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Abstract: An effective seismic design entails many issues related to the capacity-based assessment
of the non-linear structural response under strong earthquakes. While very powerful structural
calculation programs are available to assist the designer in the code-based seismic analysis, an optimal
choice of the design parameters leading to the best performance at the lowest cost is not always
assured. The present paper proposes a procedure to cost-effectively design earthquake-resistant
buildings, which is based on the inversion of an artificial neural network and on an optimization
algorithm for the minimum total cost under building code constraints. An exemplificative application
of the method to a reinforced-concrete multi-story building, with seismic demands corresponding
to a medium-seismicity Italian zone, is shown. Three design-governing parameters are assumed
to build the input matrix, while eight capacity-design target requirements are assigned for the
output dataset. A non-linear three-dimensional concentrated plasticity model of the structure is
implemented, and time-history dynamic analyses are carried out with spectrum-consistent ground
motions. The results show the promising ability of the proposed approach for the optimal design of
earthquake-resistant structures.

Keywords: optimal structural design; earthquake-resistant buildings; inverse artificial neural net-
work; non-linear dynamic analysis

1. Introduction

The design of earthquake-resistant reinforced-concrete buildings is based on the
concepts of ductility, strength hierarchy, and capacity design. Under exceptional seismic
events buildings should deform plastically, exhibiting a deformation capacity greater
than the demand in elements (typically beams) that are delegated for developing plastic
hinges, while keeping more fragile elements (typically columns) safe. To assure this
dissipative ductile behavior the code guidelines impose the fulfillment of ductility and
strength hierarchy rules, which entail an iterative process for the more suitable choice of
the geometrical and reinforcement design parameters. Commercial design programs help
the designer to meet building code provisions and to check the fulfillment of rules, but an
optimal cost-effective design is not usually ensured.

To design earthquake-resistant buildings, the present paper proposes a procedure,
which is based on the inversion of an artificial neural network and on an optimization
algorithm to achieve the minimum total cost under code constraints. The procedure is
tested on a multistory reinforced-concrete building assumed to be built in a medium
seismicity Italian area. Reference to the Italian Building code [1] and to the European
Code EC8 [2] was made. Three design parameters are adopted as input variables to
obtain about a thousand suitable combinations for the training dataset, while seven code
checks are chosen as constraints to obtain the output matrix. A three-dimensional finite-
element model of the building was developed and non-linear dynamic analyses under
a suite of seven spectrum-consistent earthquakes were carried out. Among the methods
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covered by the design regulations, the non-linear dynamic analysis is the most accurate to
assess the seismic performance of ductile dissipative structures, although it requires higher
computational burden and designer skill [3,4]. It can be successfully applied to both the
design of new buildings [5] and the seismic retrofit of existing structures [6,7].

Artificial neural networks (ANNs) have been successfully applied for different pur-
poses in Civil Engineering, from the early warning of ground settlements in urban areas [8]
to the control of dynamic effects in bridges and the development of decision support
systems for industrialized manufacturing of buildings [9]. ANNs have been also used to
predict the seismic response of buildings [10,11] and even to perform an optimal seismic
design [12]. A method based on an ANN is proposed in this paper for the code-compliant
seismic design of reinforced concrete buildings. The novelty of the present approach is
that of adopting an inversion of the ANN, which allows one to solve an inverse problem,
that is to find the combination of design variables that meet given code-based performance
constraints. Based on the ANN inversion procedure, an optimization algorithm is also
presented in this paper which leads to a design configuration that minimizes the cost
function. The neural network inversion is a non-standard tool which was exploited for
pollution evaluation [13–16] and for electric capacitance tomography in nondestructive
testing [17]. It was never applied, however, for structural design optimization.

To test the proposed method, a multistory reinforced-concrete building will be consid-
ered as a case-study. Based on non-linear dynamic analyses carried out under a suite of
seven spectrum compatible earthquakes, an input matrix made of many combinations of
three design parameters (corresponding to different building design configurations) and a
target matrix containing seven performance variables calculated for each of the building
configurations, will be obtained. The ANN will be trained on the input and the target
datasets and the inversion algorithm will be then applied to find a design solution that falls
within the intersection between the input and the output feasibility domains. Based on the
trained network, an optimization algorithm will be applied to find a design configuration
that minimizes the cost of the building while meeting the code-based seismic performance
constraints chosen as target.

2. Case Study to Test the Procedure
2.1. Reference Multi-Story Building

A reinforced concrete (RC) multi-story frame is considered to test the procedure.
Figure 1 provides a scheme of the building while Table 1 lists the main characteristics of
the building. For the sake of simplicity, all beams are assumed to have the same section
and reinforcement. Similarly, all columns are supposed to have the same squared section
and reinforcement. The base lengths bb of the beams is assumed to be equal to the base
length bp of the columns. Clay/cement mix slabs are considered for the floor and roof
levels. Table 2 provides the dead loads G1 and G2 and the variable loads Q.
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Table 1. Main characteristics of the R/C structure.

Beams Columns

beam length lb = 5 m column length lc = 3 m
section height hb = x1 cm section height hc = x2 cm
section base bb = x2 cm section base bc = x2 cm

concrete cover d = 3 cm concrete cover d = 3 cm
top rebars [φ] φb,t = f(x3) mm rebars [φ] φc = f(x2) mm
top rebars [n◦] nb,t = f(x3) - rebars [n◦] nc = f(x2) -
top rebars [%] ρb,t = 0.6·x3 - rebars [%] ρc = 0.025 -

bottom rebars [φ] φb,bott = f(x3) mm
bottom rebars [n◦] nb,bott = f(x3) -
bottom rebars [%] ρb,b = x3 -

stirrup φ φ b,st = 10 mm stirrup φ φp,st = 12 mm
stirrup wheelbase sb = 60 mm stirrup wheelbase sp = 80 mm

Materials
Characteristic Strength Young Modulus

concrete fck = 35 N/mm2 Ecm = 40,600 N/mm2

steel fyk = 450 N/mm2 Es = 200,000 N/mm2

Table 2. Loads at the story level.

G1 (N/m) G2 (N/m) Q (N/m)

Floor slab 2550.8 6410 2000
Roof slab 2432 1495 800

2.2. Design Parameters and Performance Variables

To obtain a database of cases for the training set, three parameters are taken as design
parameters and referred to as x1, x2, and x3. The first one is the base of beams and columns,
namely bb = bc = x1. The second one is the height of the beams hb = x2. Finally, the
third variable is the ratio between the area of the tension longitudinal steel (typically
placed at the bottom of the beam section) and the beam section area, namely ρb = x3. The
compression steel ratio was assumed to be ρb,comp = 0.6x3. The ranges of variation of the
design parameters are given in Table 3. A Phyton script [18] helped to vary the design
parameters to obtain a dataset of examples. Eventually, 1011 cases were found, and a
3 × 1011 input matrix was obtained to be used for the training set.

Table 3. Ranges of variation of the design parameters.

Parameter Range of Variation Increment Step

x1 = bb = bc 42 ÷ 78 cm +2 cm
x2 = hb 42 ÷ 90 cm +2 cm
x3 = ρb 0.0058 ÷ 0.019 0.0013

Selected among those stated by the Italian Building Code [1], seven key structural
checks were considered to build the performance target matrix. Based on the capacity
design and meeting some strength hierarchy rules, these structural checks are expressed
as difference between capacity and demand values and assigned to seven parameters yi
(i = 1, 7). They are provided in Table 4. The building was assumed to be designed in a
high ductility class (DCH) at the life protection (LP) limit state. The values of parameters yi
calculated at the most demanded sections for each building’s configuration will be stored
in the 7 × 1011 target matrix.
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Table 4. Structural checks for the network target matrix.

Performance Check [1] Variables for the Target Matrix

Bending moment hierarchy rule y1 = ∑ Mc,Rd − γRd ∑ Mb,Rd

Shear vs. moment on columns y2 =
γRd (M1

c,Rd+M2
c,Rd)

lc
−Vp,Ed

Beam mid-section bending moment y3 = Mb,mid,Rd −Mb,mid, Sd

Beam end-section bending moment y4 = Mb,end,Rd −Mb,end,Ed

Shear vs. moment on beams y5 = Vb,Rd −
(

2 γRd Mb,Rd
lb

+ (G+ψ2q)lb
2

)
Shear on beam-column node (x direction) y6 = 0.6 η fcd bjx hjcx

√
1− Nc,Ed

η −
[
γRd

(
Ab,1x + Ab,2x

)
fyd −Vp,Ed

]
Shear on beam-column node (z direction) y7 = 0.6 η fcd bjz hjcz

√
1− Nc,Ed

η −
[
γRd

(
Ab,1z + Ab,2z

)
fyd −Vp,Ed

]
Symbols: M = bending moment; V = shear; γ = resistance factor; l = length; N = normalized axial load; hjc = distance between col-
umn’s longitudinal bars; bj = length of the node; f = strength; A = area of bars; a = area of stirrups; G = gravity load; ψ2q = reduced

variable load; fcd = concrete design strength; η =
(

1− fck
250

)
with fck in MPa. Subscripts and quotes: c = column; b = beam; d = design;

R = resistance(capacity); y = yield; k = characteristic; st = stirrup; 1 = bottom section; 2 = top section; E = calculated (demand).

2.3. Response Spectrum and Spectrum-Consistent Earthquakes

The reference response spectrum for the Life Protection (LP) limit state is plotted
in Figure 2, as obtained according to [1]. A medium-seismicity zone characterized by a
peak ground acceleration of 1.6 m/s2 (for the LP) was considered, with reference to the
values provided by Annex B of the Italian Building Code [1]. Consistent with the spectrum
in Figure 2, seven couples of records in the x and y directions are obtained through the
software REXEL [19], according to code rules [1,2]. Earthquake name, date of occurrence,
magnitude Mw, and distance ∆ from the epicenter are listed in Table 5.
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Figure 2. (a) Target response spectrum and (b) spectra of the records in the x and y directions.

Table 5. Earthquakes data.

Code Earthquake Date Station ID Mw ∆ (km)

EQ 122 MID NIIGATA PREF 11 March 2011 NIG022 6.2 23.05
EQ 137 Darfield 3 September 2010 RKAC 7.1 25.87
EQ 106 MID NIIGATA PREF 16 July 2007 NIG018 5.6 16.55
EQ 144 Christchurch 22 February 2011 SMTC 5.6 14.31
EQ 002 Near Niijima Island 1 July 2001 TKY010 6.2 20.03
EQ 133 EMILIA_Pianura_Padana 29 May 2012 SMS0 6.0 14.95
EQ 016 Mid Niigata Prefecture 23 October 2004 NIG018 6.6 28.44
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2.4. Non-Linear Dynamic Analysis on an FEM Model

The Open System for Earthquake Engineering Simulation (OpenSees) software frame-
work [18] was adopted to develop the numerical analyses. A 3D finite element model of the
frame was developed in OpenSees by considering force-based beam-column elements. A
scheme of the model, with elements and nodes, is provided in Figure 3. A Rayleigh classic
damping was assumed in the elastic range, where a constant damping factor ξ = 5% was
considered for each mode. A distributed plasticity (fiber-based) was assumed within the
beam–column elements. The non-linear Scott-Park [20] and Giuffrè-Menegotto-Pinto [21]
stress–strain constitutive models were adopted for concrete and steel, respectively, as
implemented in OpenSees [18]. The qualitative scheme of the two models is provided in
Figure 4, while the values of the parameters are provided in Tables 6 and 7.
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Table 7. Values adopted for the constitutive model of reinforcement steel (see Figure 4b).

fy (MPa) E0 (MPa) Bs R0 CR1 CR2 a1 = a3 a2 = a4

450 210,000 0.005 15 0.925 0.15 0 1

Seven non-linear time-history analyses were carried out for each one of the 1011
building’s configurations under the seven spectrum-consistent earthquakes introduced in
Section 2.3 (two orthogonal records are simultaneously applied to the building for each
earthquake). A total of 7077 time-history non-linear analyses were finally carried out.

The averaged values of the effects over the seven analyses are calculated, this being
allowed by codes [1,2] and the values of the seven parameters yi (i = 1, 7) defined in
Table 4 are obtained for all of the involved elements of the structure. The lower the value
of yi the more demand on the element. The lowest values of yi found for each of the 1011
cases are stored in the 7 × 1011 target matrix. It can be noted that, almost always, the most
demanded elements of the case-study building were the column and the beam colored in
red in Figure 1.

3. Network Inversion for Structural Design

Artificial Neural Networks (ANNs [22]) represent the smart core of the Decision Sup-
port System (DSS) presented in this paper. ANNs are analytical structures the working of
which depends on both their topology and a set of parameters. Several paradigms of ANNs
exist referring to the topology, the kind of problem to handle, and the time dependency.
The most popular type of ANNs is the Multi-Layer-Perceptron (MLP, Figure 5), which
can be used to solve both Classification and nonlinear Regression problems. MLPs have a
unidirectional structure with no feedbacks. The layout consists of an input layer of nodes
(neurons), one or more intermediate (hidden) layers, and an output layer. Whatever its
type, an ANN typically leads to the creation of a model of a physical system starting from
the data, rather than from the knowledge of the analytical relationship among the variables.
In particular, the aim of MLPs is to imitate the relationship between independent (input)
and dependent (output) variables that describe the physical system. For this purpose, a
training process is performed to calculate the parameters of the ANN (weights), starting
from a randomly assigned set of values. The training consists of an iterative procedure
where the minimum of a performance function is sought. Most parts of used algorithms are
first or second order minimization procedures, where the performance function is typically
represented by the mean squared error of the network, the error being the gap between the
output and the measured (target) values.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 14 
 

 

Figure 5. Multilayer Perceptron Layout. 

3.1. Inversion Algorithm 

A representation of the relationship between inputs and outputs is conveyed in the 

trained MLP. This information can be exploited to solve the inverse problem, that is to 

determine the design parameters which meet the set performance requirements [14–

17,23–27]. Since the design parameters represent the input and the performance of the 

physical system is the output, finding the input corresponding to a given output means 

determining the design parameters which guarantee the fulfilment of the given require-

ments. The model frozen inside the MLP is represented by a set of equations (Equation 

(1)), which describe the relationship between the input 𝒙 and the output 𝒚 of the net-

work, see Figure 5. 

To disentangle the algebraic structure of the MLP, two auxiliary variables, namely 𝒌 

and 𝒉, are introduced. They represent respectively the input and the output of the hidden 

layer. Equation (1)(a) describes the linear relation between the output of the hidden layer 
and the output of the MLP (𝒉 and 𝒚, respectively). Equation (1)(b) relates the input and 

the output of the hidden layer (𝒌 and 𝒉, respectively), this being a non-linear relation. 

Finally, Equation (1)(c) describes the linear relation between the input of the MLP and the 
input of the hidden layer (𝒙 and 𝒌, respectively). Once the MLP has been trained, Equa-

tion (1) allow to propagate the input 𝒙 up to the output 𝒚, which leads to calculate the 

performance of the system corresponding to a given set of design parameters. On the other 

hand, if the output variable 𝒚 is set, the three Equation (1) can be solved in series to obtain 

the input 𝒙, which means finding the design parameters that correspond to the given per-

formance. 

(𝑎)
(𝑏)
(𝑐)

{

𝑾𝑦 ∙ 𝒉 + 𝒃𝑦 = 𝒚

𝒉 = 𝜎(𝒌)
𝑾𝑥 ∙ 𝒙 + 𝒃𝑥 = 𝒌

 (1) 

In general, a domain of feasibility can be set, rather than requiring the fulfillment of 

a given value of the performance. For the sake of simplicity, in this formulation such do-

main is assumed to be linear and convex, so that it can be expressed by means of the set 

of inequalities given by Equation (2). 

𝑨 ∙ 𝒚 ≤ 𝒂 (2) 

The feasibility domain of the output, introduced in Equation (2), sets the require-

ments of the building. The constraints on the output correspond to as many constraints 

on the input, namely the design parameters. Thanks to Equation (1), we can transfer the 

feasibility domain from the output space to the input space. In other words, the require-

ments are translated into a feasibility domain of the design parameters. In their turn, a set 

of bounds will be stated on the design parameters, defining a feasibility domain of the 

input. Solving the inverse problem means finding a design solution that falls within the 

Figure 5. Multilayer Perceptron Layout.

The training process could be a challenging task since the performance depends on
choosing an appropriate training set of examples, adopting a suitable layout of the MLP
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and assuming an efficient training strategy. Usually a trial and error procedure is performed
to determine the best set of these hyper parameters.

3.1. Inversion Algorithm

A representation of the relationship between inputs and outputs is conveyed in the
trained MLP. This information can be exploited to solve the inverse problem, that is to de-
termine the design parameters which meet the set performance requirements [14–17,23–27].
Since the design parameters represent the input and the performance of the physical system
is the output, finding the input corresponding to a given output means determining the
design parameters which guarantee the fulfilment of the given requirements. The model
frozen inside the MLP is represented by a set of equations (Equation (1)), which describe
the relationship between the input x and the output y of the network, see Figure 5.

To disentangle the algebraic structure of the MLP, two auxiliary variables, namely k
and h, are introduced. They represent respectively the input and the output of the hidden
layer. Equation (1) (a) describes the linear relation between the output of the hidden layer
and the output of the MLP (h and y, respectively). Equation (1) (b) relates the input and the
output of the hidden layer (k and h, respectively), this being a non-linear relation. Finally,
Equation (1) (c) describes the linear relation between the input of the MLP and the input
of the hidden layer (x and k, respectively). Once the MLP has been trained, Equation (1)
allow to propagate the input x up to the output y, which leads to calculate the performance
of the system corresponding to a given set of design parameters. On the other hand, if the
output variable y is set, the three Equation (1) can be solved in series to obtain the input x,
which means finding the design parameters that correspond to the given performance.

(a)
(b)
(c)


Wy·h + by = y

h = σ(k)
Wx·x + bx = k

(1)

In general, a domain of feasibility can be set, rather than requiring the fulfillment
of a given value of the performance. For the sake of simplicity, in this formulation such
domain is assumed to be linear and convex, so that it can be expressed by means of the set
of inequalities given by Equation (2).

A·y ≤ a (2)

The feasibility domain of the output, introduced in Equation (2), sets the requirements
of the building. The constraints on the output correspond to as many constraints on the
input, namely the design parameters. Thanks to Equation (1), we can transfer the feasibility
domain from the output space to the input space. In other words, the requirements are
translated into a feasibility domain of the design parameters. In their turn, a set of bounds
will be stated on the design parameters, defining a feasibility domain of the input. Solving
the inverse problem means finding a design solution that falls within the intersection
between the two feasibility domains, respectively defined on the input and on the output.

As described in Figure 6, we will make use of the following four geometrical spaces:
Input Space X where the design parameters are defined, Upstream Hidden Space K rep-
resenting the input of the hidden layer, Downstream Hidden Space H representing the
output of the hidden layer, Output Space that is the output of the network. Equation (1)
is subdivided into three subsystems: a linear equations system that relates space X with
space K, a nonlinear equations system that relates space K with space H, and, finally, a
linear equations system that relates space H with the output space Y.
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Equation (1) allows us to project both points and domains from one space to any
other of the structures. In particular, the feasibility domain of the output, expressed by
Equation (2), namely the performance requirements of the building, can be projected
into space H by substituting the output variable y as derived from Equation (1) (a) in
Equation (2): (

A·Wy
)
·h ≤ a−A·by (3)

Equation (3) denotes a constraint for variable h deriving from the feasibility domain of
the output. At the same time, variable h is limited by the range of the nonlinear activation
function of the hidden neurons. Such activation function typically has a sigmoidal shape,
and has a range in the interval [−1, 1]. In this work, the hyperbolic tangent function is
assumed (see Figure 7).
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Vector h corresponding to the sought solution must be attainable from a feasible k, the
feasibility range being −1 + ε ≤ h ≤ 1− ε, where ε is a margin from the saturation of the
activation function. We can re-write this equation in the following form:{

h ≤ 1− ε
−h ≤ 1− ε

(4)

The two systems (3) and (4) can be included in a unique system as: A·Wy
I
−I

·h ≤
 a−A·by

1− ε
1− ε

or M·h ≤ m (5)

A first check is required to establish if the domain (5) is empty. In this case, no design
solution exists which meets the requirements, and the requirements should be relaxed.
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The domain (5) can be projected on space K by means of Equation (1) (b):

M·σ(k) ≤ m (6)

Finally, the domain (6) can be projected on the input space

M·σ(Wx·x + bx) ≤ m (7)

Equation (7) describes a nonlinear domain in the input space X.
Generally, a feasibility domain is a priori stated on the input space. Often, this domain

contains a feasibility range for each design parameter, making the feasibility domain to be a
box: Lbnd ≤ x ≤ Ubnd. More in general, the feasibility domain of the input could be defined
by a set of constraints of any kind. For the sake of simplicity, in this work we assumed that
such constraints are linear, thus, the domain can be expressed as:

V·x ≤ v (8)

The solution of the problem must fall within both the feasibility domains (7) and
(8). Therefore, the design problem is transformed into an existence problem. Unfortu-
nately, one of the two systems is nonlinear, therefore finding a feasible solution could be a
challenging task.

The existence problem can be solved iteratively making use of the linear programming
(LP) [28]. The number of neurons of the hidden layer usually is larger than the number
of inputs, which implies that the number of Equation (1) (c) is larger than the number
of the input variables, thus the equations system is overdetermined. By means of the
pseudoinverse matrix of Moore–Penrose, Equation (1) (c) can be solved with respect to x
according to the least square error criteria:

x = (WT
x Wx)

−1
WT

x ·(k− bx) (9)

By substituting Equation (9) into Equation (8), the feasibility domain of the input is
projected in space K, which is still linear:

V·(WT
x Wx)

−1
WT

x ·(k− bx) ≤ v (10)

By exploiting Equation (1) (b), any point from space K can be projected to space H and
vice-versa. The feasibility domain of the input is linear in space K and nonlinear in space
H, while the feasibility domain of the output is linear in space H and nonlinear in space K.
Therefore, an iterative procedure can be defined, where the current solution is projected
alternatively on the two domains changing space K and H, so that the domain where the
solution should be projected is always linear.

4. Application of the Inversion Algorithm to the Case-Study

With reference to the case-study described in Section 2, an ANN is firstly trained over
a dataset of examples and then the inversion algorithm described in Section 3.1 is applied
to find a set of design parameters meeting the chosen code-compliant seismic performance
requirements.

4.1. Training Phase

A population of 1011 examples was considered for the training phase, given by an
input matrix and a target matrix. The input matrix Mx stored 1011 sets of the design pa-
rameters x1, x2, and x3 defined in Section 2.2, all of them falling within the ranges provided
in Table 3. Corresponding to the above sets of design parameters, a 7 × 1011 output target
matrix My was obtained, storing the seven values of the capacity-design performance
variables yi (see Table 3) calculated through numerical non-linear FEM analyses under
spectrum consistent earthquakes (as described in Section 2.4) for each of the 1011 cases. It
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should be stressed that the output performance variables yi (i = 1, 7) were not asked to meet
the code-compliant constraints. This means that the population of examples also includes
cases of unsafe seismic designs of the building, as well as sets of design parameters out of
the feasibility domain.

The 1011 examples dataset was divided into three subsets: a training set (80% of the
population), a validation set (10% of the population), and a test set (10% of the population).
The training process was applied to the training set to find the connections’ weights. The
verification set was involved in the training process but only to monitor the evolution of
the error, this set having no influence on the calculus of the connections’ weights. The test
set is not involved in the training process, but it was used to monitor the generalization
capability of the trained neural network.

4.2. Inversion Phase

Once the network was trained, the inversion algorithm was applied. The design
constraints on the output variables (Equation (2)) were in this case given by the following
set of inequalities imposed over the seven performance variables yi defined in Table 4,
according to the Italian Building code [1]:

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, y4 ≥ 0, y5 ≥ 0, y6 ≥ 0, y7 ≥ 0 (11)

The minimum number of neurons of the hidden layer needed to guarantee the re-
quired precision was found to be 12. The inversion procedure converged after 88 iterations,
(see Figure 8).
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As a result of the inversion algorithm, the set of design parameters listed in the first
row of Table 8 was found. To check the validity of the procedure, a numerical analysis
on the FEM model of the building was performed. In fact, integer values, rounded up,
were considered for the section’s dimensions x1 and x2, while the values of the steel
percentage x3 was rounded up by considering commercial steel diameters. The second row
of Table 8 gives the values of the design parameters adopted in the numerical model of
the building for the comparison test. Non-linear time-history analyses under the suite of
seven earthquakes were carried out, the averaged effects were calculated and the numerical
values of the variables yi were finally obtained. They are given in Table 9. It can be noted
that the values of yi (i = 1, 7) meet the code-compliant constraints (11).
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Table 8. Design parameters from the inversion procedure and used for the numerical test.

x1 (m) x2 (m) x3 (-)

Inversion values 0.5335 0.6023 0.0077
FEM model values 0.54 0.60 0.0077

Table 9. Performance variables from the FEM model with the design parameters in Table 7.

y1 (Nm) y2 (N) y3 (Nm) y4 (Nm) y5 (N) y6 (N) y7 (N)

0.83 × 105 0.29 × 105 6.13 × 105 6.20 × 105 3.75 × 105 4.32 × 105 4.32 × 105

5. Optimization Procedure for the Case-Study

The solution found in the previous section fulfils the requirements of both Input
(design parameters) and Target (performance of the building). While meeting these speci-
fications, it is generally possible to improve the solution found according to predefined
target functions. Since the compliance with the target is expressed in terms of thresholds,
the margins for optimization concern the design parameters, which are linked to the cost
of the RC frame. In the case-study example, beam and column base bb = bc = x1, beam
height hb = x2, and beam tension longitudinal steel ratio ρb = x3, have been assumed as
design parameters. Related to these parameters, the following cost function was defined:

C = nblb (γcon cconx1x2 + γste cste x1 x2 1.6 x3) + nclc
(

γcon ccon x2
2 + γs cs ρc x2

2

)
(12)

Here nb and nc denote the number of beams and columns, lb and lc being their
longitudinal length, respectively; γcon and γste are the specific weight of concrete and steel;
ccon and cste the cost per unit weight of concrete and steel; while ρc is the longitudinal steel
ratio in columns.

By introducing the following parameters:

α = nblb γcon ccon ; β = 1.6 lb γste cste ; δ = nclc(γcon ccon + γste cse ρc) (13)

the cost function writes:
C = α x1x2 + β x1 x2 x3 + δ x2

2 (14)

The numerical values of the coefficients α, β, and δ for the case under study are
provided in Table 10, the values of the cost function being directly expressed in euros (€).

Table 10. Values of coefficients α, β, and δ.

α (€/m2) β (€/m2) δ (€/m2)

60,720 4,823,040 15,357.6

To find the set of parameters x1, x2, and x3 that minimize function C, the gradient
descent algorithm is here adopted. This algorithm is based on an iterative procedure that
moves in the negative direction of the function gradient∇C from an initial set of parameter
values, say point Xi, toward a set of final parameter values that minimize the cost function.
Each iteration step is governed by the rule:

X(i+1) = Xi − η∇C (15)

where η is the step size, taken initially equal to 1 × 10−6 and then updated at each iteration.
According to (14), the gradient ∇C writes:

∂C
∂x1

= α x2 + β x2 x3;
∂C
∂x2

= α x1 + β x1 x3 + 2δ x2;
∂C
∂x3

= β x1 x2 (16)
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The solution provided by the inversion algorithm (first row of Table 8) was chosen
as a starting set of design parameters. The optimization algorithm returns the set of
design parameters listed in Table 11, which corresponds to a point on the frontier of
the domain where the Karush–Kuhn–Tucker condition is met [29]. The set of design
parameters were assigned to the FEM model and the results of the dynamic analyses lead
to the values of the performance variables given in Table 12. Such values confirm that the
building designed with the optimum set of design parameters meets the capacity design
requirements assumed as target.

Table 11. Design parameters from the optimization procedure.

x1 (m) x2 (m) x3 (-)

Optimum design values 0.42 0.42 0.0058

Table 12. Performance variables from the FEM model with the optimal design parameters.

y1 (Nm) y2 (N) y3 (Nm) y4 (Nm) y5 (N) y6 (N) y7 (N)

0.94 × 105 0.17 × 105 1.71 × 105 1.77 × 105 3.60 × 105 2.93 × 105 2.93 × 105

The trend of the cost function during the optimization procedure is plotted in Figure 9.
The optimal point was reached after five iterations, with a final cost of EUR 18,323 over
the initial cost of EUR 26,664. It is worth noting that other categories (labor, transport, and
non-structural components) contribute to the total cost of the construction. For the sake of
simplicity, however, reference only to the naked RC frame was made in the optimization
procedure here presented. A more comprehensive study should of course account for all
the categories of cost, even if it would not affect the validity of the method proposed. It
should be noted finally that the design parameters found by the optimization algorithm do
not belong to the dataset of training examples.
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6. Conclusions

An Artificial Neural Network (ANN) inversion procedure was proposed in this
paper to obtain an optimal code-compliant seismic design of reinforced-concrete buildings.
This procedure allows to solve an inverse problem, finding the design parameters which
guarantee the fulfilment of some given code-compliant performance requirements while
minimizing the cost function.

The procedure was applied to a multistory three-dimensional (3D) building supposed
to be built in a medium-seismicity Italian area. A set of 1011 different configurations of the
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building were obtained by varying three design parameters in suitable ranges. A 3 × 1011
input matrix storing the considered sets of design parameters was thus obtained. Non-
linear dynamic analyses on 3D finite element models of the 1011 building’s configurations
under a suite of seven spectrum compatible earthquakes were then carried out. The values
of seven capacity-design performance variables calculated at the most demanded sections
for each of the building configurations were then stored in the 7 × 1011 target matrix. The
ANN was trained on the input and target datasets and the inversion algorithm was then
applied to find a design solution that fell into the intersection between the input and the
output feasibility domains. As checked by means of the FEM numerical analyses, this
led to a design solution meeting the code-compliant performance requirements chosen as
the target.

An optimization iterative procedure was finally proposed to find a set of design
parameters that minimized the cost of the building while meeting the code-based seismic
performance constraints. The optimization procedure was based on the trained ANN and
applied a gradient descent algorithm, which iteratively moved in the negative direction
of the cost function gradient, starting from the set of design parameters found through
the inversion procedure and stopping at a set of final values of design parameters that
minimized the cost function. The seismic performance of the building corresponding to
the design parameters provided by the optimization procedure was checked by means of
the FEM numerical analyses, finding that it met the seven capacity-design requirements
assumed as target control parameters. It should be noted that, for the sake of simplicity, only
three design parameters were assumed to obtain the building configurations while only
some of the performance checks stated by the Italian Building code were taken as indexes
of the building’s structural safety in the present application of the method. However, the
method can be easily extended to account for any number of design parameters in the
input matrix and any number of code-based performance checks in the target matrix.

Author Contributions: Conceptualization and research design, A.M., M.C.P. and C.C.; methodology,
A.M. and M.C.P.; software, C.C.; investigation, C.C., A.M. and M.C.P.; pre and postprocessing results,
C.C., A.M. and M.C.P.; writing-review and editing, M.C.P. and A.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in the paper are available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. DM 17 Gennaio 2018, Aggiornamento delle Norme Tecniche per le Costruzioni; Ministero delle Infrastrutture e dei Trasporti: Rome,

Italia, 2018.
2. EN 1998-1: 2004: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings; Bruxells,

European Committee for Standardization: Brussels, Belgium, 2005.
3. Porcu, M.C. Code inadequacies discouraging the earthquake-based seismic analysis of buildings. Int. J. Saf. Secur. Eng. 2017, 7,

545–546. [CrossRef]
4. Vielma, J.C.; Porcu, M.C.; López, N. Intensity Measure Based on a Smooth Inelastic Peak Period for a More Effective Incremental

Dynamic Analysis. Appl. Sci. 2020, 10, 8632. [CrossRef]
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