other alloying elements, such a chromium,
manganese, molybdenum, or vanadium.

Hardening consists of heating up the specified region till the austenitization is reached,
followed by a very rapid cooling via aquaquenching, oil spraying or salt baths.

At room temperature, steel is composed by different solid phases: ferrite, pearlite,
bainite, and martensite. In steels with less than 0.8 wt% carbon, known as hypoeutectoid
steel, it is possible to observe a significant variation of its internal structure in a temperature
range between 727 ◦C and 912 ◦C, approximately. In this situation, all phases are trans-
formed into austenite (or γ−iron). Figure 1 summarizes an iron-carbide phase diagram for
carbon steel; it shows the condition under which the phases are stable.
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Figure 1. Iron-carbide phase diagram.

When the cooling rate is high enough, the austenite is transformed into martensite,
which is the hardest microconstituent of steel. On the other hand, if the cooling rate is not
big enough, the austenite is transformed back into the other phases, i.e., ferrite, pearlite,
and bainite (Figure 2) possibly along with a different partition.

There are some common situations in which the industrial requirement is such that
the outer surface should be hard whereas the inner core should be kept ductile. In fact, this
ensures the workpiece wear resistance while reducing at the same time the material fatigue.



Mathematics 2021, 9, 1203 3 of 17

FERRITE

PEARLITE

BAINITE

MARTENSITE

Austenite

FERRITE

PEARLITE

BAINITE

MARTENSITE

Heating Cooling

Figure 2. Phase transformation of steel.

There exist several industrial hardening procedure of steel: induction-conduction,
flame, electron beam, laser surface, and so on (see [1–3]). For our purposes, we are con-
cerned with an induction-conduction process. A conductor (coil) carries a high frequency
alternating current producing a changing magnetic field and in its turn inducing eddy
currents. As a result, induction heating takes place: the heat so generated (Joule’s heating)
affects only the outer surface of steel components due to the skin effect. The current pass-
ing the workpiece is switched on usually for a few seconds only. When austenitization
is reached, the electric current is then switched off and the workpiece is subsequently
quenched in order to obtain the necessary cooling down temperature rate.

In this work we are interested in the mathematical description and the numerical
simulation of the hardening procedure of a car steering rack (see Figure 3a) including
mechanical effects. This mathematical description corresponds to the actual industrial
procedure happening in situ at the manufacturer factory. The rack bar of an automobile
is a cylindrical shape workpiece made of steel, provided with a toothed region designed
to engage with a pinion: the rack bar is mounted in a pinion housing in order to be
displaceable along the rack longitudinal axis. The rack bar is approximately 50 cm long and
22–25 mm in diameter. These two components, rack-pinion, constitute a very important
part of the steering system of a vehicle: the manufacturer company must guarantee its
correct performance for at least 20 years. The toothed region of the rack bar is permanently
in close contact with the pinion, and along this contact surface strong stresses will appear.
Thus, in order to avoid the mechanical deformations, hindering wear, abrasions and
fractures, the toothed region has to be hardened but without changing the ductility within
the rest of the workpiece.

(a) Rack bars of an automobile prior to a heat
treatment showing the toothed region.

Inductor

Support

Toothed region

(b) The inductor and the workpiece are put in
close contact during the heating process.

Figure 3. Rack bars and a steel rack induction heating machine.

In this paper, we will focus on the mathematical formulation of the phase transitions
and the thermo-mechanical behavior of the workpiece. As long as the mechanical model



Mathematics 2021, 9, 1203 4 of 17

is concerned, the main quantities of interest are (Cauchy) stress and strain tensors during
the treatment and the displacement field. We assume that the strain may be additively
decomposed into an elastic, a thermal, and a plastic part and that the thermomechanical
problem is governed by the quasistatic momentum balance and the balance law of internal
energy [4,5].

In the next section we describe the mathematical modeling of both the heating and
the cooling industrial processes for the hardening of a rack bar. The governing equations
is a nonlinear strongly coupled system of PDEs/ODEs. Figure 4 explains the way this
whole system is strongly coupled concerning the electromagnetic quantities, the phase
fractions, stresses, displacement field and temperature as well. Since a high alternating
electric current (83 KHz in this setting) is applied, potential Maxwell’s equations in the
harmonic regime are used to describe the electromagnetic induction. The main production
term responsible for the increase in temperature along the critical part of the workpiece (the
toothed region) is Joule’s heating coming from the eddy currents induced by the applied
high alternating electric current. Additionally, we focus our attention on two solid steel
phase fractions, namely austenite during the heating and cooling stages, and martensite
during the cooling stage. The dynamics of these two phase fractions are described by a set
of two ODEs. High temperature changes and phase transformations are accompanied by
deformations. In order to deal with these mechanical effects, a quasistatic viscoelasticity
model is considered. Here, the main quantities of interest are the Cauchy stress tensor,
the strain tensor and the displacement field. Finally, a balance law of internal energy is
taken into account. The source terms include Joule’s heating, mechanical dissipation and
latent heat.

Temperature θ Electromagnetic field

Stress σ
Displacement u

Phase volume fractions
z = (z0, z1, z2)

z0 + z1 + z2 = 1

Temperature dependent parameters

Joule’s effect

Transformation kinetics
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Figure 4. The equations governing these phenomena are strongly coupled.

In Section 3 we present the numerical simulations of the model described in the
previous section and comment the numerical results. All these numerical simulations have
been carried out through the software package FreeFem++ [6]. This is a free programming
language based on the finite element method. FreeFem++ is implemented in terms of
the variational forms of the corresponding problems, so that it is straightforward to solve
problems involving PDEs (both 2D or 3D) from several branches of physics and engineering.

Though the numerical simulations presented in this paper are in 2D, they may provide
with a valuable information to the manufacturer company so that it may be useful to
optimize this industrial process.

2. Mathematical Modeling

Let Ω ⊂ RN N = 2, 3, be an open set with a Lipschitz-continuous boundary (see
Figure 5). Ω = Ωc ∪ Ωs ∪ Γed. Ωc and Ωs stand for the inductor (copper-made) and
the steel rack bar, respectively. Γed = Ω̄c ∩ Ω̄s is the contact surface between the two
conductors. We consider two opposite faces Γ1, Γ2 ⊂ ∂Ωc as shown in Figure 5 where the
potential difference is applied. We also put Γ = Γ1 ∪ Γ2.



Mathematics 2021, 9, 1203 5 of 17Mathematics 2021, 1, 0 5 of 17

Ωs (steel)

Ωc (copper)
Ωc

Γ1 Γ2

Figure 5. Rack bar (steel) and inductor (copper). 3D CAD model built in FEMAP from Autocad file
supplied by the automotive industry.

To deal with the heating-cooling stages, a time partition [0, Tf] = [0, Th) ∪ [Th, Tf],
Tf > Th > 0 is considered. We distinguish our model in each time interval so that
we may identify the main difficulties and phenomena involved. In both cases, the cou-
pling between the thermomechanical phenomenon and the phase transformations will be
analyzed ([5,7–11]).

The electromagnetic unknowns are ϕ, standing for the scalar electric potential, and
A representing the complex magnetic field. The unknowns θ(x, t) and u(x, t) stand for
the temperature and the displacement field measured from the original geometry at the
point x ∈ Ωs and at the instant t ∈ [0, Tf]. By a(x, t) (respectively, m(x, t)) we will denote
the austenite (respectively, martensite) phase fraction. We consider an initial distribution
of all steel phases given by z0. This means that z0(x, t) + a(x, t) + m(x, t) = 1 for all
(x, t) ∈ Ω̄s × [0, Tf]. Notice that, in this setting, we have z0(x, 0) = 1 in Ω̄s.

2.1. Heating Stage: Governing Equations and Parameters Determination

The inductor and the rack bar are put in close contact as it is shown in Figure 5. In
this setting, both conductors constitute the coil. During the time interval (0, Th) we let
pass a high alternating current through the coil (83 KHz). The following equations will be
considered ([5,7,12–14]):

Electromagnetics





∇ · (b(θ)∇ϕ) = 0, in ΩTh
= Ω× (0, Th),

∂ϕ

∂n
= 0, on (∂Ω \ Γ)× (0, Th),

ϕ = 0 on Γ1 × (0, Th), ϕ = ϕ0 on Γ2 × (0, Th),

b0(θ)iωA +∇×
(

1
µ∇× A

)
− δ∇(∇ · A) = −b0(θ)∇ϕ in D× (0, Th),

A= 0, on ∂D× (0, Th).

(1)

Phase fractions





∂a
∂t

= fa(θ, a), in Ωs × (0, Th)

a(0) = 0, in Ωs.
(2)

Figure 5. Rack bar (steel) and inductor (copper). 3D CAD model built in FEMAP from Autocad file
supplied by the automotive industry.

To deal with the heating-cooling stages, a time partition [0, Tf] = [0, Th) ∪ [Th, Tf],
Tf > Th > 0 is considered. We distinguish our model in each time interval so that
we may identify the main difficulties and phenomena involved. In both cases, the cou-
pling between the thermomechanical phenomenon and the phase transformations will be
analyzed [5,7–11].

The electromagnetic unknowns are ϕ, standing for the scalar electric potential, and
A representing the complex magnetic field. The unknowns θ(x, t) and u(x, t) stand for
the temperature and the displacement field measured from the original geometry at the
point x ∈ Ωs and at the instant t ∈ [0, Tf]. By a(x, t) (respectively, m(x, t)) we will denote
the austenite (respectively, martensite) phase fraction. We consider an initial distribution
of all steel phases given by z0. This means that z0(x, t) + a(x, t) + m(x, t) = 1 for all
(x, t) ∈ Ω̄s × [0, Tf]. Notice that, in this setting, we have z0(x, 0) = 1 in Ω̄s.

2.1. Heating Stage: Governing Equations and Parameters Determination

The inductor and the rack bar are put in close contact as it is shown in Figure 5. In
this setting, both conductors constitute the coil. During the time interval (0, Th) we let
pass a high alternating current through the coil (83 KHz). The following equations will be
considered [5,7,12–14]:

Electromagnetics





∇ · (b(θ)∇ϕ) = 0, in ΩTh
= Ω× (0, Th),

∂ϕ

∂n
= 0, on (∂Ω \ Γ)× (0, Th),

ϕ = 0 on Γ1 × (0, Th), ϕ = ϕ0 on Γ2 × (0, Th),

b0(θ)iωA +∇×
(

1
µ∇× A

)
− δ∇(∇ · A) = −b0(θ)∇ϕ in D× (0, Th),

A= 0, on ∂D× (0, Th).

(1)

Phase fractions





∂a
∂t

= fa(θ, a), in Ωs × (0, Th)

a(0) = 0, in Ωs.
(2)
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Deformations





∇ · σ(u) = 0, in Ωs × (0, Th),

u= 0, on Γ0
h × (0, Th),

σ(u) · n= 0, on Γ1
h × (0, Th),

(3)

with
σ(u) = K : (ε(u)− q(θ, a)I). (4)

Temperature





α(θ, a, σ)
∂θ

∂t
−∇ · (k(θ)∇θ) = 1

2 b(θ)|iωA +∇ϕ|2

+β(θ, a, σ)
∂a
∂t

, in Ωs × (0, Th),

θ(0) = θ0, in Ωs,

∂θ

∂n
= 0, on ∂Ωs × (0, Th).

(5)

The system (1), describing the electromagnetic dynamics, comes from Maxwell’s
equations in the harmonic regime. Here b(θ) is the electric conductivity, i is the imaginary
unit, ω = 2πf is the pulsation, f being the frequency of the alternating current, µ = µ(x)
is the magnetic permeability, δ > 0 is a small constant and b0(x, s) = b(x, s) if x ∈ Ω,
b0(x, s) = 0 elsewhere;. Notice that D ⊂ R2 is a big enough and smooth domain containing
the set of conductors. The magnetic permeability is then defined by the following piecewise
constant function

µ(x) =





µ0 if x ∈ D \ (Ωc ∪Ωs),
µ1 if x ∈ Ωs,
µ2 if x ∈ Ωc,

where the µ0, µ1 and µ2 stand for the vacuum permeability, steel permeability and copper
permeability, respectively.

In Equation (2), a Leblond-Devaux model [15] is considered to simulate the austenite
transformation once the threshold temperature As is attained, particularly, the rate of
change fa is modeled as

fa(θ, a) = max
{

1
τa(θ)

(aeq(θ)− a), 0
}
H(θ − As).

Herein,H stands for the Heaviside functionH(s) = 1 if s > 0 and is zero elsewhere.
The functions aeq(θ), τa(θ) (see Figure 6) can be determined from experimental data.

As far as the quasistatic model of viscoelasticity (3) is concerned, Γ0
h ⊂ ∂Ωs is the

surface boundary where ∂Ωs is clamped (null displacement) during the heating stage and
Γ1

h = ∂Ωs \ Γ0
h. As it was said above, u is the displacement field and σ denotes the stress

tensor, related to strain ε(u) = 1
2 (∇u +∇ut) through the constitutive law (4). In this last

expression (see [16])

• K stands for the isotropic stiffness tensor;
• q(θ, a) = q0(1− a)(θ− θref

0 )+ qaa(θ− θref
a ) is a thermal contribution to strain, deduced

from available dilatometry experiments (see Figure 7). As long as the temperature
is increasing, the material expansion is modeled using a linear fitting. During the
transformation into the austenite phase, a contraction range can be observed before
going on with the usual expansion, but now with a higher linear coefficient.
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As A f θ

τa(θ)

aeq(θ)
1

0
Figure 6. Characterization of aeq (red line) and τa (blue line) as temperature-dependent functions.

Temperature

Thermal Expansion

θref
0 As A f

M f Ms

Figure 7. Schematic dilatometry experiments.

Finally, arguing as in [5], a balance law is developed for the temperature. Thus, in (5),
k(θ) stands for thermal conductivity, α and β are given, respectively, by

α(θ, a, σ) = ρ c + tr σ
∂q
∂θ

, β(θ, a, σ) = ρL + tr σ
∂q
∂a

,

ρ being the steel density, c the specific heat at constant strain and L the latent heat. Addi-
tionally, θ0 is the room temperature, which is taken to be θ0 = 300 K in all our numerical
experiments. The main production term in (5), responsible for the increasing in temperature
is the quadratic term 1

2 b(θ)|iωA +∇ϕ|2 and is called Joule’s heating.
We put θTh = θ(Th) and aTh = a(Th) the temperature distribution and the austenite

fraction, respectively, at the end of the heating stage. Both functions θTh and aTh will be
used as the initial temperature and austenite fraction, respectively, in the cooling stage.
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2.2. Cooling Stage: Governing Equations and Parameters Determination

At t = Th the current is switched off and for Th 6 t 6 Tf, the aquaquenching
takes place. The workpiece is sprayed down with oily water at a constant temperature
θq. The temperature goes down so quickly in the austenized toothed region that the
martensite phase fraction is forced to appear. However, these phase transformations induce
a plastic deformation. According to [17,18], this TRIP (TRansformation-Induced-Plasticity)
contribution to strain for the austenite-martensite transformation is taken into account in
our model.

Phase fractions





∂a
∂t

= fa(θ, a)− ∂m
∂t

, in Ωs × (Th, Tf),

∂m
∂t

= fm

(
a, m, θ,

∂θ

∂t

)
, in Ωs × (Th, Tf),

a(Th) = aTh , in Ωs,

m(Th) = 0, in Ωs.

(6)

Deformations





∇ · σ(u) = 0, in Ωs × (Th, Tf),

u= 0, on Γ0
c × (Th, Tf),

σ(u) · n= 0, on Γ1
c × (Th, Tf),

(7)

σ(u) = K :
(

ε(u)− q(θ, a, m)I −
∫ t

0
γ

(
θ, m,

∂m
∂t

)
Sdτ

)
. (8)

Temperature





α(θ, a, m, σ)
∂θ

∂t
−∇ · (k(θ)∇θ) = βa(θ, a, m, σ)

∂a
∂t

+ βm(θ, a, m, σ)
∂m
∂t

+ γ

(
θ, m,

∂m
∂t

)
|S|2, in Ωs × (Th, Tf)

θ(Th) = θTh , in Ωs,

−k(θ)
∂θ

∂n
= β̄(θ − θq), on ∂Ωs × (Th, Tf).

(9)

In (6), a Koistinen-Marburger model is taken into account in order to describe the
martensite transformation (see [19]). This diffusionless transformation is quite different
from that related to austenite and it is highly dependent on the cooling rate:

fm

(
a, m, θ,

∂θ

∂t

)
= cmaH

(
−∂θ

∂t

)
H(Ms − θ),

where the threshold value Ms indicates the starting temperature from which the martensite
appears, whereas cm is a constant determined from experimental data.

In (7) and (8), the thermal strain should be conveniently modified in order to take into
account the new linear growing during the cooling as is shown in Figure 7. This yields

q(θ, a, m) = q0(1− a−m)
(

θ − θref
0

)
+ qaa

(
θ − θref

a

)
+ qmm

(
θ − θref

m

)
.
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Moreover, as in [7,20] the TRIP effect is modeled by

∂εtrip

∂t
= λ1(θ)

∂λ2(m)

∂m
∂m
∂t

S def
= γ

(
θ, m,

∂m
∂t

)
S, (10)

where S = σ − 1
N (tr σ)I is the deviatoric stress tensor and tr σ denotes the trace of σ;

λ1(θ) = 3
2K, and K is experimentally determined; λ2 is a suitably selected increasing

function such that λ2(0) = 0 and λ2(1) = 1, for instance λ2(s) = s(2− s) as in [17], or
λ2(s) = s(1− log(s)) as in [18].

Finally, in (9) the functions βa and βm are given by

βa(θ, a, m, σ) = −ρL + tr σ
∂q
∂a

and βm(θ, a, m, σ) = ρL + tr σ
∂q
∂m

.

Notice that the aquaquenching is modeled through the Robin boundary condition
in (9) where β̄ stands for a heat transfer coefficient.

3. Numerical Simulations

Using the FreeFem++ software [6] we carried out some numerical simulations of
the model (1)–(9). We used the finite element method for the space approximation and a
Crank-Nicolson scheme for the time discretization. Actually, a P2-Lagrange approximation
for ϕ, A, θ and u, and P1 for a and m. Ordinary differential equations are discretized using
Heun’s method.

A fixed time step has been used from t = 0 to t = Th = 5.5, namely ∆t = 5.5/110,
whereas a variable time step has been considered from t = Th to t = Tf = 11.0 in order to
deal with the drastic decreasing in temperature during the first iterations of the cooling
stage. To do so, we first consider the function s(t) = (t− 5.5)2/5.5 and put r0 = t0 = 5.5,
then define recursively for n = 1, . . . , 110,

rn = rn−1 + ∆t and tn = tn−1 + s(rn)− s(rn−1).

In this way, the first time iterations of the cooling stage refer to tighter time steps than
the ones of the final iterations.

In our simulation, the workpiece was heated up during Th = 5.5 s from a room
temperature of θ0 = 300 K followed by the aquaquenching for another 5.5 s (Tf = 11). The
temperature of the oil used in the aquaquenching is θq = 315 K.

In Figure 8, some pictures are displayed for the meshes used in our 2D numerical sim-
ulations. It is important to have a high density of triangles close to the toothed region. The
material parameters have been taken from data of a specific steel with a given composition
(Table 1) assuring the desirable mechanical properties after the heat treating [21]. In Table 2
we can find the actual values we have taken in our numerical experiments. The parameters
in the thermal stresses modeling has been taken from [22,23].

Additionally, the value of the small parameter δ appearing in the equation for the
complex magnetic field is taken to be δ = 10−15. In fact, the term −δ∇(∇ · A) appearing
in (1) is artificial. It is used in order to stabilize the numerical resolution of (1). Of course,
other approaches are possible (see [5,7]).

Table 1. Chemical composition of 42CrMo4 steel.

Elements C Si Mn P S Cr Cu Mo Ni

Content %wt 0.420 0.260 0.680 0.019 0.021 1.020 0.330 0.180 0.150
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(a) Zoom in the toothed region. (b) Element density on a tooth.

(c) Ωs
h: 17,373 triangles and 10,232 vertices

Figure 8. Triangulation of the rack bar used in the numerical simulations (c), with zoom in the left
side of the toothed region (a) and one tooth (b).

Table 2. Electromagnetic and metallurgical data.

Vacuum permeability µ0 4π × 10−7 N/A2

Steel permeability µ1 2.24× 103µ0 N/A2

Copper permeability µ2 0.99995µ0 N/A2

Current frequency f 8.3× 104 Hz

Pulsation ω 2πf Hz

Density ρ 7653.00 Kg/m3

Specific heat c 554.00 J/(Kg K)

Thermal conductivity k 34.28 J/(s m K)

Latent heat L 8.20× 104 J/Kg

Young modulus E 21.00× 1010 Pa

Poisson coefficient ν 0.28 -

Plasticity constant K 4.20× 10−11 -

Austenite starting temperature As 1003.00 K

Austenite finishing temperature A f 1113.00 K

Martensite starting temperature Ms 633.00 K

Steel thermal coefficient q0 1.53× 10−5 K−1

Reference temperature θ0
ref 300.00 K

Austenite thermal coefficient qa 2.46× 10−5 K−1

Reference temperature θa
ref 701.00 K

Martensite thermal coefficient qm 1.15× 10−5 K−1

Reference temperature θm
ref 298.00 K

Heat transfer coefficient β̄ 6.6× 103 W/(m2 K)
Aquaquenching oil temperature θq 315.00 K
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In [12,24], some theoretical and numerical results can be found for a simplified version
of this problem, without taking into account mechanical effects. In [14] some additional
details of the numerical Freefem++ code about the construction of the toothed geometry
are described.

In Figure 9, the austenite profile is shown for some selected time instants during the
heating stage, along with the temperature distribution at the same time instants. During
the cooling stage, the austenite is fully transformed and the martensite is obtained as long
as the temperature has decreased rapidly (Figure 10). The evolution of the phase fractions
austenite and martensite and the temperature has been measured on three selected points
A, B and C lying at different heights within one tooth. The evolution of these quantities
are depicted in Figure 11. Due to the eddy currents and the skin effect along the toothed
region, the temperature is higher on point A than on B, and on this one than on C. As
a result, austenitization is reached first on point A, then on B and then on C. Notice the
drastic decreased of the temperature at the beginning of the aquaquenching on these three
points. Finally, the austenite is transformed into martensite but the amount of the computed
martensite fraction is slightly higher on B and C than on point A.

As far as the mechanical deformations are concerned, Figures 12 and 13 show the
deformed meshes corresponding to the end of both the heating and the cooling stages. In
both cases, they are compared to the original mesh. For t ∈ [0, Th), we assume that the rack
bar is clamped at four boundary sites, namely up and down and at both sides of the toothed
region. For t ∈ [Th, Tf], the rack is released on the two upper boundaries, but it is still
clamped on the two boundaries below. Since austenite is a face-centered cubic structure it
is denser than the other phases. For this reason, during the heating stage all the austenized
region will result in a volume reduction and in its turn a deformed configuration. This
shrinking is put in evidence in Figure 12. On the other hand, during the cooling stage the
transformation from austenite into martensite will produce a slight increase in volume
which deforms the rack bar as shown in Figure 13. Obviously, just after this treatment, the
rack bar needs to be rectified in order to recover its straightness at least at an admissible
threshold. Obviously, due to these deformations the workpiece is highly stressed in some
particular regions. Figures 14 and 15 depicts the distribution of the (natural logarithm of)
von Mises stresses at the end of the heating and cooling stages, respectively. At the end of
the heating stage, according to Figure 14, the toothed line and the region below it is highly
stressed. On the other hand, at the end of the cooling stage, the workpiece is extremely
stressed along the toothed line whereas below it the workpiece undergoes some stress
reduction, as shown in Figure 15. In both cases, almost the same stress pattern is found
at each tooth. These residual stresses in the workpiece can be reduced by a heat treating
called tempering. As a result, the hardness obtained after the quenching will decrease up
to a level still suitable for the application.
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Austenite Temperature

t = 1.0

IsoValue
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

IsoValue
300
370
440
510
580
650
720
790
860
930
1000
1070
1140
1210
1280
1350
1420
1490
1560
1630
1700

t = 2.0

t = 3.0

t = 4.0

t = 5.5

Figure 9. Above: austenite and temperature during the heating stage at t = 1.0, 2.0, 3.0, 4.0 and 5.5 s,
respectively. Center: temperature distribution along the full toothed region. Below: austenite phase
fraction distribution at the final heating stage along the full toothed region. It can be seen that every
tooth has been austenized while, except for a very thin transition strip, the rest of the workpiece
remains unchanged.
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IsoValue
0
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0.1
0.15
0.2
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0.3
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0.7
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0.95
1

Austenite Martensite Temperature
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300
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510
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720
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1000
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1280
1350
1420
1490
1560
1630
1700

Figure 10. Above: austenite, martensite and temperature during the cooling stage at t = 5.80, 6.50, 7.54, 8.56 and 11.00 s, re-
spectively. Center: temperature distribution at the final cooling stage along the full toothed region. Below: martensite phase
fraction distribution at the final cooling stage along the full toothed region. These results show the whole transformation of
the austenite into martensite along the toothed region.
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A•

B•

C•

(a) Points A, B and C.
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(b) Temperature time evolution
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(c) Austenite time evolution
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(d) Martensite time evolution

Figure 11. Austenite, martensite and temperature time evolution at points A (red line), B (blue line)
and C (green line).

Figure 12. Overlapping the original mesh to the deformed one (with a scale factor of 10) at the
end of the heating stage. The austenitized region undergoes a volume reduction changing the
original profile.
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Figure 13. Overlapping the original mesh to the deformed one (with a scale factor of 10) at the end of
the cooling stage.

3.59 5.6 7.62 9.64 11.7 13.7 15.7 17.7 19.7 21.7 23.8

von Mises Log stress

Figure 14. Distribution of the (natural logarithm of) von Mises stresses at the end of heating stage.
The workpiece is highly stressed near the toothed line.

13.3 14.6 16 17.3 18.6 19.9 21.2 22.6 23.9 25.2 26.5

von Mises Log stress

Figure 15. Distribution of the (natural logarithm of) von Mises stresses at the end of cooling stage.
The workpiece is extremely stressed along the toothed line whereas below it there is a stress reduction.

4. Conclusions

This paper describes a problem related to the industrial heating-cooling process of
a steel workpiece corresponding to the steering rack of an automobile. Precisely, the
mathematical problem consists of a nonlinear system of ODEs for both steel phase fractions,
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austenite and martensite, coupled with a strongly coupled and nonlinear system of PDEs
for the electric potential, the complex magnetic field, stresses and displacement field and
the temperature.

Many industrial heating procedures are based on an AC induction technique so that
the workpiece is put near the coil but with neat separation between them. However,
this is not the case described in this paper, mainly due to the special geometry of the
considered workpiece.

In this setting, the inductor machine and the workpiece are put in close contact so that
all together constitute a coil. The eddy currents combined with the skin effect result in
Joule’s heating along the toothed region of the rack bar which leads to the high heating of
the workpiece critical part.

Once the mathematical model has been fully described, including all the relevant
physical quantities, we carried out some numerical simulations based on the FEM. To
do so, we have considered a mesh exhibiting an element high density around the rack
toothed region.

Though we only performed 2D numerical simulations, all these numerical results may
provide a valuable information to the manufacturer and can be useful in order to optimize
this industrial process.

The analysis of the numerical simulations shows how the toothed region along the
rack bar is heated up until austenitization is reached. During this stage, one can observe
the mechanical effects on the workpiece: expansions due to the raise of temperature and at
the same time volume reduction on the austenitized region. On the other hand, during the
aquaquenching, the toothed region is radically cooled down so that martensite is produced
along the toothed region and again some mechanical effects are observed: the workpiece
undergoes expansions where martensite occurs and contractions elsewhere.

Moreover, the rate-dependent inelastic behavior of the workpiece is justified by the
plastic term appearing in the constitutive laws. The austenite transformation induces the
teeth shrinking during heating; successively, the same workpiece expands again during
cooling according to the martensite transformation, but without reaching its initial configu-
ration. Obviously, these deformations are accompanied by stresses. A computation of the
von Mises stresses has shown the regions where the workpiece is particularly stressed.

The next step in this research should be to implement the resolution of this model in a
3D setting.
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