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Abstract

Malware detection is one of the areas where machine learning is successfully em-
ployed due to its high discriminating power and the capability of identifying novel
variants of malware samples. Typically, the problem formulation is strictly correl-
ated to the use of a wide variety of features covering several characteristics of the
entities to classify. Apparently, this practice allows achieving considerable detection
performance. However, it hardly permits us to gain insights into the knowledge
extracted by the learning algorithm, causing two main issues. First, detectors might
learn spurious patterns; thus, undermining their effectiveness in real environments.
Second, they might be particularly vulnerable to adversarial attacks; thus, weak-
ening their security. These concerns give rise to the necessity to develop systems
tailored to the specific peculiarities of the attacks to detect.
Within malware detection, Android ransomware represents a challenging yet illus-
trative domain for assessing the relevance of this issue. Ransomware represents a
serious threat that acts by locking the compromised device or encrypting its data,
then forcing the device owner to pay a ransom in order to restore the device function-
ality. Attackers typically develop such dangerous apps so that normally-legitimate
components and functionalities perform malicious behaviour; thus, making them
harder to be distinguished from genuine applications. In this sense, adopting a well-
defined variety of features and relying on some kind of explanations about the logic
behind such detectors could improve their design process since it could reveal truly
characterising features; hence, guiding the human expert towards the understanding
of the most relevant attack patterns.
Given this context, the goal of the thesis is to explore strategies that may improve the
design process of malware detectors. In particular, the thesis proposes to evaluate
and integrate approaches based on rising research on explainable machine learning.
To this end, the work follows two pathways. The first and main one focuses on
identifying the main traits that result to be characterising and effective for Android
ransomware detection. Then, explainability techniques are used to propose meth-
ods to assess the validity of the considered features. The second pathway broadens
the view by exploring the relationship between explainable machine learning and
adversarial attacks. In this regard, the contribution consists of pointing out met-
rics extracted from explainability techniques that can reveal models’ robustness to
adversarial attacks, together with an assessment of the practical feasibility for at-
tackers to alter the features that affect models’ output the most.
Ultimately, this work highlights the necessity to adopt a design process that is aware
of the weaknesses and attacks against machine learning-based detectors, and pro-
poses explainability techniques as one of the tools to counteract them.
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1 There is an appointed time for
everything, and a time for every affair
under the heavens.
2 A time to be born, and a time to die;
a time to plant, and a time to uproot
the plant.
3 A time to kill, and a time to heal; a
time to tear down, and a time to build.
4 A time to weep, and a time to laugh; a
time to mourn, and a time to dance.
5 A time to scatter stones, and a time
to gather them; a time to embrace, and
a time to be far from embraces.
6 A time to seek, and a time to lose; a
time to keep, and a time to cast away.
7 A time to rend, and a time to sew; a
time to be silent, and a time to speak.
8 A time to love, and a time to hate; a
time of war, and a time of peace.

Eccles. 3, 1–8

47 I will show you what someone is like
who comes to me, listens to my words,
and acts on them.
48 That one is like a person building a
house, who dug deeply and laid the
foundation on rock; when the flood
came, the river burst against that house
but could not shake it because it had
been well built.
49 But the one who listens and does not
act is like a person who built a house on
the ground without a foundation. When
the river burst against it, it collapsed at
once and was completely destroyed.

Lk. 6, 47–49
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Chapter 1

Introduction

The impressive growth and pervasiveness of information and communication techno-
logy in society is a known fact, and it will continue in the next few years. As an ex-
ample, the European agency for cybersecurity (ENISA) prefigures a 2025 (European)
scenario where [1]:

Devices are connected to the internet and have permeated everywhere.
All the essential operators in all sectors (i.e. energy, transport, banks,
digital infrastructure, hospitals), in all public administrations and across
the industry are providing connected services. 80 billion devices (10 per
person on the planet) are connected through the internet and the quant-
ities of data produced have been doubling every 2 years.

Such a connected society implies several impactful cybersecurity threats and the
need for considerable efforts to address the emerging challenges. As confirmed by
Europol [2], ‘as time passes, the cyber-element of cybercrime infiltrates nearly every
area of criminal activity’. As a consequence, recent decision ([3]) by the Members
of the European Parliament (MEPs) is the adoption of the ‘EU Cybersecurity Act’,
which establishes an EU-wide certification scheme to ensure that critical infrastruc-
tures (e.g. 5G), products, processes, and services meet cybersecurity standards.
Moreover, ENISA has received a permanent mandate, together with more human
and financial resources. Accordingly, increasing research efforts on cybersecurity will
be spent. ENISA identifies the main topics where future research should be focused;
they are the following ones [1]:

– Awareness building: it is making society aware of the impact and risks of
technological change;

– Capacity building: it is refreshing education in order to fulfil the need of
cybersecurity experts;

– Existential threats: these are trends and technologies that can be both an
opportunity and a risk, such as artificial intelligence, quantum technologies,
cybercrime, privacy.

Moreover, in a more recent report, ENISA highlighted the need to investigate
further the usage of Machine Learning (ML) in Cyber Threat Intelligence [4]. In this
sense, this thesis proposes to study the design of machine learning-based systems in
the context of cybersecurity, with a particular focus on the detection of malware, as
I discuss in the section that follows.

1



2 1. Introduction

1.1 Malware and Ransomware

Among the several types of threats in the wild, malware attacks are steadily the most
common ones. Specifically, if we look (Figure 1.1) at the trend of the past five years
depicted by ENISA with its top-15 Threat Landscape [5–9], we can observe that
malware always represents the top threat. Within this kind of threat, ransomware
(which is considered as a different category by ENISA) has been representing a rising,
dangerous threat in the past few years. Ransomware represents a serious threat
that acts by locking the compromised system or encrypting its data, then forcing
the owners to pay a ransom in order to restore the system functionality. Despite
the increasing diffusion of cloud-based technologies, users still store the majority of
their data directly on local systems. For this reason, such attacks are particularly
devastating, as they could destroy sensitive data of private users and companies
(which often neglect to make backups of sensitive data). In this sense, Figure 1.1
shows its concerning increase until 2017, which has motivated the special attention
of this thesis to this kind of threat. Although 2018 and 2019 saw a decrease in
the ENISA ranking (the 2020 report points out a new increasing trend though [9]),
the strategy for such attacks is precisely becoming more and more targeted. For
example, 2019 saw a 365% increase of attacks against businesses with respect to
2018, which may explain the 48.5% increase in the amount of paid ransoms (a total
of 10.1 billion USD) [10].
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Figure 1.1: ENISA top threats ranking (out of 15 threats) of the last five years for the
malware and ransomware categories. The lower the ranking value, the more relevant the
threat. Data elaborated from [5–9].

To combat such kind of threats, which also affect the Android domain (as I
discuss in Section 3.2), the security community strives to develop effective defence
tools, such as malware detectors. In this sense, malware detection is one of the areas
where machine learning is successfully employed due to its high discriminating power
and the capability of identifying novel variants of malware samples. Typically, the
problem formulation is strictly correlated to the use of a wide variety of features
covering several characteristics of the entities to classify. Apparently, this practice
provides considerable detection performance. However, it hardly permits us to gain
insights into the knowledge extracted by the learning algorithm. This issue is crucial
since it negatively influences two main aspects of detectors:
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– Effectiveness: detectors might learn spurious patterns, i.e. they make de-
cisions possibly on the basis of artefacts or non-descriptive elements of the
input samples;

– Security: the learning algorithms might become particularly vulnerable to
adversarial attacks, i.e. carefully-perturbed inputs that overturn their out-
puts.

Both of these concerns undermine the actual use of such detectors in real working
environments. Consequently, this issue sounds an alarm and highlights the necessity
to (i) improve the design process of detection systems and (ii) make them tailored
to the specific peculiarities of the attacks to detect.
Within malware detection, Android ransomware represents a challenging yet illus-
trative domain for assessing the relevance of the considerations above. As a matter of
fact, the attackers typically develop such dangerous apps so that normally-legitimate
components and functionalities perform malicious behaviour; thus, making them
harder to be distinguished from genuine applications. In this sense, adopting a well-
defined variety of features and relying on some kind of explanations about the logic
behind such detectors could improve their design process since it could reveal truly
characterising features; hence, guiding the human expert towards the understand-
ing of the most relevant attack patterns. Moreover, new legislation may enforce
ML-based systems to be interpretable enough to provide an explanation of their
decisions, as they can have significant consequences depending on the domain, such
as the safety-critical cases of medical diagnoses or autonomous driving [11]. For
instance, the Recital 71 of the EU GDPR1 states:

The data subject should have the right not to be subject to a decision,
which may include a measure, evaluating personal aspects relating to
him or her which is based solely on automated processing and which pro-
duces legal effects concerning him or her or similarly significantly affects
him or her, such as automatic refusal of an online credit application or
e-recruiting practices without any human intervention. [...]
In any case, such processing should be subject to suitable safeguards,
which should include specific information to the data subject and the
right to obtain human intervention, to express his or her point of view,
to obtain an explanation of the decision reached after such assess-
ment and to challenge the decision.

For all these reasons, research on the so-called explainable machine learning is cur-
rently rising, and it represents one of the tools used throughout the work of this
thesis to counteract the above-discussed issues.

1.2 Contribution

Given the above-described context, the ultimate goal of the thesis is to explore
strategies that may improve the design process of malware detectors. In particu-
lar, the main contribution of this work is aimed at addressing concerns about the
detectors’ effectiveness, and can be summarised as follows:

1https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&
from=EN

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN


4 1. Introduction

1. Identification of a set of effective features for Android ransomware detection,
along with their evaluation through different security-specific metrics. In this
sense, while most of the systems in the literature rely on different types of
information extracted from multiple parts of the apps, this work starts by
considering a limited number of features of the same type;

2. Proposal of a method to integrate explainability techniques into the identific-
ation and assessment of features characterising malware behaviour. This way,
it could be possible to broaden the variety in the feature set with an attentive
approach.

Moreover, I co-authored work that intends to address the security of detectors and
provides the following contribution:

1. Proposal of a proxy metric based on explanations, which reveals models’ ro-
bustness to adversarial attacks;

2. Evaluation through explanations of the practical feasibility for attackers to
alter Android apps in order to evade classifiers.

Ultimately, this work highlights the necessity to adopt a design process that
is aware of the weaknesses and attacks against ML-based detectors, and proposes
explainability techniques as one of the tools to counteract them.

1.3 Organisation

In this thesis, I first frame more extensively the challenges resulting from the usage
of machine learning for cybersecurity problems (Chapter 2). Thereafter, I focus on
the target domain of the thesis, i.e. Android malware detection. In particular, after
providing background notions on Android security (Chapter 3), I present the work
through two main pathways. The first one (Chapter 4) focuses on identifying the
main traits that result to be characterising and effective for Android ransomware
detection. Then, explainability techniques are used to propose methods to assess
the validity of the considered features.
The second pathway (Chapter 5) broadens the view by exploring the relationship
between explainable machine learning and adversarial attacks. I first illustrate work
aiming to define metrics extracted from explainability techniques that can reveal
models’ robustness to adversarial attacks. I then move to an assessment of the
practical feasibility for attackers to alter the features that affect models’ output the
most.
Finally, I discuss the findings and limitations of the thesis, along with potential
future work (Chapter 6).



Chapter 2

Challenges in Cybersecurity:
Adversarial and Explainable Machine
Learning

This chapter aims to introduce two of the main topics that characterise research on
machine learning, namely adversarial learning (Section 2.1) and explainable machine
learning (Section 2.2). Before jumping into them, it is worth discussing briefly the
general background of machine learning for cybersecurity tasks.
As hinted in Chapter 1, machine learning systems are nowadays being extensively
adopted in computer security applications, such as network intrusion and malware
detection, as they have obtained remarkable performance even against the increasing
complexity of modern attacks [12–14]. More recently, learning-based techniques
based on static analysis have proven to be especially effective at detecting Android
malware, which constitutes one of the major threats in mobile security. In particular,
these approaches have shown great accuracy even when traditional code concealing
techniques (such as static obfuscation) are employed (see Chapter 3) [15–18].

Despite the successful results reported by such approaches, the problem of design-
ing effective malware detectors — or solving different cybersecurity tasks — through
machine learning is still far from being solved, and it does not pertain only to ad-
versarial attacks and the lack of interpretability. As a matter of fact, several other
pitfalls may undermine the validity of such systems. In the process of working on
ML-based malware detection, I have been recognising more and more challenges
and caveats to pay attention to. Therefore, with no claim for this thesis to be im-
mune from those issues, it is worth encouraging awareness in this direction as it may
also help to catch the potential role that explainable machine learning may have to
address some of them.

Pitfalls in ML for cybersecurity To illustrate some of the risks designers and
researchers may fall into when using ML for cybersecurity, it is possible to follow the
recent work by Arp et al. [19], who have identified and systematised ten weaknesses,
spanning from design choices to performance evaluation and practical deployment.
Each paper out of the 30 they have analysed from top-tier security conferences
within the past ten years exhibits at least three of them.
Among them, a first pitfall is represented by false causality, i.e. the situation where
the learning model adapts to artefacts unrelated to the security problem under

5
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inspection; thus, not solving it in practice. This issue is part of the motivation for
the work of this thesis, and explainable machine learning is definitely one of the
tools to limit it. Another pitfall consists of evaluating models with an inappropriate
baseline, i.e. without performing a proper comparison with other state-of-the-art
approaches. Notably, this also includes avoiding a comparison with non-ML-based
systems. Similarly, typical proposals for novel models are assessed lab-only, i.e. the
test of the system is only performed in vitro, with no discussion of the practical
limitations. As the last point — I refer the reader to [19] for a complete disquisition
of the pitfalls — the usage of an inappropriate threat model that does not consider
the security of the algorithms is another weakness. Notably, a proper threat model
should also examine the practical capabilities of attackers, as discussed in Chapter 5.

2.1 Adversarial Machine Learning

According to a recent survey by Biggio and Roli [20], several works questioned
the security of machine learning since 2004. Two pioneering works were proposed
by Dalvi et al. [21] in 2004 and by Lowd and Meek [22] in 2005. Those works,
considering linear classifiers employed to perform spam filtering, have demonstrated
that an attacker could easily deceive the classifier at test time by performing a
limited amount of carefully-crafted changes to an email. Subsequent works have
proposed attacker models and frameworks that are still used to study the security of
learning-based systems also against training-time attacks [23–25]. The first gradient-
based poisoning [26] and evasion [27] attacks have been proposed by Biggio et al.,
respectively, in 2012 and 2013. Notably, in [27] the authors have also introduced
two important concepts that are still heavily used in the adversarial field: high-
confidence adversarial examples and a surrogate model. This work anticipated the
discovery of the so-called adversarial examples against deep neural networks [28,
29].

The vulnerability to evasion attacks has also been studied on learning systems de-
signed to detect malware samples (for example, on PDF files [30, 31]); hence, raising
serious concerns about their usability under adversarial environments. In particular,
for Android malware detectors, Demontis et al. [17] have demonstrated that linear
models trained on the (static) features extracted by Drebin (see Section 5.1.1) can
be easily evaded by performing a fine-grained injection of information by employing
gradient descent-based approaches. Grosse et al. [32] have also attained a significant
evasion rate on a neural network trained with the Drebin feature set. Although the
adversarial robustness of other Android detectors aside from [15] has not been fully
explored, it is evident that employing information that can be easily injected or
modified may increase the probability of the attacker to attain successful evasion.
In a sense, this aspect also motivates the work described in Section 5.2.
To better understand the main characteristics that adversarial attacks may assume
and the settings of the works in Chapter 5, in the following, I briefly illustrate the
typical threat model schema.

2.1.1 Modelling Threats

The main aspects to consider when modelling the adversarial threats are the follow-
ing: the attacker’s goal, knowledge, and capability [20, 27].
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Attacker’s goal The goal of an attack may be dissected according to different
aspects. One consists of pursuing a generic or specific attack. In the first case,
the attacker is generically interested in having the samples misclassified. In the
second case, its goal is to have specific samples classified as a target class. For
example, in a malware detector, the attackers aim to make the system classify
malware apps as trusted ones. Consequently, the attack could involve any kind of
sample (indiscriminate) or a specific subset (targeted). Ultimately, the attackers
may want to compromise the system’s availability, privacy, or integrity.

Attacker’s knowledge Given a knowledge parameter θ that indicates the amount
of information about the target detection system available to attackers, this can be
related to (i) the dataset D, (ii) the feature space X, (iii) the classification func-
tion f , and (iv) the classifier’s hyperparameters w. Accordingly, θ = (D,X, f,w)
corresponds to the scenario of perfect knowledge about the system and represents
the worst case for a defender. It is unlikely to see such a scenario in real cases,
as attackers often have incomplete information (or no information at all) about the
target system. However, it can serve as a worst-case scenario to assess the max-
imum vulnerability of a system. More realistic settings (limited-knowledge) do not
have complete information about the target system, as in the case of the scenario
considered in Section 5.2.

Attacker’s capability This aspect first refers to the possibility for the attackers
to manipulate training and test data. When they are able to act on both of them,
we talk about poisoning attacks, while altering samples at test time corresponds to
evasion attacks. In this thesis, I only consider evasion attacks.
Moreover, attackers are often constrained in the kind of modifications that they are
able to perform on a sample, e.g. a malicious Android application. For example,
the Android detection domain mostly allows the attacker to only add new elements
to the app (feature addition), but does not permit removing them (feature removal).

2.2 Explainable Machine Learning

Chapter 1 has provided a set of motivations and goals that had brought to identifying
‘explainable machine learning’ as a research field worth exploring. However, such
a topic appears to be extremely vast, so that even defining it turns out to be not
as trivial. Consequently, this section proposes to (i) clarify the terms used in the
scope of this thesis (e.g. ‘explainable machine learning’), (ii) provide the essential
elements that illustrate the potential directions of this field, and (iii) list — with
no claim of completeness — popular explanation techniques and present the ones
employed in this thesis (Section 2.2.1).

As for the first point, the field as a whole is usually indicated as ‘Interpretable
Artificial Intelligence’, ‘Explainable Artificial Intelligence’, or ‘XAI’. To the best of
my knowledge, there is no agreement on which of them is the most used within
the research community, as surveys come up with contrasting conclusions [33, 34].
Despite being less frequent, in this thesis, the term ‘explainable machine learning’ is
used, as the focus is specifically on machine learning. Concerning more specialised
definitions, the literature embodies terms such as ‘explainability’, ‘interpretability’,
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‘understandability’, ‘comprehensibility’, ‘transparency’ [33, 34]. Each one, assuming
the capability of establishing a common ground, reflects certain peculiarities in terms
of several aspects, such as motivations, goals, procedures. With this respect, the
approach of this thesis is not to provide formal definitions, but to detail motivations,
context, and goals for each work. However, in order to have a basic reference, I follow
this broad distinction by Barredo Arrieta et al. [34]:

‘Interpretability’ refers to a passive characteristic of a model referring to
the level at which a given model makes sense for a human observer. This
feature is also expressed as ‘transparency’. By contrast, ‘explainability’
can be viewed as an active characteristic of a model, denoting any action
or procedure taken by a model with the intent of clarifying or detailing
its internal functions.

The focus of the thesis is then on ‘explainability’, rather than ‘interpretability’.
Moving to a simple taxonomy that can summarise explainable machine learning,

the criteria to consider could be: why explanations are produced, whom they are
addressed to, what they consist of. In the following, I sum up such basic aspects to
the extent that is needed for this dissertation:

Goals As Doshi-Velez and Kim [35] have pointed out, not all ML systems require
interpretability. Rather, it is needed when the formalisation of a problem is incom-
plete. For example, we may produce explanations for knowledge extraction since we
do not have a full understanding of the mechanisms of the problem under analysis.
If we want to validate models, explanations can be used to perform debugging ; this
way, it is possible to find unexpected behaviour and the conditions under which the
model fails. Moreover, legal or ethical requirements are becoming more and more
pressing. For example, certain domains are particularly sensitive in ensuring no
biases are present in the model, e.g. racial ones in the context of fairness.

Stakeholders Deriving from the above goals, explanations can be addressed to
different stakeholders, typically identified as [36]:

– Designers and theorists: they may want to improve the model design or the
algorithms, in order to fix their weaknesses or extract knowledge from them;

– Ethicists: they need explanations to ensure models are fair ;
– End users: explanations are welcome to gain trust about the decisions made

by the models.

To better clarify the concrete significance of goals and stakeholders of explanations,
we can consider the case of smart vehicles, of which I have been analysing their secur-
ity and the potential impact of explainable machine learning to them [11, 37]. Smart
vehicles can be seen both as human-agent systems — highlighting the interaction
between digital systems and human users — and as cyber-physical systems — high-
lighting the interaction between cyberspace and the physical environment.
From the first point of view, the interaction of the system is directed to the end-user.
Consequently, the reason to produce and present explanations is gaining trust in the
decisions adopted by the system. Since a modern vehicle ecosystem includes both
safety- and non-safety-critical ML-based algorithms, for the former ones, it is crucial
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to (i) provide explanations, (ii) produce them on top of transparent (see next para-
graph) models, as they are able to provide direct and faithful explanations [38]. In
the second case, having explanations could be beneficial but not strictly necessary;
hence, making the deployment of explainable algorithms optional. Recent work
started exploring more precisely both the context and the necessity for explainable
algorithms in human-agent systems. For example, Glomsrud et al. [39] have studied
the context of autonomous vessels. Besides developers and assurance figures, the
main human interactions, in this case, regard passengers and external agents. The
former ones may want to have feedback from the vessel (e.g. a ferry) during board-
ing, docking, or abnormal situations, in order to be warned about the travel status
or potential danger and prevent panic. External actors could be swimmers, kayakers
or boats that are close to the vessel; hence, they need to understand its intentions
as early as possible.

Explanation generation In this respect, different criteria can categorise explan-
ation techniques:

– Post-hoc and interpretable-by-design cases: the first one refers to the act
of explaining a model with external, specific techniques, while the second one
extract explanations inherently from the model, which is then considered as
transparent by design. This distinction recalls and is related to the definitions
of ‘explainability’ and ‘interpretability’ mentioned above;

– Black-box and white-box techniques: since models could be not fully ac-
cessible (e.g. for preserving intellectual property), black-box techniques pro-
pose to infer explanations only from models’ outputs, as opposed to white-box
techniques that can leverage the inner working of the algorithms;

– Local and global techniques: it is possible to interpret a single decision of
the model or its whole logic;

– Feature attribution and high-level concepts: the typical output of an
explanation consists of a numerical value for each feature, which represents
its relevance to the scope of the single classification or model logic. However,
recent work has started exploring the capability of identifying higher-level
concepts [40, 41].

2.2.1 Explanation Techniques

Several approaches for interpretability have been proposed, with particular attention
to post-hoc explanations for black-box models. In the following, I briefly describe
the prominent explainability methodologies proposed in this sense. In 2016, Ribeiro
et al. [42] proposed LIME, a model-agnostic technique that provides local explan-
ations by generating small perturbations of the input sample; thus, obtaining the
explanations from a linear model fitted on the perturbed space. Lundberg et al.
[43] have unified different techniques, including LIME, under the name of SHAP;
by leveraging cooperative game theory results, they identify theoretically-sound ex-
planation methods and provide feature importance for each prediction.
Koh and Liang [44] have shown that using a gradient-based technique called influ-
ence functions, which is well known in the field of robust statistics, it is possible
to associate each input sample to the training samples (prototypes) that are most
responsible for its prediction. The theory behind the techniques proposed by the
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authors holds only for classifiers with differentiable loss functions. However, the au-
thors have empirically shown that their technique provides sensible prototypes also
for classifiers with non-differentiable losses if computed on a smoothed counterpart.
Finally, Guo et al. [45] have proposed LEMNA, a method specifically designed for
security tasks, i.e. that is optimised for RNN and MLP networks, and that highlights
the feature dependence (e.g. for binary code analysis).

2.2.1.1 Gradient-based Explanation Methods

One of the characteristics common to several explanation techniques is deriving
them from the calculation of the gradient of the decision function with respect to
the input. In particular, the ones considered in this thesis are usually referred to as
‘gradient-based attribution methods’, where ‘attribution’ means the contribution of
each input feature to the prediction of a specific sample. In a two-class setting, the
positive (negative) value of an attribution indicates that the classifier considers the
corresponding feature as peculiar of the positive (negative) class. In the following,
I briefly describe three gradient-based techniques.

Gradient The simplest method to obtain attributions is to compute the gradient
of the discriminant function f with respect to the input sample x. For image
recognition models, it corresponds to the saliency map of the image [46]. The
attribution of the ith feature is computed as:

Gradienti(x) :=
∂f(x)

∂xi
(2.1)

Gradient*Input This technique has been proposed by Shrikumar et al. [47]. This
approach is more suitable than the previously-proposed ones when the feature vec-
tors are sparse. For example, the previously proposed approaches [42, 46] tended
to assign relevance to features whose corresponding components are not present in
the considered application; thus, making the corresponding predictions challenging
to interpret. To overcome this issue, Gradient*Input leverages the notion of direc-
tional derivative. Given the input point x, it projects the gradient ∇f(x) onto x,
to ensure that only the non-null features are considered as relevant for the decision.
More formally, the ith attribution is computed as:

Gradient*Inputi(x) :=
∂f(x)

∂xi
∗ xi (2.2)

Integrated Gradients Sundararajan et al. [48] have identified two axioms that
attribution methods should satisfy: implementation invariance and sensitivity. Ac-
cordingly to the first one, the attributions should always be identical for two func-
tionally equivalent networks, e.g. they should be invariant to the differences in the
training hyperparameters, which lead the network to learn the same function. The
second axiom is satisfied if, for every input predicted differently from a baseline (a
reference vector that models the neutral input, e.g. a black image) and that differs
from the baseline in only one feature, has, for that feature, a non-zero attribution. In
the same paper, they have proposed a gradient-based explanation called Integrated
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Gradients that satisfies the axioms explained above. This method, firstly, considers
the straight-line path from the baseline to the input sample and computes the gradi-
ents at all points along the path. Then, it obtains the attribution by accumulating
those gradients. The attribution along the ith dimension for an input x and baseline
x′ is defined as:

IntegratedGradsi(x) := (xi − x′i) ·
∫ 1

α=0

∂f (x′ + α · (x− x′))
∂xi

dα (2.3)

To efficiently approximate the previous integral, one can sum the gradients computed
at p fixed intervals along the joining path from x′ to the input x:

IntegratedGradsapprox
i (x) := (xi − x′i) ·

p∑
k=1

∂f
(
x′ + k

p
· (x− x′)

)
∂xi

· 1

p
(2.4)

For linear classifiers, where ∂f/∂xi = wi, this method is equivalent to Gradi-
ent*Input if x′ = 0 is used as a baseline, which is a well-suited choice in many
applications [48]. Therefore, in this particular case, also the Gradient*Input method
satisfies the above-mentioned axioms.



Chapter 3

Android Security

This chapter provides essential background about Android and its security. I first
summarise the main components of the operating system (Section 3.1). I then depict
the scenario of Android malware attacks, especially ransomware ones (Section 3.2),
and conclude with an overview of methods to analyse and detect them (Section 3.3).

3.1 Background on Android

Android applications are zipped .apk — i.e. APK, Android Application Package —
archives that contain the following elements: (i) The AndroidManifest.xml file,
which provides the application package name, and lists its basic components, along
with the permissions that are required for specific operations; (ii) One or more
classes.dex files, which are the true executable of the application, and which
contain all the implemented classes and methods (in the form of Dalvik bytecode)
that are executed by the app. This file can be disassembled to a simplified format
called smali; (iii) Various .xml files that characterise the application layout; (iv)
External resources that include, among others, images and native libraries.

Android applications are typically written in Java or Kotlin, and they are com-
piled to an intermediate bytecode format called Dalvik — which will also be re-
ferred to as Dex bytecode or dexcode — whose instructions are contained in the
classes.dex file. This file is then further parsed at install time and converted
to native ARM code that is executed by the Android RunTime (ART). This tech-
nique allows to greatly speed up execution in comparison to the previous runtime
(dalvikvm, available till Android 4.4), in which applications were executed with a
just-in-time approach (during installation, the classes.dex file was only slightly
optimised, but not converted to native code).
As the elements inspected in the scope of this thesis are the Dex bytecode and the
manifest, they are described with more details below.

Android Manifest This file contains core information about the Android ap-
plication, such as its package name or the supported API levels. It lists the app’s
components, i.e. the elements that define its structure and functionalities. For ex-
ample, the screens visualised by the user are built upon an activity; a background
task is executed through a service. App components can also listen to specific
events and be executed in response to them (receiver). This applies to developer-
defined events or system ones, such as a change in the device’s connectivity status

12
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(CONNECTIVITY_CHANGE) or the opening of an application (LAUNCHER). Special types
of components are entry points, i.e. activities, services, and receivers that are loaded
when requested by a specific filtered intent (e.g. an activity is loaded when an ap-
plication is launched, and a service is activated when the device is turned on). One
of the most important sections of the manifest comes from the listing of the per-
missions used by the application (uses-permission tag). As a matter of fact, the
app developer has to ask the user the right to use certain functionalities. These
can be related to the device (e.g. ACCESS_NETWORK_STATE) or functionalities (e.g.
SEND_SMS). In this thesis, permissions are always indicated in capital letters.

Dex bytecode The classes.dex file embeds the compiled source code of the
applications, including all the user-implemented methods and classes. For example,
it may contain specific API calls that can access sensitive resources such as personal
contacts (suspicious calls). Additionally, it contains all system-related, restricted
API calls that require specific permissions (e.g. writing to the device’s storage).
The main components of a .dex file are:

– Header: this contains information about the file composition, such as the off-
sets and the size of other parts of the file (e.g. constants and data structures).
This data collection is crucial to reconstruct the bytecode in the correct way
when the code is compiled to ARM;

– Constants: they represent the addresses of the strings, flags, variables, classes,
and method names of the application;

– Classes: this is the definition of all the class parameters, like the super class,
the access type, and the list of methods with all the references to the data
contained in the data structure;

– Data structure: this is the container for the actual data of the application,
such as the method code or the content of static variables.

3.2 Android Malware

Figure 3.1: Number of mobile malicious installation packages on Android [49].
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Android has always been the top target of mobile malware attacks. To coun-
teract such offensives, several security improvements have been made to Android
over the past few years. Both Kaspersky’s (Figure 3.1) and Trend Micro’s data
show a declining trend of malicious installation packages since 2016, which seems
to indicate defence measures result to be effective (this will be discussed further
in the next section) [49, 50]. However, the context of mobile threats is highly dy-
namic. For example, Kaspersky [49] points out the appearance of several highly
sophisticated mobile banking threats in 2019, and Trend Micro [50] underlines the
increasing sophistication in targeted campaigns. To better understand such a trend,
the section that follows depicts the scenario for ransomware attacks, along with their
characteristics.

3.2.1 Ransomware

Similar to the trend illustrated in Section 1.1, mobile ransomware has apparently
reached its peak. More specifically, Figure 3.2 shows the steep rise of ransomware
from 2015 to 2017, in terms of the both number of installation packages and distri-
bution share over all types of mobile threats. This fact had motivated the focus of
most of the thesis’ work on ransomware. After that, we can observe a significant
decrease in infections. As of September 2020 and according to Kaspersky [51], such
a trend is motivated by two reasons: (i) it is much harder to extort cash from users
than to steal the bank account data; thus, making the device infection more costly,
and (ii) ransomware is a threat the user likely wants to fight in order to restore his
device, even by factory-resetting the device — except in the case of encrypted files.
Another reason I point out is the progress of security measures against such attacks.
In this sense, Kaspersky [51] highlights that most of the current spread families date
back from 2017. This fact could indicate attacks target older versions of Android
since — as of January 2021 — the majority of devices run Android Oreo (API level
27, released in August 2017) or lower. 1
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Figure 3.2: Number of installation packages (a) and share of distribution over all malware
types (b) for mobile ransomware. Data elaborated from [49, 51–54].

To better understand the security improvements of Android, it is worth illus-
trating how typical ransomware attacks work. The majority of ransomware attacks
for Android are based on the goal of locking the device screen. In this case, at-
tackers typically take the following strategy: they create an activity upon which

1Data gathered from Android Studio’s Android Platform Version Distribution.
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a non-dismissable window is shown. This activity is forced to stay always in
the foreground, and it can be restarted when killed or the device gets rebooted.
Moreover, they disable the navigation buttons (e.g. the back functionality). Newer
versions of Android, primarily since API level 28 (Android Pie), have implemen-
ted countermeasures in response to this strategy. For example, (i) the device can
be booted in Safe Mode, where the system blocks third-party apps from running,
(ii) starting an activity from the background is not possible without leveraging no-
tifications, and (iii) the status bar takes priority and shows a specific notification
that allows disabling overlay screens from the running app. However, as such recent
Android versions do not reach the totality of the devices, locking behaviour remains
a relevant threat.
Locking is generally preferred to the data encryption strategy because it does not
require operating on high-privileged data. There are, however, crypto-ransomware
apps that perform data encryption. Examples of crypto families are: Simplocker,
Koler, Cokri, and Fobus. In this case, the attacker shows a window that could not
necessarily be constantly displayed, because his main focus is to perform encryption
of the user data (e.g. photos, videos, documents).
In both cases, the created window includes a threatening message that instructs the
user to pay the ransom, which will theoretically permit to (i) suppress the permanent
screen (locking case) or (ii) decipher the data (crypto case).

As locking and encryption actions require the use of multiple functions that
involve core functionalities of the system (e.g. managing entire arrays of bytes, dis-
playing activities, manipulating buttons and so on), attackers tend to use functions
that directly belong to the Android System API. It would be extremely time consum-
ing and inefficient to build new APIs that perform the same actions as the original
ones. This motivates the design choices of the work in Section 4.2.
As an example of ransomware behaviours, consider the dexcode snippet provided
by Listing 3.1, belonging to locker-type ransomware2. In this example, it is pos-
sible to observe that the two function calls (expressed by invoke-virtual instruc-
tions) that are actually used to lock the screen (lockNow) and reset the password
(resetPassword) are System API calls, belonging to the class DevicePolicyManager
and to the package android.app.admin.

1
2 invoke-virtual {v9}, Landroid/app/admin/DevicePolicyManager;-> lockNow()V
3 move-object v9, v0
4 move-object v10 , v1
5
6 ...
7
8 move-result-object v9
9 move-object v10 , v7

10 const/4 v11 , 0x0
11 invoke-virtual {v9 , v10 , v11}, Landroid/app/admin/DevicePolicyManager;->

resetPassword (Ljava/lang/String;I)Z

Listing 3.1: Part of the onPasswordChanged() method belonging to a locker-type
ransomware sample.

The same behaviour is provided by Listing 3.2, which shows the encryption

2MD5: 0cdb7171bcd94ab5ef8b4d461afc446c
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function employed by a crypto-type ransomware sample3. Again, the functions to
manipulate the bytes to be encrypted belong to the System API (read and close,
belonging to the FileInputStream class of the java.io package; flush and close,
belonging to the CipherOutputStream class of the javax.crypto package).

1
2 Ljava/io/FileInputStream;-> read([B)I
3 move-result v0
4 const/4 v5 , -0x1
5 if-ne v0 , v5 , :cond_0
6 invoke-virtual {v1}, Ljavax/crypto/CipherOutputStream;-> flush()V
7 invoke-virtual {v1}, Ljavax/crypto/CipherOutputStream;-> close()V
8 invoke-virtual {v3}, Ljava/io/FileInputStream;-> close()V

Listing 3.2: Parts of the encrypt() method belonging to an encryption-type ransomware
sample.

3.3 Malware Analysis and Detection

This section makes a brief, non-exhaustive overview of the methods developed to per-
form Android malware detection. In particular, I illustrate their high-level approach
(Section 3.3.1), the typical employed features (Section 3.3.2), and the strategies at-
tackers devise to bypass detection (Section 3.3.3) [55, 56].

3.3.1 Approaches

A first relevant aspect for the different approaches to design detectors is the distinc-
tion between systems that perform static, dynamic, or hybrid analysis.

Static analysis is based on disassembling an Android application and scanning
its components to find malicious traces without executing the application. Con-
sequently, this approach has the advantage of being typically fast and resource-
efficient. Different research works have been published about this type of analysis.
Arzt et al. [57] have proposed FlowDroid, a security tool that performs static taint
analysis within the single components of Android applications. Feng et al. [58] have
proposed Apposcopy, another tool that combines static taint analysis and intent flow
monitoring to produce a signature for applications. Garcia et al. [59] have proposed
RevealDroid, a static system for detecting Android malware samples and classify-
ing them in families. The system employs features extracted from reflective calls,
native APIs, permissions, and many other characteristics of the file. The attained
results showed that RevealDroid was able to attain very high accuracy, resilience to
obfuscation. However, the number of extracted features can be extremely high and
depends on the training data.

Concerning dynamic analysis, it is based on executing and monitoring an ap-
plication in a controlled environment (i.e. sandbox or virtual machine). The goal is
to inspect the interactions between the application and the system to reveal all the
suspicious behaviours. Zhang et al. [60] have proposed VetDroid, a dynamic analysis
platform to detect interactions between the application and the system through the

3MD5: 59909615d2977e0be29b3ab8707c903a
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monitoring of permission use behaviours. Tam et al. [61] have proposed Copper-
Droid, a dynamic analyser that aims to identify suspicious high-level behaviours
of malicious Android applications. Chen et al. [62] have proposed RansomProber,
a dynamic ransomware detection system that uses a collection of rules to exam-
ine several execution aspects, such as the presence of encryption or unusual layout
structures. Dynamic analysis is more challenging to implement. It requires more
computational resources and time to be executed. This is why this type of analysis
cannot be implemented on a mobile device. However, it has better performances in
detecting well-known and never seen malware families.

Finally, the straightforward third approach combines static and dynamic analyses
to take advantage of their strengths and compensate for their weaknesses. An ex-
ample in this sense is the work from Chen et al. [16], who have proposed StormDroid,
a static and dynamic machine learning-based system that extracts information from
API-calls, permissions, and behavioural features.

3.3.2 Features

As hinted with the above-mentioned approaches, several characteristics (that trans-
late to features for ML-based systems) can be extracted to discriminate malware
from legitimate apps. The main ones are the following:

– Permissions: Android requires the app developer to request permission to
use a particular functionality expressly. Depending on its dangerousness, that
permission can be granted automatically or after explicit user agreement. As
an example, Arp et al. [15] have proposed Drebin, a machine learning system
that uses static analysis to discriminate between generic malware and trusted
files (also described in Section 5.1.1). They have extracted permissions, along
with IP addresses, suspicious API calls, intents, and so forth;

– Intents and events: these are objects that call components of the same
app, other apps, or system in order to perform specific actions (e.g. send
emails, add a contact). Yang et al. [63] analysed malicious apps by defining
and extracting the context related to security-sensitive events. In particular,
the authors defined a model of context based on two elements: activation
conditions (i.e. what makes specific events occur) and guarding conditions
(i.e. the environmental attributes of a specific event);

– Hardware components: this refers to the apps’ requests (in the manifest)
to use specific hardware (e.g. GPS);

– Function calls: this may refer to generic function calls, or specific ones such
as System API calls (discussed in Chapter 4);

– Information flow: this consists of monitoring the flow of information, which
may be function calls, data, communication between processes. For example,
Avdiienko et al. [64] have used taint analysis to detect anomalous flows of
sensitive data, a technique that has allowed to detect novel malware samples
without previous knowledge;

– Dependency graphs: these refer to providing a representation of the de-
pendences between statements. For example, Zhang et al. [65, 66] have em-
ployed dependency graphs extracted by observing network traffic. In par-
ticular, in [65], they have proposed a traffic analysis method that employs
scalable algorithms for the detection of malware activities on a host. Such
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a detection was performed by exploring request-level traffic and the semantic
relationships among network events. In [66], they have analysed information
extracted from the dynamic profiling of the traffic generated by benign ap-
plications and modelled (through graphs called triggering relation graphs) the
triggering relationship of the generated network events (i.e. how such events
are related to each other) to identify anomalous, malicious ones.

3.3.3 Evasion Strategies

As the last point of view, it is worth highlighting that the above-mentioned detec-
tion strategies have to deal with different elusion techniques elaborated by attackers
to avoid detection. Such stratagems undermine the effectiveness of both static and
dynamic approaches. Firstly, a trivial elusion strategy is represented by repackaging,
i.e. performing slight alterations to the .apk files, with the simple goal of evading
signature-based detectors. A more relevant technique is obfuscation, which includes
trivial as well as advanced strategies. In particular, it may consist of (as discussed in
Section 4.2) (i) renaming methods, classes, and identifiers, (ii) employ reflection to
load code dynamically, and (iii) encrypting code, such as classes. Moreover, it can
also include control flow obfuscation, i.e. transforming method calls (typically by
changing their order) without changing the app’s semantics. Accordingly, all those
types of elusion techniques are often able to overcome static analysis.
Additionally, dynamic analysis can also be complicated or prevented. In these cases,
the analysed is typically performed in virtual environments. Consequently, mal-
ware may detect whether it is being executed within them and stop itself. Other
stratagems include pausing the execution of malicious activities on specific time
frames, events, or even depending on the motion sensors [67].



Chapter 4

Design of Android Ransomware
Detectors

In this chapter, the focus is on the work done to design effective Android ransom-
ware detectors. In particular, I first examine the choice of System API calls as
features, in order to determine if they reveal to be both effective and resilient to
attackers’ anti-detection strategies (Section 4.2, based on the work by Scalas et al.
[18]). Then, I focus on proposing a method to leverage gradient-based explanation
techniques in order to understand if features (System API calls and permissions)
really characterise ransomware behaviour (Section 4.3, based on the work by Scalas
et al. [68]). Before diving into these works, a brief overview of the literature on
Android ransomware detectors is provided (Section 4.1).

4.1 Related Work

Most Android malware detectors typically discriminate between malicious and be-
nign apps, and are referred to as generic malware-oriented detectors (see Sec-
tion 3.3). However, as the scope of the works in this chapter is oriented to ransom-
ware detection, this section will be focused on describing systems that aim to detect
such attacks (ransomware-oriented detectors) specifically.

The most popular ransomware-oriented detector is HelDroid, proposed by An-
dronio et al. [69]. This tool includes (i) a text classifier using NLP features that
analyses suspicious strings used by the application, (ii) a lightweight smali emu-
lation technique to detect locking strategies, and (iii) a taint tracker for detecting
file-encrypting flows. The system has then been further expanded by Zheng et al.
[70] with the new name of GreatEatlon, and features significant speed improve-
ments, a multiple-classifier system that combines the information extracted by text
and taint-analysis, and so forth. However, the system is still computationally de-
manding, and it still strongly depends on a text classifier: the authors trained it on
generic threatening phrases, similar to those that typically appear in ransomware or
scareware. This strategy can be easily thwarted, for example, by employing string
encryption [71]. Moreover, it strongly depends on the presence of a language dic-
tionary for that specific ransomware campaign.
Yang et al. [75] have proposed a tool to monitor the activity of ransomware by
dumping the system messages log, including stack traces. Sadly, no implementation
has been released for public usage.

19
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Table 4.1: An overview of the current state-of-the-art, ransomware-oriented approaches.

Work Tool Year Static Dynamic Machine-Learning Available
Chen et al. [62] RansomProber 2018 X
Cimitile et al. [72] Talos 2017 X
Gharib and Ghorbani [73] Dna-Droid 2017 X X X
Song et al. [74] / 2016 X
Zheng et al. [70] GreatEatlon 2016 X X X
Yang et al. [75] / 2015 X
Andronio et al. [69] HelDroid 2015 X X X

Song et al. [74] have proposed a method that aims to discriminate between ransom-
ware and goodware using process monitoring. In particular, they considered system-
related features representing the I/O rate, as well as the CPU and memory usage.
The system has been evaluated with only one ransomware sample developed by the
authors, and no implementation is publicly available.
Cimitile et al. [72] have introduced an approach to detect ransomware that is based
on formal methods (by using a tool called Talos), which help the analyst identify
malicious sections in the app code. In particular, starting from the definition of
payload behaviour, the authors manually formulated logic rules that were later ap-
plied to detect ransomware. Unfortunately, such a procedure can become extremely
time-consuming, as an expert should manually express such rules.
Gharib and Ghorbani [73] have proposed Dna-Droid, a static and dynamic approach
in which applications are first statically analysed, and then dynamically inspected
if the first part of the analysis returned a suspicious result. The system uses Deep
Learning to provide a classification label. The static part is based on textual and
image classification, as well as on API calls and application permissions. The dy-
namic part relies on sequences of API calls that are compared to malicious sequences,
which are related to malware families. This approach has the drawback that heavily
obfuscated apps can escape the static filter; thus, avoiding being dynamically ana-
lysed.
Finally, Chen et al. [62] have proposed RansomProber, a purely dynamic ransom-
ware detector that employs a set of rules to monitor different aspects of the app
execution, such as the presence of encryption or anomalous layout structures. The
attained results report a very high accuracy, but the system has not been publicly
released yet (to the best of our knowledge).

Table 4.1 shows a comparison between the state-of-the-art methods for specific-
ally detecting or analysing Android ransomware. It is possible to observe that there
is a certain balance between static- and dynamic-based methods. Some of them also
resort to Machine-Learning to perform classification. Notably, only HelDroid and
GreatEatlon are currently publicly available.

4.2 On the Effectiveness of System API-related In-
formation

As described in the previous section, machine learning has been increasingly used
both by researchers and anti-malware companies to develop ransomware-oriented
detectors. The reason for such a choice is that ransomware infections may lead to
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permanent data loss, making their early detection critical. The main characteristic
of such systems is that they rely on different types of information extracted from
multiple parts of the apps (e.g. bytecode, manifest, native libraries, and so forth),
which leads to using large amounts of features (even hundreds of thousands). While
this approach is tempting and may seem to be effective against the majority of at-
tacks in the wild, it features various limitations. First, it is unclear which features
are essential (and needed) for classification, an aspect that worsens the overall ex-
plainability of the system (i.e. why the system makes mistakes and how to fix them).
Second, increasing the types of features extends the degrees of freedom of a skilled
attacker to perform targeted attacks against the learning algorithm. For example,
it would be quite easy to mask a specific IP address if the attacker understood that
this has a vital role in detection [17]. Finally, the computational complexity of such
systems is enormous, which makes them unfeasible to be practically used in mobile
devices, an important aspect to guarantee offline, early detection of these attacks.

In the original work by Maiorca et al. [76], the proposed detection method (called
R-PackDroid) had allowed discriminating between ransomware, generic malware,
and legitimate files by focusing on a small-sized feature set, i.e. System API pack-
ages. The idea of that work had been to overcome the limitations described above
by showing that it was possible to solve a machine learning problem with a limited
number of features of the same type. However, System API-based information does
not only include packages but also classes and methods (particularly employed in
other works, especially mixed with other feature types [15, 59]) that can — poten-
tially — better define the behaviour of APIs. Intuitively, using finer-grained inform-
ation leads to better accuracy and robustness in comparison to other approaches.
Therefore, in the following, I present how we have explored such a possibility by
progressively refining the System API-based information employed in the original,
previous work [76]. In particular, we have inspected the capabilities of multiple
types of System API-related information to discriminate ransomware from malware,
and goodware, aiming to provide an answer to the following Research Questions:

– RQ 1. Does the use of finer-grained information related to System API (i.e.
classes and methods) improve detection performances in comparison to more
general System API packages?

– RQ 2. Is System API-based information suitable to detect novel attacks in
the wild?

– RQ 3. Does using System API-based information provide comparable per-
formances to other approaches that employ multiple feature types?

– RQ 4. Is System API-based information resilient against obfuscation at-
tempts?

To answer such Research Questions, we have explored three types of System
API-based information: the first one only uses information related to System API
packages (as already shown in [76]), the second one analyses System API classes, and
the third one employes information related to System API methods. We have evalu-
ated the performances of the three systems on a wide range of ransomware, malware
and goodware samples in the wild (including previously unseen data). Moreover,
we have tested all systems against a dataset of ransomware samples that had been
obfuscated with multiple techniques (including class encryption).
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The attained results show that all System API-based techniques provide excel-
lent accuracy at detecting ransomware and generic malware in the wild, by also
showing capabilities of predicting novel attacks and resilience against obfuscation.
More specifically, using finer-grained information even improves the accuracy at de-
tecting previously unseen samples, and provides more reliability against obfuscation
attempts. From a methodological perspective, such results demonstrate that it is
possible to develop accurate systems by strongly reducing the complexity of the ex-
amined information and by selecting feature types that represent how ransomware
attacks behave.

Finally, to demonstrate the practical suitability of System API-based approaches
on Android devices, we have ported to Android R-PackDroid (the package-based
strategy originally proposed in [76] and further explored in this work). Our applic-
ation, which can detect both ransomware and generic malware in the wild, shows
that methodologies based on System API can be implemented with good compu-
tational performances — e.g. with a processing timing that is acceptable for end
users — even in old phones, and its a demonstration of a full working prototype
being deployed on real analysis environments. R-PackDroid can be downloaded for
free from the Google Play Store1.

With this work, we have pointed out that it is possible to create effective, de-
ployable, and reasonably secure approaches for ransomware detection by only using
specific feature types. Hence, this work acts as the baseline to make use of explain-
ability in order to make detection even more accurate and robust.

The organisation of the content of this work is the following: Section 4.2.1 de-
scribes the employed detection methods. Section 4.2.2 illustrates the experimental
results attained with all of them, as well as a comparison between our systems and
other approaches in the wild. Section 4.2.3 describes the implementation details
of R-PackDroid and its computational performances. Section 4.2.4 discusses the
limitations of the work, which is finally concluded by Section 4.2.5.

4.2.1 Method

As anticipated, the intuition for developing a ransomware-oriented detector is to
rely on a smaller set of information (System API calls) that is typically employed in
ransomware. However, as System APIs are also widely used in generic malware and
legitimate files, this information type also allows detecting other attacks that differ
from ransomware. In this way, it is possible to create a powerful, wide-spectrum
detector that features a much lower complexity in comparison to other approaches.
Accordingly, such a system may take as input an Android application, analyse it
and return three possible outputs: ransomware, generic malware, or trusted. The
analysis is performed in three steps:

– Pre-Processing: in this phase, the application is analysed to extract its
dexcode. The required information is extracted by only inspecting the ex-
ecutable code and does not perform any analysis on other elements, such as
the application Manifest. Only specific lines of code, which will be described
later in this section, will be sent to the next module.

1http://pralab.diee.unica.it/en/RPackDroid

http://pralab.diee.unica.it/en/RPackDroid
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Figure 4.1: General Structure of a System API-based, ransomware-oriented system.

– Feature extraction: in this phase, the code lines received from the previ-
ous phase are further analysed to extract the related System API information
(either packages, classes, or methods). The occurrence of such pieces of in-
formation is then counted; thus, producing a vector of numbers (feature vector)
that is sent to a classifier.

– Classification: it is carried out through a supervised approach, in which the
system is trained with samples whose label (i.e. benign, generic malware or
ransomware) is known. Such a technique has been used in previous work with
excellent results [15, 17, 59]. In particular, our approaches employ Random
Forest classifiers, which are especially useful to handle multi-class problems,
and which are widely used for malware detection. The complexity of such
classifiers depends on the number of trees that compose them. Such a number
must be optimised during the training phase.

The structure above is graphically represented in Figure 4.1. In the following,
we provide more details about each phase of the analysis, by focusing in particular
on the type of features that can be extracted from the application.

4.2.1.1 Preprocessing and Feature Extraction

The general idea of the first two phases is performing static analysis of the Dalvik
bytecode contained in the classes.dex file. The goal is retrieving the System API
information employed by the executable code of the application. The choice of
System API information is related to two basic ideas:

– Coherence with actions: most ransomware writers resort to System APIs
to carry out memory- or kernel-related actions (for example, file encryption or
memory management). Focusing on user-implemented APIs (as it happens,
for example, with Drebin [15]) exposes the system to a risk of being evaded
by simply employing different packages to perform actions;

– Independence from Training: system API calls are features independent
of the training data that are used. As a consequence, it is less likely that
applications are not correctly analysed because they employ never-seen-before
APIs only;

– Resilience against obfuscation: using heavy obfuscation routines typically
leads to injecting system API-based code in the executable, which can be
extracted and analysed, allowing to detect suspicious files.

Pre-processing is hence easily performed by directly extracting the classes.dex
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file from the APK. Since .apk files are essentially zipped archives, such an operation
is rather straight-forward.

Once pre-processing is complete, the classes.dex file is further analysed by the
feature extraction module, which inspects the executable file for all invoke-type in-
structions (i.e. all instructions related to invocations) contained in the classes.dex
code. Then, each invocation is inspected to extract the relevant API information for
each methodology, according to a System API reference list that depends on the op-
erating system version (in our case, Android Nougat — API level 25). Only the API
elements that belong to the reference list are analysed. In this work, we consider
three different methodologies, based on, respectively, package, class, and method
extraction. If a specific API element is found, its occurrence value is increased by
one.

In the following, we provide a more detailed description of the methodologies
employed in this work by referring to the example reported in Listing 4.1. Such a
listing comes from the .smali output, which uses a ‘/’ as separator between package,
class and method names. The code is parsed in three ways, according to each feature
extraction strategy. For each example, we used a very small subset of the employed
reference API.

Package Extraction We extract the occurrences of the System API packages (a
total of 270 reference features), in the same way of the original work [76]. In the
example of Listing 4.1, we use a subset composed of three reference API packages:
java.io, java.crypto and java.lang. The four invoke instructions are related
to the javax.crypto and java.io packages, which are counted respectively twice.
The java.lang package is never used in this snippet. Hence, its value is zero.

Classes Extraction In this case, we extract the occurrences of the System API
classes (a total of 4609 reference features). Notably, such classes belong to the
System API packages of the previous methodology (and, for this reason, their num-
ber is significantly higher than packages). In the example of Listing 4.1, we use
a subset composed of two reference API classes: java.io.FileInputStream and
javax.crypto.CypherOutputStream, each of them appearing twice.

Methods Extraction In this third case, we extract the occurrences of the System
API methods (a total of 36148 reference features). These methods belong to the Sys-
tem API classes of the previous methodology, leading to a very consistent number of
features. This strategy is very similar to other ones employed by other systems (e.g..
[15, 59]), which have used these features together with user-implemented APIs and
other features. In the example of Listing 4.1, we use a subset composed of four refer-
ence API methods: read() and close() from java.io.FileInputStream, flush()
and close() from javax.crypto.CypherOutputStream. Each API call appears
only once. Note that, although there are two methods named ‘close’, they belong
to two different classes, and they are therefore considered as different methods.

4.2.2 Experimental Evaluation

In this section, I report the experimental results attained from the evaluation of the
three API-based strategies. Note that, for the sake of simplicity and speed, we did
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1
2 Code
3
4 Ljava/io/FileInputStream;-> read([B)I
5 move-result v0
6 const/4 v5 , -0x1
7 if-ne v0 , v5 , :cond_0
8 invoke-virtual {v1}, Ljavax/crypto/CipherOutputStream;-> flush()V
9 invoke-virtual {v1}, Ljavax/crypto/CipherOutputStream;-> close()V

10 invoke-virtual {v3}, Ljava/io/FileInputStream;-> close()V
11
12 Feat. Vectors
13
14 Packages - [2 2 0]
15
16 Classes - [2 2]
17
18 Methods - [1 1 1 1]

Listing 4.1: An example of feature extraction by considering a small number of reference
features.

not run the experiments on Android phones, but on an X86 machine. However, we
built a full, working implementation of one of the three approaches, which can be
downloaded from the Google Play Store (see next section).

The rest of this section is organised as follows: I start by providing an overview
of the dataset employed in our experiments. Then, I describe the results attained
by four evaluations. The first one aimed to establish the general performances
of API-based approaches by considering random distributions of training and test
samples. The second one aimed to show how API-based approaches behaved when
analysing samples released after the training data. The third one aimed to show
a comparison between our API-based approaches and other systems that employed
mixed features. Finally, we evaluate the resilience of API-based approaches against
obfuscation techniques and evasion attacks.

4.2.2.1 Dataset

In the following, I describe the dataset employed in our experiments, including those
in other works of this thesis. Without considering obfuscated applications (which
are going to be discussed in Section 4.2.2.3), we have obtained and analysed 39157
apps, which are organised in the three categories mentioned in Section 4.2.1.

Ransomware The 3017 samples used for our ransomware dataset have been re-
trieved from the VirusTotal service2 (which aggregates the detection of multiple
anti-malware solutions) and from the HelDroid dataset3 [69]. With respect to the
samples obtained from VirusTotal, we have used the following procedure to obtain
the samples: (i) we have searched and downloaded the Android samples whose anti-
malware label included the word ransom; (ii) for each downloaded sample, we have
extracted its family by using the AVClass tool [77], which essentially combines the
various labels provided by anti-malware solutions to create a unique label that iden-
tifies the sample itself; (iii) we have considered only those samples whose family was
coherent to ransomware behaviours, or was known to belong to ransomware.

2http://www.virustotal.com
3https://github.com/necst/heldroid

http://www.virustotal.com
https://github.com/necst/heldroid
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Table 4.2: Ransomware families included in the employed dataset.

Family Samples
Locker 752
Koler 601
Svpeng 364
SLocker 281
Simplocker 201
LockScreen 122
Fusob 120
Lockerpin 120
Congur 90
Jisut 86
Other 280

In general, our goal has been obtaining a representative corpus of ransomware
to ascertain the prediction capabilities of API-based techniques. For this reason,
the dataset includes families that perform both device locking (such as Svpeng and
LockScreen) and encryption (such as Koler and SLocker).

Malware and Trusted We consider a dataset composed of 17744 Android mal-
ware samples that do not belong to the ransomware category, taken from the follow-
ing sources: (i) Drebin dataset, one of the most recent, publicly available datasets
of malicious Android applications4 (which also contains the samples from the Gen-
ome dataset [78]); (ii) Contagio, a popular free source of malware for X86 and
mobile; (iii) VirusTotal. These samples have been chosen to verify whether even
non-ransomware attacks could be detected with features that are particularly effect-
ive at classifying ransomware samples.

In order to download trusted applications, we have resorted to two data sources:
(i) we have crawled the Google Play market using an open-source crawler5; (ii)
we have extracted a number of applications from the AndroZoo dataset [79], which
features a snapshot of the Google Play Store, allowing to access applications without
crawling the Google services easily. We have obtained 18396 applications that belong
to all the different categories available on the market. We have chosen to focus on
the most popular apps to increase the probability of downloading malware-free apps.

4.2.2.2 Experiment 1: General Performances

In this experiment, we evaluate the general performances of System API-Based
methods (described in Section 4.2.1) at detecting ransomware and generic malware.
To do so, for each strategy, we randomly split our dataset by 50%; thus, using the
first half to train the system and the second half to evaluate the system. The number
of trees of the random forest was evaluated by performing a 10-fold cross-validation
on the training data. We have repeated the whole process 5 times, and we have
averaged the results by also determining the standard deviation.

4https://www.sec.cs.tu-bs.de/~danarp/drebin/
5https://github.com/liato/android-market-API-py

https://www.sec.cs.tu-bs.de/~danarp/drebin/
https://github.com/liato/android-market-API-py
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Figure 4.2: Results from Experiment 1. The ROC curves (averaged on 5 splits) attained
by the three System API methods for ransomware (a) and generic malware (b) against
benign samples are reported.

Considering the multi-class nature of the problem, we represent the results by
calculating the ROC curve for each API-based strategy in two different cases:

– Ransomware against benign samples: the crucial goal of this work has
been detecting ransomware attacks and, more importantly, avoiding them from
being considered benign files. A critical mistake would most likely compromise
the whole device by locking it or encrypting its data. For this reason, it is
essential to verify whether ransomware attacks can be confused with benign
samples;

– Generic malware against benign samples: even if System API-based
strategies are employed to detect ransomware, they could also be used to
classify generic malware (see Section 4.2.1). Hence, the goal here is to verify,
from a practical perspective, if System API-based information can correctly
detect other non-ransomware attacks and distinguish them from legitimate
files.

Figure 4.2 shows the ROC curves that describe the performances attained on
ransomware and generic malware detection by the three System API-based methods
(packages, classes, methods). By observing these curves, we can deduce the following
facts:

1. All System API-based techniques were able to precisely detect more than 97%
of ransomware samples, with only 1% of false positives. Because our dataset
included a consistent variety of families, we claim that all strategies can detect
the majority of ransomware families in the wild. Worth noting, there are no
differences in results between using packages, classes, or methods. This result
means that, concerning general performances, using finer-grained features does
not improve detection.

2. All System API methods featured good accuracy with relatively low false pos-
itives (around 90% at 1%, more than 95% at 2%) at detecting generic malware.
While using class-related features did not bring significant improvements to
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detection, using methods allowed for a 10% improvement for false-positive
values inferior to 0.5%.

To better understand the results attained by our strategies, Figure 4.3 reports
a ranking of features used by the classifier for each strategy (respectively, packages,
methods, and classes), according to their discriminant power. The feature ranking
is calculated according to the features Information Gain IG, given by the following
formulation:

IG(T, a) = H(T )−H(T |a) (4.1)

where H(T ) is the overall entropy for the whole dataset T and H(T |a) is the
average entropy obtained by splitting the set T using the attribute a. The higher
is the gain, the more relevant the feature is. As a result, note how the information
gain for each feature is not so high, meaning that the system does not particularly
overfit on specific information and that the final decision is taken by considering a
combination of multiple features. At the same time, each feature value is reduced,
in comparison to packages, by one magnitude for classes and methods. In other
words, using more features allows for distributing the importance of the analysed
information through more elements. This characteristic is two-faced: while it makes
the overall behaviour of the system less interpretable, it may increase the effort that
an attacker has to make to evade the system.

Analysing the most discriminant methods can give a clearer idea of which inform-
ation is used to classify applications. Features are related to string building (e.g. the
ToStringmethod), Array management (e.g. ArrayList@size, ArrayList@remove),
creation of folders (e.g. File@mkdirs), SMS, URI, layout management, and so forth.
These features may be easily associated with both ransomware and malware beha-
viour, and the same behaviour is shown on classes and packages.
A careful examination of the feature ranking may also help to understand why spe-
cific samples are regarded as false positives or false negatives. In particular, detection
is performed by weighting the information provided by a combination of the most
discriminant features. For this reason, in some cases, specific ransomware (or generic
malware) samples may contain discriminant features that are distributed differently
to the malicious training distribution. For example, the toString call may appear,
on average, 5 times on ransomware, but one specific sample may feature it only 1
time. This phenomenon may occur for various reasons, including the possibility that
an attacker may be using customized variants of System API information to avoid
detection (see Section 4.2.4). Likewise, the techniques used to create the sample
(e.g. repackaging) may have an impact on the distribution of the features. Further
refinement of the feature list (or a change of the weights of a specific feature) may
help to reduce the amount of misclassified samples.

4.2.2.3 Experiment 2: Temporal Performances

In this experiment, we assess the capabilities of System API-based methods at de-
tecting ransomware samples that were first seen (according to the creation date
of the classes.dex executable belonging to each application) after the data that
were used for the training set. This assessment is useful to understand if, without
constant upgrades to its training set, such methods would be able to detect novel,
unseen ransomware samples.
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Figure 4.3: Results from Experiment 1. We report the top-25 features, ordered by the
classifier information gain (calculated by averaging, for each feature, the gains that were
obtained by training the 5 splits), for each methodology: (a) for packages, (b) for classes,
(c) for methods.
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For this assessment, we have included in the training set only the samples that
were first seen before a date Dtr, and we have tested our system on a number of
ransomware samples that had been released on a date Dte for which Dte > Dtr (we
choose the ROC operating point of the system corresponding to a false positives
value of 1%). We have performed our tests by choosing different values of Dte,
where Dtr is December 31st, 2016. Concerning test data, we point out that the
samples (which were extracted by the VirusTotal service) are unevenly distributed
through the months. More specifically, the number of ransomware samples that
had been submitted to the VirusTotal service was significantly different for each
month of 2017. We have been able to retrieve only a little amount of samples whose
first release date was between January and September 2017. Conversely, we could
obtain a consistent amount of samples whose Dte was October and November 2017.
Therefore, we have grouped the samples gathered in subsequent months to obtain
temporal ranges with similar amounts of testing data. We considered three main
ranges for Dte: (i) January to September 2017; (ii) October 2017; (iii) November
2017.
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Figure 4.4: Results of the temporal evaluation for the System API-based strategies. The
accuracy values are reported for the three System API-based detection. The training data
belong to 2016, while the test data is composed of ransomware released in different months
of 2017.

Results are provided in Figure 4.4, which shows that by training the system
with data retrieved in 2016, class- and method-based strategies can accurately de-
tect ransomware test samples released in 2017. However, the package-based strategy
struggles at detecting the test-set from November 2017. Notably, in comparison with
class- and method-based strategies, the package-based approach shows almost a 10%
accuracy loss when analysing samples released till October, and more than 20% ac-
curacy loss for samples released in November. Conversely, the other two methods
exhibit stable accuracy on each temporal range. This result is particularly interest-
ing, as it shows that the prediction of novel samples can be significantly improved
by employing finer-grained features. However, the results attained by package-based
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features are nevertheless encouraging, as they showed that even a reduced number
of features could attain good performances at detecting novel attacks. Overall, this
experiment has further confirmed that System API-based strategies can predict new
ransomware attacks with good accuracy, even on test data released. In this case,
using finer-grained features brings a consistent advantage to detection.

4.2.2.4 Experiment 3: Comparison with Other Approaches

This section proposes a comparison between System API-based strategies and other
state-of-the-art approaches. We were particularly interested in comparing our ap-
proach to other publicly available ones, with a special focus on those who were
specifically designed to detect ransomware. Additionally, we have considered those
approaches that, albeit not explicitly designed to detect ransomware, could tell if
the analysed sample is malicious or not. In particular, almost all of the analysed
tools (except for Talos [72], which does not employ machine learning) discriminate
between two classes (malware and benign or ransomware and benign), while our
approaches discriminate between three classes (ransomware, malware, and benign).
Hence, it is interesting to observe how increasing the number of classes may impact
the precision of the analysis.

We have performed a temporal comparison of all systems on the ransomware
samples released in 2017 (for a total of 512 samples) by using (when possible) all
data released until 2016 as training.

The state-of-the-art approach that is closest to what we proposed in this work
(while being publicly available6) is GreatEatlon [70]. Notably, it was not possible for
us to control the trained model of the system (it was only possible to choose among
a restricted set of classifiers), or to train it with new data. Nevertheless, the system
was released in 2016, meaning that data that was first seen in 2017 was for sure
not included in its training set. Although not specifically tailored to ransomware
detection, we have also tested the performances of RevealDroid (which is publicly
available7 [59]) on the same test data. In this case, we could train the system
with the same data used in our systems, which has allowed us to provide a fairer
comparison. Finally, we have also tested the performances of the Android version
of IntelliAV (available on the Google Play Store) [80]. As in GreatEatlon, we could
not control the training data of the system. Moreover, as IntelliAV reports three
levels of risk for each app (safe, suspicious, risky), we considered as malicious also
the files that were labelled as suspicious by the system.

As classifier for GreatEatlon we have chosen Stochastic Gradient Descent (SGD),
since this was the classifier that best performed on our test samples. Concerning
RevealDroid, we have chosen the linear SVM classifier, as this was the one that
provided the best results in the original work [59]. IntelliAV only employes Random
Forests. Results are reported in Table 4.3.

The attained results show that System API-based techniques obtain very similar
performance to RevealDroid (which could only, however, classify samples either as
malware or benign). Such results are particularly interesting if we consider that
RevealDroid extracts a huge number of features (more than 700, 000) from mul-
tiple characteristics of the file, including native calls, permissions, executable code

6https://github.com/necst/heldroid
7https://seal.ics.uci.edu/projects/revealdroid/

https://github.com/necst/heldroid
https://seal.ics.uci.edu/projects/revealdroid/
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Table 4.3: Detection performances for System API-based strategies, GreatEatlon, In-
telliAV, RevealDroid, and Talos on 512 ransomware test files released in 2017, by using
training data from 2016. We use the ND (Not Defined) to indicate that a certain tool
cannot provide the corresponding label for the analysed samples.

System Benign Generic Malware Ransomware
Talos 3 0 509
System API (Methods) 7 12 493
System API (Classes) 10 15 487
System API (Packages) 11 32 469
GreatEatlon 118 ND 394
RevealDroid 0 512 ND
IntelliAV 18 494 ND

analysis, which also depends on the training data. With a much simpler set of in-
formation, we are able to obtain very similar performance concerning accuracy. This
result is especially interesting from the perspective of adversarial attacks, as using
fewer features for classification can make the system more robust against them (the
attacker can manipulate less information to evade the system) [81]. The perform-
ance attained by System API-based approaches is also better than IntelliAV, which
employes a combination of different features (including permissions, user-defined
API, and more). System API-based strategies also perform significantly better than
GreatEatlon, which based its detection also on information extracted from strings
and language properties. Notably, using methods significantly improves the accur-
acy performances in comparison to packages and classes, in line with what was
obtained from Experiment 2. Finally, we have analysed the performance attained
by Talos [72]8, a static analysis tool that employs logic rules to perform detection
(hence, without machine learning). The attained results are very encouraging, but
they strongly depended on the set of rules that have been (manually) established to
perform ransomware detection. Conversely, System API-based approaches do not
require any manual definition of the detection criteria. Additionally, the analysis
times of Talos are significantly slower than the ones attained by methods proposed
in this work (an average of 100 seconds per application, 400 times slower than
ours) — see Section 4.2.3.1.

4.2.2.5 Experiment 4: Resilience against Obfuscation

The goal of this experiment is to assess the robustness of System API-based strategies
against obfuscated samples, i.e. understanding whether the application of commer-
cial tools to samples can influence the detection capability of the systems. This
evaluation is important, as commercial obfuscation tools are quite popular nowadays
since they introduce good protection layers against static analysis (e.g. to avoid
pieces of legitimate applications to be copied). Previous work has shown that at-
tackers could exploit this aspect by obfuscating malware samples with such tools;
thus, managing to bypass anti-malware detection [71].

In this experiment, we primarily focus on obfuscated samples whose original (i.e.

8We have obtained Talos directly from the authors, as it is not currently publicly available.
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non-obfuscated) variant was already included in the training set. Such a choice has
been made because we wanted to assess if obfuscation was enough to influence the
key-features of System API-based methods; thus, changing the classifiers’ decision
for a sample whose original label was malicious.

To this end, we have employed a test-bench of ransomware obfuscated with the
tool DexProtector9, a popular, commercial obfuscation suite that allows for protect-
ing Android applications through heavy code obfuscation. Although such a tool is
mostly used for legitimate purposes (e.g. protection of intellectual properties), it
can also be used by attackers to make malicious applications harder to be detec-
ted. Out of the 3017 ransomware samples, we could obfuscate 2668 samples (the
remaining could not be obfuscated due to errors of the obfuscation software) with
three different strategies (for a total of 8004 obfuscated samples). The strategies
employed to obfuscate samples are the following:

– String Encryption: this strategy encrypts strings that are identified by
const-string instructions, and injects a user-implemented method that per-
forms decryption at runtime;

– Resource Encryption: it encrypts the external resources contained in the
res and assets folders. To do so, it adds System API information to the
classes.dex file, in order to properly manage the encryption routines;

– Class Encryption: this strategy encrypts user-implemented classes, and in-
jects routines that allow performing dynamic loading of such classes.

Figure 4.5 reports the accuracy attained by the three System API-based strategies
against the obfuscated samples. Such results show that all the detection strategies
(without significant differences between each other) are resilient against obfuscation
attempts. However, Class Encryption deserves separate consideration. This strategy
employs heavy obfuscation, and it was explicitly performed to defeat static analysis.
Typically, none of the static-based techniques that analyse the executable file should
be able to detect such attacks correctly. However, this obfuscation strategy intro-
duces a very regular sequence of System API-based routines that manage runtime
decryption of the executable contents.

For this reason, it is sufficient to inject only one sample inside the training set
to make all obfuscated samples to be detectable. Hence, we added the +1 mark to
Class Encryption. Notably, this may create false positives when legitimate samples
are obfuscated with the same strategy. Nevertheless, it is sporadic to find such
applications, as class encryption strongly decreases the application performances
[71], and much simpler obfuscation techniques are generally used.

4.2.3 Implementation and Performances

Although many solutions have been proposed in the wild to detect ransomware and
generic malware, almost none (with the exception, for example, of [80]) was por-
ted to Android devices, often due to the complexity of the proposed approaches.
However, an offline, on-device solution is very useful to perform early detection of
applications downloaded, for example, from third-party markets (which are more
subjected to malware attacks). For this reason, and also to demonstrate the suit-
ability of System API-based approaches, we have ported the simplest of the three

9https://dexprotector.com/

https://dexprotector.com/
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Figure 4.5: Accuracy performances attained on ransomware samples that have been
obfuscated with three different techniques. The accuracy values are reported for the three
System API-based detection.

strategies (Package-based) with the name of R-PackDroid (as it implements the
same approach introduced in our previous work [76]). This implementation scans
for any downloaded, installed, and updated applications, and it classifies them as
ransomware, malware, or legitimate. If an application is found malicious, the user
can immediately remove it.

R-PackDroid has been designed to work on the largest amount of devices pos-
sible. Hence, during its development, we have been focusing on optimizing its speed
and battery consumption. For this reason, we have avoided any textual parsing
of bytecode lines (which can be attained by transforming the .dex file to multiple
.smali files with ApkTool). Therefore, we have resorted to DexLib, a powerful
parsing library part of the baksmali10 disassembler (and used by ApkTool itself), to
directly extract method calls and their related packages. This library has allowed
obtaining a very high precision at analysing method calls and significantly reduces
the presence of bugs or wrong textual parsing in the analysis phase.

The classification model has been implemented by using Tensorflow11, an open
source, machine learning framework that has been designed to be also used in mo-
bile phones. In particular, we have adapted its Random Forest implementation
(TensorForest) to the Android operating system. Notably, our Android applica-
tion only performs classification by using a previously trained classifier. The training
phase is carried out separately on standard X86 architectures. This choice was made
to ensure the maximum easiness of use to the final user; thus, reducing the risk of
invalidating the existing model.

Figure 4.6 shows an example of the main screen of R-PackDroid. The application
is parsed either when it is downloaded from any store, or when the user decides to

10https://github.com/JesusFreke/smali
11https://www.tensorflow.org/

https://github.com/JesusFreke/smali
https://www.tensorflow.org/
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Figure 4.6: An example of the Android R-PackDroid screen.

scan it (or to scan the whole file system). Each application is identified by a box,
whose colour is associated with the application label (green for trusted, red for
malware, and violet for ransomware). After getting the result, by clicking on each
box related to the scanned application, it is possible to read more details about
the packages that it employs, as well as general information such as the app hash
and size. Moreover, if the user believes that the result reported by R-PackDroid is
wrong, she can report it by simply tapping a button (a privacy policy to accept is also
included). To this scope, we resort to the popular service FireBase. 12 R-PackDroid
is available for free on the Google Play Store. 13

4.2.3.1 Computational Performances

We have analysed the computational performance of R-PackDroid by running it both
on X86 and Android environments. In particular, we have focused on extracting the
time interval between the APK loading and the generation of the feature vector for
100 benign samples (grouped by their APK size)14. The choice of benign samples has
been made because they are typically more complex to be analysed in comparison
with generic malware and ransomware. We have firstly run our experiments on a 24-
core Xeon machine with 64 GB of RAM. The attained results, shown in Figure 4.7,
prove that our system could analyse even huge applications in less than 0.2 seconds.

To evaluate the performance of R-PackDroid on a real Android phone, we have
12https://firebase.google.com/
13As the app is not currently mantained, Android versions until 7.1 are supported).
14The elapsed time to classify a sample, i.e. to read its feature vector and get the final label, is

negligible.

https://firebase.google.com/
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Figure 4.7: Analysis performances on a X86 workstation, with the elapsed time in
seconds, for different APK sizes.

run the same analysis on a Nexus 5, a 5-year-old15, 4-core device with 2 GB of RAM,
equipped with the 6.0.1 version of Android. Results are reported in Figure 4.8. Even
if the analysis times are slower than X86 machines, and even if we have been using,
in this case, the slowest version of the algorithm, the average analysis time for
very large apps is slightly more than 4 seconds. This result — at the time of the
test — was very encouraging, and it showed that R-PackDroid could be safely used
even on old phones. The higher dispersion of the time values, in comparison to the
ones attained in the previous picture, was possibly caused by the presence of other
background processes in the device.

Finally, it is also important to observe that the analysis time is not strictly pro-
portional to the APK size, as the file may contain additional resources (e.g. images)
that increase the APK size, without influencing the size of the dexcode itself. For this
reason, it was not surprising to see the attained average values do not necessarily
increase with the APK size.

4.2.4 Discussion and Limitations

The results attained in sections 4.2.2 and 4.2.3 can be summarised with the following
findings:

– Finding 1: system API-based information can be effectively used — alone —
to properly distinguish ransomware from generic malware and legitimate ap-
plications;

– Finding 2: using finer-grained information (classes and methods), albeit in-
volving more features in the analysis, has brought significant improvements
to accuracy when detecting previously-unseen samples. Moreover, using API
methods enables having more accuracy under low false positives values;

– Finding 3: system API-based approaches can obtain comparable perform-
ances to other approaches that involve more features of different types;

15At the moment of the test, end of 2018
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Figure 4.8: Performance analysis on a real device, with the elapsed time in seconds, for
different APK sizes.

– Finding 4: system API-based approaches guarantee robustness against typ-
ical obfuscation strategies such as string encryption. However, by including a
few obfuscated samples in the training set, it could also be possible to detect
heavy, anti-static obfuscation techniques such as class encryption;

– Finding 5: system API-based approaches are well suitable to be ported and
implemented on mobile devices, with excellent computational performances
even on very large applications.

We point out that it would be possible to evade the proposed System API-based
approaches by replacing a part of the System-related packages, classes, or methods
with semantically equivalent, user-implemented ones. For example, attackers may
have two possibilities to replace System API-based methods: (i) creating copies
of the original instructions of the methods and injecting them into fake methods;
(ii) re-implementing the methods by using customised instructions/logic. However,
these two approaches may feature some critical limitations. In the first approach,
the attacker is forced to import the copies of the instructions to the dex code (as
the methods become user-implemented). However, the imported codes may con-
tain further references to other System API-based methods, which would need to
be replaced. Therefore, this procedure may become unfeasible, considering the wide
variety of calls that can be invoked. The second approach may be hard to imple-
ment if the methods to be replaced are very sophisticated (e.g. methods related to
cryptography or the execution of activities). Additionally, functionalities needed by
the attacker may only be accessible through the System APIs.

There would also be the possibility that a skilled attacker attempts to evade
System API-based detection algorithms by performing adversarial machine learning
attacks, such as test-time evasion [17, 27]. In this scenario, the goal would be
evading the classifier detection with a minimal number of changes by performing
fine-grained modifications to the features of the analysed test samples. However,
this strategy may be challenging to be performed in practice. The problem, also
known in the literature as Inverse Feature Mapping [20, 27, 82], is constructing
the real sample that implements the modifications made to the feature vectors. As
the changes to the feature vector would involve the injection or removal of specific
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System API-based information, they may not be feasible. I cover and inspect these
adversarial-related aspects as well as the practical creation of evasive samples in
Chapter 5.

As highlighted in Chapter 3, it is also worth noting that since Android Oreo,
Google introduced new defences against background processes that are typical of
ransomware (e.g. the ones that directly lock the device). However, this does not
exclude other malicious actions on the application level. For this reason, it is always
better to have an additional system that can detect attempts at performing malicious
actions.

Finally, we also point out that, during our tests, we found samples that could not
be analysed due to crashes and bugs of the DexLib library, and that have therefore
been excluded from our analysis. However, their percentage (regarding the whole
corpus that we have analysed) is negligible (less than 1% of the whole file corpus).

4.2.5 Conclusions

With this work, we have provided a detailed insight into how System API-based
information could be effectively used (also on a real device) to detect ransomware
and to distinguish it from legitimate samples and generic malware. The attained
experimental results have demonstrated that, by using a compact set of information
tailored to the detection of a specific malware family (ransomware), it is possible to
achieve detection performance (also on other malware families) that is comparable
to systems that employed a much more complex variety of information. Moreover,
System API-based information has also proved to be valuable to detect obfuscated
samples that focused on hiding user-implemented information. Notably, although it
is tempting to combine as many information types as possible to detect attacks (or
to develop computationally heavy approaches), it may not be the only feasible way
to construct accurate, reliable malware detectors. For this reason, we claim that
future work should focus on developing reliable, small sets of highly discriminant
features that cannot easily be manipulated by attackers (with a particular reference
to machine learning attacks). Moreover, a clear understanding of the impact of each
feature on the classifier detection can help analysts understand (i) the classifiers’
errors, so to improve their detection capabilities. (ii) the attacks’ behaviour, so to
identify spurious patterns. The thesis proposes to cover the latter aspect in the
section that follows.

4.3 Explanation-driven Ransomware Characterisa-
tion

As illustrated in Section 4.1, the typical problem formulation for Android malware
detectors is strictly correlated to the use of a wide variety of features covering dif-
ferent characteristics of the entities to classify. Moreover, Section 4.2 has shown
that ransomware developers typically build such dangerous apps so that normally-
legitimate components and functionalities (e.g. encryption) perform malicious be-
haviour; thus, making them harder to be distinguished from genuine applications.
Differently from the goals of the previous work (Section 4.2), with this one by Scalas
et al. [68] we have investigated if and to what extent state-of-the-art explainabil-
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ity techniques help to identify the features that characterise ransomware samples,
i.e. the properties that are required to be present in order to combat ransomware
offensives effectively. In this regard, our contribution is threefold:

1. We present a first approach that enables a designer to select the explainability
technique that is most suitable to the goal mentioned above; our approach
presumes to be agnostic with respect to the learning algorithms;

2. We propose practical strategies for identifying the features that characterise
generic ransomware samples, specific families, and the evolution of such attacks
over time.

3. We counter-check the effectiveness of our analysis by evaluating the prediction
performance of classifiers trained with the discovered relevant features.

In this way, we believe that our proposal can help cyber threat intelligence teams in
the early detection of new ransomware families, and, above all, could be a starting
point to help designing other malware detection systems through the identification
of their distinctive features. Our approach is presented in Section 4.3.1, starting
from the strategy to perform ransomware detection and followed by the rationale
behind the usage of explanation techniques for identifying relevant features. Since
the methods we consider have been originally designed to indicate the most influ-
ential features for a single prediction, we propose to evaluate their output against
multiple samples to understand the average role of each feature. Notably, tailoring
such techniques to our domain and goal requires attentive checks. Therefore, in our
experimental analysis (Section 4.3.2) we first verify their suitability, and we even-
tually analyse their output to extract information. I discuss the limitations of our
approach, together with future research paths, in Section 4.3.3.

4.3.1 Ransomware Detection and Explanations

In this section, I present our method. More specifically, I illustrate the rationale
behind the usual design process of Android ransomware detectors and the resulting
features (Section 4.3.1.1); then, I describe our proposal for leveraging gradient-based
techniques in the design phase (Section 4.3.1.2).

4.3.1.1 Detector Design

The method used for this work mostly follows the one described in Section 4.2. How-
ever, in this case, we aim at understanding if the features identified in such previous
work and the literature, turn out to be truly characteristic of the ransomware beha-
viour, besides being effective for detection. Accordingly, we point this out through
explainability techniques, but we also consider a different setting. Keeping a fully
static analysis setting, we have chosen to start exploring our proposed approach
making use of two types of features: (i) the occurrence of System API package calls
and (ii) the request of permissions. The rationale behind this choice has been the
will to understand how two different kinds of features relate when inspected through
explanation techniques. Moreover, with such an approach, we could later evaluate
other varieties of features proposed in the literature — e.g. dynamic analysis ones
to address the typical limits of static analysis — and include them if they truly
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identify ransomware actions.
Another change in the setting of this work with respect to Section 4.2 comes from
considering a bi-class setting, i.e. a classification system that is able to discriminate
legitimate samples from ransomware samples, without the capability of identifying
generic malware. I discuss this choice later in Section 4.3.3.

Before illustrating how we employ explanations, I briefly recall the motivation
for the usage of requested permissions as features: the Android operating system
requires the app developer to request permission to use a particular functionality
expressly. Depending on its dangerousness, that permission can be granted auto-
matically or after explicit user agreement. This distinction is also explicitly stated
in the Android platform documentation as protection level ; therefore, it is straight-
forward to consider permissions as useful features. For example, we can expect that
common permissions (e.g. INTERNET, ACCESS_NETWORK_STATE) will be associated
with trusted apps, while dangerous ones, such as WRITE_EXTERNAL_STORAGE, could
be typical of ransomware samples.

4.3.1.2 Explaining Android Ransomware

In the following, I illustrate our proposal on how to take advantage of gradient-based
explanations (see Section 2.2.1.1), aiming to identify a unique, reliable, and coherent
set of relevant features that is independent of the specific (i) model, (ii) explana-
tion method, and (iii) dataset. Accordingly, I first describe the potential influence
of these three elements and how we propose to address it. Then I illustrate our
information extraction process.

Influencing Factors A first concern arises around the choice of the classifiers.
Since several types of them can be used with success for this detection problem,
there could be as many different explanations as to the number of potential clas-
sifiers. For this reason, it is necessary to verify if the specific learning algorithm
affects the output of the attributions. Therefore, a reasonable check to perform is
to compare the explanation vectors within a set of plausible classifiers, one explan-
ation technique at a time. Complementary to this aspect, we should get insights
about which of the three explanation techniques is the most accurate, or to what
extent they are equivalent. In this way, if all the explanations are mostly similar,
it is possible to consider only one of them. Therefore, for each model, we compare
its attributions across the different attribution techniques, similar to the procedure
performed by Warnecke et al. [83]. It is worth noting that this approach gives rise
to the following tricky issue: how can we guarantee that similar attributions imply
faithful explanations? In this regard, in our setting, all the techniques are gradient-
based, which are known to be reasonably effective; hence, we make the assumption
that all of them are suitable despite their peculiarities.
The third concern comes from the influence of the data on the explanations; specific-
ally, the possibility that attributions could not be associated with the data labelling,
and, consequently, to what the model learns. For example, if attributions do not
change after random ransomware samples are assigned to the trusted class, then
the model would be bounded by the samples themselves, rather than by what it
learned through the training phase. This aspect can be of particular interest for
Gradient*Input and Integrated Gradients, where the input is part of their computa-
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tion. In this case, we follow the method proposed by Adebayo et al. [84], where the
ordinary attributions of each classifier are compared to the ones of a correspondent
classifier trained with randomised labels.
I cover all the above-mentioned aspects in Section 4.3.2.2, where we practically per-
form different comparisons through the use of correlation and similarity metrics,
described in Section 4.3.2.1.

Knowledge Extraction The above concerns and our proposed answers for them
allow us to approach the problem with more awareness about the caveats that these
explainability techniques pose. Nevertheless, there are a few other aspects that
are worth focusing on. As the first remark, both the types of features of our set-
ting (API calls and permission requests) are examples of sparse features. More
specifically, each application uses only a small amount of APIs and permissions;
consequently, each sample exhibits a few non-zero (used) features. This fact marks
a non-negligible difference with respect to other domains, such as image recognition,
where the features (typically raw pixels) are all always used. Therefore, when using
explanations to characterise the Android ransomware samples under test, we expect
the attributions to be sparse as well. Moreover, as investigated by Lage et al. [85],
sparsity is one of the factors that make explanations more comprehensible for the
human expert. All other aspects being equal, we will then favour the techniques
that satisfy this requirement the most.

Once a specific set of reliable attributions is established, we should find a strategy
to analyse them and extract information concretely. In particular, looking at the
predictions’ relevance values, we aim to catch the average role of the features onto
the samples’ characterisation. Since the attribution methods we have chosen provide
us with a unique explanation for each prediction, it is necessary to define the concept
of average in practice. Figure 4.9 shows an example of the distribution of the at-
tributions obtainable with our setting, which I will describe in Section 4.3.2. In
this figure, two features representing two permissions —in this thesis, we indicate
permissions with capital letters — are shown; they are calculated with Integrated
Gradients against trusted samples for an MLP classifier.
The significant aspect to observe is that, in our setting, the distribution of relevance
values is typically bimodal. The attribution values could be zero for some samples
and be condensed around a certain value level for some others. In particular, they
exhibit a positive value if the feature converges towards the ransomware class; neg-
ative otherwise. Therefore, we could choose a synthetic metric that expresses the
central tendency of this kind of distribution. In our work, we consider the median
value. In this way, we highlight a feature as relevant when, for most of the samples,
it does not exhibit a zero value. Although using a unique, synthetic measure for
describing the attributions could seem too limiting, we claim that useful information
can actually be gathered by analysing appropriate sets of samples, as we describe in
Section 4.3.2.3.

4.3.2 Experimental Analysis

In this section, we leverage the attributions provided by the considered techniques
to empirically find out the main characteristics of the ransomware samples. After
illustrating the experimental setting (Section 4.3.2.1), we perform preparatory tests



42 4. Design of Android Ransomware Detectors

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0

5

10

15

20

25

30

35
WRITE_EXTERNAL_STORAGE

ACCESS_NETWORK_STATE

Attribution value

O
cc

ur
re

nc
e 

(%
)

Figure 4.9: Attribution distribution of two features, calculated for an MLP classifier
through Integrated Gradients. Positive values associate the feature to the ransomware
class, negative values to the trusted one. The dotted lines represent the median value.

(Section 4.3.2.2), which enable us to eventually analyse the generated explanations
through different criteria (Section 4.3.2.3).

4.3.2.1 Setting

We operate in a two-class setting, where the learning algorithms are trained to clas-
sify the positive class of ransomware samples against the negative one of trusted
samples. In the following, I briefly summarise the parameters and the implementa-
tion used for the experiments.

Dataset and Features We use the same dataset as [18] (Section 4.2), with 18396
trusted and 1945 ransomware samples, which span from 2011 to 2018 according
to their dex last modification date. As explained in Section 3.2.1, recent Android
versions limit the impact of older ransomware samples; however, since these system
updates are installed in a minority of devices, these attacks are still relevant and
suitable to assess the validity of our approach. The feature vector consists of 731
features. Among them, 196 represent the occurrence of the API package calls. We
cumulate all the Android platform APIs until level 26 (Android Oreo). Moreover,
the set of APIs is strictly limited to the Android platform [86] ones. The remaining
amount of features consists of checking the request of permissions extracted from the
AndroidManifest.xml: when one permission is used, we assign to the correspondent
feature a 1; 0 otherwise. In this case, we cumulate the list of permissions until level
29 (Android 10). Since each new API level typically adds new packages, the APIs
introduced after 2018 cause the correspondent features to be not used. aapt16

is employed to extract the permissions used by each APK. Permissions’ names are
indicated in capital letters.

Classifiers Since we want our approach to be model-agnostic, we consider three
different classifiers: a linear support-vector machine (SVM) and a support-vector

16https://developer.android.com/studio/command-line/aapt2

https://developer.android.com/studio/command-line/aapt2
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machine with RBF kernel (SVM-RBF), both implemented with secml [87], a library
for performing adversarial attacks and explaining machine learning models. The
third classifier is a multi-layer perceptron (MLP), implemented with Keras. 17 Each
classifier has been trained and optimised in its parameters with a repeated 5-fold
cross-validation, using 50% of the dataset as the test set. Their detection perform-
ance are shown in Section 4.3.2.3.
Notably, these classifiers do not reach the state-of-the-art performance of a Random
Forest classifier, which indeed had been used in Section 4.2. The reason for not us-
ing it is that this ensemble algorithm presents a non-differentiable decision function;
therefore, it is not possible to use gradient-based techniques on top of it. Although
it could be possible to train a surrogate classifier to simulate the Random Forest
behaviour, it is not necessary to reach state-of-the-art performance in the context
of the experiments that follow.

Attribution Computation The attributions are calculated on the best classi-
fier of the first iteration from the cross-validation. To produce the explanations
for SVM and SVM-RBF we use secml; for MLP, we use DeepExplain [88]. Since
its implementation of Gradient does not return a signed attribution, we switch to
iNNvestigate [89] in that case. We compute the attributions with respect to the
ransomware class. Consequently, a positive attribution value always identifies a fea-
ture that the classifier associates with ransomware. As regards Integrated Gradients,
since its computation includes an integral, this is approximated through a sum of n
parts. We use n = 130. As a baseline, a zero-vector is used.

Correlation and Similarity Metrics The experiments of Section 4.3.2.2 make
use of three correlation metrics: Pearson, cosine similarity, intersection size. In
particular, given two attribution vectors r1 and r2 with d components (which cor-
responds to the number of features), we consider the median value of each component
over a certain set of N samples. Therefore, we obtain two vectors x and y, where
xi = median(r1i)N and yi = median(r2i)N , for i = 1, 2, ..., d. As per the first two
correlation metrics, this leads to the following formulation:

Pearson(x,y) :=
(
∑d

i=1 xiyi)− dx̄ȳ√
(
∑d

i=1 xi
2)− dx̄2

√
(
∑d

i=1 yi
2)− dȳ2

(4.2)

Cosine Similarity(x,y) :=

∑d
i=1 xiyi
‖x‖‖y‖

(4.3)

In both cases, the output value lies in the range [−1, 1]. Intersection size follows the
formulation used by Warnecke et al. [83], which is the following:

IS(x,y) :=
|Tx ∩ Ty|

k
(4.4)

where Tx and Ty represent the sets of k features with the highest relevance from
the attribution vectors x and y, respectively. The intersection size lies in the [0, 1]

17https://keras.io/

https://keras.io/
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range, where IS = 0 indicates no overlap and IS = 1 same top-k features. In our
case, we choose k = 15. This number derives from our manual examination of
the attributions since we have observed it represents the typical number of relevant
features (i.e. whose values are not zero or close to) for a sample in our setting.
Differently from the other two metrics, this one does not consider the sign of the
attributions. Therefore, it is useful to catch the importance of a feature regardless
of the assignment to a specific class.

4.3.2.2 Preliminary Evaluation

We start our investigation through a set of tests where we compare and correlate
median explanation vectors according to different criteria. To make the explanation
vectors under test comparable, we scale the attribution values in the range [−1, 1].

Model Influence In this first test, we correlate the attributions of the classi-
fiers with each other, given a fixed explanation method. The results are shown
in Figure 4.10. It is possible to notice how the Integrated Gradients case shows
particularly-high correlation values, which indicates that its explanations are quite
similar to each other across the three considered classifiers. Conversely, this is much
less valid for Gradient, where each classifier provides a more dissimilar distribution
of the attributions. This first result suggests that, in our setting, the impact of the
specific learning algorithm to the explanations is quite modest, especially for the
case of Integrated Gradients. In other words, each of the three considered classifi-
ers could be interchangeably selected as the reference model for the analysis of the
explanations.
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Figure 4.10: Model influence: correlation between attributions of each classifier.

Explanation Method Influence Complementary to the previous experiment,
we inspect to what extent the three explanation methods considered are similar.
Therefore, for every classifier, we correlate the median attribution vectors of each
technique. The results are shown in Figure 4.11. This test highlights the fact that
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Gradient*Input and Integrated Gradients are very similar — and also equivalent
with linear classifiers. On the contrary, as the previous tests have suggested as well,
Gradient produces quite dissimilar explanations.
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Figure 4.11: Explanation method influence: correlation between attributions of each
technique. G=Gradient, GI=Gradient*Input, IG=Integrated Gradients.

Data Influence Finally, we evaluate the possible impact of the data on the ex-
planations. To do so, we consider randomized labels for the samples of the training
set, and we train new classifiers with these labels, forcing a 50% accuracy on the
test set. Then we correlate the attribution vectors of these classifiers with those
of the original ones. The results, grouped by explainability technique, are visible
in Table 4.4. In this case, all the methods present similar results. Notably, only
Gradient has nearly-to-zero correlation values, but the Pearson metric exhibits high
p-values, making the results less reliable. Therefore, we can affirm that all the tech-
niques, included Gradient*Input and Integrated Gradients — besides the presence of
the input in their computation — reflect what the model learns, without particularly
being bounded by the samples.

Table 4.4: Data influence. The Pearson column also includes the p-value in brackets.
CS=Cosine Similarity.

Classifier Gradient Gradient*Input Integrated Gradients

CS Pearson IS (k = 15) CS Pearson IS (k = 15) CS Pearson IS (k = 15)

SVM 0.01 0.02 (0.66) 0.00 0.29 0.29 (0.00) 0.27 0.29 0.29 (0.00) 0.27
SVM-RBF 0.00 -0.01 (0.81) 0.20 0.05 0.04 (0.22) 0.27 -0.22 -0.23 (0.00) 0.07
MLP 0.08 0.06 (0.09) 0.13 0.11 0.10 (0.00) 0.40 0.09 0.09 (0.01) 0.40

Overall, although all the techniques appear to be not that diverse, we have also
observed by manual inspection that Gradient tends to produce less sparse explan-
ations; i.e. a larger amount of features presents non-null relevance values. Ul-
timately, we claim the most suitable technique is, for our problem, one between
Gradient*Input and Integrated Gradients.
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4.3.2.3 Explanation Analysis

In this section, I report the analysis of the explanations. Given the results from the
previous section, we examine the explanations provided by one single technique and
classifier, assuming that the selected combination is representative of the detection
of Android ransomware. Ultimately, we choose the Integrated Gradients technique
and the MLP classifier as such a reference.

At this point, we aim at understanding how — on average — the features can
make a distinction between the trusted and the ransomware class. Moreover, we
specifically characterise the behaviour of the ransomware samples and their families
by associating the most relevant features to the corresponding action in the app.
To do so, we group the samples according to different criteria. Differently from
Section 4.3.2.2, the attributions are not normalised; consequently, there is no lower
or upper bound to consider as a reference for the magnitude of each attribution. This
choice also preserves the possibility to sort and compare them across the different
features. If not stated differently, we consider the attributions calculated on all the
dataset samples.

Evaluation by Class We consider the average explanations separately for the
trusted and ransomware class. In particular, we sort the attribution values of each
group according to the median value of each feature, and we inspect the top fea-
tures with positive values and the top ones with negative values. In this way, we
can inspect how the features gravitate towards one of the two classes and reveal-
ing the kind of behaviour they can be associated with. Table 4.5 exemplifies the
interpretation of the four possibile expected behaviours.

Table 4.5: Behaviour associated with each feature depending on the sign of the attribu-
tion values and the samples used to calculate the explanations.

Trusted sample Ransomware sample

Positive attribution Non-trusted Ransomware
Negative attribution Trusted Non-ransomware

Figure 4.12 shows the distribution of the attribution values for the top-5 pos-
itive and top-5 negative relevant features of the ransomware (a) and trusted (b)
classes. As a first observation, we can notice that the highest median values are
associated with the features that go into the direction of the ransomware class,
while trusted samples’ attributions exhibit lower sparsity and much higher vari-
ance. This fact suggests that trusted samples need a higher number of features to
have them described, being the set of apps much broader and diversified. Go-
ing into more detail, let us consider Figure 4.12a. The top-5 positive features
can be reasonably associated with the behaviour of a generic malware. For ex-
ample, RECEIVE_BOOT_COMPLETED enables an app to start after a device reboot,
while WAKE_LOCK avoids it being killed by the operating system. Moreover, we can
see the presence of a ransomware-specific feature — SYSTEM_ALERT_WINDOW — that
is a permission that allows the attacker to display an overlay window (see Sec-
tion 3.2.1), and that is often tied with android.app.admin. The top-5 negative
features, such as ACCESS_NETWORK_STATE, should be interpreted as typical of non-
ransomware apps. Concerning the trusted samples, Figure 4.12b shows as the most
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Figure 4.12: Top-5 positive and top-5 negative feature attribution distribution for the
ransomware (a) and trusted (b) samples of the dataset.

prominent feature WRITE_EXTERNAL_STORAGE, a permission that can be intuitively
associated with crypto-ransomware apps. Other positive values (non-trusted fea-
tures) that emerge are javax.crypto and java.security, which are characteristic
of crypto-ransomware apps as well. Among the trusted-specific features, an illustrat-
ive example comes from android.app, which provides a set of layout components
that a ransomware developer does not use broadly.

Evaluation by Ransomware Family Focusing on ransomware applications, we
now inspect to what degree their different families exhibit shared and peculiar traits.
AVClass [77] is used to extract the plausible families from the VirusTotal reports
of each sample. Figure 4.13a shows the median values for the attributions of the
main ransomware families of the dataset. We limit the analysis to the families with
at least 30 samples, obtaining ten of them. As can be noticed by looking along
the vertical axis of this plot, some features exhibit a stable relevance level across
most of the families. In other words, features like SYSTEM_ALERT_WINDOW can be
considered to be a common characteristic of all ransomware apps. Other ones seem
to be peculiar of specific families.

Looking at the properties of each family (rows of the plot), possible peculiarities
can be noticed, such as for Svpeng and Lockerpin. In the first case, the fam-
ily presents a strongly positive relevance of READ_PROFILE, while the Lockerpin
family’s attributions seem to exhibit zero relevance values instead, except for the
WRITE_EXTERNAL_STORAGE permission. To investigate the reason for that, we have
looked for representative samples by picking the ones that were closest to the me-
dian attributions, using the cosine similarity function. For the Svpeng family,
we have obtained a locker ransomware sample18 that, after hiding as a porn app,
pretends to be the FBI enforcement and shows the victims messages that include
the threat to send a supposed criminal record to their contacts, which are expli-
citly shown in the message. These contacts are gathered through the READ_PROFILE
permission, which explains its relevance. In the second case19, the anomalous ex-
planations are because the app contains, within its assets, another APK file that gets

18MD5: 8a7fea6a5279e8f64a56aa192d2e7cf0
19MD5: 1fe4bc42222ec1119559f302ed8febfc
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Figure 4.13: Top positive and negative attributions’ median values for two grouping
criteria: family (a) and date (b).

installed after the user opens the original app and grants the requested privileges.
Therefore, the original app is merely a container.

Evaluation by Ransomware Date The analysis of the evolution of malware
attacks is particularly relevant for machine learning-based detection systems. As
a matter of fact, since they do not employ signatures to identify malicious beha-
viour, they are often able to detect new variants of previously observed families. At
the same time, they should be carefully evaluated over time to avoid experimental
bias [90]. Therefore, it could be useful to understand what features do and do not
possess a certain level of relevance, regardless of the ransomware evolution. To do
so, we extract the last modification date from the dex file of each APK. We discard
the samples with non-plausible dates (e.g. the ones with a Unix epoch date), and
we group the remaining ones in windows of three months. The result is shown in
Figure 4.13b. As can be noticed, some features maintain pretty much the same
relevance values over time, which makes them resilient to new ransomware vari-
ants. In other words, some features describe essential components for ransomware
samples. It should be noticed that also the types of features we employ — API calls
and permission requests — change over time according to the Android development;
therefore, both the attacker and the detector designer have to adapt to this progres-
sion. Figure 4.13b also shows that the relevance of other features could depend on
the spread of a particular family. For example, READ_PROFILE starts being relevant
in 2017, when the previously-described Svpeng appeared.

Reduced Feature Set Evaluation We finally inspect if the explanations ana-
lysed in the previous experiments, after helping with characterising ransomware
apps, can be used to change the group of features of the system under design. In
other words, we aspire to build a feature set that, although it might cause accur-
acy loss, minimizes the learning of spurious patterns by the classifier. To do so,
we construct a reduced feature set composed of the top-20 relevant attributions (10
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positive and 10 negative) for both classes. Notably, we still use the attributions from
Integrated Gradients for the MLP classifier, but we only consider training samples.
We attain a set of 33 unique features. Figure 4.14 shows a ROC curve with a com-
parison between the original three classifiers, trained with the full feature set, and
the correspondent ones trained with this reduced set of features. Besides the min-
imal number of features, the results at the threshold of FPR=1% are not so far from
those with the full feature set (where 353 features out of all 731 ones are used with
our dataset). Only the linear SVM sees quite a significant drop in the detection
rate.
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Figure 4.14: Roc curve comparison. The classifiers with solid lines have been trained
with the full feature set, the ones with dotted lines with a reduced feature set made of 33
features.

4.3.3 Contributions, Limitations, and Future Work

Through this work, we have presented an initial proposal for a method that eases
designers in finding the features that mostly characterise Android ransomware. First,
we have developed a set of empirical tests that allows selecting, among several
combinations of explanation methods and classifiers, a unique setting that best
represents the domain under analysis. In this way, human experts are able to more
easily investigate the output produced by such techniques. Second, by looking at the
average importance of the features within domain-specific sets of samples, we have
shown the Android ransomware’s main traits that effectively distinguish malicious
samples from legitimate ones, and the ransomware’s evolution over time in terms
of application components. This novel work has corroborated the previous evidence
that API calls effectively catch the peculiar actions operated by ransomware apps,
with a restricted set of APIs revealing ransomware-specific behaviour, while several
others identifying non-ransomware apps. Moreover, permissions have turned out to
be quite impactful as well.

Being this a preliminary proposal and given the changes in the setting with
respect to the one of Section 4.2, a few limitations should be highlighted. First,
we claim that the two-class system we have considered, where ransomware apps are
evaluated against legitimate ones, does not fully capture behaviour in the middle. In
other words, we are not able to identify the characteristics that ransomware attacks
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do and do not share with generic malware. Moreover, we have used requested
permissions as additional features, while at the same time not considering System
API class or method calls. Therefore, we believe that further new insights can
be revealed by considering other setting variants. For example, we could check if
classifiers using finer-grained API calls provide coherent explanations with the ones
using packages.
Another limitation is related to the usage of attribution techniques, i.e. the fact that
it is not possible to understand how the features — especially of different types as in
this specific setting — interact with each other. This is one of the open issues in the
field of explainable machine learning [40, 41], and we think discovering high-level
concepts might greatly improve the understanding of the applications under analysis.
We expect that the proposed approach could be refined by making it more systematic
and, above all, further inspecting the practical difference between each gradient-
based technique. In this way, it could also be possible to combine the complementary
peculiarities of each one, instead of selecting a single technique. Moreover, although
our work has shown that gradient-based explanation methods are quite effective
against the considered feature space, it could be beneficial to broaden the focus to
other attribution techniques. Lastly, being Android ransomware one of the possible
case studies, we point out the possibility to generalise our method to other malware
detection problems.



Chapter 5

Explainable and Adversarial Machine
Learning

The previous chapter has shown that learning-based techniques based on static ana-
lysis are especially effective at detecting Android malware, which constitutes one of
the major threats in mobile security. In particular, the described approach, along
with the ones in the literature, show great accuracy even when traditional code con-
cealing techniques (such as static obfuscation) are employed [15–18].
Despite the successful results reported by such approaches, the problem of detecting
malware created to fool learning-based systems is still far from being solved. The
robustness of machine-learning models is challenged by the creation of adversarial
examples [20, 27–29] (see Section 2.1). In particular, recent work concerning An-
droid malware has demonstrated that specific changes to the contents of malicious
Android applications might suffice to change their classification (e.g. from malicious
to benign) [17, 91]. The main characteristic of these attacks is their sparsity, mean-
ing that they enforce only a few changes to the whole feature set to be effective. Such
changes may be represented by, for example, the injection of unused permissions or
parts of unreachable or unused executable code. For example, adding a component
that is loaded when the application starts (through a keyword called LAUNCHER) can
significantly influence the classifier’s decision [81].

On the basis of such issues, this chapter presents the effort to address them
through two different points of view, both sharing the usage of gradient-based ex-
planation techniques. The first one (Section 5.1, based on the work by Melis et al.
[92]) aims to establish a way to assess through explanations the expected vulner-
ability of classifiers to evasion attacks. The second work (Section 5.2, based on the
article by Cara et al. [93]) has the main goal of studying the practical feasibility of
creating Android adversarial samples through the injection of System API calls.

5.1 Do Explanations Tell Anything About Adversarial
Robustness?

One of the many reasons why adversarial attacks against Android malware detectors
are so effective is that classifiers typically assign significant relevance to a limited
amount of features (this phenomenon has also been demonstrated in other applic-
ations such as email spam filtering). As a possible countermeasure, research has
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shown that classifiers that avoid overemphasising specific features, weighting them
more evenly, can be more robust against such attacks [17, 94, 95]. Simple metrics
characterising this behaviour were proposed to identify and select more robust al-
gorithms, especially in the context of linear classifiers, where feature weights can
be used as a direct measure of a feature’s relevance to each decision [17, 96, 97].
In parallel, the ability to understand the classifiers’ behaviour by looking at the
input gradient, i.e. the feature weights in the case of linear classifiers, was also
explored by multiple works in the field of explainable machine learning [33, 46–48].
In particular, it became of interest to figure out if the information provided by
these gradient-based methods can also be employed to understand (and improve)
the robustness of learning-based systems against attacks [98].

In the following, I present our effort to investigate the possible correlations
between gradient-based explanations and the classifiers robustness to adversarial
evasion attacks on an Android malware detection case study. We assess our findings
on Drebin, a popular learning-based detector for Android (Section 5.1.1). I first
provide a description of the adversarial vulnerabilities of learning-based systems for
Android malware detection (Section 5.1.2). Then, motivated by the intuition that
the classifiers whose attributions are more evenly distributed should also be the
more robust, as they rely on a broader set of features for the decision, we propose
and empirically validate a few synthetic metrics that allow correlating between the
evenness of gradient-based explanations and the adversarial robustness — a measure
we propose to represent the classifier robustness to adversarial attacks along with
an increasing attack power in a compact way (Section 5.1.3). Our investigation
(Section 5.1.4) unveils that, under some circumstances, there is a clear relationship
between the distribution of gradient-based explanations and the adversarial robust-
ness of Android malware detectors. I finally make concluding remarks on how our
findings can pave the way towards the development of more efficient mechanisms
both to evaluate adversarial robustness and to defend against adversarial Android
malware examples (Section 5.1.5).

5.1.1 Background on Drebin

The majority of the approaches for Android malware detection employ static and
dynamic analyses that extract information such as permissions, communications
through Inter-Component Communication (ICC), system- and user-implemented
API calls, and so forth [15, 16, 18, 99, 100].

Drebin is among the most popular and used static detection approaches. It
performs the detection of Android malware through static analysis of Android ap-
plications. In a first phase (training), it employs a set of benign and malicious
apps provided by the user to determine the features that will be used for detection
(meaning that the feature set will be strictly dependent on the training data). Such
features are then embedded into a sparse, high-dimensional vector space. Then,
after the training of a linear machine-learning model, the system is able to perform
the classification of previously-unseen apps. An overview of the system architecture
is given in Figure 5.1, and discussed more in detail below.

Feature extraction. First, Drebin statically analyses a set of n training An-
droid applications to construct a suitable feature space. All features extracted by
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Figure 5.1: A schematic representation ([17]) of Drebin. First, applications are repres-
ented as binary vectors in a d-dimensional feature space. A linear classifier is then trained
on an available set of malware and benign applications, assigning a weight to each feature.
During classification, unseen applications are scored by the classifier by summing up the
weights of the present features: if f(x) ≥ 0, they are classified as malware. Drebin also
explains each decision by reporting the most suspicious (or benign) features present in the
app, along with the weight assigned to them by the linear classifier [15].

manifest dexcode

S1 Hardware components S5 Restricted API calls
S2 Requested permissions S6 Used permission
S3 Application components S7 Suspicious API calls
S4 Filtered intents S8 Network addresses

Table 5.1: Overview of feature sets.

Drebin are presented as strings and organised in 8 different feature sets, as listed in
Table 5.1.

Android applications are then mapped onto the feature space as follows. Let us
assume that an app is represented as an object z ∈ Z, being Z the abstract space
of all APK files. We denote with Φ : Z 7→ X a function that maps an APK file z to
a d-dimensional feature vector x = (x1, . . . , xd)> ∈ X = {0, 1}d, where each feature
is set to 1 (0) if the corresponding string is present (absent) in the APK file z. An
application encoded in feature space may then look like the following:

x = Φ(z) 7→



· · ·
0
1
· · ·
1
0
· · ·



· · · }
S2

permission::SEND_SMS
permission::READ_SMS
· · · }

S5
api_call::getDeviceId
api_call::getSubscriberId
· · ·

Learning and Classification. Drebin uses a linear Support Vector Machine
(SVM) to perform detection. It can be expressed in terms of a linear function
f : X 7→ R, i.e. f(x) = w>x + b, where w ∈ Rd denotes the vector of feature
weights, and b ∈ R is the so-called bias. These parameters, optimised during train-
ing, identify a hyperplane that separates the two classes in the feature space. During
classification, unseen apps are then classified as malware if f(x) ≥ 0, and as benign
otherwise. In this work, we will also consider other linear and nonlinear algorithms
to learn the classification function f(x).
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Explanation. Drebin explains its decisions by reporting, for any given application,
the most influential features, i.e. the ones that are present in the given application
and are assigned the highest absolute weights by the classifier. The feature relevance
values reported by Drebin correspond exactly to its feature weights, being Drebin
a linear classifier. For instance, in Figure 5.1 it is possible to see that Drebin
correctly identifies the sample as malware since it connects to a suspicious URL
and uses SMS as a side-channel for communication. In this work, we use different
explanation approaches to measure feature relevance and evaluate whether and to
which extent the distribution of relevance values reveals any interesting insight on
adversarial robustness.

5.1.2 Adversarial Android Malware

Machine learning algorithms are known to be vulnerable to adversarial examples.
The ones used for Android malware detection do not constitute an exception. The
vulnerability of those systems has been demonstrated in [17, 32, 97], and a defence
mechanism has been proposed in [17]. In this section, I first explain how an attacker
can construct Android malware able to fool a classifier (Drebin), being recognised
as benign. Then, considering the Sec-SVM algorithm [17] as a case-study, I explain
how machine learning systems can be strengthened against this attack.

5.1.2.1 Attacking Android Malware Detection

The goal of creating adversarial Android malware that evades detection can be for-
mulated as an optimisation problem, as detailed below. This optimisation problem
is constrained to ensure that the solution provides a functional and feasible malware
sample, i.e. that the feature changes suggested by the attack algorithm are feasible
and can be implemented as practical manipulations to the actual APK input file.

Problem Formulation As introduced in Section 5.1.1, Drebin is a binary clas-
sifier trained on boolean features. To have a malware sample z misclassified as
benign, the attacker should modify its feature vector x in order to decrease the
classifier score f(x). The number of features considered by Drebin is quite large
(more than one million). However, the attacker can reasonably change only few
of them (sparse attack) to preserve the malicious functionality of the application.
The attacker has then an `1-norm constraint on the number of features that can
be modified. The feature vector of the adversarial application can be computed by
solving the following optimisation problem:

arg min
x′

f(x′) (5.1)

s.t. ‖x− x′‖1 ≤ ε (5.2)
xlb � x′ � xub (5.3)
x′ ∈ {0, 1} , (5.4)

where Equation (5.2) is the `1 distance constraint between the original x and the
modified (adversarial) x′ sample. Equation (5.3) is a box constraint that enforces the
adversarial malware’s feature values to stay within some lower and upper bounds,
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Algorithm 1 PGD-based attack on Android malware.
Input: x, the input malware; ε, the number of features which can be modified; η,
the step size; Π, a projection operator on the constraints (5.2) and (5.3); t > 0, a
small number to ensure convergence.
Output: x′, the adversarial (perturbed) malware.
1: x′ ← x
2: repeat
3: x? ← x′

4: x′ ← Π(x? − η · ∇f(x?))
5: until |f(x′)− f(x?)| ≤ t
6: return: x′

while Equation (5.4) enforces the attack to find a Boolean solution. The afore-
mentioned problem can be solved with gradient-based optimisation techniques, e.g.
Projected Gradient Descent (PGD), as described in Algorithm 1 [27, 97, 101]. At
each step, this algorithm projects the feature values of the adversarial sample onto
the constraints (Equations (5.2)–(5.3)), including binarisation in {0, 1}.

Feature Addition To create malware able to fool the classifier, an attacker may,
in theory, both adding and removing features from the original applications. How-
ever, in practice, removing features is a non-trivial operation that can easily com-
promise the malicious functionalities of the application. Feature addition is a safer
operation, especially when the injected features belong to the manifest; for example,
adding permissions does not influence any existing application functionality. When
the features depend on the dexcode, it is possible to add them safely introducing
information that is not actively executed, e.g. by adding code after return instruc-
tions (dead code) or methods that are never called by any invoke type instructions
(i.e. the ones that indicate a method call). Therefore, in this work, we only consider
feature addition. To find a solution that does not require removing features from
the original application, the attacker can simply define xlb = x in Equation (5.3).
However, it is worth mentioning that this injection could be easily made ineffective,
simply removing all the features extracted from code lines that are never executed.
In this way, the attacker is forced to change the executed code, which is more dif-
ficult, as it requires considering the following additional and stricter constraints.
Firstly, the attacker should avoid breaking the application functionalities. Secondly,
they should avoid introducing possible artefacts or undesired functionalities, which
may influence the semantics of the original program. Injecting a large number of
features may be, therefore, difficult and not always feasible. This aspect will be
discussed further later in this chapter (Section 5.2).

5.1.2.2 SecSVM: Defending against Adversarial Android Malware

In [17], the authors have shown that the sparse evasion attack described above is able
to fool Drebin, requiring the injection of a negligible number of features, and they
have proposed a robust counterpart of that classifier. The underlying idea behind
their countermeasure is to enforce the classifier to learn more evenly distributed
feature weights since this will require the attacker to manipulate more features to
evade the classifier. To this end, they have added a box constraint on the weights
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Figure 5.2: Schematic representation of the analysis employed to verify the correlation
between explanation evenness and adversarial robustness. First, for each malware in the
test set, we create its adversarial counterpart. Then, for each of those adversarial ap-
plications, we evaluate: (1) a measure of the classifier robustness against it (adversarial
robustness) (2) the evenness of the application attributions (explanation evenness). Finally,
we asses the correlation between them.

w of a linear SVM, obtaining the following learning algorithm (Sec-SVM):

min
w,b

1
2
w>w + C

∑n
i=1 max (0, 1− yif(xi)) (5.5)

s.t. wlb
k ≤ wk ≤ wub

k , k = 1, . . . , d ,

where the lower and upper bounds onw are defined by the vectorswlb = (wlb
1 , . . . , w

lb
d )

and wub = (wub
1 , . . . , w

ub
d ), which are application dependent. Section 5.1.2.2 can be

easily optimised using a constrained variant of the Stochastic Gradient Descent
(SGD) technique, as described in [17].

5.1.3 Do Gradient-based Explanations Help to Understand
Adversarial Robustness?

In this work, we investigate whether gradient-based attribution methods used to ex-
plain classifiers’ decisions provide useful information about the robustness of Android
malware detectors against sparse attacks. Our intuition is that the classifiers whose
attributions are usually evenly-distributed rely upon a broad set of features instead
of overemphasising only a few of them. Therefore, they are more robust against
sparse attacks, where the attacker can change only few features, having a negligible
impact on the classifier decision function. To verify our intuition, we present an
empirical analysis whose procedure is illustrated in Figure 5.2 and described be-
low. Firstly, we perform a security evaluation on the tested classifier, obtaining a
compact measure we call Adversarial Robustness (see Section 5.1.3.1), representing
its robustness to the adversarial attacks along with an increasing number of added
features ε. Then, we compute the attributions for each benign and manipulated
malware sample x using gradient-based explanation techniques, obtaining the rel-
evance vectors r. For each of those, we propose to look for a compact metric that
encapsulates the degree of Evenness of the attributions (see Section 5.1.3.2). Fi-
nally, comparing this value with the adversarial robustness, we assess the connection
between attributions’ evenness and the robustness to adversarial evasion attacks.

5.1.3.1 Adversarial Robustness

We define the robustness to the evasion samples crafted injecting a fixed number of
features ε as:
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R(Dε, f) =
1

n

n∑
i=1

e−`i , (5.6)

where `i = `(yi, f(xi)) is the adversarial loss attained by the classifier f on the data
points in Dε = {xi, yi}ni=1, containing the ε-sized adversarial samples optimised with
Algorithm 1.

We finally define the adversarial robustness R of a classifier f as the average of
R(Dε, f) on different ε:

R = Eε{R(Dε, f)} . (5.7)

5.1.3.2 Explanation Evenness Metrics

To compute the evenness of the attributions, we consider the two metrics, described
below. The first is the one proposed in [94, 95]. To compute the evenness metric,
they first define a function F (r, k) that, given a relevance vector r, computes the
ratio of the sum of the k highest relevance values to the sum of all absolute relevance
values, for k = 1, 2, . . . ,m:

F (r, k) =

∑k
i=1 |r(i)|∑m
j=1 |r(j)|

,

where r1, r2, . . . , rm denote the relevance values, sorted in descending order of their
absolute values, i.e. |r1| ≥ |r2| ≥ . . . ≥ |rm| and m is the number of considered
relevance values (m ≤ d). This function essentially computes the evenness of the
distribution of the relevance among the features. The evenest relevance distribution
(the one where they are all equal), corresponds to F (r, k) = k/n. Whereas the
most uneven is attained when only one relevance differs from zero, and in this case,
F (r, k) = 1 for each k value. To avoid the dependence on k and to obtain a single
scalar value, they compute the evenness as:

E1(r) =
2

m− 1

[
m−

m∑
k=1

F (r, k)

]
. (5.8)

The range of E1 is [0, 1], E1 = 0 and E1 = 1 indicates respectively to the most uneven
and to the most even relevance vector.

The second metric we consider is the one proposed in [96], based on the ratio
between the `1 and `∞ norm:

E2(r) =
1

m
· ‖r‖1
‖r‖∞

. (5.9)

To have a broader perspective of the attributions evenness, we compute the
metrics on multiple samples, and we average the results. More formally, we define
the explanation evenness as:

E =
1

n

n∑
i=1

E(ri) , (5.10)

where ri with i = 1, 2, . . . , n is the relevance vector computed on each sample of a
test dataset D = {xi, yi}ni=1, and E can be equal either to E1 or E2. In the following,
we represent the average evenness computed considering the per-sample metric E1
(E2) with E1 (E2).
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5.1.4 Experimental Analysis

In this section, we practically evaluate whether the measures introduced in Sec-
tion 5.1.3 can be used to estimate the robustness of classifiers against sparse evasion
attacks. After detailing our experimental setup (Section 5.1.4.1), I show the clas-
sifiers’ detection performances, both in normal conditions and under attack (Sec-
tion 5.1.4.2). In our evaluations, we focus on the feature addition attack setting
(see Section 5.1.2), as they are typically the easiest to accomplish for the adversary.
We use secml as a framework to implement classification systems, explanation tech-
niques, and attack algorithms [87]. Finally, we assess the relationship of the proposed
evenness metrics with adversarial robustness and detection rate (Section 5.1.4.3).

5.1.4.1 Experimental Setup

Dataset We use the Drebin dataset [15], consisting of 121329 benign applications
and 5615 malicious samples, labelled with VirusTotal. A sample is labelled as ma-
licious if it is detected by at least five anti-virus scanners, whereas it is labelled as
benign otherwise.

Training-validation-test splits We average our results on 5 runs. In each run,
we have randomly selected 60,000 apps from the Drebin data to train the learning
algorithms, and we have used the remaining apps for testing.

Classifiers We compare the standard Drebin implementation based on a linear
Support Vector Machine (SVM) against the secured linear SVM from Section 5.1.2.2
(Sec-SVM), an SVM with the RBF kernel (SVM-RBF), a logistic regression (lo-
gistic), and a ridge regression (ridge).

Parameter setting Using a 5-fold cross-validation procedure, we have optim-
ised the parameters of each classifier to maximise the detection rate (i.e. the
fraction of detected malware) at 1% false-positive rate (i.e. the fraction of le-
gitimate applications misclassified as malware). In particular, we have optimised
C ∈ {10−2, 10−1, . . . , 102} for both linear and non-linear SVMs and logistic, the
kernel parameter γ ∈ {10−4, 10−3, . . . , 102} for the SVM-RBF, and the parameter
α ∈ {10−2, 10−1, . . . , 102} for ridge. For Sec-SVM, we have optimised the paramet-
ers −wlb = wub ∈ {0.1, 0.25, 0.5} and C ∈ {10−2, 10−1, . . . , 102}. When similar
detection rates (±1%) were obtained for different hyperparameter configurations,
we have selected the configuration corresponding to a more regularised classifier, as
more regularised classifiers are expected to be more robust under attack [97]. The
typical values of the aforementioned hyperparameters found after cross-validation
are C = 0.1 for SVM, α = 10 for ridge, C = 1 for logistic, C = 1 and w = 0.25 for
Sec-SVM, C = 10 and γ = 0.01 for SVM-RBF.

Attribution computation We compute the attributions on 1000 malware samples
randomly chosen from the Drebin test set. We take x′ = 0 as the baseline for In-
tegrated Gradients, and we compute the attributions with respect to the malware
class. As a result, positive (negative) relevance values in our analysis denote mali-
cious (benign) behaviour. Given the high sparsity ration of the Drebin dataset, we
use m = 1000 to compute the explanation evenness metrics.
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Figure 5.3: (left) Mean ROC curves for the tested classifiers on the Drebin data. (right)
White-box evasion attacks on Drebin data. Detection Rate at 1% False Positive Rate
against an increasing number of added features ε. We can see how the Sec-SVM, although
it provides a slightly lower detection rate compared to the other tested classifiers, requires
on average more than 25 different new feature additions to the original apps to be fooled
by the attacker.

5.1.4.2 Experimental Results

We first perform an evaluation of the performances under normal conditions; the
resulting Receiver Operating Characteristic (ROC) curve with the Detection Rate
for each classifier, averaged over the 5 repetitions, is reported in the left side of
Figure 5.3. We then perform a white-box evasive attack against each classifier,
aiming to have 1000 malware samples randomly chosen from the Drebin dataset
misclassified as benign. The results are shown on the right side of Figure 5.3,
which reports the variation of the detection rate as the number of modified features
ε increases. We can notice how the Sec-SVM classifier provides a slightly worse
detection rate compared to the other classifiers, but is particularly robust against
adversarial evasion attacks.

5.1.4.3 Is adversarial robustness correlated with explanation evenness?

We here investigate the connection between adversarial robustness and evenness
of gradient-based explanations. I start with two illustrative examples. Table 5.2
shows the top-10 influential features for two malware samples1 of the FakeInstaller
and Plankton families, reported for the SVM-RBF and Sec-SVM algorithms, and
obtained through the Gradient*Input technique. All the classifiers correctly label
the samples as malware.

Looking at the features of the first sample, the FakeInstaller malware, we can
observe how both the classifiers identify the cellular- and SMS-related features, e.g.
the GetNetworkOperator() method or the SEND_SMS permission, as highly relevant.
This is coherent with the actual behaviour of the malware sample since its goal is
to send SMS messages to premium-rate numbers. With respect to the relevance
values, the first aspect to point out comes from their relative magnitude, expressed
as a percentage in Table 5.2. In particular, we can observe that the top-10 relevance
values for SVM-RBF vary, regardless of their signs, from 3.49% to 10.35%, while
for Sec-SVM the top values lie in the 3.39%–3.51% range. This suggests that SVM-
RBF assigned high prominence to few features; conversely, Sec-SVM distributed
the relevance values more evenly. It is possible to catch this behaviour more easily
through the synthetic evenness measures E1 (Equation (5.8)) and E2 (Equation (5.9))

1MD5: f8bcbd48f44ce973036fac0bce68a5d5 (FakeInstaller) and
eb1f454ea622a8d2713918b590241a7e (Plankton).



60 5. Explainable and Adversarial Machine Learning

SVM-RBF (E1 = 46.24%, E2 = 22.47%, εmin = 6)
Set Feature Name r (%)

S2 SEND_SMS 10.35
S7 android/telephony/TelephonyManager

;->getNetworkOperator
10.05

S4 LAUNCHER -8.89
S5 android/os/PowerManager$WakeLock

;->release
-8.01

S2 READ_PHONE_STATE 5.03
S2 RECEIVE_SMS -5.00
S3 c2dm.C2DMBroadcastReceiver 4.56
S2 READ_SMS 3.52
S4 DATA_SMS_RECEIVED 3.50
S5 android/app/NotificationManager

;->notify
-3.49

Sec-SVM (E1 = 73.04%, E2 = 66.24%, εmin = 31)
Set Feature Name r (%)

S2 READ_PHONE_STATE 3.51
S7 android/telephony/TelephonyManager

;->getNetworkOperator
3.51

S2 SEND_SMS 3.51
S3 c2dm.C2DMBroadcastReceiver 3.51
S2 INTERNET 3.44
S3 com.software.application.ShowLink 3.39
S3 com.software.application.Main 3.39
S3 com.software.application.Notificator 3.39
S3 com.software.application.Checker 3.39
S3 com.software.application.OffertActivity 3.39

SVM-RBF (E1 = 60.74%, E2 = 25.84%, εmin = 31)
Set Feature Name r (%)

S4 LAUNCHER -1.89
S7 android/net/Uri;->fromFile 1.34
S5 android/os/PowerManager$WakeLock

;->release
-1.25

S2 INSTALL_SHORTCUT 1.23
S7 android/telephony/SmsMessage

;->getDisplayMessageBody
-1.21

S7 android/telephony/SmsMessage
;->getTimestampMillis

-1.20

S2 SET_ORIENTATION -1.20
S2 ACCESS_WIFI_STATE 1.15
S4 BOOT_COMPLETED 1.08
S5 android/media/MediaPlayer;->start -1.06

Sec-SVM (E1 = 63.14%, E2 = 52.70%, εmin = 39)
Set Feature Name r (%)

S2 ACCESS_NETWORK_STATE 0.93
S2 READ_PHONE_STATE 0.93
S6 READ_HISTORY_BOOKMARKS 0.93
S7 android/telephony/TelephonyManager

;->getNetworkOperatorName
-0.93

S6 ACCESS_NETWORK_STATE -0.93
S7 android/telephony/SmsMessage;-

>getDisplayOriginatingAddress
0.93

S7 android/telephony/TelephonyManager
;->getNetworkOperator

0.93

S7 android/net/Uri;->getEncodedPath -0.93
S2 SET_ORIENTATION -0.93
S7 java/lang/reflect/Method;->invoke 0.93

Table 5.2: Top-10 influential features and corresponding Gradient*Input relevance (%)
for a malware of the FakeInstaller family (top) and a malware of the Plankton family
(bottom). Notice that the minimum number of features to add εmin to evade the classifiers
increases with the evenness metrics E1 and E2.

reported in Table 5.2, which show higher values for Sec-SVM. Table 5.2 also shows
the εmin value, i.e. the minimum number of features to add to the malware to
evade the classifier. We can notice how the εmin parameter is strictly related to the
evenness distribution, since higher values of E1 and E2 correspond to higher values of
εmin, i.e. a higher effort for the attacker to accomplish her goal. In particular, it is
possible to identify a clear difference between the behaviour of SVM-RBF and Sec-
SVM: the diversity of their evenness metrics, which cause the εmin values to be quite
different as well, indicates that, for this prediction, SVM-RBF is quite susceptible
to a possible attack compared to Sec-SVM.

Conversely, considering the second sample, the attributions (regardless of the
sign) and the evenness metrics present similar values. Such behaviour is also reflected
in the associated εmin values. In this case, the relevance values are more evenly
distributed, which indicates that the evasion is more difficult.

We now correlate the evenness metrics with the adversarial robustness R, in-
troduced in Section 5.1.3.1. Figure 5.4 shows the relationship between this value
and the evenness metrics for 100 samples chosen from the test set, reported for each
explainability technique. From this broader view, we can see how the evenness val-
ues calculated on top of the Gradient*Input and Integrated Gradients explanations
present a significant connection to the adversarial robustness. This seems not to be
applicable to the Gradient technique, and specifically against the linear classifiers,
whose dots in Figure 5.4 are perfectly vertical-aligned. This fact is caused by the
constant value of the gradient across all the samples, which implies constant values
for the evenness metrics as well. In order to assess the statistical significance of this
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Figure 5.4: Evaluation of the adversarial robustness R against the evenness E1 (left), E2
(right) metrics for the different gradient-based explanation techniques computed on 1000
samples of the test set (only 100 samples are shown).

plot, we also compute the associated correlation values with three different metrics:
Pearson (P), Spearman Rank (S), Kendall’s Tau (K). They are shown in Table 5.3.

Finally, we inquire whether the connection between the evenness metrics and the
detection performance of a classifier can provide a global assessment of its robust-
ness. Figure 5.5 shows the correlation between the explanation evenness and the
mean detection rate under attack, calculated for ε in the range [1, 50]. Similarly to
the previous test, Gradient*Input and Integrated Gradients explanations present a
significant connection to the adversarial robustness in most cases, while the Gradient
technique does to a less extent.

5.1.5 Conclusions

With this work, we have empirically evaluated the correlation between multiple
gradient-based explanation techniques and the adversarial robustness of different
linear and non-linear classifiers against sparse evasion attacks. To this end, we have
employed two synthetic measures of the explanation evenness, whose main advantage
is not requiring any computationally-expensive attack simulations. Hence, they may
be used by system designers and engineers to choose, among a plethora of different
models, the one that is most resilient against sparse attacks.

As we have validated the proposed synthetic vulnerability measure by considering
only the Drebin malware detector as a case study, it would be interesting to inspect
other malware detectors as well as other application domains. Moreover, as the
proposed metrics may be used to estimate the robustness only against sparse evasion
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Gradient Gradient*Input Integrated Gradients

E1 E2 E1 E2 E1 E2
logistic P

S
K

0.67, <1e-5
0.67, <1e-5
0.51, <1e-5

0.75, <1e-5
0.72, <1e-5
0.54, <1e-5

0.67, <1e-5
0.67, <1e-5
0.51, <1e-5

0.75, <1e-5
0.72, <1e-5
0.54, <1e-5

ridge P
S
K

0.48, <1e-5
0.58, <1e-5
0.41, <1e-5

0.56, <1e-5
0.67, <1e-5
0.49, <1e-5

0.48, <1e-5
0.58, <1e-5
0.41, <1e-5

0.56, <1e-5
0.67, <1e-5
0.49, <1e-5

SVM P
S
K

0.68, <1e-5
0.66, <1e-5
0.49, <1e-5

0.70, <1e-5
0.73, <1e-5
0.54, <1e-5

0.68, <1e-5
0.66, <1e-5
0.49, <1e-5

0.70, <1e-5
0.73, <1e-5
0.54, <1e-5

SVM-RBF P
S
K

0.03, 0.769
0.46, <1e-5
0.34, <1e-5

0.46, <1e-5
0.70, <1e-5
0.51, <1e-5

0.82, <1e-5
0.94, <1e-5
0.81, <1e-5

0.82, <1e-5
0.94, <1e-5
0.80, <1e-5

0.89, <1e-5
0.93, <1e-5
0.78, <1e-5

0.91, <1e-5
0.93, <1e-5
0.77, <1e-5

Sec-SVM P
S
K

0.73, <1e-5
0.76, <1e-5
0.62, <1e-5

0.76, <1e-5
0.78, <1e-5
0.67, <1e-5

0.73, <1e-5
0.76, <1e-5
0.62, <1e-5

0.76, <1e-5
0.78, <1e-5
0.67, <1e-5

Table 5.3: Correlation between the adversarial robustness R and the evenness metrics
E1 and E2. Pearson (P), Spearman Rank (S), Kendall’s Tau (K) coefficients along with
corresponding p-values. The linear classifiers lack a correlation value since the evenness
is constant (being the gradient constant as well); therefore, resulting in a not defined
correlation.
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Figure 5.5: Evaluation of the evenness metrics E1 (left) and E2 (right) against the
Detection Rate (FPR 1%) for the different gradient-based explanation techniques computed
on the Drebin dataset.
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attacks, another research direction could be to devise a similar measure robustness
estimation when the attack is subjected to different application constraints. Also,
it could be interesting to assess if our vulnerability measures can be successfully
applied when the attacker does not know the classifier parameters or when the
model is not differentiable; in that case, a surrogate classifier would be used to
explain the original unknown model function.

Finally, another research avenue is to modify the objective functions used to
train the considered machine learning models by adding to them a penalty which
is inversely proportional to the proposed evenness metrics, in order to enforce the
classifier to learn more evenly-distributed relevance scores and, consequently, the
model robustness.

5.2 Evaluating the Feasibility of Adversarial Sample
Creation

After presenting methods to assess Android detectors’ vulnerabilities in vitro, in
the following, I illustrate the problem of understanding the possibility of fulfilling
evasion attacks in vivo. As a matter of fact, a critical problem that has been of-
ten overlooked in previous work is the practical feasibility of generating adversarial
samples.
When designing a machine learning-based detection system, experts identify a set
of characteristics (features) that are expected to be effective in classifying the input
samples. That is, they create a feature space where they map specific character-
istics, patterns, or behaviours of the sample to a feature vector. Conversely, when
performing adversarial attacks, attackers generate an altered feature vector. Thus,
converting each alteration into a modification of the samples (in the problem space)
in order to attain the desired evasion. Depending on the setting, this transition is
not straightforward and entails the difficulty of moving from the feature space to the
problem space (or vice versa), i.e. finding an exact, unique correspondence between
values in the feature vector and characteristics in the problem domain (e.g. func-
tionalities in an Android application). This is the so-called inverse feature-mapping
problem [27, 81, 102] — or the more generic problem-feature space dilemma [103].
Moreover, the generation of concrete, realistic adversarial samples also requires tak-
ing into account different constraints, such as preserving the app’s semantics or
keeping it plausible for human inspection [104, 105].

In this work by Cara et al. [93], we have explored the development of evasive An-
droid apps in the problem space. In particular, we probe the feasibility of generating
such samples specifically through the injection of system API calls (the same kind
of features of Chapter 4). We analyse an injection strategy that only adds the calls
needed to achieve the evasion by preserving the application’s overall functionality.
Consequently, we consider a scenario where both the attacker’s effort and the impact
on the generated app are kept at a minimum level. Moreover, differently from all
previous articles in the literature, we evaluate our strategy on a detector designed
with non-binary features. Overall, the key elements of this work are the following:

1. We discuss the constraints required to create concrete, working Android ad-
versarial samples through API call injection;
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2. We evaluate the feasibility of injecting system API calls by both identifying
the subset of the usable ones and explaining their relevance to evasion through
a gradient-based interpretability technique;

3. We evaluate the effectiveness of mimicry and random noise addition attacks
against a state-of-the-art ransomware detector that employs non-binary fea-
tures;

4. We develop a basic implementation of the considered injection strategy that
creates working adversarial malicious samples.

This way, we believe this proposal starts to highlight the actual, viable injection
strategies attackers have at their disposal for the creation of evasive Android malware
samples.

In the following, the threat model of our setting is depicted (Section 5.2.1), fol-
lowed by a discussion about the problem space and its constraints (Section 5.1.2).
Our implementation for the generation of Android adversarial samples is described
in Section 5.2.3, while the experimental analysis is presented in Section 5.2.4. Sec-
tion 5.2.6 makes conclusive remarks.

5.2.1 Threat Model

Using the same schema of Section 2.1, in the following, the threat model of this
work is illustrated.

Attacker’s goal In our setting, the attackers aim to make the detection system
classify ransomware apps as trusted ones. In particular, since we consider the evasion
strategy, they fulfil this goal by modifying the Android apps at test time rather than
by poisoning the system’s training set.

Attacker’s knowledge Attackers often have incomplete knowledge about the
target system. For this reason, in this work, we simulate a scenario where the
attacker has minimum information about the Android detection system. Specifically,
we focus on the mimicry attack, which has been studied in previous work [17, 27,
102]. In this case, θ = (D̂,X), which means that the attacker knows the feature
space and owns a set of data that is a representative approximation of the probability
distribution of the data employed in the target system. This is a more realistic
scenario, in which the attacker can modify the features of a malicious sample to
make its feature vector as similar as possible to one of the benign samples at its
disposal. As a comparison, we also consider a random noise addition attack, which
does not allow targeting a specific class, but can be useful to provide a generic
assessment of the vulnerability of the system to perturbed inputs.

Attacker’s capability The Android application architecture mostly allows the
attacker to only add new elements to the app (feature addition), such as permissions,
strings, or function calls, but does not permit removing them (feature removal). I
discuss this aspect in more detail in the section that follows.
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5.2.2 The Problem Space Domain

The goal of this work is to evaluate to what extent it is feasible to generate real-world
Android adversarial samples. In particular, the focus of our analysis lies specifically
on the constraints and consequences of injecting system API calls. With this respect,
the first concern to consider is the so-called inverse feature-mapping problem — or
the more generic problem-feature space dilemma [103]. As hinted in Section 5.2,
this refers to the difficulty of moving from the feature space to the problem domain
(or vice versa), i.e. finding an exact, unique correspondence between values in the
feature vector and characteristics in the problem domain, e.g. functionalities in an
Android application. The feature mapping problem can be defined as a function ψ
that, given a sample z, generates a d-dimensional feature vector x = [x1, x2, ..., xd],
such that ψ(z) = x [104]. Conversely, the opposite flux in the inverse feature-
mapping case is a function S, such that taking a feature vector x, we have S(x) = z′.
However, it is not guaranteed that z ≡ z′.

As an example, let us consider the feature vector of our setting, which consists
of the occurrence of API package calls. Due to this choice, the value of a feature xi
in the feature vector can be increased through two main behaviours in the Android
application: (i) the call of a class constructor and (ii) the call of a method. In both
cases, the class involved in these calls must belong to the package that corresponds
to the i-th feature. This means that there are as many ways to change that feature
value as the number of callable classes in the package. Figure 5.6 exemplifies this
aspect by showing, for a few packages, their related classes that we identify as
callable for our purposes. By contrast, an alternative feature vector (as discussed in
Section 4.2) that describes the occurrence of system API method calls would have
a one-to-one mapping between the i-th feature and the call of the corresponding
method.

Figure 5.6: Example of callable classes for three different API packages.

The above-described issue is particularly relevant for the creation process of
adversarial samples. Another implication to consider is the potential presence of
side-effect features, i.e. the undesired alteration of features besides the ones targeted
in the attack [104]. For example, inserting whole portions of code to add specific
calls may have the effect of injecting unnecessary, additional calls. This may lead to
an evasive feature vector that is slightly different from the expected one; therefore,
making the behaviour of the target classifier unpredictable.
The injection approach considered in this work starts from the will of inserting the
minimum amount of modifications needed to evade the detection. However, other
concerns must be taken into account in order to create a realistic, working adversarial
malware. I discuss them below.
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5.2.2.1 Constraints

I now present the constraints that we consider in our approach and their implications
on the injection strategy design. I illustrate them on top of the definitions proposed
by Pierazzi et al. [104]. I refer the reader to that work for further details.

Available transformations The modification of the features has to correspond
to doable actions in the problem domain. That is, it is necessary to evaluate the set
of possible transformations. In the case of Android, some sample modifications could
lead to a change in the app behaviour, a crash during the execution, or rejection by
the Android Verifier. Typically, the attacker can only add new elements to the apps
(feature addition), such as permissions, strings, or function calls, while it is harder
for it to remove them (feature removal). For example, it is not possible to remove
permissions from the manifest.

In this work, we choose the feature addition strategy, as we only inject new system
API calls into the dex code. In this sense, it is possible to successfully perform the
modifications only for a reduced set of Android system packages and classes. In fact,
the packages we inject are the ones whose classes are not an interface or abstract
classes and whose constructors are public and accessible. Another issue is related to
the call parameters. These have to be correctly defined because Java has a strict,
static type checking. Hence, to call methods or constructors that receive specific
parameters, one could create and pass new objects of the needed classes. Since this
can result in being a complicated procedure, in this work, we start exploring the
most straightforward setting for attackers, i.e. where they restrict the set of callable
classes to the ones that need primitive or no parameters at all. We evaluate both
cases in Section 5.2.4.2, and we implement the no-parameters case.

Preserved semantics The transformations must preserve the functionality and
behaviour of the original sample, e.g. the malicious behaviour of Android malware.
To check if the application’s behaviour has been kept unchanged after the injection,
one could build a suite of automatic tests to perform basic operations. For instance,
it is possible to open and close the main activity, put it in the background, then
verify if the produced output is the same as the one of the original app. In our setting,
the main criticality of the injection of API calls is related to the execution of opera-
tions that could lead to crashes or block the execution, which is especially relevant
when calling methods, while more manageable when calling only class constructors.
More specifically, a call may require a reference to non-existent objects, causing an
exception in the execution (e.g. openOptionsMenu() from android.view.View if no
Option Menu is present) or may block the user interface if it runs in the main thread.

Plausibility The created adversarial samples have to be plausible on human in-
spection, i.e. they should not contain evident (from a human perspective) signs of
manipulation. For example, having 50 consecutive calls of the same method inside
the same function would be extremely suspicious. However, this concept is also quite
tricky in practice; in fact, there are no general and automatic approaches to evaluate
it. In our work, we pursue this constraint by limiting the repetition of the same calls
multiple times in the same portion of the app. In particular, we spread the injected
calls throughout the whole app in order to make a sequence of constructor calls less
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likely. However, a more sophisticated strategy should take care of the coherence of
the injected code with the application context. For instance, adding permissions
that do not pertain to the app’s scope could be suspicious to the human expert.

Robustness The alterations made to the samples should be resilient to prepro-
cessing. For example, injecting dead code in the app is common for attackers, but it
is easy to neutralise through dead code removal tools. In this sense, our approach
aims at the injection of code that is properly executed.

5.2.2.2 API Injection Feasibility

In the specific setting of this work, successfully creating the adversarial samples
implies carefully selecting the system APIs to inject. Therefore, to implement the
attack, the first step is to identify what API constructors are usable. Starting from
the complete set of them for each package of each API level, we remove the ones
that (i) are not public or have protected access, (ii) belong to abstract classes,
(iii) potentially throw exceptions (hence, requiring a more complex code injection),
and (iv) receive parameters of non-primitive types. Then, we identify as usable the
classes that have at least one constructor satisfying this filtering; consequently, we
also derive the packages that have at least one class available. Moreover, we consider
two cases on the input parameters of the constructors: the first one — which we call
‘no-parameters’ — computes the values on the basis of the constructors that receive
no parameters in order to be called. In the second case — which we call ‘primitive-
parameters’ — we also include constructors that receive parameters of primitive
types, where primitive indicates one belonging to the following types: int, short,
long, float, double, char, and boolean. Notably, attackers could include other
non-primitive types that are simple to manage, such as java.lang.String. In
Section 5.2.4.2, we evaluate the attained results quantitatively.

Explaining evasion Besides identifying the modifiable packages and classes at
the disposal of the attacker, it would be interesting to understand if and to what
extent the usable APIs turn out to be the ones that are effective for evasion attacks;
that is, the ones that, when modified, move the adversarial sample towards the
benign class.

To perform this kind of evaluation, we make use of Integrated Gradients (see
Section 2.2.1). As the work illustrated in Section 5.1 has shown, it is possible to
put a bridge between gradient-based explainability techniques and evasion attacks
specifically in the Android malware detection domain. Therefore, the rationale
behind using explanations in this case is that we expect that a relevant feature is
significant for a successful realisation of the evasion attack.
Since the attribution values of Integrated Gradients can be calculated with respect
to a specific output class of the classifier, we consider the trusted one. This way,
positive values indicate that a feature moves the prediction towards the trusted class.
Consequently, we consider a feature as relevant (for evasion) when its attribution
value is strictly positive. In other words, we identify the features that influence the
classification in the direction of the trusted class and, consequently, the ones that
an attacker should modify to evade the detection of the considered sample. I show
this assessment in Section 5.2.4.2.
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5.2.3 Adversarial Malware Creation

The core of our implementation is based on two libraries: DexLib [106] and Ap-
ktool [107]. Figure 5.7 shows the architecture of our implementation of the system
to generate adversarial samples according to a mimicry attack—or a random noise
one alternatively. The system takes as input a malicious Android sample and gives
as output an adversarial malware that is expected to be classified as benign. The sys-
tem chain consists of three phases that I describe in the following.

Figure 5.7: The architecture of the system. Firstly, it processes the given malicious
sample to retrieve its feature vector. Then, it performs the modifications to the feature
vector using either the benign reference vector (mimicry) or the noise vector (random noise
adding). Finally, it generates the adversarial malicious sample.

Feature Mapping In this phase, the malicious Android sample is statically ana-
lysed to detect and count all the Android system API calls and create the numeric
vector of features x = [x1, x2, ..., xd]. As shown in Figure 5.8, firstly, we parse the
.dex files (using Dexlib) to get the API called through the invoke functions (see
Chapter 3), matching the Android system calls previously gathered from the official
Android documentation. Then, we count the occurrences for each API call. Finally,
we generate a sparse feature vector where, for every non-zero feature, there is the
occurrence of the references to the specific package inside the analysed Android ap-
plication.

Figure 5.8: Example of feature mapping for the creation of the feature vector.

Attack The extracted malicious feature vector is then modified to perform the
attack. This phase aims to generate an adversarial feature vector using a mimicry
or a random noise addition approach. As shown in Figure 5.7, for the mimicry case,
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we choose as a reference a unique benign feature vector xm = [xm1, x
m

2, ..., x
m
d].

The choice of this vector can be made in different ways. Specifically, one might
choose the benign reference vector to be added to the malicious sample according to
different strategies. In Section 5.2.4.3, we compare the results of our experiments for
four ways of choice, which we call: ‘mean’, ‘median’, ‘real mean’, and ‘real median’.
Basically, in the first two cases, we take as the reference vector the mean (median)
vector among the trusted samples available to the attacker, i.e. the test set; in the
remaining two cases, we consider the real sample of the test set that is closest to
the mean (median) vector. Specifically, we take the real sample with the highest
cosine similarity, calculated with respect to the reference feature vector through the
following formulation:

Cosine Similarity(x,xm) :=

∑d
i=1 xix

m
i

‖x‖‖xm‖
(5.11)

A noise vector xn = [xn1, x
n
2, ..., x

n
d] is instead added in the case of random

noise addition. We consider different implementation strategies for the attack (see
Section 5.2.4.3) also in this case. We define these strategies ‘absolute’ and ‘relative’.
The first one consists of increasing, for each feature, the occurrence of the corres-
pondent call with a randomly chosen value between zero and the considered noise
level (e.g. 10). In the second one, the features are added by taking into account the
original value of each feature in the sample. For example, with an original feature
value of 20 and a noise level of 50%, we randomly increase the occurrence with a
value between 0 and 10.

Once we obtain the vector that enables the modification, for the mimicry case, we
compute the difference between the reference feature vector and each malicious one,
then add the resulting features to the malicious sample, creating the adversarial
feature vector xa = [xa1, x

a
2, ..., x

a
d]. Notably, if the original malicious sample

exhibits one or more features with values higher than those of the reference vector,
we keep the same value of the original sample (otherwise, we would have performed
feature removal). Regarding the random noise addition case, the noise vector is
added to the malicious feature vector to create the adversarial feature vector xa.

Inverse Feature Mapping This phase is the opposite of the feature mapping
phase, so each value of the adversarial feature vector, which is not already in the
malicious sample, is matched with the corresponding Android system call and added
in the malicious sample. We use Apktool to disassemble the Android application;
then, we employ Dexlib to perform all the modifications on the bytecode level.
Finally, we leverage Apktool again to reassemble and sign the generated adversarial
sample, which is manually tested to verify that the functionality is preserved. As
introduced in Section 5.2.2, for each feature (package), there may be more than one
usable constructor since multiple classes can be available. Thus, for each feature, we
randomly choose a constructor among the available ones. In this way, we increase the
plausibility of the adversarial app, as it would be easier for a code analyst to notice
the same class called multiple times rather than different classes of the same package.
In this sense, we also spread the injected calls across all the methods already defined
in the .dex file, so that they are not concentrated in a unique portion of code.

Each injected call is added by defining an object of the related class and calling
its constructor. Figure 5.9 shows a smali-like representation of the injection code.
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We can see a new-instance function to create an object of the class to add and an
invoke-direct function to call the constructor of that class. The injected instructions
are placed before the return statement of the selected method. Notably, the choice
of calling constructors does not cause any side-effect since no features other than
the target ones are modified within the feature vector.

Figure 5.9: Example of the injection of an Android system call.

5.2.4 Experimental Results

In this section, after detailing our experimental setup (Section 5.2.4.1), we evaluate
the capability for the attacker to inject Android’s system API calls (Section 5.2.4.2).
Then, I show the performance of the mimicry and the random noise attacks (Sec-
tion 5.2.4.3), as well as their impact in terms of added calls with respect to the
original samples (Section 5.2.4.4).

5.2.4.1 Setting
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Figure 5.10: Average ROC curve of the MLP classifier over repeated 5-fold cross-
validation. The lines for the ransomware and malware classes include the standard de-
viation in translucent colour.

Dataset We use the same dataset as [18] (and Section 4.2), composed of 39157
Android applications, 3017 of which are ransomware applications, 18396 trusted
applications, and 17744 generic malware applications.

Features We use R-PackDroid (see [18, 76] and Chapter 4) as a reference detection
system. The feature set consists of the cumulative list of system API packages up to
Level 26 (Android Oreo), for a total of 196 features. In particular, the set of APIs
is strictly limited to the Android platform [86] ones.
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Classifier We have trained an MLP (multilayer perceptron) neural network with
Keras. We have performed a repeated five-fold cross-validation, along with a search
for the best hyperparameters (e.g. number of layers, number of neurons per layer)
for the net. Figure 5.10 shows the mean ROC curve over the five repetitions.
It is worth recalling that, as explained in Section 4.3.2.1, the detection performance
of MLP is not the optimal one for this setting since, in our tests, we had attained bet-
ter results with a Random Forest algorithm. However, explanations with Integrated
Gradients cannot be produced from Random Forest due to the non-differentiability
of its decision function. Therefore, to keep our setting coherent, we have chosen to
perform all the experiments on the MLP classifier.

5.2.4.2 API Injection Evaluation

As explained in Section 5.2.2, attackers have to take into account the feasibility of
the alterations of their malicious samples. Table 5.4 shows, for each API level up
to 29, the percentage of usable packages and classes out of the whole set of APIs.
In particular, Table 5.4a is related to the no-parameters case. Depending on the
Android API level, it is possible to cover several packages, from 51% to 57%, and
several classes between 15% and 27%.

In the second case — primitive-parameters — of Table 5.4b, we also include con-
structors that receive parameters of primitive types. With this variation, it is pos-
sible to cover more packages, between 55% and 61%, and more classes, between 18%
and 33%, depending on the Android API level. Overall, we point out that the
results are similar in both cases, but the effort in the first case is lower since that
attacker does not need to create and inject new variables with the correct primitive
type. Therefore, the first approach is more convenient for an attacker that wants to
generate adversarial samples.

It is worth noting that the attacker’s goal is to infect the highest number of
devices possible. Consequently, the minimum API level of a malicious sample tends
to be very low. For example, by extracting the sdkversion field in the Manifest
of each ransomware sample of our test set, we have verified that several apps lie in
the 7–9 range. Therefore, attackers are encouraged to inject older APIs rather than
the newer ones.

Table 5.4: Number of available packages and classes for each Android API level. In
(a), only constructors without parameters are considered, while in (b), we also include
constructors that receive primitive parameters.

(a)

Granularity (%) Android API Level

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Packages 53 54 55 56 56 56 55 55 55 56 57 57 56 56 55 55 55 55 55 54 53 53 53 53 51 51 51 51
Classes 27 26 26 25 25 25 24 24 24 24 24 24 23 23 22 22 21 21 21 19 19 18 18 18 17 17 16 15

(b)

Granularity (%) Android API Level

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Packages 58 59 59 61 61 61 60 59 59 60 61 61 60 60 59 59 58 58 58 57 58 58 58 58 56 56 55 55
Classes 33 32 32 31 31 31 30 29 29 29 29 29 28 28 27 26 26 25 25 23 23 22 21 21 20 20 19 18



72 5. Explainable and Adversarial Machine Learning

Are the modifiable features effective for evasion attacks? The number of
available packages and classes inferred in the previous experiment appears to be not
really high. However, as introduced in Section 5.2.2.2, it is also worth inspecting the
importance of the usable features to the classification. From now on, we conduct
all of our experiments using the ransomware samples of the test set, which emulates
the set of samples at the attacker’s disposal. We compute the explanations using
DeepExplain [88].

As a first point, we evaluate the percentage of relevant features modifiable by
the attacker for each sample. We attain a mean value across the samples of 72.1%
for the no-parameters case and of 73.8% in the primitive-parameters one. This
result suggests that the attacker can modify a good number of useful features to
evade detection. As a second test, we identify which relevant features are the most
frequent among the modifiable ones. The results are shown in Figure 5.11. As can
be seen, the shown features correspond, as expected, to the ones that are known
to be descriptive of the trusted samples, i.e. a broad set of functionalities related,
for example, to the app’s user interface.
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Figure 5.11: Top 15 relevant features among the usable ones.

5.2.4.3 Attack Results

In the following, we assess the mimicry attack’s performance and, as a comparison,
the most straightforward attack possible, the random noise one.

Mimicry Attack Figure 5.12a shows the evasion rate for four different reference
samples, as illustrated in Section 5.2.3; that is, how many adversarial samples evade
the classification. In the x -axis, we evaluate an increasing percentage of modified
features, i.e. the number of injected packages out of the total number of modifiable
ones by the attacker. Since the choice of the subset of features to modify for each
percentage level below 100% is random, we show the average result over five repe-
titions. Moreover, it is worth noting that each chosen feature exhibits a different
number of calls to inject because some APIs are being called in the app thousands
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of times, while others might be referenced only a few times. In the same figure, it
is possible to see that all the curves present similar trends.

In Figure 5.12b, we focus on the median strategy and show how the samples
are classified. We can see that the evasion works as desired because the number
of samples classified as trusted increases while the number of samples classified as
ransomware and malware decreases. Notably, in Figure 5.12a, the evasion rate at 0%
of modified features is not zero because some ransomware samples are mistakenly
classified as benign or malware. For the same reason, Figure 5.12b shows that the
detection of the samples as ransomware is not 100% when no features are modified.
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Figure 5.12: Mimicry attack’s evasion rate for different choices of the reference sample
(a). Detection rate detail of the ransomware samples (b). Both figures are the average
results over five repetitions and include the standard deviation in translucent colour.

Random Noise Attack After the mimicry attack, we have performed a random
noise addition attack, which can be useful as a reference since it only consists of
injecting API calls without any specific pattern or target class. Following the same
procedure as Section 5.2.4.3, the results are shown in Figure 5.13. Specifically,
the absolute approach is the one shown in Figure 5.13a. On the left side, we evaluate
the evasion rate for different levels of added noise. As we can see, the higher the
noise level is, the higher the evasion rate is. On the right side of the figure, we
show the detail of the assigned classes for a noise level equal to 20, which achieves
similar evasion levels as the mimicry case. As we can see, the curve also exhibits
the same tendency, i.e. it causes an increasing detection of the ransomware samples
as legitimate ones as if it was a targeted attack. This is significant since it seems
to suggest that no specific injection pattern is needed to make ransomware samples
classified as trusted ones. Consequently, attackers would not need a set of trusted
samples with the same probability distribution of the target system’s training set,
which is necessary to perform the mimicry attack.

The relative approach is shown in Figure 5.13b. The evasion rate on the left side
of the figure is, in this case, completely different from the absolute one, reaching a
value of around 15% at the highest point. Notably, there is no significant difference
between each noise level. This can be related to the sparsity of the samples’ feature
vector. In fact, several features have a zero value, so the percentage of a zero value
would always end up with no addition. Therefore, in our implementation, we chose
to set a random increase between zero and one. Ultimately, this result shows that
adding a high percentage of noise only to the features that already had non-zero
values is insufficient to accomplish the evasion.
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(a) Absolute noise addition
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(b) Relative noise addition

Figure 5.13: Evasion rate for different levels of noise injection in the absolute and relative
cases (left side of the figure). Detection detail for a noise level equal to 20 (right side of (a))
and a 1% noise level (right side of (b)). All the results are the average over five repetitions
and include the standard deviation in translucent colour.

5.2.4.4 Injection Impact

The mimicry and the random noise addition attack results have shown that the
evasion rates can go up to around 80%. This appears to be an outstanding result;
however, it does not depict the full view of the problem. For example, it does not tell
anything about the plausibility of the adversarial sample. In fact, we may say that
the plausibility for the method proposed in this work is inversely correlated to the
number of injected features. The more additional calls (with respect to the original
sample) there are, the lower is the plausibility. Therefore, with Figure 5.14, we
evaluate the impact on the samples of both the considered attacks (median case for
the mimicry attack, absolute noise level equal to 20 for the noise attack), in terms of
extra calls added. As with the previous figures, in the x -axis, we put an increasing
percentage of modified features. We insert two y-axes to show the average number
of added calls both as a percentage of the original amount (left axis) and as the
absolute number (right axis). As can be seen in Figure 5.14a, the mimicry attack
causes a massive increase in calls. For example, let us fix the evasion rate to 50%,
which requires modifying around 35% of the modifiable features (see Figure 5.12a).
With this setting, the increment of system API calls would be almost nine thousand
per cent on average. Notably, the standard deviation is quite high, so this number
can be significantly higher or lower; nevertheless, the generated adversarial sample
would most likely not be realistic.

The random noise addition attack attains much better results in this sense.
A 50% evasion rate is accomplished by modifying around 30% of the modifiable
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features (see Figure 5.13a), which means injecting 69% additional calls with respect
to the original samples on average. Although the difference with the mimicry at-
tack is significant, the level of additional calls to add results in being too high to
be plausible.

Overall, the results show the detector’s vulnerability to perturbed inputs, even
with a non-targeted attack. However, to achieve a sufficient evasion rate, attackers
need to inject a vast number of calls, which weakens the attack’s plausibility.
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Figure 5.14: Average impact on the number of calls for mimicry (a) and noise (b) attacks.
The standard deviation is also reported in translucent colour.

5.2.5 Related Work

While it is possible to find multiple research efforts about the formal aspects of
the evasion attack, few of them have focused on creating adversarial samples that
accomplish this kind of attack in practice.

Concerning the Android domain, Pierazzi et al. [104] is currently the most com-
prehensive work in the literature. The authors have proposed a formalisation for
problem space attacks and a method to create evasive Android malware. In par-
ticular, starting from the feature space problem, which has been widely discussed
in the literature, they have identified the constraints (the ones discussed in Sec-
tion 5.2.2.1) to keep the generated samples working and realistic. This means creat-
ing adversarial samples that are (i) robust to preprocessing analysis, (ii) preserved
in their semantics, (iii) completely functioning, and (iv) feasible in its transforma-
tions. To generate the adversarial samples, they have used an automated software
transplantation technique, which consists of taking a piece of code (that contains
the desired features) from another application. Finally, they have evaluated their
system on Drebin [15] and its hardened variant, which uses a Sec-SVM classifier (see
Section 5.1.2.2) [17]. They have shown that it is possible to create a sample with
high evasion rate by making about two dozen transformations for the SVM classifier
and about a hundred transformations for the Sec-SVM classifier. While this work
is robust and effective in its methodology, it could be possible to use an opaque
predicate detection mechanism to detect the unreachable branches [108, 109].
Grosse et al. [32] have proposed a sample generation method with only one con-
straint: keeping the semantics of the evasive samples consistent with a maximum
of 20 transformations. They have tested their system with a deep neural network
classifier trained using the Drebin dataset. However, their work has only performed
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minimal modifications to the Manifest, so these modifications may be detected with
a static analysis tool made to remove unused permissions and undeclared compon-
ents. Furthermore, the adversarial samples have not been tested, so there is no way
to know whether the adversarial samples were correctly executed.
Yang et al. [110] have proposed a methodology to create adversarial Android mal-
ware following two principal constraints: preserving the malicious behaviours and
maintaining the robustness of the application (e.g. correct installation and execu-
tion). They have evaluated their adversarial malware system against the Drebin
classifier [15] and the AppContext classifier [63]. However, their methodology lacks
in preserving the stability of the application (e.g. they show high rates of adversarial
application crashes), especially when the number of features to add increases.
It is worth noting that, differently from our setting (see Section 5.2.3), all the
above-mentioned articles evaluate their proposals on systems with binary features;
thus, only highlighting the presence or absence of certain characteristics in the app.
Table 5.5 performs a comparison of our method with the above-described works.

For what concerns other domains, Song et al. [105] have presented an open-
source framework to create adversarial malware samples capable of evading detec-
tion. The proposed system firstly generates the adversarial samples with random
modifications; then, it minimizes the sample, removing the useless features for the
classification. They used two open-source classifiers: Ember and ClamAV. They also
described the interpretation of the features to give a better explanation of why
the generated adversarial samples evade the classification. They have shown that
the generated adversarial malicious samples can evade the classification and that,
in some cases, the attacks are transferable between different detection systems.
Rosenberg et al. [113] have proposed an adversarial attack against Windows mal-
ware classifiers based on API calls and static features (e.g. printable strings). They
evaluated their system with different variants of RNN (recurrent neural network)
and traditional machine learning classifiers. However, their methodology is based
on the injection of no-op API calls that may be easily detected with a static code
analyser.
Hu and Tan [114] have proposed a generative adversarial network (GAN) to create
adversarial malware samples. They have evaluated their system on different ma-
chine learning-based classifiers. However, their methodology is not reliable because
of the use of GAN, which is known to have an unstable training process [115].

5.2.6 Conclusions

With this work, we have presented a study about the feasibility of performing a fine-
grained injection of system API calls to Android apps in order to evade machine
learning-based malware detectors. This kind of strategy can be particularly effective
for creating a massive amount of adversarial samples with a relatively low effort by
the attackers. However, we have discussed the necessity of satisfying several con-
straints to generate realistic, working samples. The experimental results show that
both the mimicry and the random noise attacks, which do not require a high level
of knowledge about the target system, suffice to evade classification. Nevertheless,
they cause a substantial loss of plausibility of the generated adversarial sample since
they add an excessive number of additional calls; therefore, weakening the effective-
ness. Therefore, we believe that future work should focus on performing this kind of
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Table 5.5: Comparison of related work on practical creation of evasive Android apps.

This work Pierazzi
et al. [104]

Yang
et al. [110]

Grosse
et al. [32]

Reference
classifier R-Packdroid Drebin Drebin, AppCon-

text [63]
Drebin (partially)

Security
analysis Static Static Static Static

Modified
components Dex Dex, Manifest Dex, Manifest Manifest

Feature
type Integer Binary Categorical (Ap-

pContext), binary
(Drebin)

Binary

Trasformation Code addition Code addition,
through auto-
matic software
transplantation

Code addition
and modification,
through auto-
matic software
transplantation

Code addition

Semantics Preserved Preserved (injec-
ted code is not ex-
ecuted)

Preserved for a
limited amount of
mutations

Preserved

Robustness
to
preprocessing

Not explicitly
tested. Not fully
robust to removal
of redundant
code*

Robust to: re-
moval of re-
dundant code,
undeclared
variables, un-
linked resources,
undefined ref-
erences, name
conflicts, no-op
instructions

Not explicitly
tested

Not robust to
removal of un-
used permissions
and undeclared
components

Plausibility Mutated apps
install and start
on an emulator
(limited num-
ber of samples
tested). Code is
not realistic for
the considered
attack types*

Code is realistic.
Mutated apps in-
stall and start on
an emulator

Apps with a
limited amount
of mutations
install, start on
an emulator, and
perform expected
malicious code.
Code is realistic

Mutated apps not
tested. Additions
are not realistic

Side effects No Yes Yes No
Attack type Mimicry and ran-

dom noise
Gradient-based Gradient-based Gradient-based

Suggested
defences Preprocessing* Monotonic classi-

fiers [111]
Adversarial
training, known
malware code
detection, weight
bounding (like
Sec-SVM)

Adversarial
training, distilla-
tion [112]

* Strongly influenced by the number of injections the attack type requires.
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analysis using a gradient approach that minimises the number of injected features
to preserve plausibility. This aspect is also relevant to highlight that the detector
considered in our work employs non-binary features (differently from all previous
articles in the literature). Consequently, we think an interesting future work would
be to compare the impact of the feature vector design (binary vs. non-binary) on
the practical feasibility of adversarial malware creation.

We also point out that our specific implementation to address the inverse feature-
mapping problem is not optimal as well in terms of plausibility. In fact, other work
in the literature — such as the one by Pierazzi et al. [104] where portions of real
code were injected through automated software transplantation — present, among
others, the potential issue of injecting code that is out of context with respect to
the original app. In our case, the main concern lies instead in the choice of injecting
calls to class constructors. That is, we call new objects that are not used in the
rest of the code. Therefore, a more plausible solution for future work could be the
injection of method calls, which are more likely to be realistic even without being
referenced next in the code.



Chapter 6

Conclusions

Machine learning for malware detection has proven to be an effective tool. How-
ever, its design process may hide pitfalls that undermine the deployment in real
scenarios. Such concerns may refer to the usage of complex algorithms and feature
sets that, all in all, allow neither interpreting what the models learn nor catching
the actual characteristics of malware. Consequently, systems with these issues may
learn spurious patterns and be particularly vulnerable to adversarial attacks.

In this scenario, the work of this thesis has put its main focus on the detection
of Android ransomware, an impactful threat that had swift spread in the past few
years. In this respect, I have first explored the detection performance of different
sets of a single kind of feature, taking into account typical strategies from attackers
to prevent detection, such as obfuscation. Then, using techniques from explainable
machine learning, I have inspected the validity of the developed systems, with the
ultimate goal of proposing effective methods to employ those techniques. In par-
ticular, experimental work has been done to start understanding how explainability
can positively impact malware detection. Associated with the aim of improving the
design process of machine learning-based systems, I have broadened my focus and
co-authored work on adversarial attacks. In this case, I have collaborated in un-
derstanding potential relationships between explainable and adversarial learning, in
order to assess models’ vulnerability to evasion attacks. Moreover, by putting the
hat of an attacker, the concrete feasibility of creating adversarial Android apps has
been explored.

Overall, I claim the topics I have explored have turned out to be quite relevant
and worth to be studied. The thesis has put major emphasis on experimental ana-
lysis. With this respect, I have realised the importance of beware of several different
aspects within the set-up and design process of ML-based models. The work on
the detection of Android ransomware has highlighted the necessity of examining the
validity of the feature set from multiple perspectives, both the ML-specific and the
domain-specific ones. In this sense, I point out that the proposed system API-based
features present the typical disadvantages of static analysis. Moreover, a thorough
assessment of their robustness against adversarial strategies has not been performed.
Specifically, the practical feasibility of evasion attacks has only been tested against
mimicry and random noise alterations. Therefore, future work should evaluate the
vulnerability of system API calls against gradient-based evasion attacks. This way,
it could also be possible to assess if this kind of strategy allows attackers to minimise
the number of injected features; hence, preserving the plausibility of the adversarial
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samples.
Differently from previous work in the literature, this thesis has the merit to consider
practical attacks against non-binary features. However, the specific implementation
to address the inverse feature-mapping problem is not refined enough in terms of
plausibility compared to the newest works. Therefore, it would be interesting to
inspect the effectiveness of more complex feature injections, such as automated soft-
ware transplantation, against settings using non-binary features. Ultimately, such a
further in-depth analysis would be relevant to understand if the architecture of oper-
ating systems or their components (e.g. the APIs) facilitate or prevent the practical
accomplishment of evasion attacks.

The usage of explainable machine learning has revealed its potentialities in help-
ing to interpret even security-specific elements of detectors. However, the considered
two-class setting, where ransomware apps are evaluated against legitimate ones, is
not able to fully capture behaviour in the middle. In other words, it would be relev-
ant to also identify the characteristics that ransomware attacks do and do not share
with generic malware. Moreover, the settings using system API class or method calls
have not been inspected. Therefore, I point out that further new insights can be
revealed by considering other setting variants. For example, it would be significant
to check if classifiers using finer-grained API calls provide explanations that embed
the same conceptual meaning of the coarser-grained settings.
Another limitation is related to the usage of gradient-based attribution techniques
only, which do not allow understanding the interactions among the features. In this
sense, combining different techniques may enable one to grasp the particular nu-
ances of each kind of explanation. Even more, discovering high-level concepts might
greatly improve the understanding of the applications under analysis.

Finally, the thesis has explored empirical ways to relate adversarial and explain-
able machine learning through proxy metrics. In this sense, I point out the possibility
for future research work to first go deeper with the proposed experimental paths.
Then, I also observe the necessity to develop more theoretically-sound frameworks
that may embed the lessons learnt on the usage of explainable machine learning
more systematically. Such an enhancement would ultimately allow generalising all
the analyses and proposed methods of this thesis to other malware detection prob-
lems.
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