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Abstract Predicting the vibration of the circular

sawing machine is very important in examining the

performance of the sawing process, as it shows the

amount of energy consumption of the circular sawing

machine. Also, this factor is directly related to

maintenance cost, such that with a small increase in

the level of vibration, the maintenance cost increases

to a large extent. This paper presents new prediction

models to assess the vibration of circular sawing

machine. An evaluation model based on the imperi-

alist competitive algorithm as one of the most efficient

artificial intelligence techniques was used for estima-

tion of sawability of the dimension stone in carbonate

rocks. For this purpose, four main physical and

mechanical properties of rock including Schimazek’s

F-abrasivity, uniaxial compressive strength, mean

Mohs hardness, and Young’s modulus as well as two

operational parameters of circular sawing machine

including depth of cut and feed rate, were investigated

and measured. In the predicted model, the system

vibration in stone sawing was considered as a depen-

dent variable. The results showed that the system

vibration can be investigated using the newly devel-

oped machine learning models. It is very suitable to

assess the system vibration based on the mechanical

properties of rock and operational properties.

Keywords Dimension stone � Carbonate rocks �
Sawing process � Vibration � ICA

1 Introduction

In dimension stone industry, a range of igneous,

metamorphic, and sedimentary rocks are used. These

types of dimension stones are commonly known as

granite, limestone, marble, travertine, sandstone, and

quartzite. The market value of these materials is far

higher than that of most minerals currently extracted

and varies considerably. Thus, special attention has

been given to this issue in the world. One of the most

important parts in stone processing is sawing process

of extraction blocks. Sawing machines in the building

stone processing industry can be divided into circular

diamond saw, gang saw and diamond wire saw.

Among these devices, circular diamond saw is the

most used.

Iran is a mineral-rich country with a high potential

in dimension stone. Studies show that Iran is ranked

among the 15 major mineral-rich countries (Reichl

et al. 2013; Adibi and Ataee-pour 2015). Over the last
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Table 1 Literature review of sawability studies

References Saw type Physical and mechanical properties

W C UCS BTS YM IS SS BS H A D Gs Qc Ws

Burgess (1978) d d d

Wright and Cassapi (1985) d d d d d d

Birle and Ratterman (1986) d d

Jennings and Wright (1989) d d d d d

Clausen et al. (1996) d d d

Ciccu et al. (1998) d d d d

Agus et al. (2003) d d d d

Wei et al. (2003) d d d d d

Eyuboglu et al. (2003) d d d d d

Ersoy and Atıcı (2004) d d d d d d d d d d d d

Kahraman et al. (2004) d d d d d d

Gunaydin et al. (2004) d d d d

Ozcelik et al. (2004) d d d d d d d

Buyuksagis and Goktan (2005) d d d d d d

Ersoy et al. (2005) d d d d d d d d d d

Delgado et al. (2005) d d d

Kahraman et al. (2005) d d d

Cai et al. (2007) d d d d d d

Fener et al. (2007) d d d d d d

Kahraman et al. (2007) d d d d d

Özçelik (2007) d d d d d

Tutmez et al. (2007) d d d d d d

Buyuksagis (2007) d d d d d d d d

Mikaeil et al. (2008) d d d

Kahraman and Gunaydin (2008) d d d

Ataei et al. (2011) d d d d d

Mikaeil et al. (2011) d d d

Ataei et al. (2012) d d d d d d d

Yurdakul and Akdas (2012) d d d d d d d

Ghaysari et al. (2012) d d

Mikaeil et al. (2013) d d d d d d d d

Sadegheslam et al. (2013) d d d d d

Careddu and Cai (2014) d d

Careddu and Lanceni (2015) d d

Tumac (2015) d d d

Mikaeil et al. (2015) d d d d d d d d

Aryafar and Mikaeil (2016) d d d d d d d d

Tumac (2016) d d d d d

Almasi et al. (2017a) d d d d d d d d

Almasi et al. (2017b) d d d d d d d d

Almasi et al. (2017c) d d d d d d d d

Kamran et al. (2017) d d d d d d d d

Akhyani et al. (2017) d d d d d d d d
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four decades, many studies in the field of dimensional

stone have been done in the world (Table 1). By

reviewing the previous studies in Table 1, it can be

seen that the five parameters including uniaxial

compressive strength (UCS), indirect Brazilian tensile

strength (BTS), hardness (H), abrasivity (A), and

quartz content (Qc) have been used widely for

modeling and evaluation of sawing process. It was

concluded that these parameters are significant in the

rock sawing process with diamond wire saw and

circular diamond saw.

One of the effective factors in sawing costs is

maintenance cost. Along with other cost factors such

as labor, energy, water, this factor is very important.

This factor can be considered directly related to the

vibration of the sawing machine. As a result, predict-

ing machine vibration can play an important role in

predicting the cutting costs. In addition, in the sawing

process, system vibration is a significant factor of

cutting performance in terms of maintenance cost. The

rock sawing process inevitably leads to the production

of vibrations that are transmitted both on the stone to

be sawed and on the tool and the machine. These

machines that, when sawing the stone, produce a large

amount of vibrations (such as gang saw) require

special and expensive reinforced concrete founda-

tions; multi-wire machines certainly have the advan-

tage of producing a lower amount of vibrations thanks

to the lower rigidity of the system (Careddu and Cai

2014). However, it is undeniable that the vibrations

produced during rock sawing can lead to various

problems in the rock (poor flatness of the cut, and/or

excessive surface roughness), in the tool (irregular

wear, breakage) and in the machine (breakage). The

problem of vibration has been studied by many

researchers in rock sawing by diamond wire, some

kind of ‘‘irregular’’ wear of diamond beads could be

explained just by vibration phenomenon of the wire

(Cai and Careddu 2013). Dunda and Kujundžić (2001)

observed that high velocities of diamond wires

Table 1 continued

References Saw type Physical and mechanical properties

W C UCS BTS YM IS SS BS H A D Gs Qc Ws

Mikaeil et al. (2017) d d d d d d d d

Yilmazkaya et al. (2018) d d d d d d d d d

Tumac and Shaterpour-Mamaghani 2018) d d d d d d

Aryafar et al. (2018a) d d d d d d d d

Aryafar et al. (2018b) d d d d d d d d

Akhyani et al. (2018) d d d

Mikaeil et al. (2018a) d d d d d d d d

Mikaeil et al. (2018b) d d d d d d d d

Careddu et al. (2018) d d d d d

Careddu et al. (2019) d d d d d

Akhyani et al. (2019) d d d d d d d d

Mohammadi et al. (2019) d d d d d d d d

Dormishi et al. (2019a) d d d d d d d d

Dormishi et al. (2019b) d d d d d d d d

Mikaeil et al. (2019a) d d d d d d d d

Haghshenas et al. (2019) d d d d d d d d

Hosseini et al. (2019) d d d d d d d d

Hosseini et al. (2020a) d d d d d d d d

Hosseini et al. (2020b) d d d d d d d d

W, Diamond wire saw; C, Circular saw, Frame saw and Chain saw; UCS, Uniaxial compressive strength; YM, Young’s modulus;

BTS, Indirect Brazilian tensile strength; IS, Impact strength; SS, Shear strength; BS, Bending strength; H, Hardness; A, Abrasivity;

D, Density; Gs, Grain size; Qc, Quartz content; Ws, Wave speed
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produce vibrations of the rope, caused by dynamic

forces, which lead to fatigue-breakage. Polini and

Turchetta (2007) monitored tool wear using force and

acceleration sensors and found that axial force and

vibration affected the amount of tool wear. Tumac

(2016) stated that operational parameters of the

circular sawing process, such as peripheral speed,

saw blade type and diameter have a significant effect

on vibration. Geology and rock nature can also affect

the development of vibrations in the chain saw cutting

process the discontinuities and cracks within the rock

mass limit the chain speed since larger chain speed

increases vibrations on chain saw arm causing the

breakage of the tools (Dagrain et al. 2012).

The major factors that need consideration in eval-

uating the system vibration, particularly for stone

cutting, are the properties of the rock and the opera-

tional parameters of the saw as well as the type of

equipment (gang-saw, multi-wire, and block-cutter).

In this study, new models were developed to evaluate

the system vibration in the stone sawing process by

means of a circular diamond saw. Using these devel-

oped models, more economic analysis as a decision-

making index can be done for project planning.

This study is organized as follows. After introduction

in the first section, the methodology of the study is

presented. In the third section, the studied quarries and

laboratory study are explained. In the fourth section, the

new models are developed to predict the system

vibration using the imperialist competitive algorithm.

Finally, the fifth section reviews the results of the

models. This section concludes and discusses the paper.

2 Methodology

This study is generally organized into two main

sections. Field and laboratory studies were performed

to create statistical data in the first section. Finally, soft

computing was carried out to evaluate the cutting

performance of circular sawing machine. Figure 1

displays the flowchart of this study.

2.1 Imperialist Competitive Algorithm

Artificial intelligence techniques are one of the most

popular ways to solve complex problems in industry

and economics sectors (Mahdevari et al. 2017;

Start

Field studies Laboratory studies

Sampling of stone blocks 
Preparation of cylindrical 

specimens from stone 
samples  

Preparation of slab 

Cutting of dimension stone slab 
with cutting rig 

Determination of physical 
and mechanical properties

Evaluating of system vibration 
of sawing machine using ICA

Determination of vibration 

Fig. 1 Flowchart of study
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Naderpour et al. 2019; Zhang and Geem 2019;

Kayabekir et al. 2020; Daneshvar and Behnood 2020;

Guido et al. 2020a; Kandiri et al. 2020). In recent years,

several studies have been conducted on the application

of artificial intelligence in engineering problems (Geem

and Kim 2018; Mikaeil et al. 2018c, 2019b, c, d; Salemi

et al. 2018; Gnawali et al. 2019; Park et al. 2020;

Shaffiee Haghshenas et al. 2020; Noori et al. 2020;

Fiorini Morosini et al. 2020; Guido et al. 2020b). One of

the most efficient methods of artificial intelligence is the

imperialist competitive algorithm (ICA), suggested by

Atashpaz-Gargari and Lucas (Khabbazi et al. 2009;

Haghshenas et al. 2017). The capability of algorithm to

solve the different types of optimization problems has

been studied by the authors in Atashpaz-Gargari and

Lucas 2007; Nazari-Shirkouhi et al. 2010; Shokrollah-

pour et al. 2011; Maroufmashat et al. 2014; Ardalan

et al. 2015; Sadaei et al. 2016; Sharifi and Mojallali

2016; Mokhtarian Asl and Sattarvand et al. 2016. As

other evolutionary algorithms, the ICA begins with an

initial number of solutions that are called countries.

Each solution represents the concept of the nations and

reflects the quality of objective function in each solution.

The best solutions or countries are elected as ‘imperi-

alists’ while the remaining solutions are categorized as

the ‘colonies’ of those imperialists. An imperialist and

the colonies form an ‘empire’ (Shokrollahpour et al.

2011). Gradually, imperialists seek to extend their

characteristics to the colonies under their control. Still,

the procedure is not fully controlled and revolutions are

expected. Countries may also leave one empire to join

another provided that the new one gives them more

chance of promotion. Figure 2 displays the flowchart of

the ICA. In the following, the methodology for imple-

mentation of ICA will be explained step by step.

Step 1 Generating initial empires: The optimization

algorithm starts with an initial population that is

created consisting of Npop solutions including Nimp of

the strongest that represent the imperialists. The

remaining members of the population

(Ncol ¼ Npop � Nimp) represent the colonies of the

empires. The primary empires and colonies are

separated among the imperialists given their power

as the higher the power of an empire, the more the

colonies covered by it. To distribute the colonies

among imperialists based on their power, the normal-

ized cost of nth imperialist is given as follows

(Atashpaz-Gargari and Lucas 2007):

Cn ¼ maxfcig � cn; i ¼ 1; 2; . . .;Nimp ð1Þ

where cn and Cn represent the cost and the normalized

cost of nth imperialist respectively. Thus, each impe-

rialist’s normalized power is determined as follows

(Atashpaz-Gargari and Lucas 2007):

pown ¼
Cn

PNimp

i¼1 Ci

�
�
�
�
�

�
�
�
�
�

ð2Þ

Start

Input the control 
factors 

Generate a population of 
countries randomly and construct 

the initial  empires

 Move the colonies toward their 
relevant imperialist

Revolve some colonies

Update the cost of colonies

Is there a colony in an 
empire which has lower 

cost than that of the 
imperialist?

Exchange the positions of that
imperialist and the colony

Compute the total cost of all 
empires

Is there an empire with 
no colonies?

Eliminate this empire

Stop condition satisfied?

End

Yes

N
o

Yes

N
o

Yes

N
o

Fig. 2 Flowchart of imperialist competitive algorithm
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The number of colonies that can be controlled by an

imperialist is determined by its normalized power.

Hence, the count of colonies of an empire at beginning

is given as (Atashpaz-Gargari and Lucas 2007;

Haghshenas et al. 2017):

ColEmpn ¼ roundðpown � NcolÞ ð3Þ

where ColEmpn is the starting number of the colonies

of nth empire that are determined in the whole colony

population randomly.

Step 2 Assimilation process: The colony can move

towards the imperialist on different socio-political

axes such as culture and language. The colony can

approach the imperialist by x units, while x stands for a

random number with uniform distribution.

Step 3 Revolution: The operator diversifies ICA to

examine new regions. The mechanism protects the

algorithm from being trapped in local optima. Thus,

each iteration selects the weakest colony and ran-

domly replaces it with a new one.

Step 4 Imperialist and a colony substitution: It is

possible for a colony to reach the position where cost

function is less than that of its imperialist. When this

happens, the colony and imperialist replace their

position.

Step 5 Calculating the total power of an empire: It is

obtained based on the power of its imperialist country,

while the powers of its individual colonies have also

important influence, which is relatively insignificant.

Thus, the total cost of an empire is as:

TC ¼ costðimperialistnÞ
þ nmeanðcos tðcolonies of empirenÞÞ ð4Þ

where TC represents the total cost of the nth empire and

n stands for positive number which is considered less

than 1.

Step 6 Imperialistic competition: The competition is

modeled by choosing one of the weakest colonies that

belongs to the weakest empire and making a compe-

tition among all empires to possess this colony. The

possession probability of each empire is proportional

to its total power. The normalized total cost of each

empire is determined as follows (Eq. (5)):

NTCn ¼ maxfTCig � TCn i ¼ 1; 2; . . .;Nimp ð5Þ

where TCn and NTCn represent the total cost and

normalized total cost of nth empire respectively. Now

the chance of possession for each empire is given by:

pn ¼
NTCn

PNimp

i¼1 NTCi

�
�
�
�
�

�
�
�
�
�

ð6Þ

To determine the share of each empire of the noted

colonies, vector P is formed as follows:

P ¼ ½p1; p2; p3; . . .; pNimp
� ð7Þ

Afterwards, the vector R equal to P in size is created

of which the elements are uniformly distributed

random numbers between 0 and 1.

r ¼ ½r1; r2; r3; . . .; rimp�; r1; r2; r3; . . .; rimp �Uð0; 1Þ
ð8Þ

Then, vector D is formed by subtracting R from P.

D ¼ P� R ¼ ½d1; d2; d3; . . .; dNimp
�

¼ ½p1 � r1; p2 � r2; p3 � r3; . . .; pNimp
� rNimp

� ð9Þ

Based on vector D, the colonies will be subjected to

an empire whose corresponding index of empire in D

is maximum. (Atashpaz-Gargari and Lucas 2007;

Haghshenas et al. 2017).

Step 7 Removing the empires without power: Empires

without power will not survive in the imperialistic

competition and the colonies they have are taken by

other empires. Here, an empire falls when all its

colonies are lost.

Step 8 Stopping criteria: when no iteration remains or

only one empires controls the whole world, the

algorithm stops.

3 Studied Quarries and Laboratory Study

In this paper, twelve famous Iranian quarries are

studied. The names and locations of these quarries are

presented in Table 2 and Fig. 3, respectively.
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Table 2 The names of studied quarries

Fig. 3 The location of studied quarries

Name samples Rock sample Type Quarry

S1 CHM Cream Harsin Marble Zolfaghar

S2 PAM Pink Anarak Marble Golsang

S3 RT Red Travertine Azarshahr

S4 HT Hajiabad Travertine Hajiabad

S5 DT Darebokhari Travertine Darebokhari

S6 SM Salsali Marble Salsali

S7 PM Pink Marble Haftoman
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The samples of the studied dimension stones were

prepared from quarries. Then, they were transferred to

the rock mechanics laboratory to determine four major

physical and mechanical parameters including, Sch-

miazek F-abrasivity factor (SF-a), Mohs Hardness

(MH), Uniaxial Compressive Strength (UCS), and

Young’s Modulus (YM). Finally, standard tests were

completed to measure these parameters according to

the procedures suggested by the ISRM standards

(ISRM 1981).

The UCS test was carried out using a servo

controlled testing machine designed for rock test

under a loading rate of 1 MPa/s. Finally, the average

UCS was considered for each studied dimension stone.

The Schimazek’s F-abrasiveness factor is calcu-

lated by Eq. 10 (Schimazek and Knatz 1970).

Table 3 The results of

laboratory studies
Name samples UCS BTS QC Gs SF-a YM MH

MPa MPa % mm N/mm GPa n

S1 71.5 6.8 3.6 0.55 0.135 32.5 3.5

S2 74.5 7.1 3.4 0.45 0.109 33.6 3.2

S3 53 4.3 2.8 1.01 0.122 20.7 2.9

S4 61.5 5.6 2.6 0.85 0.124 21 2.9

S5 63 5.4 2.7 0.87 0.127 23.5 2.95

S6 68 6.3 3.2 0.52 0.105 31.6 3.1

S7 74.5 7.2 4 0.6 0.173 35.5 3.6

A: Diamond disk

B: Accelerometer

C: Workpiece

D: Amplifier 

E: Junction box

F: PC with ADC

Fig. 4 A schematic diagram of the adopted sensor system and laboratory sawing rig

Fig. 5 Typical time-domain acceleration signals monitored at the different time interval
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SFa ¼ EQC � Gs� BTS

100
ð10Þ

where SFa is the Schimazek’s F-abrasiveness factor in

N/mm, EQC denotes the equivalent quartz content

percentage in %, Gs represents the median grain size

in mm, and BTS is the indirect Brazilian tensile

strength in MPa.The mean hardness of each studied

rock is determined according to the hardness of

contained minerals by Eq. 11 (Hoseinie et al. 2009):

Mean Hardness ¼
Xn

i¼1

Mi � Hi ð11Þ

where Mi is the mineral content in %, Hi is Mohs

hardness, n denotes the total number of minerals in the

thin section of the studied dimension stone.

The tangent Young’s modulus has been considered

in this study. This modulus is obtained at a stress level

equal to 50% of the ultimate UCS. The results of rock

mechanic laboratory studies are reported in Table 3.

To conduct and complete laboratory studies, an

experimental procedure was performed. For this

purpose, seven carbonate rocks were cut at different

feed rates (FR) including FR: 100, 200, 300 and

400 cm/min and depth of cut (DC) including, DC: 35,

30, 22 and 15 mm using a fully-instrumented labora-

tory cutting rig. Samples of studied dimension stones

were prepared in 50 9 20 9 4 cm for sawing studies.

Water was used as a coolant during the sawing tests.

The circular diamond saw blade used in this study had

a diameter of 410 mm and a steel core of thickness

2.7 mm, 28 pieces of diamond impregnated segments

(size 40 9 10 9 3 mm) were brazed to the periphery

of circular steel core with a standard narrow radial slot.

The grit sizes of the diamond were approximately

30/40 US mesh at 25 and 30 concentrations. The

acceleration signal was acquired along the whole cut.

For monitoring the vibration in stone cutting, an

adopted sensor system was designed (Fig. 4).

An accelerometer (ADXL105-3) was used to

measure the acceleration of workpiece in the sawing

process. A monitoring strategy was adopted based on

time domain characteristics. Figure 5 illustrates mon-

itored time-domain signals.

Then, the signals were analyzed using a feature

extraction program in Labview. The Root Mean

Square Amplitude feature (RMS) according to

Eq. (12) was extracted for the acceleration signals.

Equation (12) shows the RMS value of a function x(t)

over an interval of T.

Xrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R T

0
xðtÞ2dt

T

s

ð12Þ

During the sawing trials, the acceleration signal and

RMSaz for each rock were monitored and calculated at

different FRs and DCs. The results of experimental

studies were taken into account to establish the

models. The range of the parameters used in this

study is summarized in Table 4.

4 Prediction of System Vibration by ICA

The present section describes the model development

procedure of ICA in estimating RMSa. In this regard,

two models are proposed for predicting the RMSa and

then ICA is used for determining their coefficients.

The general forms of proposed models are presented in

Eqs. (13) and (14):

Table 4 The range of used

parameter in this study
Parameter Unit Category min mean max

Depth of cut cm input 1.50 2.53 3.60

Feed rate m/s input 1.00 2.50 4.00

Mohs hardness n input 2.90 3.18 3.60

Young’s Modulus GPa input 20.70 28.65 35.50

Uniaxial Compressive Strength MPa input 53.00 67.55 74.50

Schmiazek F-abrasivity factor N/cm input 1.05 1.28 1.73

RMS m/s2 output 0.98 2.16 3.92
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RMSI ¼k0 þ k1 � DCk2

i þ k3 � FRk4

i þ k5 �MHk6

i

þ k7 � YMk8

i þ k9 � UCSk10

i þ k11

� SF � ak12

i

ð13Þ

RMSII ¼ k0 þ k1 � DCk2

i � FRk3

i �MHk4

i � YMk5

i

� UCSk6

i � SF � ak7

i

ð14Þ

where DC is depth of cut in mm, FR denotes feed rate

(cm/min), MH (n), YM (GPa), UCS (MPa), and SF-a

(N/mm). These parameters were set as the independent

parameters of the model, while RMSa was considered

as the dependent parameter. k0, k1, k2, … k12 are

unknown coefficients that must be adjusted to mini-

mize the dependent parameter prediction error. The

ICA approach has been used for this purpose. First,

800 random values for coefficients was considered as a

first countries. Out of 800 randomly selected countries,

25 countries with the least estimation error were

considered as imperialists. Then the primitive coun-

tries were according to the imperialists to form

empires and colonial competition according to

flowchart shown in Fig. 2, was done between empires

to set the best values for the coefficients. Indeed, based

on the lowest values of fitness function, ICA tries to

find the fittest model to the available data. This is

possible through minimizing errors between the

measured values of RMSa and the estimated ones.

Hence, the used fitness function for solving the

problem of this study is the Mean Squared Error

(MSE) function, which can be defined as follows:

Minimize
1

n

Xn

i¼1

ðRMSaEsti � RMSaMeasÞ2 ð15Þ

RMSaMeas and RMSaEsti are the measured RMSa

data, and the estimated ones by the model, respectively

and n denotes the number of data.

The procedure proposed for applying ICA to

predicting RMSa has been implemented in C??

programming language. In order to achieve the

optimum ICA parameters, some of the previous

studies were studied (Atashpaz-Gargari and Lucas

2007; Ahmadi et al. 2013; Ebrahimi et al. 2014). The

best values of f, b, Npop, and Nimp were considered as

0.05, 1.75, 800, and 25, respectively.

Considering the used ICA parameters in this study,

the proposed models for predicting RMSa values

resulting from field recorded data sites are shown in

Eqs. (16) and (17), respectively.

RMSI ¼� 2:207 � 2:671 � DC�0:2683
i þ 5:862

� FR0:176
i � 15902:6 �MH�9:471

i � 6:7

� YM�7:282
i � 3:874 � UCS�10:843

i

þ 6:731 � SF � a�50:576
i

ð16Þ

RMSII ¼� 0:1376 þ 0:0567 � DC0:2673
i � FR0:5466

i

�MH�0:5277
i � YM0:5558

i � UCS0:4134
i � SF � a0:0045

i

ð17Þ

5 Results and Discussion

System vibration in rock sawing process depends on

two groups, including controlled parameters related to

operational parameters and tool characteristics and

non-controlled parameters related to rock characteris-

tics. Under the same working conditions, the cutting

results are strongly affected by rock characteristics

such as strength, hardness, and abrasiveness as well as

Table 5 The value of statistical criteria for the predictive models

Predictive model Statistical criteria

MAPE RMSE VARE VAF CC

Model Test Model Test Model Test Model Test Model Test

RMSI 8.241 8.944 0.192 0.210 0.632 0.867 93.345 90.269 0.976 0.953

RMSII 6.674 6.531 0.195 0.206 0.302 0.328 93.103 90.670 0.975 0.954

123

112 Geotech Geol Eng (2022) 40:103–119



operational parameters such as feed rate and depth of

cut. In the present research, two ICA models were

presented for predicting the system vibration in terms

of RMSa in 7 famous dimension stones in Iran. To

develop the predictive models, 80% of the total data

were randomly selected while the rest of the data (20%

of whole data) were assigned for testing purposes.

Specifically, 90 datasets from the whole 112 datasets

were used to construct the predictive models and 22

data were used to test the constructed models. In the

developed models, the DC (cm), FR (cm/min), MH

(n), YM (GPa), UCS (MPa), and SF-a (N/mm) were

Fig. 6 Measured versus predicted RMS by model RMSI a. model data and b. test data

Fig. 7 Measured versus predicted RMS by model RMSII a. model data and b. test data
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set as independent parameters, while RMS (m/s2) was

set as the dependent parameter. The performance of

the models was controlled using statistical tests, i.e.,

Mean Absolute Percentage Error (MAPE), Root Mean

Square Error (RMSE), Variance Absolute Relative

Error (VARE), Variance Account For (VAF), and

Correlation Coefficient (CC). These indices can be

computed using Eqs. (18, 19), respectively.

MAPE ¼ 1

n
�

Xi¼n

i¼1

RMSiMeas � RMSiEsti
RMSiMeas

�
�
�
�

�
�
�
�

" #

� 100

ð18Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
�
Xi¼n

i¼1

RMSiMeas � RMSiEstið Þ2

v
u
u
t ð19Þ

VARE ¼ var
RMSMeas � RMSEsti

RMSMeas

�
�
�
�

�
�
�
�

� �

� 100 ð20Þ

VAF ¼ 1 � var RMSMeas � RMSEstið Þ
varðRMSMeasÞ

� �

� 100 ð21Þ

CC ¼

Pi¼n

i¼1

RMSiMeas � RMSiMeas

� 	
RMSiEsti � RMSiEsti

� 	h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi¼n

i¼1

RMSiMeas � ROPi
Meas

� 	2

�
Pi¼n

i¼1

RMSiEsti � RMSiEsti

� 	2

s

ð22Þ

The results of these statistical criteria for two predic-

tive models and test data are reported in Table 5.

Note that lower values of MAPE, RMSE, and

VARE, and higher values VAF and CC indicate the

best approximation. As can be seen in Table 5, when

considering the obtained results of the MAPE for the

RMSII model, the value of 6.674 was observed, while

this value for the RMSI model was 8.241. These values

reveal a higher accuracy of the RMSII. The scatter plot

comparing measured and predicted RMS values for

the RMSI and RMSII is shown in Figs. 6 and 7.

Considering the obtained results of R2 for the RMSI

and RMSII models, the value of 0.93 was observed for

the model data, the results revealed the high accuracy

of both models. The value of R2 for test data is 0.9,

which has also acceptable accuracy.

Finally, in order to assess the effectiveness of input

parameters on the predicted RMS, a sensitivity

analysis was also performed using the cosine ampli-

tude method based upon Eq. (23). Where rij represents

the strength of the relation, n is the number of dataset,

and the xik and yij denotes input parameters and the

predicted output, respectively (Yang and Zhang 1997).

rij ¼
Pn

k¼1 ðxik � yjkÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

k¼1 x
2
ik

Pn
k¼1 y

2
ik

p ð23Þ

The results of sensitivity analysis for two models

are shown in Fig. 8. According to the results, the feed

rate had a high impact on the predicted RMS with

strength of the relation being equal to 0.98 in both

models. Then, the Mohs hardness, Young’s modulus,

and uniaxial compressive strength had almost equal

effects on the predicted output in two models.

However, the depth of cut and Schimazek’s

Fig. 8 The strength of the relation between input parameters and the predicted models
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F-abrasivity with a correlation of 0.93, had the lowest

effect on the predicted output. Finally, it is worth

mentioning that the proposed equations in this study

can only be used in studied quarries and circular

diamond saw, in the other word, they are unique

models.

6 Conclusion

The production cost in dimension stone factory is

affected by numerous factors such as diamond saw,

energy consumption, maintenance, labor, water, and

polishing pads, filling material, and packing. Also, the

level of system vibration has a great impact on the

maintenance cost. Thus, controlling the system vibra-

tion level can help reduce the maintenance cost. In the

present study, two predicted models based on the

imperialist competitive algorithm (ICA) were devel-

oped for predicting the system vibration in the

dimension stone sawing process in 7 famous quarries

in Iran. In the developed models, the depth of cut (cm),

feed rate (m/s), Mohs hardness, Young’s modulus

(GPa), uniaxial compressive strength (MPa), and

Schimazek’s F-abrasivity (N/cm) were set as inde-

pendent parameters, while Root Mean Square (m/s2)

was set as the dependent variable. The performance of

the developed predictive models was controlled by

statistical functions, i.e., Mean Absolute Percentage

Error (MAPE), Root Mean Square Error (RMSE),

Variance Absolute Relative Error (VARE), Variance

Accounted For (VAF), and Correlation Coefficient

(CC). Finally, the results of models showed that ICA

was able to assess the vibration of different rocks in the

carbonate group with a low acceptable error and the

models can be applied for rock vibration estimation in

practice. Furthermore, the modeling of vibration in

sawing processes can be a reliable system for high

benefit and low-cost models for industrial applications

and enables factory managers to have an accurate

prediction of maintenance and energy costs. For future

work, it is recommended to consider other operational

parameters that also affect the vibration, such as the

blade flatness and tensioning or the water flow and

then comparing results with each other.
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