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Abstract: The energy produced by a wind farm in a given location and its associated income depends
both on the wind characteristics in that location—i.e., speed and direction—and the dynamics of the
electricity spot price. Because of the evidence of cross-correlations between wind speed, direction and
price series and their lagged series, we aim to assess the income of a hypothetical wind farm located
in central Italy when all interactions are considered. To model these cross and auto-correlations
efficiently, we apply a high-order multivariate Markov model which includes dependencies from
each time series and from a certain level of past values. Besides this, we used the Raftery Mixture
Transition Distribution model (MTD) to reduce the number of parameters to get a more parsimonious
model. Using data from the MERRA-2 project and from the electricity market in Italy, we estimate
the model parameters and validate them through a Monte Carlo simulation. The results show that
the simulated income faithfully reproduces the empirical income and that the multivariate model
also closely reproduces the cross-correlations between the variables. Therefore, the model can be
used to predict the income generated by a wind farm.

Keywords: wind farm performance; electricity price; multivariate Markov chain; mixture transi-
tion distribution

1. Introduction

The production of energy from renewable sources has been undergoing a significant
increase in recent years. More specifically, the energy produced from wind power has
achieved a 10% increase in the worldwide capacity and 19% increase of installations
from 2018 to 2019 due to its availability throughout the day and relatively low cost of
transformation [1]. Despite that, when dealing with the income generated from selling
the energy produced from a wind power plant, one has to consider two main sources of
uncertainty: wind speed and energy prices. In fact, both variables have a random nature
that should be considered when building a model [2].

The energy produced by a wind turbine, and more generally by a wind power plant,
is subject to considerable fluctuations over time related to the characteristics of wind and
the location of the plant [3]. The random trend of wind concerns both its speed and its
direction [4,5]. In fact, it is shown that these two variables are correlated. In addition, wind
speed and direction are also log range autocorrelated.

The modelling of energy produced by a wind turbine was examined by D’ Amico et al. [6]
using an indexed semi-Markov model to reproduce the statistical behaviour of wind speed.
Then, in [7], the model was extended to a multivariate setting to estimate the energy
produced by a wind farm. The authors used a copula function to represent the spatial non-
linear dependencies of the systems’ energy production. In [4], Votsi and Brouste applied
semi-Markov models to wind power production. The authors investigated the mean time
to failure in the context of reliability. Next, an additional application of semi-Markov
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processes was proposed by Danisman and Kocer [8] about handling missing data. Song
and Paek [9] studied the dynamic simulations of a wind turbine to predict its annual energy
production using a computational fluid dynamics code for wind farm. Lopez et al. [10]
predicted wind speed in the short-term using three non-parametric statistical regression
techniques. Moreover, other authors used particular transformations of the data, such
as Box—Cox and the normal inverse Gaussian transformation, to obtain data closer to a
Gaussian distribution [11-13]. Indeed, it is well known in the literature that wind speed
distribution is typically well reproduced by Weibull distributions [14]. Besides this, another
feature of the distribution of wind speed is the presence of fat tails [15,16].

Regarding the financial aspects, the income generated from the selling of produced
energy depends on the spot electricity price. The income is usually determined as the sum
of the discounted values of the product between the energy generated and the price in
that particular area. The income will, therefore, be subject not only to the random wind
trend, and therefore to the energy produced, but also to the uncertainty of the spot price
of electricity [17]. The income of a wind farm has been investigated by [18]. The authors
applied an Ornstein—Uhlenbeck process to model wind speed and energy production
and an inverse Gaussian process to represent the logarithm of electricity spot prices.
Recently, it has been shown that spot price and wind speed are correlated [2]. The authors
modelled the stochastic variables for wind speed and the spot price of electricity using
econometric processes, while the dependency structure was managed through copula
functions. However, they did not consider the direction in their model.

It is evident that to effectively model the income produced by a wind power plant, one
has to build a multivariate model that takes into account all the characteristics described
above. To this end, a multivariate high-order Markov model can be applied. In general,
high-order Markov models have been successfully implemented by many authors. For ex-
ample, Raftery [19] proposed the Mixture Transition Distribution model (MTD) to analyse
the time series of wind speed, while the same model applied to the wind direction was
introduced in [20] and further analysed in [21]. On the contrary, the multivariate Markov
model, introduced by [22] for categorical data, has been recently implemented in the analy-
sis of financial time series. D’Amico and De Blasis [23] proposed a multivariate stochastic
dividend discount model based on the MTD model, while De Blasis [24] applied the same
model to the analysis of price discovery in financial markets. Besides, the MTD model
by [19] helps in reducing the number of parameters to obtain a more parsimonious model
for a comprehensive review of the MTD model, readers can refer to [25]).

In this work, we propose to use a multivariate high-order Markov chain to model the
three variate processes of wind speed, wind direction and electricity price. In this way, we
are able to consider both the dependence between the three variables and the long range
autocorrelation for each of them. To overcome the problem related to the estimation of a
huge number of parameters, we used a Mixture Transition Distribution. The ability of the
model to reproduce real data is verified by a numerical application through Monte Carlo
simulations. We consider wind and electricity price data for a hypothetical turbine located
in central Italy. In our analysis, we consider data on a hourly basis. We take as a reference
price the zonal market pertaining to the area in which the plant is located. The model is
used to estimate the income that can be obtained from a wind farm. Finally, we compare the
real data with the simulated data to determine whether our model produces reliable results.

The next sections are structured as follows. Section 2 describes the characteristics
of the database used and the general model, while the results are presented in Section 3.
Discussions and conclusions are given in Sections 4 and 5, respectively.

2. Materials and Methods

This section describes the characteristics of the data used for the analysis. The data
include information about wind speed and direction as well as prices of electricity for a
hypothetical wind farm located in Central Italy with coordinates of 42° N and 13.75° E.
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The data frequency is hourly for 5 years, from 1 July 2015 to 30 June 2020, amounting to a
total of 43,848 observations.

2.1. Wind Speed and Direction

Wind speed and direction data were downloaded from the MERRA-2 project [26]. The
MERRA-2 model produces wind data at 2, 10 and 50 m from the ground. Because of the
characteristic height of the wind turbines, we used the data at 50 m. Table 1 shows the
summary statistics of the wind speed for each year, which appear to be quite constant for
all the figures. In fact, the average speed moved from 3.31 m/s in year 1 to 3.54 m/s in
year 5, with values that were compatible with the 5 year average. Moreover, the standard
deviation during the five years was aligned around the value of 2.40 m/s. Furthermore,
Figure 1 depicts the histogram along with the full time series of the wind speed, indicating
that the wind speed followed a Weibull distribution, as confirmed by the probability plot
in Figure 2.

Table 1. Wind speed statistics for the location 42° N and 13.75° E (Central Italy). Speed in m/s.
Hourly data from 1 July 2015 to 30 June 2020.

Year Mean Std Skew Kurt Min Max
1 3.31 2.34 1.63 3.39 0.01 15.82
2 3.47 2.44 1.66 3.03 0.05 16.34
3 3.64 241 141 2.45 0.03 16.30
4 3.46 227 1.48 291 0.06 16.17
5 3.54 2.53 1.74 3.73 0.05 17.53
Full 3.48 2.40 1.60 3.15 0.01 17.53

Date
Jul'15 Jan'l6 Jul'le Jan'17 Jul'17 Jan'18 Jul'18 Jan'19 Jul'19 Jan 20 Jul 20
8k 20

(=2}
=

15

103
w

” MM 5
'm‘['”m"“"‘“ TR e LS8 0 SUVE LY TV 0
2 4 6 8 10 1

2 14 16

Frequency
N
=~

N
~

. M
0
m/s

Histogram — Wind speed time series

Figure 1. Histogram and time series of wind speed.
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Figure 2. Probability plot of wind speed versus Weibull distribution.
We also include the wind direction to obtain a better model of the wind speed and

thus electricity prices in the multivariate process. A graphical overview of the direction,
grouped by different speeds, is provided in Figure 3. For the coordinates that we consider in
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this analysis, the wind blows mostly from the northeast and, with less frequency, from the
south. Moreover, the polar plot shows a clear relation between wind speed and direction,
demonstrated by the high peaks of wind speed around the northeast and the south-
southwest direction.
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Figure 3. Polar histogram of wind direction by speed. Wind data at a height of 50 m.

2.2. Wind Energy Production

To obtain an estimation of the wind turbine income, we needed to convert the wind
speed to energy production. Wind turbines transform the kinetic energy of wind into
electrical power through the rotational movement of the blades. The amount of energy
produced depends on the wind intensity, as well as on the characteristics of the blades.
For this purpose, the turbine is characterised by its power curve, which is generally given
by the turbine producer. In our application, we considered a generic wind turbine with the
following characteristics:

e Hub height of the turbine: 95 m;

¢ Rated power of the turbine: 2 MW;
e  Cut-in wind speed: 4 m/s;

. Rated wind speed: 13 m/s;

. Cut-out wind speed: 25 m/s.

In general, the power curve is linked to two critical values for wind speed. Below the
first threshold—i.e., the cut-in value—the turbine does not produce energy at all, meaning
that the kinetic energy of the wind is too weak to move the blades. In addition, above the
second threshold—i.e., the cut-off value—the turbine is blocked to avoid structural damage.
Between these two limits, there is a cubic relation, known as the Betz law, which links
the wind speed with the energy produced. This typical behaviour of the wind turbine
production is clearly evident in Figure 4, which shows the power curve given by the
producer of the turbine considered in our application. Besides, taking into account that the
wind data were generated for a height of 50 m and the wind turbine height was at 95 m,
we used an exponential scaling factor, as in [15], using the following dependence from

the altitude: .
h 1
Op = Uyif <hrif> o= 7111% 1

where v, is the wind speed at the height of the wind turbine, v,;f is the value of the wind
speed at 50 m—in our application & = 50 m and h,;y = 95 m—and zj is a factor that
takes into account the morphology of the area near the wind turbine. This parameter
depends on the region in which the turbine is located. Its value ranges from 0.01 and 0.001
depending on buildings or trees in the area; for offshore application, it is equal to 0.0001.
For our analysis, we considered a mean value for an onshore application; thus, we choe
zo = 0.005.
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Figure 4. Power curve of a 2 MW, 95 m high wind turbine.

2.3. Electricity Price

Electricity data were downloaded from the Italian Day-Ahead-Market (MGP), which
is split into geographical areas. For our analysis, we selected the central southern zonal
price, which reflects the location of our wind turbine. The Italian electricity market is an
auction market that takes place one day in advance at 12 p.m. Prices for each zone and
each hour of the next day are set during the auction, including the definition of the national
unique price (PUN) as the weighted average of the prices with zonal volumes as weights.
The hourly price series are available at the Mercato Elettrico website [27].

Table 2 shows the electricity price summary statistics divided by year for the central-
southern Italian prices. Prices appear to be highly volatile with an annual standard devia-
tion ranging from 12.88 to 16.20 €/MWh and with a 5 year average of 49.95 €/MWHh. In the
analysed periods, the peak reached the value of 170 €/MWh. In addition,
Figure 5 depicts the histogram of the prices along with the full time-series for the five years.
The price series fails the Jarque—Bera test of normality, as also reported in the probability
plot in Figure 6, where the tails are clearly outside the normality assumption as shown
from the kurtosis values in the summary statistics table.

Table 2. Summary statistics of the electricity price for central-southern Italy. Prices in €/MWHh.
Hourly data from 1 July 2015 to 30 June 2020.

Year Mean Std Skew Kurtosis Min Max
1 45.57 15.57 1.36 3.73 10.0 146.33
2 47.20 12.88 1.61 5.22 10.0 150.00
3 54.22 15.73 1.65 6.22 0.0 170.00
4 61.34 13.38 0.06 2.37 0.0 141.25
5 41.42 15.18 0.04 -0.23 0.0 99.61

Full 49.95 16.20 0.70 2.26 0.0 170.00
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Figure 5. Histogram and time series of electricity prices.
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Figure 6. Probability plot of electricity price versus normal distribution.

2.4. Correlation

The analysis of the autocorrelation and partial autocorrelation function for the three
time series, wind speed, direction and price, as reported in Figure 7, shows that all the series
present a certain degree of dependency from the past values. Moreover, Table 3 reports the
correlation coefficients for the three series, up to the second time lag. The contemporaneous
correlation between price and speed shows a negative coefficient of —0.143. Even though
there is a correlation that is almost close to zero between price and direction, the effect
of the direction is propagated to the price through the wind speed. This pattern is also
persistent when considering the time lags. Therefore, it seems appropriate to adopt a
multivariate model which includes a certain level of dependency from the past values.
Specifically, considering the partial autocorrelation function, a model with two lags should
suffice for our purpose.

Table 3. Cross-correlations between series and time lags.

Price Speed Direction (Dir)
Price 1.000 -0.143 0.015
Speed -0.143 1.000 -0.085
Dir 0.015 -0.085 1.000
Price L1 0.933 -0.139 0.029
Speed L1 -0.138 0.983 -0.089
Dir L1 -0.006 -0.073 0.860
Price L2 0.832 -0.129 0.033
Speed L2 -0.127 0.943 -0.088
Dir L2 -0.026 -0.058 0.745

2.5. Model

The analysis of wind speed and price data clearly shows that there are cross-correlations
between the series and the lagged series, suggesting the use of a multivariate model that
considers some history of the process. A good candidate could be the multivariate Markov
model with the inclusion of the dependencies from a certain level of past values. However,
a Markov chain model would require the estimation of the probabilities of all possible
combination of the transitions from one state to another for each series and each lag. In such
a model, the number of parameters to estimate is liable to drastically increase with the
number of states, series and time lags.

To overcome the estimation issue in the high-order Markov chains, in [19], the authors
proposed the Mixture Transition Distribution model (MTD) to reduce the number of pa-
rameters in the estimation. Moreover, in [22], the authors applied the same approach to the
multivariate Markov chains. In this paper, we propose a combination of the two approaches
to deal simultaneously with high-order Markov chains and multivariate Markov chains.
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Figure 7. Autocorrelation (left) and partial autocorrelation (right) function for up to 50 lags of wind
speed (top), wind direction (middle) and price (bottom).

In general, for a given Markov process X = (X, Xy, ..., X¢), taking values in the set
M ={1,2,...,m}, the Markov property for its high-order chain can be written as

P(X;=ipg|Xo=1it,..., Xpm1=11) =P(Xe =io| Xy =ip,..., X41 = 11), )

where iy, .. .,i1,ip € M and [ is the order of the chain; i.e., the number of time lags.
Equation (2) states that the probability of being in state iy at time ¢ does not depend
on the full historical path of the process but only on the states occupied by it during the
last I transitions. Therefore, the present case depends on the last I observations only.
According to [19], the high-order Markov property can be rewritten, on the basis of
the MTD model, by the following relation:

!
P(X; =io| Xy =1ip,..., Xpm1 =11) = Y AP(Xy = ig| Xy g = ig). (3)
g=1

This property declares that the probability of being in state iy at time ¢ still depends
on the | states occupied by the process at previous time lags, but this dependency is
represented by a linear combination of the probabilities of transitioning from state i, at
time t — g to state ij at time ¢. Therefore, based on the MTD model, we need to estimate
I transition probability matrices whose entries represent the probability of transitioning
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from state ig to state io. Let g;, i, be the transition probability from state ig at time f — g to
state ip at time £; the property in (3) can be written as

1 !
Z )LgP(Xt = i0|Xt_g = lg) = 2 /\gql‘g,io. (4)
g=1 g=1

However, if we consider a homogeneous Markov chain with states taking values
in the set M = {1,...,m}, the process can be fully described by a probability vector
Xy = (P(Xy =1),...,P(X¢ = m)) and a time-independent transition probability matrix
Q whose entries g; ;, are the probabilities of transitioning from state i, independent of the
lag, to state ip. Thus, the probability distribution at time ¢ can be expressed in terms of the
one-step transition as

X =X 4Q, 5)

or, given an initial probability distribution vector, Ap, as
X = Q" (©)
With the homogeneity condition, the relation in (4) can be updated as

1 1
Z /\gP(Xt = i0|Xt_g = lg) = 2 qui,ior (7)
g=1 g=1

with g; ;, being an element of the matrix Q that represents the probability of transitioning
from state i to state ij.
To ensure that we deal with probabilities in Equation (7), we need to ensure that

1

0 S Z /\gqi,io S 1,
g=1

implying the following conditions:
l
Y Ag=1, Ag>0. 8)
g=1

Considering the convex linear combination presented in Equation (7), we have to
estimate fewer parameters compared to the full high-order Markov chain. Specifically,
we have m(m — 1)) parameters for the transition probability matrix with m states plus
[ — 1 values for the A4 coefficients, compared to a total of m!(m — 1) parameters for a full
high-order Markov chain.

For a comprehensive review of the MTD model and its applications, we refer the
reader to [25].

The same MTD model approach can be applied to the multivariate Markov process.
We now consider I' = {1,...,7} series without including the time lags. In this case,
the property in (3) becomes

P[x¢ = (xXh =il Xy =), (G =i X) =)
T ©)
= Y APp[xi = igl(xP, = i),

B=1

witha, B €T.

This property states that the probability of being in a determined state at time ¢
depends on the states occupied by all series at time ¢ — 1, according to a linear combination
of the transition probability matrices QP*. Each element of these matrices represents the
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probability of transitioning from state i in series f at time f — 1 to state iy in series « at time
t, as indicated in the following matrix:

Xy
X1 2 m
1 qgg quz qlg%
Q(ﬁ“) = 2 91 9o o |- (10)
m o laby dhe o dhm

Therefore, we need to estimate 42 matrices with m(m — 1) parameters, plus 7> values
for the AP¥ coefficients. The total number of parameters to estimate for a multivariate
Markov chain is 9% (m(m — 1) + 1).

As for the high-order Markov model, the multivariate Markov model is subject to the
same conditions in (8):

¥
Yo AP =1, AP >0 (11)
p=1

For our purpose, we combine the previously described models and propose a high-
order multivariate Markov model. The properties in Equations (7) and (9) can be jointly
written as

H 1 1 1 -1 1 : .
P[xt = l(xXh =il Xy =), (G =i X0 =)

Y
= Y APp|xe = |(xP =), (X =)
= { t 01 — 7 t—1 1 } (12)
v
=Y YA =dlxf =),
p=1g=1
subject to
i 14 [\
Yy AR =1, A >o. (13)

p=1

For clarity, of the conditioning vectors of the probability in Equation (12), where the
probability of being in series « in state i§ depends on the states i} occupied by the  series
in the [ lags, we can write the equation with the help of the following matrix representation:

i Series T
Lags 1 2 0%
1 _ A 2 _ 20 Yy
1 thl = l% thl = 1% e Xy = b
PIXF=i| 2 |Xl,=i XP,=i - X',=i]|. (14)
' 1 _ 4 s o Yy
! Xp=1i Xp,=iq4 - X, =7

If we have only one series, the matrix reduces to the column vector and the model is a
high-order Markov chain. On the contrary, if we have only one lag, the matrix reduces to
the row vector and the model is the multivariate Markov chain.

Considering the homogeneous case, as in (7), the total number of parameters to
estimate becomes 2 (m(m — 1) +1).
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3. Results
3.1. Parameter Estimation

To proceed with our application, we have to convert our wind speed and direction,
as well as price data, into categorical sequences.

We set the number of states m = 5 and perform discretisation for wind speed and price
using the bins reported in Table 4. The bins are fixed, taking into account the distribution
of the time series and the long tails as shown in the histograms and probability plots in
Section 2. As for the wind direction, we split the data into five equally spaced bins.

Table 4. Discretisation bins for wind speed and price.

Series State 1 State 2 State 3 State 4 State 5
Speed bins 0-2.25 2.25-4.50 4.50-6.75 6.75-9 9—co
Price bins 0-25 25-50 50-75 75-100 100-oc0

Once we obtain the categorical series, we can estimate the parameters of the proposed
model. The estimation of the transition probabilities is done according to the maximum

likelihood estimator: N
[\
~ N Z lo
‘71’,1‘0/5 = ﬁ (15)
ig= 11 o
where 7, ;, is the number of times that we observe a transition from state i in series f to
state iy in series «.
On the contrary, the estimation of the Ag“ coefficient is performed by maximising the
log-likelihood:

m m m m
logL=Y " ...) ... DY anl,.. 11,...,1'7,...,1'1’,1'6‘)

=

i=1 il=1 =1 iI=1i=1
1 l 1 1 1 (16)
Ba
g X Xt
p=1g=1
where n(il,...,i},.. i?, ,i7,i%) is the observed number of sequences of the type X! , =
i,l,.. X1 1= il, . X7 =17, X7 = i;’, X} = i, respecting constraints (13).

In thls paper, we Cons1der a multlvariate model of order 2, and as an example, from
Tables 5-11, we report the transition probability matrices for transitions from time t — 1
to time f. A similar pattern is registered for the transitions occurring at higher orders.
Specifically, Table 5 shows the probabilities of transitioning from state i at time t — 1 in
the speed series to state iy at time ¢ in the same speed series. Similarly, Table 6 shows the
probabilities of transitioning from state i at time ¢ — 1 in the speed series to state 7y at time
t in the direction series. The matrix in Table 7 contains the transition probabilities from
the direction series to speed series, and the matrix in Table 8 shows the probabilities from
direction series to direction series.

An analogous reasoning is applied to the Tables 9-11, in which we report the transition
probabilities from price series to price series, from speed series to price series, and from
price series to speed series.

3.2. Expected Income Estimation

The expected income of a given wind turbine at time fp > 0 to time ty + N is defined

as follows:
N

V(to, to+ N) =Ey | Y x(to + k) - 2(tg + k) - (1 + 1) . (17)
k=1
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Table 5. Transition probability matrix: speed to speed.

1 2 3 4 5
1 0.10 0.00 0.00 0.00
2 0.09 0.00 0.00
3 0.00 0.11 0.06 0.00
4 0.00 0.00 0.13
5 0.00 0.00 0.00

Table 6. Transition probability matrix: speed to direction.

1 2 3 4 5
1 0.19 0.17 0.29 0.20 0.16
2 0.24 0.22 0.27 0.16 0.10
3 0.21 0.29 0.23 0.23 0.04
4 0.26 0.26 0.21 0.24 0.02
5 0.22 0.18 0.29 0.29 0.02

Table 7. Transition probability matrix: direction to speed.

1 2 3 4 5
1 0.31 0.44 0.14 0.07 0.04
2 0.29 0.43 0.18 0.07 0.03
3 0.38 0.41 0.12 0.05 0.04
4 0.33 0.36 0.16 0.08 0.07
5 0.54 0.38 0.06 0.01 0.01

Table 8. Transition probability matrix: direction to direction.

1 2 3 4 5
0.05 0.01 0.00 0.06

1

2 0.08 0.00 0.00
3 0.01 0.06

4 0.00 0.00

5 0.05 0.00

Table 9. Transition probability matrix: price to price.

1 2 3 4 5
1 0.19 0.00 0.00 0.00
2 0.02 0.00 0.00
3 0.00 0.12 0.04 0.00
4 0.00 0.00 0.34
5 0.00 0.00 0.03

Table 10. Transition probability matrix: speed to price.

1 2 3 4 5
1 0.03 0.48 0.43 0.06 0.01
2 0.04 0.51 0.40 0.05 0.01
3 0.08 0.52 0.35 0.04 0.01
4 0.11 0.52 0.32 0.04 0.00
5 0.09 _ 0.28 0.02 0.01
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Table 11. Transition probability matrix: price to speed.

1 2 3 4 5
1 0.20 0.35 0.24 0.14 0.08
2 0.33 0.42 0.15 0.06 0.05
3 0.39 0.41 0.12 0.05 0.03
4 0.46 0.37 0.10 0.05 0.02
5 0.38 0.39 0.17 0.02 0.04

The risk-free interest rate r; changes over time k, x(ty + k) is the electricity spot price
at time tp + k and z(to + k) represents the energy produced at time t( + k.

From this formula, we note that the correct modelling of cross-correlations between
the variables is of fundamental importance.

Finally, we take as an estimator of the expected income the following:

T

™M=

1

V(to, to+N) = i xi(to +k) - zi(bo + k) - (1 +1) 7%, (18)
i

1k

1

where H is the number of simulations, x;(ty + k) is the value of the electricity spot price
at time t( + k for the ith simulated trajectory and z;(ty + k) has the same meaning for the
energy production process.

The computation of the energy production is performed taking into account the
characteristics of the wind turbine, as reported in Section 2.2, using the power curve
that links the wind speed to the production, measured in m/s and MWh, respectively.
In addition, the interest rate values are represented by the risk-free interest yield curve in
the Euro-zone plus a spread used to reflect the risk level of the project. For this application,
we set the spread value at 2%. Figure 8 reports the yield curve adopted in our application
to discount the income process.

Yield curve rates

0.03

o 0.02
©
5
g

= 0.01

0

2 > 2
,19/\ Q)Q/\ D‘Q/\
> A >
Date

Figure 8. Yield curve of the Italian government bonds.
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3.3. Monte Carlo Simulations

In this section, we describe the Monte Carlo simulation that is used to compare the
empirical income of the given wind turbine with the simulated income determined by our
multivariate model. We perform 1000 simulations of price, speed and direction processes
and produce the 95% confidence intervals. The algorithm for the simulation is performed in
two separate steps. First, we simulate the categorical multivariate process as illustrated by
the flow chart in Figure 9. For each time of the series and for each simulation, the algorithm
computes the probability distribution of being in a certain state at time f based on initial
states occupied by the multivariate process. The arrival state is randomly chosen comparing
the cumulative distribution function with a random number from the uniform distribution.

Record the initial state occupied by
the multivariate process (for each
time series)

l

Sample a probability from the Uniform distribution
(for each time series)

|

Deduce the distribution probability from the
transition probability matrices and property (12)

|

Compare the sampled probabilities with the
cumulative distribution functions to identify the
arrival state

Repeat for all times
Compare

Monte Carlo simulation: repeat 1000 times

Figure 9. Algorithm for the simulation of the categorical multivariate process.

Once we obtain the categorical predictions for each simulation, we need to associate a
real value to each state of the chain. Various methodologies are available for this mapping,
such as using the mean value, the median value, etc. To obtain a more realistic simulation,
we identify the wind speed, direction and price by randomly selecting the real values
associated to the occupied state by mean of the empirical cumulative distribution function
for each state. The algorithm is presented in Figure 10.

The results of the simulations are shown in Figure 11. Most often, the trajectory of the
empirical income falls within the 95% confidence range, showing that the model is able to
reproduce the results for real data.
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Compute the ECDF from the
observed time series (for each state
and for each time series)

1

Sample a probability from the Uniform distribution
(for each time series)

1

The value from the ECDF corresponding to the
E—— sampled probability is the value taken from the
time series in the simulation

l

. Monte Carlo simulation: repeat 1000 times

Repeat for all times

Figure 10. The algorithm that associates a real value to the categorical state occupied by the process.

Expected Income

1000k
750k
<D
=
o 500k
|9
=
250k
0
> 3 > 3 S
(0/ /\/ q)/ O)/ Q/
Q> Q> N NN Qv
W v v v v
Date
Cl 95% Range -- Average — Income

Figure 11. Energy—expected income with a 95% confidence interval (CI).

4. Discussion

The statistical analysis of wind speed and direction together with the analysis of spot
prices shows that the three processes are correlated and autocorrelated. This empirical
evidence shows that the three variables are modelled together by introducing some de-
pendence. Previous studies [2,18] only partially considered this dependence structure.
In general, the introduction of multivariate model, from a theoretical point of view, allows
a better description of the whole process, but it has an evident application problem: the
number of parameters to be estimated increases a great deal, introducing estimation errors.
In this paper, we presented a three-variate high-order Markov chain to model the three
stochastic processes of wind speed, wind direction and electricity prices. To the authors’
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knowledge, this is the first time that such a three-variate model has been used in this
research field. At the same time, it is the first time that the three random processes have
been modelled together. In fact, the model takes into account the complete dependence
structure between the three variables and it is also able to keep the number of parame-
ters low. To achieve the second goal, we used a Mixture Transition Distribution model.
The proposed model was then used to estimate the expected income for a wind farm.
We have given a mathematical formalisation of the model and shown, through Monte
Carlo simulation, that the proposed model gives results that are very similar to real data.
Thus, the model can be used to assess the investment income of a wind farm by using
historical data.

5. Conclusions

The aim of this paper was to assess the income of a hypothetical wind farm located in
central Italy. The income of a wind farm is defined as the present value of energy sold in
the market in a given time window. Given this definition, the income depends on energy
production and electricity prices. Then, we proposed a three-variate high-order Markov
model to replicate the stochastic behaviour of wind speed and direction together with
electricity price in a given location. In fact, the three variables have been recognised to
be dependent processes. Using data from the MERRA-2 project and from the electricity
market, we estimated the model parameters and, with a Monte Carlo simulation, showed
that our model gives results that are very similar to those obtained from real data when
applied to the estimation of the income from a wind turbine. We can argue that our model
can be used to predict the income generated from an entire wind farm and can also be
used in other applications; for example, for risk assessment. Further improvements could
be obtained by using a wind turbine with direction-dependent energy production or by
considering also the wake effect in the energy production from a wind farm.
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