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Abstract: We propose a device for monitoring the number of people who are physically present 
inside indoor environments. The device performs local processing of infrared array sensor data 
detecting people’s direction, which allows monitoring users’ occupancy in any space of the building 
and also respects people privacy. The device implements a novel real-time pattern recognition 
algorithm for processing data sensed by a low-cost infrared (IR) array sensor. The computed 
information is transferred through a Z-Wave network. On-field evaluation of the algorithm has been 
conducted by placing the device on top of doorways in offices and laboratory rooms. To evaluate 
the performance of the algorithm in varying ambient temperatures, two groups of stress tests have 
been designed and performed. These tests established the detection limits linked to the difference 
between the average ambient temperature and perturbation. For an in-depth analysis of the 
accuracy of the algorithm, synthetic data have been generated considering temperature ranges 
typical of a residential environment, different human walking speeds (normal, brisk, running), and 
distance between the person and the sensor (1.5 m, 5 m, 7.5 m). The algorithm performed with high 
accuracy for routine human passage detection through a doorway, considering indoor ambient 
conditions of 21–30 °C. 
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1. Introduction 
Human monitoring has always drawn attention in many applications, including 

smart building. Determining the number of people inside each room in a building is a 
very important task for controlling that the safety norms imposed by laws are properly 
followed and that health system recommendations are fulfilled. This becomes more 
important in the context of the coronavirus pandemic, wherein it is essential to monitor 
people’s occupancy, especially in an indoor environment. In this context, designing a low-
cost architecture for monitoring the number of people occupying rooms is a challenging 
task. 

A building’s related information is often managed with so-called Building 
Information Modeling (BIM), a standard procedure employed for optimizing the 
planning and implementation of a system with the help of a software platform [1]. It 
requires the fulfilment of some key parameters that include building elements and 
equipment to be modelled, high-quality documentation, and necessary attributes for 
monitoring and interpreting available information [2]. 

The management of the public building, from the energy point of view, implies the 
knowledge of how and when the internal workspaces are used, and therefore by the 
instantaneous measurement of the number of people inside it. Thus, suitably training a 
neural network or using appropriate machine learning algorithms [3] to update a 
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behavioural model of the building can allow rationalizing both the use of spaces and 
consequently the use of the electrical/thermal energy necessary for their lighting and air 
conditioning. In this scenario, sensor technology manifests as a powerful tool for 
acquiring data from a building that forms an important basis for BIM application. 

Sensor technology started from the simple thermistor to advanced differential 
pyroelectric devices. Based on their operating principle, sensors are classified as 
mechanical and electronic, while in terms of communication and storage, they are 
classified as wired, wireless, and portable. In building applications, sensor technologies 
are used to monitor parameters such as temperature, humidity, CO2, lighting, and 
occupancy. Implementation challenges of sensors network can vary notably for different 
building applications and depends on factors such as building size, location, number of 
devices, and preferred technologies [4]. 

A huge range of communication and wireless networking methods, such as Zigbee, 
Bluetooth Wi-Fi, Z-Wave, etc., are available in the market to complement the proper 
functioning of a sensor system inside a building. Hayat et al. in [4] have provided a 
detailed overview of prominent wireless technologies employed in buildings. Kim et al. 
in [5] used the Zigbee protocol to implement a hybrid wireless sensor network in the 
building set-up. In a recent study [6], the authors investigated the application of a smart 
sensing network embedded with passive infrared (PIR) CO2 sensors using BACnet 
communication protocol and noted a reduction of building-operational cost and energy. 
Yassein et al. in [7] utilised the Z-Wave protocol and discussed its application in smart 
homes. 

Numerous technologies are proposed in the literature for human presence detection 
[6] that exhibit different features such as costs, resolution, privacy, etc. For instance, 
conventional video camera systems used for surveillance are accurate but expensive and 
require significant infrastructure to process pieces of information to extract relevant 
features and are intrusive. Several low-cost sensor systems have been utilised to preserve 
privacy but with a low-resolution sensing feature. In literature, several studies have 
proposed a combination of different sensing modalities and machine learning approaches 
for counting and identifying people inside buildings, utilising a low-cost sensor set-up. 

Moreover, recent research has shown that surveillance video camera data can be 
analysed in order to extract information relating to suspicious human behaviour and 
identity [8,9]. In particular, gait recognition is an emerging biometric technology that 
identifies people through the analysis of the way they walk [10]. 

Sun et al. in [11] used a low-cost pyroelectric sensing system for human-monitoring 
applications, and the sensor array was built using single PIR sensors. Yang et al., in [12], 
used a PIR sensor mesh network, and an improved Kalman filter and a particle filter are 
used for human tracking. Hao et al., in [13], investigated a low-cost alternative to infrared 
video sensors, i.e., a PIR sensor system for tracking and identifying people based on their 
body heat radiation using an Expectation-Maximization-Bayesian tracking scheme. 
Chowdhury et al. in [14] investigated a low-cost security system using a small PIR sensor 
built around a microcontroller by sensing thermal perturbations with the surrounding 
environment due to the presence of individuals. Caidedo et al., in [15], proposed an 
ultrasonic sensor array prototype for reliable indoor human presence detection. Unlike 
pyroelectric, thermopile sensors can detect both stationary and motion activities without 
compromising privacy. 

In this work, a thermal array (64 thermopile sensing elements, 8 × 8 grid) IR sensor 
was set-up to count the number of people inside a room using a novel algorithm for 
automated recognition of patterns in data (pattern recognition). In Table 1, we confine our 
attention to research works that have utilised the same (8 × 8 pixels) thermal array IR 
sensors to monitor human movement/presence but employed different computational 
approaches to analyse the data. 
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Table 1. A comparison between 8 × 8 pixels thermopile IR sensors array methods reported in literature for human 
detection. 

Reference Case Study Sensor Type Feature Extraction Method Accuracy 

Proposed Indoor people counter IR array 
Unsupervised pattern recognition based on moving 

average thresholding 
95% 

[16] 
Tracking motion and 

Proxemics 
IR array K-means clustering 80% 

[17] People occupancy  IR array Otsu’s Binarization and temperature filtering technique 93% 

[18] Indoor human detection IR array 
Activity recognition algorithm and Kalman filter for noise 

removal 
70%–95% 

[19] Indoor human detection IR array 
A probabilistic method with multiple pre- and post-image 

processing techniques 
 

[20] 
Human localization and 

tracking 
IR array 

Adaptive threshold, Nearest neighbour, and Kalman filter 
tracking 

- 

[21] Doorway Occupancy counter IR array Kalman filter tracking 89%–92%. 

[22] 
Quantifying toilet usage in 

offices 
IR array Machine learning methods (KNN, SVM, LR, LSTM)  >98%–99% 

Basu and Rowe, in [16], developed a low-cost method to estimate the direction of 
human motion (with 80% accuracy) using a 64 pixels IR sensor array and using a support 
vector machine algorithm. Mohammadmoradi et al., in [17], employed a threshold-based 
technique (Otsu’s binarization) to estimate the people flow (with an average 93% 
accuracy) through doorways using a low-resolution IR sensor array. 

Trofimova et al., in [18], utilised the noise removal technique based on the Kalman 
filter to detect human presence in an indoor environment using 8 × 8 pixels thermal sensor 
arrays. Jeong and co-workers, in [19], proposed a probabilistic method with image pre-
processing and post-processing techniques for human detection using heat signatures 
from a low-resolution thermal IR sensor array system. 

Qu et al., in [20], proposed a thermopile sensor array deployed horizontally with a 
height of 3.5 m for indoor localization and a human tracking system with a Kalman filter. 
The designed adaptive threshold technique to preserve human targets and remove 
background by the authors functions well for indoor multiple human targets. Within a 
smart building set-up, Maaspuro, in [21], studied an application of IR sensor array as a 
doorway occupancy counter using Kalman filter tracking algorithm and reported an 
accuracy between 89%–92%. 

Doherty et al., in [22], implemented a novel indoor localization system by combining 
sensor technology and machine learning methods (logistic regression, K-Nearest 
neighbours, support vector machine, and a feedforward neural network) to collect and 
analyze human occupancy data in an indoor toilet. They reported an accuracy value 
between 98%–99%. 

For completeness, we also report studies that have employed better resolution IR 
sensor arrays for indoor human tracking. Spasov et al., in [23], proposed the use of a 32 × 
24 pixels thermal detector with an open-source hardware board for developing a solution 
with applications for monitoring of the human presence and home appliances. Gu et al., 
in [24], proposed a dynamic fuzzy spatiotemporal background removal technique for 
human activity perception based on a 32 × 24 pixels thermopile sensor array (MLX90640, 
Melexis Corporation, Belgium). 

The goal of our study is to validate the functionality of the proposed pattern 
recognition algorithm that allows determining the number of people in a room, using a 
low-cost and easy to install sensor system on top of doorways. The total number of people 
in the building can be then calculated by adding up this information. To do so, we 
designed and developed a low-cost smart IR sensor system to track the number of people 
entering and exiting the environment, which required constant monitoring. In detail, we 
present the design, construction, and programming of a Z-Wave-based sensors. The 
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development board used is called Z-Uno. It is a board for developers that allows creating 
a customized Z-Wave device, which then implements the Z-Wave protocol management 
utilising the pre-installed software. Further, we studied a pattern recognition algorithm 
for analysing the IR sensor time-series data and identifying events of people crossing the 
doorway. The main requirements of this algorithm are low computational complexity and 
low memory footprint. The low memory footprint is achieved by using reference data in 
the last five sensor readings. The developed algorithm was then implemented into the 
microcontroller present in the sensor device. Finally, the algorithm’s accuracy to detect 
different human walking speeds at temperature ranges typical of the residential 
environment was investigated by performing various stress tests on synthetic data sets 
simulating temperature ranges typical of a residential environment, different human 
walking speed (normal, brisk, running), and different distances between the person and 
the sensor (1.5 m, 5 m, 7.5 m). 

In summary, the main contributions of this work are:  
(1) Study and development of a low-computational complexity and low memory 

footprint pattern recognition algorithm. 
(2) Development of a low-cost people-counting device with a microcontroller 

implementing the proposed algorithm. 
The paper is organized as follows. In Section 2, we describe the proposed 

architecture. In Section 3, we present the proposed pattern recognition algorithm. In 
Section 4, we present the experimental analysis scheme. In Section 5, we discuss the three 
phases: data acquisition and calibration of algorithm, validation, and simulation of the 
real-time human-passage experiment. Finally, the conclusions and future work are 
described in Section 6. 

2. Proposed Architecture 
The proposed architecture is composed of three main components: a Panasonic Grid-

EYE 64 pixel IR sensor array, a Z-Wave network, and a signal-processing module [25]. The 
infrared sensor captures the thermal image of the user’s passage, the I2C protocol passes 
the signal to the processing module, which implements the proposed pattern recognition 
algorithm, and after that, the data are sent via Z-Wave protocol to the network. These 
components are discussed in the following section. 

A schematic representation of the proposed architecture is shown in Figure 1. 
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Figure 1. A schematic representation of the proposed architecture. 

2.1. Infrared Sensor 
A GridEye sensor was used for the development and test of the proposed 

architecture. A GridEye sensor is a thermopile array device consisting of a matrix of 8 × 8 
IR sensors, which are connected to the analog-to-digital converter (ADC) and internal 
memory, all managed by an integrated microcontroller that provides a digital interface 
via I2C protocol (serial communication protocol). The approximate cost of the sensor 
used in this paper is ~$50. 

When considering the cost-effectiveness of indoor human-counting solutions, it is 
preferable to use low-resolution (8 × 8 pixels) thermal IR sensors instead of expensive 
high-end thermal cameras, which could still cost up to thousands of dollars. 

The device is constituted by an 8 × 8 array of IR sensors (64 pixels), which performs 
the acquisition of comprehensive temperature data, thus obtaining thermal images and 
temperature gradients. The sensitivity of an IR sensor derives from the photometric 
sensitivity of each detector at each pixel. An IR sensor has multiple pixels that all work 
together to create a complete view of the area. By its nature, it protects the host 
environment’s privacy, contrary to what is possible with conventional cameras. 

The sensor capturing a normal human passage movement is represented in Figure 2. 
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Figure 2. Infrared sensor for tracking human passage movement. 

The chip integrates within its interior a lens that supports a viewing angle of 60° and 
an I2C visual interface that allows obtaining measurements with a frame rate from 1 to 10 
frames per second. The device offers an interrupt pin for applications that require event 
management “critical-time,” a PIN for the selection of 2 I2C addresses. In Table 2, the 
essential features of the Grid-Eye sensors set-up are shown. 

Table 2. Principal features of an IR sensor set-up investigated in this work [25]. 

Dimensions 11.6 mm × 4.3 mm × 8.0 mm (L × H × W) 
Operating voltage 3.3 V or 5.0 V 

Current consumption Typ. 4.5 mA (Normal mode); 0.8 mA (Stand-by mode), 0.2 mA (Sleep mode) 
Temperatures range of measuring 

object 
With amplification factor High gain: 0 °C up to 80 °C, gain of the Low: −20 °C 

up to 100 °C 
Field of view:  60° (vertical and horizontal) 

Number of Thermopiles:  64 (horizontal × vertical 8 × 8) 
Frame rate 10 frames/s or 1 frame/s 

Absolute temperature accuracy Typ. ± 2.5 °C 

2.2. Z-Wave Installed IR Sensor 
The IR devices were connected using the Z-Wave wireless communication protocol 

(based on mesh network topology). Z-Wave is a low-power wireless technology, easy to 
implement inside buildings, and requires low maintenance costs. Through the three 
values, the Z-Wave sensor network offers the treatment as three distinct Z-Wave channels 
containing, respectively: (i) the total number of inputs, (ii) the total number of outputs, 
and (iii) the number of people currently present within the environment. These values can 
be updated every 60 s, depending on the Z-Wave network configuration or need for 
ambient monitoring. 
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The tracking of human passage is performed by acquiring frames from the IR sensor 
and processing them through a pattern recognition algorithm, implemented in C++ 
language, that is executed cyclically inside the microcontroller of the Z-Uno board. 

Through our developed algorithm, it was possible to perform the count of people 
entering and exiting the environment by querying the IR sensor device using the I2C 
protocol and analysing the time evolution of the captured frames.  

Different sequence patterns were obtained for the user’s movement in the vicinity of 
the sensor, for example, “input,” “fake entry,” “output,” and “fake exit,” as defined in 
Table 3. In this regard, in the following section, we present a detailed description of the 
proposed algorithm for people moving through a doorway. 

Table 3. The description of various events: actions performed by the users. 

Identifier Description 
I: Input People crossing (entering) the doorway 

O: Output People crossing (exiting) the doorway 
IHO: 

I—Input 
H—Hold 

O—Output 

People not completing a full doorway crossing (fake entry). The person comes from the entrance side, 
holds in the doorway and then goes back from the entrance. 

OHI: 
O—Output 
H—Hold 
I—Input 

People not completing a full doorway crossing (fake exit). The person comes from the exiting side, holds 
in the doorway and goes back towards the exit.  

IHI: 
I—Input 
H—Hold 
I—Input 

People completing a full doorway crossing with a hold. The person comes from the entrance side, holds 
in the doorway, and completes the crossing. 

OHO: 
O—Output 
H—Hold 

O—Output 

People completing a full doorway crossing with a hold. The person comes from the exiting side, holds in 
the doorway, and completes the crossing. 

3. Algorithm for Monitoring People Crossing a Doorway 
3.1. Case Study and Requirements 

The case study under consideration, which is termed indoor people counting, is 
represented in Figure 3. In this case study, those responsible for safety of people within 
the building needs to have exact information on the distribution of the people inside the 
building and, in particular, the number of people for each room/corridor and the total for 
the building. A small device is mounted on the top of the door casing. The device has a 
square infrared sensor facing the floor, aligned with the door casing, and implements a 
pattern recognition algorithm for locally processing the sensor data, and, in the case of 
activation, signals which event has occurred to a mesh network with the other devices in 
the building. The mesh network faces a gateway connected to a cloud service that collects, 
processes, and stores the relevant information. 
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Figure 3. Case study: monitoring people presence in buildings. 

The main requirements for the proposed algorithm are: 
• Complexity, the proposed algorithm shall employ low computational complexity 

modules; 
• Memory, the proposed algorithm shall target a low memory footprint; 
• Accuracy, the proposed algorithm shall target full accuracy (100%) in stable indoor 

environmental conditions (22–26 °C) and high accuracy (higher than 95%) in variable 
indoor environmental conditions (18–32 °C). 

3.2. Proposed Algorithm 
The objective of the proposed pattern recognition algorithm is to analyse the last four 

frames in a sliding FIFO buffer captured by the infrared sensor to extract the information 
summarized in Table 3. On-field experiments revealed that some people might just stop 
at the doorway and then might finally enter the room or go away without completing the 
entrance movement. In order to correctly identify the action performed by the people, the 
hold state must be considered as one of the possible states. As discussed in Section 2.1, the 
sensor generates frames corresponding to 8 × 8-pixel images. The frame rate is between 1 
and 10 frames per second. 

The reference scenario considered for devising the pattern recognition algorithm is 
shown in Figure 4. There is an IR sensor with 8 × 8 elements (the sensor in Figure 4 is 
magnified to show its position in the scene) fixed on the top of the doorway. With 
reference to the location of the sensor in Figure 4, we define “inside” of the space as on 
the left of the sensor and “outside” of the space as on the right of the sensor. In the figure, 
a subject is outside, moving to go inside. Once the subject is inside, the algorithm should 
signal the entrance message (E). 
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Figure 4. Reference scenario of an event: user’s passage. 

While the user is moving through the doorway, different elements of the sensor are 
activated. Referring to Figure 4, if the user moves from the right to the left, the sensor 
should reflect this movement by enabling at first some sensing elements and the rightmost 
column of sensors (column 8) and then activating elements in the following columns (from 
column 7 to column 1). 

Each 8 × 8 matrix (frame) captured by the sensor is stored in a first-in-first-out (FIFO) 
buffer. As a frame is processed by the proposed algorithm, it is removed from the buffer. 

The method consists of partitioning the frame into four vertical stripes, computing a 
moving average threshold (Equation (4)) for identifying a possible passage of the subject 
in the area covered by one of the vertical stripes, and finally use the evolution of the 
features extracted from each stripe for inferring the most probable action taken by the 
subject according to the patterns described in Table 3.  

Let 𝐹 𝑥, 𝑦 , 𝑥 ∈ 1,8 , 𝑦 ∈ 1,8  denote the t-th frame captured by the sensor, and the 
corresponding equalized image is computed as 𝐼 x, y = ,     (1)

The image is then partitioned into four slices 𝐼 , = 𝐼 𝑥, 𝑦  for 𝑖 1 ∗ 2 1 𝑥 𝑖 1 ∗ 2 2,1 𝑦 8, 𝑖 ∈ 1,4  (2)

Figure 5 shows the sensor elements associated to each bin. 

 
Figure 5. Partitioning a frame into bins. 
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From each slice (i), the power is computed as 𝑃 , = ∑ 𝐼 ,16  (3)

where 16 is the number of pixels (2 × 8) for each slice. 
The threshold (𝑇 ) for discriminating between no movement of subject crossing is 

computed as follows: 𝑇 = 𝑘 ∑ ∑ 𝑃 ,   (4)

where k is a normalizing coefficient. This coefficient has been chosen through a numerical 
analysis of the dataset, aiming at identifying a threshold T higher than the powers 
(Equation (4)) of each bin without activity; the obtained value was kept constant for all 
the subsequent studies. When the power of a bin is higher than the threshold, we assume 
that a subject is passing under that bin, and the corresponding bin number is produced as 
output. For example, referring to Figure 6, if the subject is moving from the right to the 
left, the output generated after processing frame 𝑡  is [1–4], meaning the following 
conditions have been verified: 𝑃 , > 𝑇 , 𝑃 , > 𝑇 , 𝑃 , > 𝑇 , 𝑃 , > 𝑇 , with 𝑡 <𝑡 < 𝑡 < 𝑡 . The time series of the bin levels described in this example are shown in Figure 
6. 

 
Figure 6. Examples of the bin’s time series when a subject is moving from the right to the left under the infrared sensor. 

A timeout of N frames, chosen empirically (n = 40) during the experimental analysis 
from the last event detection (bin power higher than the threshold), is used for a periodic 
reset of the algorithm. 

Finally, the bin time series are converted to the events in Table 3 according to the 
matching reported in Table 4. For example, the time series [1–4] corresponds to an input 
event, while the times series [1–4] corresponds to an output event. The hold state 
corresponds to time series values between 1 and 3 for a possible input event (IHO and 
IHI) or between 2 and 4 for a possible output event (OHI, OHO). The number of people 
in a room is computed as the difference between the input and output counters. 

Table 4. Matching between time series and events. The ellipsis represents any series of values 
between 1 and 3 (for IHO and IHI) or between 2 and 4 (for OHI and OHO). 

Time Series Identifier 
4321 I 
1234 O 

432…234 IHO 
123…321 OHI 
432…321 IHI 
123…234 OHO 
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4. Experimental Analysis 
The experimental set-up configured for assessing the performance of the proposed 

algorithm is described in this section. As shown in Figure 1, the system is composed of: (i) 
IR sensor (GridEye); (ii) mesh network (Z-Wave); and (iii) processing device (Z-Uno). 

The pattern recognition algorithm was used for real-time processing of the frame 
sequences (thermal images) acquired from the sensor to identify the action performed by 
users: input (I), output (O), etc. An initial study was conducted to determine the actions 
normally performed by users and detected in the “IR region” and for computing the 
normalizing coefficient k (0.0163). To this end, the IR sensor was installed in the upper 
part of the access wall of the monitored environment, and the sensor was connected to a 
microcontroller that acquired the thermal images of a set of users. The users performed 
similar actions with approximately the same speed in a pre-defined sequence, reported in 
Tables 5 and 6. 

Table 5. The pattern of actions performed by the users. (For the acronyms of events, see Table 3). 

N. 1 2 3 4 5 6 7 8 9 10 11 12 13 
Event I O I O IHO I OHO IHI I O OHO I OHI 

Table 6. User ID, height, and total time for performing the actions described in Table 5. The total 
time is computed cumulating the crossing time at the base of the cone corresponding to the angular 
aperture of the sensor (Figure 7). 

User Height (cm) Total Time (s) 
U1 173 111 
U2 175 101 
U3 182 102 
U4 170 93 
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Figure 7. Depiction of a user crossing the doorway with the IR sensor set-up placed on the top. 

5. Results and Discussion 
An 8 × 8 IR sensor array has 64 thermopile elements in an 8 × 8 grid format. The 

developed algorithm detects the passage of a person generating a numeric sequence 
(pattern) corresponding to the activated energy bins, as described in Section 3. For 
example, the complete passage from left to right generates a sequence of 012340.  

Depending on the generated numeric pattern, the algorithm transforms the initial 
value in “I,” “O,” and “H,” which corresponds, respectively, to “Input,” “Output,” and 
“Hold.” The algorithm performs the counting of the persons present within an 
environment exploiting the pattern recognition approach.  

The experimentation and validation for the IR sensor set-up were carried out in three 
phases. In the first phase, the acquisition of thermal images for the user’s passage was 
performed to obtain a set of offline calibration measures of the pattern recognition 
algorithm. The verification of the functionality of the pattern recognition algorithm in real-
time and offline was performed in the second phase. Finally, the third phase concerned 
simulating a realistic human passage and assessing the algorithm in a normal 
environment.  
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5.1. Acquisition of Thermal Images for Algorithm Calibration 
In this phase, experimentation involved four individuals who were asked to repeat 

all the passages (Table 5) under the doorways to capture thermal images. For each 
experiment, the total time for all these passages (entering and exiting a room several 
times) has been recorded (Table 6). The sensor was installed at 2.30 m (m) in height, with 
the acquisition window facing downwards, and placed at the entrance of the environment 
in the crossbeam of the door opening (Figure 7). 

The acquisition of frames was activated by using wireless control, and the 
measurements were saved to a micro-SD card in the text format file. The actions described 
in the pattern in Table 5 were performed by each user. Data processing was conducted on 
a personal computer to calibrate the offline algorithm parameters of pattern recognition. 
In Table 6, we report the height and duration of experimentation for each user. Each test 
involved the acquisition of the matrices, consisting of 8 × 8 values of temperature (where 
each matrix corresponds to one frame), with the maximum speed permitted by the 
microcontroller and saving them to a text file. 

In the detected thermal image shown in Figure 8, the coloured pattern represents the 
user’s entry/exit from the outside to inside, or vice versa, captured by the proposed 
system.  

 
Figure 8. Six frames captured during the passage of a person recorded during the data collection 
and data processing of the software. The bar represents the temperature scale in °C. 

5.2. Validation of Proper Functioning of the Developed Pattern Recognition Algorithm 
The second phase involved the analysis of data collected during the measurements 

using Matlab (2018) and C++ programming codes. These implementations have been 
written relying on Matlab core functions and standard C++ libraries. The pattern 
recognition algorithm was developed, and its functionality was tested using the data 
collected from experiments. Subsequently, optimization of the algorithm parameters was 
conducted on the set of obtained measurements. The optimization consisted of the 
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identification of minimum values for the size of the FIFO buffer and for the aperture of 
the timeout window allowing the correct recognition of the patterns. The developed 
software was then implemented into the microcontroller present in the proposed 
architecture. The software was compiled and loaded on the device to verify proper 
operation. 

The device was tested for one month in our laboratory with stable environmental 
conditions (22–26 °C), reaching full accuracy (100%). 

In order to further test the performance of the pattern recognition algorithm, 
synthetic frame sequences have been generated for simulating temperature ranges typical 
of a residential environment, different human walking speed (normal, brisk, running), 
and different distances between the person and the sensor (1.5 m, 5 m, and 7.5 m). Two 
categories of tests were performed: (i) using a step and (ii) using a ramp. 

The perturbations with a temperature value of 37 °C were introduced into a part of 
the matrix elements (from right to left direction) of the 8 × 8 matrix, representing the 
ambient temperature as a base disturbance distribution. The two tests are described 
below. 

Step test. The data collected in phase one was used to perform this test. The data 
consisted of a set of frames of 8 × 8 temperature values, representing different passages of 
a person below the sensor. The sequence of the actions are as follows: I, O, I, O, IHO, I, O, 
I, O, I, O, I, and OHI (see Table 3, for description). 

The objective of this test was to verify the algorithm’s response to the predetermined 
inputs set at different levels of ambient conditions and the perturbation of temperature. 
A step is a temperature perturbation that consists of an 8 × 1 temperature vector that slides 
in the right to left direction, which was then subsequently replaced by an 8 × 2 temperature 
matrix. For completeness, an image representing the perturbation movement (constituted 
by the 8 × 2 matrix) is shown in Figure 9. 
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Figure 9. Representative illustration of “Step test” conducted with 6 frames. The step (perturbation) 
is shown in red, which scrolls from the right to left direction. 

The results obtained from the test highlighted the limits of the algorithm linked to 
the average values of the ambient temperature and the perturbation value. Precisely, with 
a temperature perturbation greater than 4 °C, the algorithm detects 100% of the events for 
ambient temperatures ranging from 21 to 31 °C. In contrast, no passage was detected with 
a perturbation value of less than 4 °C. 

Ramp Test. The data set utilised for the “Ramp test” was similar to the one of the “step 
test,” but this time changing a single parameter, i.e., the number of frames. The test was 
conducted with 44, 31, and 21 frames, representing normal, brisk, and running human 
speeds. A ramp is a temperature perturbation that consists of a diagonal vector. A 
representative illustration of the “Ramp test” with six frames, and the ramp (shown in 
red) moving inside the 8 × 8 array from right to left direction, is shown in Figure 10. 

 
Figure 10. Representative illustration of Ramp test conducted with 6 frames. The red block 
represents perturbation that scrolls from the right to left direction. 

From the obtained results, we could establish that the limitations of the algorithm are 
strongly related to the average values of the ambient temperature and to the perturbation 
values. More precisely, we calculated delta (Δ) that represents the difference in 
temperature between the ramp and the average ambient condition. In Figure 11, we 
present the graph describing the variation of Δ as a function of the average ambient 
temperature for three different frame numbers. It is evident from Figure 11 that the 
algorithm can detect an event only for values greater than the minimum Δ value, specific 
to the average ambient temperature value. For instance, considering the event with 44 
frames (Figure 11a), an average ambient temperature of 27 °C, and a ramp value of 34 °C, 
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the value of Δ is then 6 °C, which is greater than the minimum Δ value (4 °C) required for 
recognition. Hence, this event is detected by the algorithm. 

 
Figure 11. Plot of delta (Δ) Vs Average ambient temperature (T. Avg. ambient): (a) normal pace, 44 frames; (b) brisk pace, 
31 frames; (c) running pace, 21 frames. The recognition and non-recognition zones are shown for each of these cases. 

5.3. The Random Test 
Our objective here was to simulate a realistic human passage and finally to assess the 

algorithm in a natural environment. To do so, we performed a random uniform 
distribution test by choosing the number of frames representing the normal (44 frames), 
brisk (31 frames), and running (21 frames) pace of a person. In detail, simulating the 
normal walking speed consisted of 5 empty initial frames (representing no passage), 34 
frames with the passage at a set temperature and distance, and empty 5 terminal frames, 
in total 44 frames (5 + 34 + 5). In a similar way, the frames corresponding to a brisk (31 
frames = 3 + 25 + 3) and a running pace (21 frames = 2 + 17 + 2) were chosen. The simulation 
of human presence consists of an image of 9 pixels (3 × 3), 6 pixels (3 × 2), and 2 pixels (2 
× 1) at a temperature of 37 °C (some examples of these images are the red rectangles in 
Figure 12), representing, respectively, a distance of approximately 1.5 m (9 pixels, 9P), 5 
m (6 pixels, 6P), and 7.5 m (2 pixels, 2P) between the sensor and the person crossing the 
passage. 
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Figure 12. The representative illustration of the random test is shown here. The scenario chosen is 
when the person is at distance of 5 meters from the sensor and for 26–30 °C temperature range. 

The peculiarity of this type of test is that the frames were created using synthetic 
images, and the temperature values followed a uniform distribution within a precise 
temperature range. The selected ranges were: 18–22 °C, 22–26 °C, 26–30 °C, 30–34 °C, and 
30–38 °C, typical temperatures present inside residential buildings with and without air 
conditioning systems. All these tests were repeated ten times and with four different user 
movement patterns: Input (I), Output (O), Input-Hold-Output (IHO), and Output-Hold-
Input (OHI). In Figure 12, an illustration of a person at 5 m from the sensor (represented 
with 6 pixels) is shown. The different colour shades of pixels correspond to different 
temperature values. 

Figure 13 shows the algorithm’s accuracy considering four distinct human passage 
movement for the selected temperature ranges. 
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Figure 13. Accuracy plot for detection of four distinct human passage movement (Input, Output, 
IHO, OHI), at different distances (9P: 1.5 m, 6P: 5 m, and 2P: 7.5 m), and different temperature ranges 
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(18–22 °C, 22–26 °C, 26–30 °C, 30–34 °C, and 30–38 °C); (A) 44 frames—normal, (B) 31 frames—brisk, 
and (C) 21 frames—running pace. 

For an average walking speed (44 Frames, Figure 13a), independent of the distance 
from the sensor, the average detection accuracy of the algorithm is 95% (considering all 
four movements and for the ambient temperature ranges up to 30 °C). However, at higher 
temperature ranges (30–34 and 30–38 °C), the accuracy of the algorithm gradually 
decreases with the human distance from the sensor. 

For brisk walking speed (31 Frames, Figure 13b), the algorithm’s accuracy is 90% or 
more for the ambient temperature up to 26 °C, independent of the number of pixels. If we 
consider only two main movements (Input, Output), the accuracy is 90% or more up to 30 
°C ambient conditions. Moreover, for high-temperature ranges (30–34 and 30–38 °C), no 
detection (0% algorithm accuracy) of movements at approximate distances of 7.5 m from 
the sensor was observed, similar to the case of 44 Frames (average walking speed). 

For running pace (21 Frames, Figure 13c), considering only the two main movements 
(Input, Output), the accuracy of the algorithm is 60% or more up to an ambient 
temperature range of 30 °C. The performance of the algorithm accuracy decreases as the 
human distance from the sensor increases. At a ~7.5 m distance from the sensor and at 30–
34 °C, the algorithm was insensitive to any movement.  

In summary, the accuracy of the algorithm was found to decrease in the three cases: 
- With an increase in walking speed. Given the fixed and small number of samples per 

second captured by the sensor, high walking speed will reduce the number of sensor 
elements activated and from the algorithmic point of view, the information available 
for discriminating between variations due to the passage under the gate or variations 
due to environmental thermal noise. 

- With an increase in the user’s distance from the sensor. Given the fixed resolution of 
the sensor, if the subject is in the proximity of the sensor, more sensor elements will 
be activated in comparison with a subject far from the sensor that will have an impact 
on fewer sensor elements. Hence, if the user is far from the sensor, then the algorithm 
has less information for discriminating between variations due to the presence of a 
user under the gate or variations due to environmental thermal noise. 

- At temperature ranges above 30 °C. As the ambient temperature increases becoming 
comparable with user temperature, the algorithm has less information for 
discriminating between variations due to the presence of a user under the gate or 
variations due to environmental thermal noise. However, considering that the 
application targets indoor monitoring, a normal thermal condition should satisfy 
thermal people’s comfort, i.e., indoor temperature lower than body temperature. 

6. Conclusions 
In this paper, we presented an approach that detects human presence in an indoor 

environment by combining thermal imaging provided by the IR sensor array with a novel 
pattern recognition algorithm. The IR sensor was implemented using the Z-Uno 
developers board, which allowed realizing a simple, low-cost sensory system by 
exploiting the potential of a Z-Wave communication protocol. The pattern recognition 
algorithm was able to detect passage with high accuracy of the passage of users with 
different walking speeds, at different user distances from the sensor, and temperature 
ranges typical of a residential environment. In particular, for indoor temperatures ranging 
between 21 °C and 31 °C, the accuracy of the proposed algorithm is 100% if the sensor 
elements activated by people at average walking speed passage measure a temperature 
higher than 35 °C. In general, the different distances between the sensor and the people 
passage area, different speeds of the people passages, and thermal noise can reduce the 
performance of the proposed algorithm. In fact, considering different walking speeds and 
an indoor ambient temperature that reaches up to 30 °C, the average detection accuracy 
of the algorithm decreased to 95%. 
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Future work will address the measurement of instantaneous power and electric 
energy consumption of the device, dimensioning battery capacities, and analysing energy 
harvesting technology, such as solar cells. 
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