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Over the past decade there has been a growing interest in the development of parallel

hardware systems for simulating large-scale networks of spiking neurons. Compared

to other highly-parallel systems, GPU-accelerated solutions have the advantage of a

relatively low cost and a great versatility, thanks also to the possibility of using the

CUDA-C/C++ programming languages. NeuronGPU is a GPU library for large-scale

simulations of spiking neural network models, written in the C++ and CUDA-C++

programming languages, based on a novel spike-delivery algorithm. This library includes

simple LIF (leaky-integrate-and-fire) neuron models as well as several multisynapse AdEx

(adaptive-exponential-integrate-and-fire) neuron models with current or conductance

based synapses, different types of spike generators, tools for recording spikes, state

variables and parameters, and it supports user-definable models. The numerical solution

of the differential equations of the dynamics of the AdEx models is performed through

a parallel implementation, written in CUDA-C++, of the fifth-order Runge-Kutta method

with adaptive step-size control. In this work we evaluate the performance of this library on

the simulation of a cortical microcircuit model, based on LIF neurons and current-based

synapses, and on balanced networks of excitatory and inhibitory neurons, using AdEx or

Izhikevich neuron models and conductance-based or current-based synapses. On these

models, we will show that the proposed library achieves state-of-the-art performance in

terms of simulation time per second of biological activity. In particular, using a single

NVIDIA GeForce RTX 2080 Ti GPU board, the full-scale cortical-microcircuit model,

which includes about 77,000 neurons and 3 · 108 connections, can be simulated at

a speed very close to real time, while the simulation time of a balanced network of

1,000,000 AdEx neurons with 1,000 connections per neuron was about 70 s per second

of biological activity.

Keywords: spiking neural network simulator, corticalmicrocircuits, adaptive exponential integrate-and-fire neuron

model, conductance-based synapses, GPU
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1. INTRODUCTION

The human brain is an extremely complex system, with a number
of neurons in the order of 100 billions, an average number of
connections per neuron in the order of 10 thousands, hundreds
of different neuron types, several types of neurotransmitters and
receptors. Because of this complexity, the simulation of brain
activity at the level of signals produced by individual neurons
is extremely demanding, even if it is limited to relatively small
regions of the brain. Therefore, there is a growing interest in
the development of high-performance hardware and software
tools for efficient simulations of large-scale networks of spiking
neuron models. Some simulators, as for instance NEST (Fardet
et al., 2020), NEURON (Carnevale and Hines, 2006), and
Brian (Goodman and Brette, 2008), combine flexibility and
simplicity of use with the possibility to simulate a wide range
of spiking neuron and synaptic models. All three of these
simulators offer support for multithread parallel computation for
parallelization on a single computer. NEST and NEURON also
support distributed simulations on computer clusters through
MPI. On the other hand, a fertile field of research in recent
decades has investigated the use of highly parallel hardware
systems for simulating large-scale networks of spiking neurons.
Such systems include custom made neuromorphic very-large-
scale-integration (VLSI) circuits (Indiveri et al., 2011), field
programmable gate arrays (FPGAs) (Wang et al., 2018), and
systems based on graphical processing units (GPUs) (Sanders and
Kandrot, 2010; Garrido et al., 2011; Brette and Goodman, 2012;
Vitay et al., 2015; Yavuz et al., 2016; Chou et al., 2018). Compared
to other highly-parallel systems, the latter have the advantages
of a relatively low cost, a sustained technological development
driven by the consumer market and a great versatility, thanks
also to the possibility of using CUDA (Compute Unified Device
Architecture), a parallel computing platform and programming
model that has been created by NVIDIA to allow software
developers to take full advantage of the GPU capabilities
(Sanders and Kandrot, 2010). General purpose computing on
graphical processing units (GPGPU) is widely employed for
massively parallel computing. GPGPUs can significantly reduce
the processing time compared to multi-core CPU systems for
tasks that require a high degree of parallelism, because a single
GPU can perform thousands of core computations in parallel.
However, in order to derive maximum benefit from GPGPU, the
applications must be carefully designed taking into account the
hardware architecture. Over the past decade, several GPU-based
spiking neural network simulators have been developed (see
Brette and Goodman, 2012 for a review). EDLUT (Garrido et al.,
2011) is a hybrid CPU/GPU spiking neural network simulator
which combines time-driven (in GPU) and event-driven (in
CPU) simulation methods to achieve real-time simulation of
medium-size networks, which can be exploited in real-time
experiments as for instance the control of a robotic arm.
ANNarchy (Vitay et al., 2015) is a simulator for distributed
rate-coded or spiking neural networks, which provides a Python
interface for the definition of the networks and generates
optimized C++ code to actually run the simulation in parallel,

using either OpenMP on CPU architectures or CUDA on GPUs.
CARLsim (Chou et al., 2018) is a GPU-accelerated library for
simulating large-scale spiking neural network (SNN), which
includes different neuron models and provides programming
interfaces in C/C++ and in Python. Recently, the GeNN
simulator (Yavuz et al., 2016; Knight and Nowotny, 2018)
achieved cutting edge performance in GPU-based simulation
of spiking neural networks, achieving better performance than
CPU-based clusters and neuromorphic systems in the simulation
of the full-scale cortical microcircuit model proposed by Potjans
and Diesmann (2014). In this work we present a comprehensive
GPU library for fast simulation of large-scale networks of spiking
neurons, called NeuronGPU, which uses a novel GPU-optimized
algorithm for spike delivery. This library can be used either in
Python or in C/C++. The Python interface is very similar to that
of the NEST simulator and allows interactive use of the library.
Having an interface similar to that of NEST is an advantage
in view of a possible integration of this library with the NEST
simulator, which is currently in progress (Golosio et al., 2020). In
the following sections, after a general description of the library
and of the spike-delivery algorithm, we will evaluate the library
on three types of spiking neural network models:

• The Potjans-Diesmann cortical microcircuit model (Potjans
and Diesmann, 2014), based on the leaky-integrate-and-fire
(LIF) neuron model, which describes the behavior of a region
of the cerebral cortex having a surface of 1 mm2 and includes
about 77,000 neurons and 3 · 108 connections;

• A balanced network of excitatory and inhibitory neurons
(Brunel, 2000), based on the adaptive-exponential-integrate-
and-fire (AdEx) neuron model (Brette and Gerstner, 2005),
with up to 1,000,000 neurons and 109 connections;

• A balanced network of excitatory and inhibitory neurons,
based on the Izhikevich neuron model (Izhikevich, 2003)
and STDP synapses, with up to 1,000,000 neurons and
108 connections.

We will show that, although the building time is larger
compared to other simulators, NeuronGPU achieves state-of-
the-art performance in terms of simulation time per unit time
of biological activity.

2. MATERIALS AND METHODS

2.1. The NeuronGPU Library
NeuronGPU is a GPU library for simulation of large-scale
networks of spiking neurons, written in the C++ and CUDA-
C++ programming languages. Currently it can simulate LIF
models, different multisynapse AdEx models with current or
conductance based synapses as well as user definable neuron
models. The LIF model subthreshold dynamics is integrated by
the exact integration scheme described in Rotter and Diesmann
(1999) on the time grid given by the simulation time resolution.
On the other hand, the numerical solution of the differential
equations of the AdEx dynamics is performed through a parallel
implementation, written in CUDAC++, of the fifth-order Runge-
Kutta method with adaptive control of the step size (Press and
Teukolsky, 1992). NeuronGPU can simulate networks of any
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neuron and synaptic current models whose dynamics can be
described by a system of ordinary differential equations (ODEs),
although currently it does not provide a dedicated interface for
defining new models; the definition of a new model involves
changes in specific parts of the code. However, such changes
do not require experience with programming languages. In the
simplest approach, the user has tomodify the list of state variables
and parameters, their initial values, and the differential equations
that describe the neuron dynamics. With this approach the
number of user-defined neuron models that can be used in a
simulation together with the pre-definedmodels is limited to two.
A more advanced approach allows to use an arbitrary number
of new models in the same simulation and greater flexibility
in the model definition. Detailed instructions on different
approaches for the implementation of new models can be
found in https://github.com/golosio/NeuronGPU/wiki/How-to-
implement-new-neuron-models. The computations are carried
out using mainly 32-bit floating point numerical precision, with
the exception of some parts of the code for which double
precision calculations are more appropriate, e.g., those in which a
very large number of terms can be added. Neuron parameters and
connectionweights and delays can be initialized either using fixed
values or through arrays or probability distributions. Neuron
groups can be connected either using predefined connection
rules (one-to-one, all-to-all, fixed indegree, fixed outdegree,
fixed total number) or by user-defined connections. In addition
to the standard synapse model, nearest-neighbor spike-timing-
dependent-plasticity (STDP) is also available (Morrison et al.,
2008; Sboev et al., 2016). In the STDP model, the weight
that characterizes the strength of a synapse changes when the
presynaptic and postsynaptic neurons emit spikes that are close
in time. More specifically, the weight change depends on the
time difference: 1t = tpost − tpre = tspike_post + τdendritic −
(tspike_pre + τaxon) where tspike_pre is the time the presynaptic
neuron emits the spike, τaxon is the axonal delay, tpre is the
time the presynaptic spike reaches the synapse, tspike_post is
the time the postsynaptic neuron emits the spike, τdendritic is
the dendritic backpropagation delay, i.e., the time between the
emission of the postsynaptic spike and the time in which it
affects the synapse, tpost is the time in which the postsynaptic
spike affects the synapse. NeuronGPU uses a symmetric-nearest-
neighbor spike pairing scheme (Morrison et al., 2008). A weight
change can be triggered either by the postsynaptic or by the
presynaptic spike buffer. The first case occurs when the time
associated with a spike stored in the postsynaptic spike buffer
becomes equal to the dendritic delay. In this case 1t is equal
to the difference between the current time and the time in
which the last presynaptic spike reached the synapse. The
second case occurs when the time associated with a spike
stored in the presynaptic spike buffer becomes equal to the
axonal delay. In this second case, 1t is equal to the difference
between the time in which the last postsynaptic spike reached
the input synapse and the current time. In both cases, the
weight change is computed using the formula (Sboev et al.,
2016):
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If µ+ = µ− = 0, the rule is called additive, while if µ+ = µ− =

1 the rule is called multiplicative, and intermediate values are
also possible. Different types of spike generators and recording
devices can be simulated, including Poisson generators, spike
recorders, and multimeters. NeuronGPU includes an efficient
implementation of GPU-MPI communication among different
nodes of a GPU cluster, however the performance of the proposed
library on GPU clusters has not yet been thoroughly evaluated,
therefore this feature is not described in the present work.
The Python interface is very similar to that of NEST in main
commands, use of dictionaries, connection rules, model names,
and parameters. The following Python code sample illustrates
this strong similarity.

import neurongpu as ngpu
# create Poisson generator with rate
poiss_rate
pg = ngpu.Create(‘‘poisson_generator’’)
poiss_rate = 12000. 0
ngpu. SetStatus(pg, ‘‘rate,’’ poiss_rate)
# Create n_neurons neurons with n_receptor
receptor ports
# neuron model is multisynapse AdEx (aeif)
with conductance-based synapse
# described by the beta function
n_neurons = 10
n_receptor = 2
neuron = ngpu.Create(‘‘aeif_cond_beta,’’
n_neurons, n_receptors)
# Initialize receptor parameters
E_rev = [0.0, -85.0]
tau_decay = [1.0, 1.0]
tau_rise = [1.0, 1.0]
ngpu.SetStatus(neuron,
{"E_rev":E_rev, "tau_decay":tau_decay,
"tau_rise":tau_rise})
# Connect Poisson generator to neurons
poiss_weight = 0.05
poiss_delay = 2.0
conn_dict={"rule": "all_to_all"}
syn_dict={"weight": poiss_weight, "delay":
poiss_delay, "receptor":0}
ngpu.Connect(poiss_gen, neuron, conn_dict,
syn_dict)

About 30 test scripts and C++ programs have been designed
to check the correctness of neuron model dynamics, spike
generators, recording tools, spike delivery, connection rules.
Many of such tests use similar NEST simulations as reference.
Several examples in C++ and in Python are also available.
NeuronGPU is an open-source library, freely available onGitHub
from the web address https://github.com/golosio/NeuronGPU
under the terms of the GNU General Public License v3.0.

2.2. The Spike-Delivery Algorithm
A crucial issue that must be addressed in the design of spiking
neural network simulators is the choice of the algorithms to store
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the spikes and to propagate and deliver them after proper delays.
In particular, two important aspects can significantly affect the
performance of different approaches: the way they account for the
delays associated with connections and the representation used
to index connections and to retrieve them when they must be
used for spike delivery. A common approach for handling delays
consists in using a circular event queue (see for instance Brette
et al., 2007). Each element of this queue corresponds to a time
index, and points to a list of synaptic spikes that are scheduled for
that time. When a neuron i fires a spike, for each target neuron j
a synaptic event i → j is scheduled to be delivered at a time t+ d,
where d is the synaptic delay. The computational cost per time
step of managing delays with this approach is (Brette et al., 2007)

cd × N × F × C × dt (2)

where cd is the cost of one store and retrieve operation in the
circular queue, N is the number of neurons or other spiking
devices, F is the average firing rate, C is the number of output
connections per neuron and dt it the simulation time step. The
computational cost per time step for propagating the spikes is

cp × N × F × C × dt (3)

where cp is the cost of one spike propagation. In CPU
implementations of this approach, cd is usually small compared
to cp, therefore handling delays through the circular queue
increases the cost of spike propagation by a small factor. On
the other hand, in a GPU implementation cd may not be small
compared to cp, because the insertion and retrieval operations
in the circular queue would require access to the GPU global
memory. This type of access is relatively slow, and represents
in many cases one of the main bottlenecks of GPU codes. For
this reason, many GPU-based simulators use different methods.
Nageswaran et al. (2009) propose an approach for handling spikes
and synaptic delays in GPU architectures based on two tables:
a firing count table and a firing address table. The firing count
table stores the cumulative count of neurons that emitted a spike
in each time step of the last second. The firing address table
holds the indexes of the neurons that emitted a spike in the
last second. The firing count table is used to retrieve from the
firing address table the list of all the neurons that fired in each
time step t′, with t − max_delay ≤ t′ ≤ t, where t is the
current time step, and max_delay is the maximum delay of
all synaptic connections of the network, expressed in time step
units. The computational cost per time step for retrieving the
spikes emitted in that interval is O(N × F × max_delay ×

dt). The spikes emitted in the time step t′ are sent to the
neurons’ outgoing synaptic connections having a delay equal to
t − t′. Synaptic connections are represented through a sparse
representation similar to adjacency lists for directed graphs. Each
neuron has a list of output connections, identified by the index
of the target neuron and by the index of the synapse in that
neuron. The connections in the list are sorted based on their
delays. Two arrays, delay start and delay count, are
used to retrieve the connections corresponding to a given delay:
delay start[k] is the index of the first connection in the list

with a delay of k ms, and delay count[k] is the number of
connections having that delay. A drawback of this approach is
that spikes produced by neurons that have outgoing connections
with a maximum delay much less than max_delay remain in
the firing address table and are retrieved for a number of time
steps equal to max_delay.

Yavuz et al. (2016) propose an algorithm for handling spikes
and synaptic delays based on a circular queue array structure,
with N × m elements, where m = delay/dt. An index p points
to the slots of the queue, and is increased by 1 at every time step.
A spike of the ith neuron is stored in the slot (i, p) of the queue,
and spikes to be delivered are retrieved from the slots [i, (p −

m) mod m]. This approach is very efficient, with a computational
cost O(N), however it has the limitation that delays have to
be identical across the synapses of each synapse population. In
order to use different delays, a synapse population has to be
defined for each delay, with its own circular queue structure.
In particular, this approach would not be efficient in realistic
conditions where the delays vary according to some probability
distribution. The spikes retrieved from the queue are delivered to
the target neurons through a connection matrix, either an all-to-
all connection matrix in case of dense connections, or based on
the YALE sparse matrix format (Eisenstat et al., 1982) in case of
sparse connectivity.

NeuronGPU uses one (output) spike buffer per neuron,
which holds the spikes that have been fired by the neuron. The
output connections of each neuron are organized in groups,
all connections in the same group having the same delay (see
Figure 1). Only three values per spike are stored in the buffer:
a multiplicity, a time index ts, which starts from 0 and is
incremented by 1 at every time step, and a connection-group
index ig , which also starts from zero and is incremented by 1
every time the spike reaches a connection group, i.e., when the
time index ts matches the connection-group delay. Figure 1A
represents the structure of the spike buffer and illustrates an
example of how the spike is delivered from the neuron that fired
it to the target neurons of different connection groups. Keeping
a connection-group index and having output-connection groups
ordered according to their delays is useful for reducing the
computational cost, because with this approach there is no need
for a nested loop for comparing the time index of the spike
with the connection delays. When the time index of a spike ts
matches a connection-group delay, the spike is sent to the spike
array, as shown in Figure 1B. Finally, spikes are sent from this
array to the target neurons. This final delivery is done directly
by a CUDA kernel, so no additional memory is required. The
maximum size of the global spike array is equal to the number of
nodes (i.e., neurons and other spiking devices), so the maximum
GPU memory required by this algorithm is well-defined.

InMPI connections, when a source node (a neuron or another
spiking device) is connected to target nodes of another host, a
spike buffer, similar to the local one, is created in the remote host.
When the source node fires a spike, this is sent to its spike buffer
of the remote host, which delivers the spike to all target neurons
after proper delays.

The computational cost per time step of the spike-buffer
update algorithm is cs × N × B, where cs is the cost of a single
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FIGURE 1 | (A) Example of spike delivery through the spike buffer. At time t, the i-th neuron emits a spike which is inserted in the spike buffer. In this example, the

buffer contains also another spike emitted previously. At each time step, the spike time index is incremented by 1. When it becomes equal to the delay of some

connection group, the spike is delivered to that group and its connection group index is incremented by 1. (B) The spike array. When the time index of a spike

matches the delay of a connection group, the spike is sent to the spike array, which is used for delivering the spike to all neurons of the connection group.

Frontiers in Computational Neuroscience | www.frontiersin.org 5 February 2021 | Volume 15 | Article 627620

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Golosio et al. Cortical Model Simulations Using GPUs

spike update and B is the average number of spikes stored in a
spike buffer. If we call dmax(i) the maximum delay, expressed in
time step units, of the outgoing synaptic connections of the ith
neuron, and 〈dmax(i)〉 its average over all the neurons, B can be
expressed as

B = F × 〈dmax(i)〉 × dt (4)

and therefore the cost of the spike buffer update is

cs × N × F × 〈dmax(i)〉 × dt (5)

It should be observed that 〈dmax(i)〉 is less than or equal to
max_delay, which is the maximum delay of all synaptic
connections of the network and can be expressed as
max_delay = maxi{dmax(i)}, therefore the order of the
computational cost of the proposed approach is smaller than or
equal to that proposed by Nageswaran et al.

The computational cost per simulation time step for writing
and reading the spikes to and from the spike array is O(N ×

F × dt). This contribution is usually much smaller than the cost
of neuron dynamics update, which is O(N), because in realistic
conditions F × dt ≪ 1. The computational cost per simulation
time step for delivering the spikes from the spike array to the
target neurons is

cd × N × F × C × dt (6)

where cd is the cost for delivering a single spike. By comparing
this cost with that of the spike buffer update, it can be observed
that when

C≫ 〈dmax(i)〉 × cs/cd (7)

the delivery of the spikes to the target neurons gives the main
contribution to the computational cost. This is usually the case
when the number of connections per neuron is of the order of
hundreds or more. An advantage of the proposed approach is
that the delivery of the spikes from the spike array to the target
neurons requires a small number of global memory accesses per
delivery, therefore cd is relatively small.

2.3. The Potjans-Diesmann Cortical
Microcircuit Model
The cortical microcircuit model used in this work was developed
in 2014 by Potjans and Diesmann (2014) and describes a portion
of 1mm2 of sensory cortex, comprising approximately 77,000 LIF
neurons organized into layers 2/3, 4, 5, and 6. Each layer contains
an excitatory and an inhibitory population of LIF neurons with
current-based synapses, for a total of eight populations: 2/3I,
2/3E, 4I, 4E, 5I, 5E, 6I, and 6E. The number of neurons in
each population, the connection probability matrix and the rates
of the external Poisson inputs are based on the integration of
anatomical and physiological data mainly from cat V1 and rat
S1. The total number of connections is about 3 · 108. Figure 2
shows a diagram of the model with a schematic representation of
the connections having probabilities >0.04.

FIGURE 2 | Schematic diagram of the Potjans-Diesmann cortical microcircuit

model.

The LIF neuronmodel, used in the cortical microcircuit, is one
of the simplest spiking neuron models. The neuron dynamics is
modeled by the following differential equation

τm
dVi

dt
= −(Vi − EL)+ RmIsyn,i (8)

where Vi(t) represents the membrane potential of neuron i
at time t, τm is the membrane time constant, EL is the
resting membrane potential, Rm is the membrane resistance and
Isyn,i is the synaptic input current. In the exponential shaped
postsynaptic currents (PSCs) model, which will be used to
simulate the Potjans-Diesmann cortical microcircuit model, the
input current is described by the following equation

τsyn
dIsyn,i

dt
= −Isyn,i +

∑

j

wij

∑

t
f
j

δ(t − t
f
j ) (9)

where τsyn is the synaptic time constant, wij are the connection

weights and t
f
j are the spike times from presynaptic neuron j. The

simulation time step is set to 0.1 ms.

2.4. The AdEx-Neurons Balanced Network
Model
The performance of the library was also assessed on a balanced
network of sparsely connected excitatory and inhibitory neurons
(Brunel, 2000), using the AdEx neuron model with conductance-
based synapses and synaptic conductance modeled by an alpha
function (Roth and van Rossum, 2013). The differential equations
underlying the neuron dynamics are solved using the fifth-order
Runge Kutta method with adaptive step size. To our knowledge,
other GPU simulators of large scale spiking neural networks
do not support this method. For this reason, the results of
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FIGURE 3 | Schematic diagram of the balanced network used in the

simulations.

TABLE 1 | Values of the parameters used for the balanced network simulations.

Parameter Value

Nex (n. of excitatory neurons) Variable

Nin (n. of inhibitory neurons) Nex/4

CE (n. of input excitatory synapses per neuron) Variable

CI (n. of input inhibitory synapses per neuron) CE/4

Wex (excitatory connection weight) 0.05

Win (inhibitory connection weight) 0.35

Mean delay 0.5 ms

Delay STD 0.25 ms

Wpoisson (Poisson signal weight) 0.37

Ratepoisson (Poisson signal rate) 20,000 Hz

Neuron average firing rate 30.7 Hz

the simulations of the AdEx-neurons balanced network model
are compared only with the CPU-based simulator NEST, which
supports the same method. In general, GPU simulations work
more efficiently with fixed step size; the adaptive step size is
challenging and it was not obvious a priori that a GPU simulator
could be faster than multi-core CPU systems with this kind of
methods. Both populations of excitatory and inhibitory neurons
are stimulated by an external Poissonian signal, as shown in
Figure 3. Simulations have been made with a variable number
of neurons and connections, with up to 1,000,000 neurons and
109 connections. Table 1 represents the parameters used for the
balanced network simulations.

The AdEx model represents an attractive neuron model for
use in large-scale network simulations, because it is relatively
simple compared to biologically detailed spiking neuron models,
nonetheless it provides a good level of realism in representing the
spiking behavior of biological neurons in many conditions, in the
sense that it fits well the response of neurons as measured from
electrophysiological recordings (Brette and Gerstner, 2005). This
model is described by a system of two differential equations. The
first equation describes the dynamics of the membrane potential

TABLE 2 | Values of the AdEx parameters used in the balanced network

simulations.

Parameter Value

C (Membrane capacitance) 281 pF

gL (leak conductance) 30 nS

EL (leak reversal potential) −70.6 mV

VT (spike initiation threshold) −50.4 mV

1T (slope factor) 2 mV

τw (adaptation time constant) 144 ms

a (subthreshold adaptation) 4 nS

b (spike-triggered adaptation) 80.5 pA

Vr (reset value of Vm after a spike) −60 mV

Eex (excitatory reversal potential) 0 mV

Ein (inhibitory reversal potential) −85 mV

τsyn (synaptic time constant) 1 ms

V(t) and includes an activation term with an exponential voltage
dependence

C
dV

dt
= −gL(V − EL)+ gL1Te

V−VT
1T + Isyn(V , t)− ω + Ie (10)

where the synaptic current is

Isyn(V , t) =
∑

i

gi(t)(V − Erev,i) (11)

C is the membrane capacitance, gL is the leak conductance, EL
is the leak reversal potential, 1T is a slope factor, VT is the
spike initiation threshold, ω is the spike-adaptation current, Ie
is an external input current, gi(t) are the synaptic conductances
and Erev,i are the reversal potentials. The voltage is coupled to a
second equation which describes adaptation

τω

dω

dt
= a(V − EL)− ω (12)

where τω is the adaptation time-constant and a is the
subthreshold adaptation parameter. When the neuron fires a
spike, the adaptation current ω changes into ω → ω + b,
where b is a spike-triggered adaptation parameter, while the
membrane potential changes into V → Vr . Table 2 reports the
AdEx parameter values that have been used for the balanced
network simulations. The time step for spike communication is
set to 0.1 ms.

2.5. The Izhikevich-Neurons Balanced
Network With STDP Synapses
The architecture of this model is still that shown in Figure 3 and
the ratio of excitatory to inhibitory neurons is the same as the
model presented in the previous section. The other features of
the model are listed below:

• Time step of 1 ms;
• 4-parameters Izhikevich neuron model (Izhikevich, 2003);
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TABLE 3 | Values of the STDP parameters used in the Izhikevich-neurons

balanced network simulations.

Parameter Value

τ+ 20.0 ms

τ− 20.0 ms

λ 0.001

α 1.0

µ+ 1.0

µ− 1.0

wmax 10.0

• Current-based synapses described by an exponential-decay
function;

• Euler forward integration method with two integration steps
per simulation time step;

• 100 connections per neuron;
• Excitatory synapses change their weights according to the

STDP rule, while inhibitory synapses have fixed weights;
• Average firing rate of 16 Hz for both excitatory and inhibitory

populations.

The values of the Izhikevich-neuron parameters are a = 0.02,
b = 0.2, c = −65, and d = 8. The synaptic decay time is τdecay =

2 ms. Table 3 reports the values of the STDP parameters. The
value of λ is small so that the weights do not change significantly
during the simulation. It should be considered that the simulation
time overhead due to STDP synapses depends only on the spike
time distributions and not on the values of the STDP parameters
if λ is sufficiently small.

3. RESULTS

The cortical microcircuit model and the balanced network
described in the previous section were used both to verify the
correctness of the simulations performed using NeuronGPU and
to compare the performance of the proposed library with those
of NEST version 2.20.0 (Fardet et al., 2020) and GeNN version
3.2.0 (neworderofjamie et al., 2018). For this purpose, we used
a PC with a CPU Intel Core i9-9900 K with a frequency of 3.6
GHz and 8 cores featuring hyperthreading with two threads per
core, for a total number of 16 hardware threads, 64 GB RAM,
and a GPU card NVIDIA GeForce RTX 2080 Ti with 11 GB of
GDDR6 VRAM, 4,352 CUDA cores, and a boost clock of 1,635
MHz. NeuronGPU and GeNN simulations were also performed
on a system equipped with an NVIDIA Tesla V100 GPU with 16
GB GPU memory and 5,120 CUDA cores.

3.1. Simulation of the Cortical Microcircuit
Model
Following the procedure proposed by van Albada et al. (2018)
and by Knight and Nowotny (2018), in this section we will
verify the correctness of the simulations by comparing some
relevant statistical distributions extracted from the simulations
of the Potjans-Diesmann cortical microcircuit model made using
NeuronGPU with the analogous distributions obtained using the
NEST simulator. Subsequently, still following the same line of van

FIGURE 4 | Raster plot showing spike times (dots) of neurons from each

population of the cortical microcircuit model, simulated using (A) NEST and

(B) NeuronGPU, in a time window of 200 ms (in blue the excitatory and in red

the inhibitory). Due to the high number of neurons in the model, only the spikes

of one neuron out of ten are shown.

Albada et al. (2018) and Knight and Nowotny (2018), the cortical
microcircuit model will be used as a benchmark to evaluate
the performance of NeuronGPU in terms of building time and
simulation time per unit time of biological activity.

The Python code used for simulations, available in https://
github.com/golosio/NeuronGPU/tree/master/python/Potjans_
2014, is almost identical to the NEST implementation (https://
nest-simulator.readthedocs.io/en/stable/microcircuit/).
Figure 4 shows a raster plot of the spike times of neurons
from each population of the model, simulated using NEST and
NeuronGPU, in a time window of 200 ms.

In order to verify the correctness of the simulations,
we simulated 11 s of biological activity of the full-scale
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Potjans-Diesmann model with both NeuronGPU and
NEST, with a time step of 0.1 ms. For both simulators we
performed 10 simulations, distinct from each other only for
the initial seed for random number generation. As in van
Albada et al. (2018) and Knight and Nowotny (2018), the
first second was discarded in order to eliminate transient
trends. The spike times of all neurons have been recorded
during the simulations, and subsequently they have been
used to extract three distributions for each population,
namely:

• The average firing rate of the single neuron;

• The coefficient of variation of the inter-spike time
interval (CV ISI), defined as the ratio between the
standard deviation and the average of the inter-spike
time intervals;

• The Pearson correlation between the spike trains.

The latter has been computed on a subset of 200 neurons for
each population, as in van Albada et al. (2018) and Knight
and Nowotny (2018). This number represents a compromise
between statistical precision and computation time. The spike
trains of those neurons have first been rebinned to a time
step of 2 ms, equal to the refractory time. Denoting the

FIGURE 5 | Distribution of the firing rates, coefficient of variation of interspike intervals (CV ISI) and Pearson correlation coefficient of the spike trains for the

populations L2/3E and L2/3I of the cortical microcircuit model, averaged over 10 simulations, made using NEST (blue) or NeuronGPU (red). (A) Firing rate L2/3E, (B)

firing rate L2/3I, (C) CV ISI L2/3E, (D) CV ISI L2/3I, (E) Pearson correlation L2/3E, (F) Pearson correlation L2/3I.
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binned spike trains as bi and their mean value as µi, the
correlation coefficient between the spike trains bi and bj is defined
as

C[i, j] =< bi − µi, bj − µj > /
√

< bi − µi, bi − µi > · < bj − µj, bj − µj >

where <,> represents the scalar product. For 200 spike
trains, a 200x200 correlation matrix is returned. The Pearson
correlation distribution is evaluated as the distribution of
the off-diagonal elements of this matrix. All distributions
have been evaluated from the spike time recordings using the
Elephant (Electrophysiology Analysis Toolkit) package (Denker
et al., 2018), dedicated to the analysis of electrophysiological
data in the Python environment. The distributions have
been smoothed using the KDE (Kernel Density Estimation)
method (Rosenblatt, 1956; Parzen, 1962), available in the
scikit-learn Python library (Pedregosa et al., 2011) through
the function sklearn.neighbors.KernelDensity.

The KDE method allows to estimate the probability density
of a random variable with a reduced dependence on
random fluctuations linked to individual simulations. In
particular, each of the N points belonging to a sample is
represented by a Gaussian function of suitable width, called
kernel bandwidth. The integral of each of these functions
is normalized to 1/N; the overall distribution is therefore
estimated as the sum of all these Gaussians, and obviously
it has an integral normalized to one. The kernel bandwidth
has been optimized using the so-called Silverman’s rule
(Silverman, 1986), which prescribes a bandwidth value
of

b = 0.9 ·min

(

σ̂ ,
IQR

1.349

)

· N− 1
5 (13)

where σ̂ is the standard deviation of the samples,
N is the sample size and IQR is the interquartile
range. It should be observed that the distributions
obtained through the KDE method are continuous

FIGURE 6 | Kullback-Leibler divergence between the distributions of the firing rate (A), coefficient of variation of interspike intervals (B), and Pearson correlation

coefficient (C), extracted from NEST and NeuronGPU simulations. The red error bars represent the average values and the standard deviations of the divergence

between NEST and NeuronGPU, while the blue ones represent the same values for NEST simulations with different seeds.
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FIGURE 7 | (A) Building time of the cortical microcircuit model simulated with NEST and with NeuronGPU on a system equipped with an Intel Core i9-9900K CPU.

(B) Times for code generation, compilation, and initialization of the cortical microcircuit model for GeNN. The first two phases are performed by the CPU, and the

times refer to a system equipped with an Intel Core i9-9900K. The third phase is mainly performed by the GPU, and the figure shows the time for an NVIDIA Tesla

V100. (C,D) Simulation times per second of biological time of the cortical microcircuit model simulated with NEST, NeuronGPU, and GeNN on various CPU and GPU

hardware. (E) Contributions of neuron dynamic update time, Poisson generator time, and spike handling and delivery time to the total simulation time of the

Potjans-Diesmann model, simulated using NeuronGPU and GeNN on a Tesla V100 GPU. In GeNN the Poissonian input signal is generated within the same code that

manages the neuron’s dynamics, and furthermore it was not possible to separate the time used for spike handling and delivery from the remaining contributions to the

simulation time. The horizontal line represents the biological time. The simulation time step is set to 0.1 ms.
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functions, since they are evaluated as the sum of a set of
Gaussian functions.

Figure 5 shows the distributions of the firing rate, the CV ISI
and the Pearson correlation coefficient for two populations of
the Potjans-Diesmannmodel, averaged over 10 simulationsmade
using NEST or NeuronGPU. As can be seen in the graphs, the
distributions obtained from the two simulators are very similar
to each other. This is also true for the other populations of
the model. In order to compare quantitatively the distributions
obtained using NeuronGPU to those obtained using NEST, we
evaluated the Kullback-Leibler (KL) divergence (Kullback and
Leibler, 1951), defined as DKL(p1, p2) = −

∑

i p1,i log(p1,i/p2,i),
where p1 and p2 are two distributions, and the index i runs on
the sampling points of the two distributions. For this purpose,
we used 10 pairs of simulations (NeuronGPU-NEST and NEST-
NEST) using different seeds for random number generation.
The KL divergence was then calculated for each pair and its

FIGURE 8 | Membrane voltage of an AdEx neuron with the parameter values

reported in Table 2 and an injected current of 700 pA, simulated with

NeuronGPU and with NEST (A) and difference between the two simulation

signals (B).

average and standard deviation were calculated on the 10 pairs.
Since the KDE method provides a smooth continuous function,
the result is not sensitive to the sampling step as long as this
is small enough. The KL divergence was evaluated using the
Python scientific library (Virtanen et al., 2020) and in particular
the scipy.stats.entropy function. Figure 6 shows the
average and standard deviation of the KL divergences between
the distributions of firing rates, CV ISI, and Pearson correlation,
obtained from NEST and from NeuronGPU simulations, for the
eight populations of the cortical microcircuit model. It can be
observed that the KL divergence between distributions obtained
from NEST and from NeuronGPU are perfectly compatible
with the divergence between distributions obtained from NEST
simulations with different seeds. To compare the performance
of NeuronGPU with those of NEST and GeNN, we performed
a series of 10 simulations of 10 s of biological activity of the
cortical microcircuit with each simulator, using different seeds
for random number generation. The execution time of the
simulations can be divided into building time and simulation
time of biological activity. The building time includes the time
needed to allocate memory for connections, neurons, spike
generators, and recording devices, to build connections and to
initialize the values of state variables and parameters. Figure 7A
shows the building time for NEST and NeuronGPU. On a system
equipped with an Intel Core i9-9900 K CPU, the building times
were 36.8 ± 0.6 and 39.7 ± 0.4 s for NEST and NeuronGPU,
respectively. The building time of NeuronGPU is comparable
to that of NEST. This is due to the fact that in NeuronGPU
the connections are initially created in the RAM, and only
immediately before the simulation they are copied from RAM
to GPU memory. The times for code generation, compilation,
and initialization of the cortical microcircuit model with GeNN
were 49.7, 20.6, and 0.65 s, respectively, as shown in Figure 7B.
Importantly, since GeNN uses a code-generation approach, while
in NeuronGPU the models are created dynamically, the building

FIGURE 9 | Membrane voltage of an AdEx neuron stimulated by three input

spikes in a subthreshold condition, simulated using NeuronGPU and NEST.
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times of GeNN and NeuronGPU cannot be directly compared.
In GeNN the code of the model is generated from C/C++-
like code fragments and it must be compiled before execution.
Any changes in the model parameters require a new generation
and compilation of the code. Once the code is generated and
compiled, the initialization is very fast. Figures 7C,D show
the simulation times per unit time of biological activity for
NeuronGPU, NEST and GeNN on different CPU and GPU
platforms. The simulation time per second of biological time with
NEST running on the Intel Core i9-9900K CPU was 62.7 ± 0.3
s. On a system equipped with an NVIDIA Tesla V100 GPU
card, the simulation time per second of biological time with
GeNN was 2.16 s. NeuronGPU was 31.6% faster than GeNN,
with a simulation time of 1.641 ± 0.014 s on the same GPU.

On an NVIDIA RTX 2080 Ti GPU card, the simulation time
per second of biological time with GeNN was 1.398 ± 0.007 s,
while NeuronGPU was 32.5% faster with a simulation time of
1.055 ± 0.004 s. Figure 7E shows the contributions of neuron
dynamic update time, Poisson generator time and spike handling
and delivery time to the total simulation time of the Potjans-
Diesmann model, simulated using NeuronGPU and GeNN on
a Tesla V100 GPU. It should be noted that while in the case of
NeuronGPU the Poissonian input signal is generated by external
Poisson spike generators connected to the neurons, in the case
of GeNN this is generated within the same code that manages
the neuron’s dynamics. Furthermore, in the case of GeNN it was
not possible to separate the time used for spike handling and
delivery from the remaining contributions to the simulation time.

FIGURE 10 | Building time (A) and simulation time (B) for the balanced network simulations with a variable number of neurons and a fixed number of 1,000 input

connections per neuron, simulated using NeuronGPU and NEST, and simulation time for NeuronGPU shown on a different scale (C). The time step for spike

communication is set to 0.1 ms.
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In the case of NeuronGPU, excluding the neuron dynamic update
time and the Poisson generator time, most of the remaining
simulation time is spent on handling and delivering the spikes.
Assuming this is also the case with GeNN, the improvement in
the simulation time of NeuronGPU over GeNN would be mainly
due to a more efficient approach in spikes handling and delivery.

3.2. Simulation of the AdEx-Neurons
Balanced Network Model
Figure 8A shows the time course of the membrane voltage of an
AdEx neuron with the parameter values reported in Table 2 and
an injected current of 700 pA, simulated with NeuronGPU and
with NEST. With the exception of the peaks, the two plots appear
to be perfectly superimposed on this scale. Figure 8B represents
the difference between the two signals simulated with NEST and

with NeuronGPU. Apart from the peaks, the difference is in
the order of a few 10−4 mV. Figure 9 shows the time course of
the membrane voltage of an AdEx neuron stimulated by three
input spikes on three different receptor ports in a subthreshold
condition, simulated with NeuronGPU and with NEST.

In the remaining part of this section we present the results
of simulations of the AdEx-neurons balanced network with the
parameters shown in Tables 1, 2. Figure 10A shows the building
time for the balanced network simulations as a function of
the number of neurons, for a fixed number of 1,000 input
connections per neuron. Figures 10B,C represent the simulation
time per second of biological activity of the balanced network as
a function of the total number of neurons. It can be observed that
the GPU simulations are faster than the CPU’s by a factor ranging
from about 18× for 100,000 neurons with 108 connections to
30.4× for 106 neurons with 109 connections.

FIGURE 11 | Building time (A) and simulation time (B) for the balanced network simulations with a fixed number of 30,000 neurons and a variable number of input

connections per neuron, simulated using NeuronGPU and NEST, and simulation time for NeuronGPU shown on a different scale (C). The time step for spike

communication is set to 0.1 ms.
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FIGURE 12 | (A) Building time of the Izhikevich-neurons balanced network model as a function of the number of neurons, simulated using NeuronGPU on a system

equipped with a Tesla K80 GPU. (B) Simulation time per second of biological activity of the Izhikevich-neurons balanced network model simulated using NeuronGPU

and CARLsim 4 on a Tesla K80 GPU. The data for the latter are taken from Chou et al. (2018). STDP plasticity is active on excitatory connections. The simulation time

step is set to 1.0 ms.

Figure 11A shows the building time as a function of the
number of connections per neuron for a fixed total number of
neurons, which was set to 30,000. Figures 11B,C represent the
simulation time as a function of the number of connections per
neuron. It can be observed that, in this case, simulations on GPU
are faster than on CPU by a factor ranging from about 16× for
30,000 neurons with 3 · 108 connections to about 27× for 30,000
neurons with 9 · 108 connections.

3.3. Simulation of the Izhikevich-Neurons
Balanced Network With STDP Synapses
Figure 12A shows the building time of the Izhikevich-neurons
balanced network model as a function of the number of neurons,
simulated using NeuronGPU on a system equipped with an
Intel Xeon E5-2686 v4 processor, 64 GB RAM and a Tesla K80
GPU. Figure 12B compares the simulation time per second of
biological activity of the model simulated using NeuronGPU
with that of CARLsim 4. The simulation times for the latter are
taken from Chou et al. (2018), which reports that the simulations
were performed on a system that was also equipped with a Tesla
K80 GPU card, while the CPU model and the amount of RAM
of the system are not specified. It can be observed that the
simulation time of NeuronGPU is lower than that of CARLsim 4
in the considered interval. In particular, for 106 neurons and 108

connections NeuronGPU is about 59% faster than CARLsim 4.

4. DISCUSSION

As it can be observed in Figure 7, the building time of the

cortical microcircuit model simulated using NeuronGPU is

comparable to that of NEST, mainly because in NeuronGPU
the connections are created in the RAM and only immediately

before the simulation loop they are copied to the GPU memory.
Compared to most GPU-based simulators, NeuronGPU offers
a wide range of choices for connection rules and connection
parameter distributions, which can be exploited at runtime
and interactively through the Python interface. It is easier
to manage these connection rules and these distributions on
the CPU side, also thanks to the functions provided by the
standard C++ library. In both NEST and NeuronGPU the
model parameters, the neuron populations and the network
architecture are defined at runtime and the memory they need
is allocated dynamically. On the other hand, GeNN uses a code-
generation approach. Themodel parameters, neuron populations
and architecture are defined using code fragments similar to
C/C++, from which the CUDA/C ++ code of the model is
generated. This code must be compiled before execution. Any
changes in the parameters, neuron populations or network
architecture require a new generation and compilation of the
code. Once the code is generated and compiled, the initialization
is very fast as it is carried out directly by the GPU with parallel
computing algorithms. On the other hand, NeuronGPU achieved
a simulation time per second of biological activity of 1.64 s on
an NVIDIA Tesla V100 GPU and of 1.055 s on an NVIDIA
RTX 2080 Ti GPU, about 32% faster than GeNN, 59x faster than
NEST and very close to biological time. Moreover, NeuronGPU
was about 59% faster than CARLsim 4 in terms of simulation
time per second of biological activity in the simulation of the
Izhikevich-neurons balanced network with 106 neurons and 108

STDP synaptic connections. The building time of the AdEx-
neurons balanced network simulated using NeuronGPU was
about twice as large as that of NEST. However, NeuronGPU
was faster than NEST in terms of simulation time per second of
biological activity by a factor ranging from about 16× for smaller
networks to about 30× for networks with 109 connections. In
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future releases of the library, the building time could significantly
be reduced by creating the connections directly in the GPU
memory, exploiting the parallel computing capabilities of the
GPU and avoiding the bottleneck of memory transfer from
RAM to GPU memory. Besides the relatively long building
time, NeuronGPU has other limitations compared to other
GPU simulators. In particular, it currently does not include
multi-compartment models. The only type of synaptic plasticity
available is nearest-neighbor STDP. Neuromodulation is also
not included. Multi-GPU simulations are only supported via
MPI, which is yet to be evaluated. User defined models are
supported, however there is currently no dedicated interface to
configure them; the list of state variables and parameters and
the differential equations of the dynamics must be modified
directly in the code, which has to be recompiled. On the
other hand, the high simulation speed demonstrated by the
proposed library, significantly higher than that of other CPU
and GPU based simulators, combined with the availability of
a wide range of neuron models, spike generators, recording
tools, and connection rules, makes this library particularly useful
for simulations of large spiking neural networks over relatively
long biological times. NeuronGPU was recently proposed for
being integrated with the NEST neural simulator (Golosio
et al., 2020). The high degree of similarity between the Python
interfaces of NEST and NeuronGPU immediately simplifies
porting scripts from one simulator to the other, and opens
the door to integration and cosimulations between NEST
and NeuronGPU.
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