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 In this article the known models are considered for relativistic polyatomic gases with an 
arbitrary number of moments, in the framework of Extended Thermodynamics. These 
models have the downside of being hyperbolic only in a narrow domain around equilibrium, 
called "hyperbolicity zone". Here it is shown how to overcome this drawback by presenting a 
new model which satisfies the hyperbolicity requirement for every value of the independent 
variables and without restrictions. The basic idea behind this new model is that hyperbolicity 
is limited in previous models by the approximations made there. It is here shown that 
hyperbolicity isn't limited also for an approximated model if terms of the same order are 
consistently considered, in a new way never used before in literature.  To design and 
complete this new model, well accepted principles are used such as the "Entropy Principle" 
and the "Maximum Entropy Principle".  Finally, new trends are analized and these 
considerations may require a modification of the results published so far; as a bonus, more 
manageable balance equations are obtained. This allows to obtain more stringent results 
than those so far known. For example, we will have a single quantity (the energy e)  expressed 
by an integral and all the other constitutive functions will be expressed in terms of it and its 
derivatives with respect to temperature.  Another useful consequence is its easier 
applicability to the case of diatomic and ultrarelativistic gases which are useful, at least for 
testing the model in simple cases. 

1.Introduction 

This article is placed in the context of Extended Thermodynamics. It 
was conceived with the aim of eliminating some negative aspects of 
Ordinary Thermodynamics (OT). For example, OT uses as field 
equations the conservation laws of mass and of momentum-energy 
closed through the Navier-Stokes and Fourier laws. In this way a 
parabolic set of equations is found which predicts infinite velocity of 
propagation of shock waves. This is in contradiction with the 
Einstenian Relativity Principle according to which nothing can 
propagate with a velocity greater than that of light.  

Extended Thermodynamics was elaborated just to solve this problem, 
by substituting the parabolic set of equations with an hyperbolic one. 
Obviously, many other important mathematical and physical goals 
were realized. It beguns treating firstly the case of a monoatomic gas 
both in the classical case [1] and in the relativistic case [2] (See also [3]).  

In a subsequent period an important upgrade of the theory was 
obtained by finding models also for polyatomic gases in the classical 
framework (See [4], [5] and in the relativistic framework (See [6], [7]).  

The reason why this article is placed in the relativistic context is  that 
the theory par excellence is the relativistic one and the classical one 
can be used only as an approximation only when the speeds involved, 
divided by that of light, aren't infinitesimal (to this end it isn't 
necessary that the  particle speeds are close to the light speed); 
moreover, the classical theory is preferred (when this is possible) 
because it gives rise to simpler equations. But this is not the case in 
Continuum Thermodynamics because in the classical case its laws 
must respect the Galilean Equivalence Principle, while in the 
relativistic case we need not worry about it because the Einsteinian 
Equivalence Principle comes out automatically for the covariant form 
of the equations themselves. Finally, the polyatomic structure of 
molecules is not destroyed by the fact that their average velocity is 
high; at most, this can happen when their relative speed is high, i.e., 
when the temperature is high.   To be more precise, the relativistic 
formulation becomes necessary when the term 

𝛾𝛾 =
𝑚𝑚 𝑐𝑐2

𝑘𝑘𝐵𝐵 𝑇𝑇
 

is large (here m is the particle mass, c the speed of light, kB the 
Boltzmann constant and T the temperature). This happens for 
example when the temperature is not very high or when the particles 
haven't infinitesimal mass. In any case, the equations for the classical 
case can be easily obtained from the relativistic ones jut making their 
limit for c which tends to infinity. For this reason, articles on 
polyatomic gases in the context of relativity have already been 
published, such as [6], [8], [9],  [10], [11].  

Recently, in the article [12], the case has been considered of a model 
with an arbitrary but fixed number of moments to describe  
polyatomic gases in the relativistic context and the following system 
of balance equations has been found:  

𝜕𝜕𝛼𝛼𝐴𝐴𝛼𝛼𝛼𝛼1…𝛼𝛼𝑛𝑛  =  𝐴𝐴𝛼𝛼1…𝛼𝛼𝑛𝑛        with n=0,1,...,N.         (1) 

where N is an arbitrary fixed number; for every choice of N a different 
model is obtained and we must choose that more fitting experimental 
results. 

However, the explicit closure was not found in [12], nor the 
hyperbolicity requirement  was investigated and we do it here. If we 
impose the MEP we find the following expression for the distribution 
function  

𝑓𝑓 = exp �−1−  𝜒𝜒𝜀𝜀+𝜒𝜒
𝑘𝑘𝐵𝐵

�           (2) 

with 𝜒𝜒𝜀𝜀  =  𝑚𝑚 𝜆𝜆 +  𝜆𝜆𝜇𝜇 𝑝𝑝𝜇𝜇  �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

� ,  

𝜒𝜒 = � 𝜆𝜆𝛼𝛼1𝛼𝛼2…𝛼𝛼𝑛𝑛

𝑁𝑁

𝑛𝑛=2
 𝑝𝑝𝛼𝛼1 𝑝𝑝𝛼𝛼2  …𝑝𝑝𝛼𝛼𝑛𝑛  1

𝑚𝑚𝑛𝑛−1  �1 + 𝑛𝑛 𝐼𝐼
𝑚𝑚 𝑐𝑐2

� , 

where  I is a parameter which takes into account the internal energy 
of a molecule and 𝑝𝑝𝛼𝛼is the 4-momentum of a particle, satisfying the 
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condition 𝑝𝑝𝛼𝛼 𝑝𝑝𝛼𝛼  =  𝑚𝑚2 𝑐𝑐2 . This expression for f implies the following 
expression for the 4-potential  

ℎ′𝛼𝛼  =  − 𝑘𝑘𝐵𝐵 𝑐𝑐 � 𝑑𝑑 𝑃𝑃
⇀

 
𝑅𝑅3

 ∫ 𝑝𝑝𝛼𝛼+∞
0 𝑒𝑒−1−

𝜒𝜒𝜀𝜀+𝜒𝜒
𝑘𝑘𝐵𝐵    𝜑𝜑(𝐼𝐼)𝑑𝑑𝑑𝑑    (3) 

where φ(I) measures "how much" the gas is polyatomic (A possibility is 
that φ(I) = Ia and monoatomic gases are obtained in the limit for a 
going to -1; see [8]). After that, the tensors in the left hand sides of (1) 
becomes 

𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝑛𝑛  =   𝜕𝜕 ℎ′𝛼𝛼

𝜕𝜕 𝜆𝜆𝑎𝑎1...𝛼𝛼𝑛𝑛
 ,            (4) 

which are evidently simmetric with respect to every couple of 
indexes. Eq. (4) gives the closure we were looking for. But it is only 
symbolic, since we are not able to calculated the integral in (3) and, 
moreover, it is not integrable for every values of the independent 
variables, as we will see in Section 3. For this reason everyone is 
satisfied by using an approximated expression with a Taylor's 
expansion around equilibrium. This  is defined as the state in which 
𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛 =  0 for n=2, ..., N, while λ and λµ remain independent variables; 
we will refer to this definition by adding the suffix ε. Subsequently, a 
change of variables is usually used from λ, λµ,  𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛

 with 2 ≤ n ≤ N to 
the pressure p, the absolute temperature T, the 4-velocity Uα and 
𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛

 with 2 ≤ n ≤ N; we will refer to quantities depending only on  p,  
T,  Uα by adding the suffix E.  

In particular, this change of variables is achieved by finding λ, λµ, from 
the relationships 

𝐴𝐴𝛼𝛼 = 𝑚𝑚 𝑝𝑝
𝑘𝑘𝐵𝐵𝑇𝑇

 𝑈𝑈𝛼𝛼  ,  Uα Uα = c2 , Uα Uβ Aαβ = e (p,T) c2 , 

with e (p, T) the state function giving the energy density.  

With this in mind, in the next section the closure will be found and 
discussed up to whatever order with respect to equilibrium; it will be 
proved that the new field equations here proposed  are hyperbolic up 
to whatever order with respect to equilibrium, unlike those already 
known in literature . In sect. 3 the integrability  of eq. (3) is studied, 
while in  sect. 4, new trends of the relativistic model for polyatomic 
gases are proposed and these considerations may require a 
modification of the results published up to now but also lead to a 
simpler closure in  the case of diatomic gases. 

2. The hyperbolicity up to whatever order 

Goal of this section is to demonstrate that the field equations above 
obtained are hyperbolic for any value of the independent variables. 
This result is completely opposite to that of other models in  literature, 
as it can be seen from the articles [14], [15], [16], where hyperbolicity is 
valid only in a restricted set of the independent variables close to the 
equilibrium state. This narrow zone of hyperbolicity (in the models 
already known in the literature) is due to the approximations to which 
the balance equations are subjected.  It is true that some 
approximation is still necessary, but if such approximations are made 
consistently, as indicated in this article, the hyperbolicity 
requirement is not limited.  

In order to prove hyperbolicity up to whatever order, let us begin by 
using the well known serial development 

𝑒𝑒−𝑥𝑥  =  �(−1)𝑟𝑟
+∞

𝑟𝑟=0

  
𝑥𝑥𝑟𝑟

𝑟𝑟!
 ;  

ℎ′𝛼𝛼  =  ∑ 
𝑟𝑟=0

+∞
(−1)𝑟𝑟  1

𝑟𝑟!
 ℎ′𝑟𝑟,𝛼𝛼   with                                                          (5) 

ℎ′𝑟𝑟,𝛼𝛼  =  − 𝑘𝑘𝐵𝐵 𝑐𝑐 � 𝑑𝑑 𝑃𝑃
→

𝑅𝑅3
� 𝑝𝑝𝛼𝛼
+∞

0
𝑒𝑒−1− 𝜒𝜒𝜀𝜀𝑘𝑘𝐵𝐵  �

𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟

  𝜑𝜑(𝐼𝐼)𝑑𝑑𝑑𝑑  

The integrals here present can be easily calculated by using the 
results of Appendix A, and one finds 

ℎ′𝑟𝑟,𝛽𝛽1  =  − 𝑐𝑐 � 1
𝑘𝑘𝐵𝐵
�
𝑟𝑟−1

� 𝐻𝐻ℎ2,ℎ3,...,ℎ𝑁𝑁
𝛽𝛽1𝛽𝛽2...𝛽𝛽𝜂𝜂

ℎ𝑖𝑖 ∈𝑆𝑆𝑟𝑟
   𝜆𝜆𝛽𝛽2𝛽𝛽3 . . . 𝜆𝜆𝛽𝛽𝜂𝜂−𝑁𝑁+1...𝛽𝛽𝜂𝜂

,      (6) 

where η = 1+ 2 h2 + 3h3 + … +N hN , the factor  𝜆𝜆𝛽𝛽2𝛽𝛽3 . . . 𝜆𝜆𝛽𝛽𝜂𝜂−𝑁𝑁+1...𝛽𝛽𝜂𝜂
 denotes 

the product of h2 tensors λβγ , h3 tensors λβγδ , and so on, of hN tensors  
𝜆𝜆𝛽𝛽1...𝛽𝛽𝑁𝑁(Obviously, all with different indexes). Moreover, Sr is the set of 
integer numbers  𝑆𝑆𝑟𝑟  =  {0 ≤  ℎ𝑖𝑖  ≤ 𝑟𝑟  , ∑ ℎ𝑖𝑖𝑁𝑁

𝑖𝑖=2  =  𝑟𝑟} and 

𝐻𝐻ℎ2,ℎ3,..,ℎ𝑁𝑁
𝛽𝛽1...𝛽𝛽𝜂𝜂 =  � 𝑑𝑑 𝑃𝑃 

→

𝑅𝑅3
� 𝑒𝑒−1−

𝜒𝜒𝜀𝜀
𝑘𝑘𝐵𝐵 

+∞

0
 𝑝𝑝𝛽𝛽1 . . .𝑝𝑝𝛽𝛽𝜂𝜂   � 1

𝑚𝑚
�1 + 2𝐼𝐼

𝑚𝑚𝑐𝑐2
��
ℎ2

.  

 . � 1
𝑚𝑚2 �1 + 3𝐼𝐼

𝑚𝑚𝑐𝑐2
��
ℎ3

 … � 1
𝑚𝑚𝑁𝑁−1 �1 +  𝑁𝑁𝑁𝑁

𝑚𝑚𝑐𝑐2
��
ℎ𝑁𝑁

  𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼 = 𝑒𝑒−1−
𝑚𝑚 𝜆𝜆
𝑘𝑘𝐵𝐵  . 

.  � 𝜙𝜙𝑝𝑝,ℎ2,ℎ3,...,ℎ𝑁𝑁

�𝜂𝜂2�

𝑝𝑝=0
(𝜆𝜆, 𝛾𝛾)  h(β1β2  … hβ2p-1β2p  lβ2p+1

  …lβη) ,        (7) 

𝛾𝛾 =  𝑚𝑚𝑚𝑚
𝑘𝑘𝐵𝐵
�𝜆𝜆𝛼𝛼𝜆𝜆𝛼𝛼       ,    𝑙𝑙𝛼𝛼 = 𝑚𝑚𝑐𝑐2

𝛾𝛾 𝑘𝑘𝐵𝐵
𝜆𝜆𝛼𝛼 ,  

𝜙𝜙𝑝𝑝,ℎ2,ℎ3,...ℎ𝑁𝑁= 

=  �
𝜂𝜂

2𝑝𝑝�  
4 𝜋𝜋

2𝑝𝑝 + 1
𝑚𝑚𝜂𝜂+2𝑐𝑐2𝑝𝑝+2  � 𝐽𝐽2𝑝𝑝+2,𝜂𝜂−2𝑝𝑝

+∞

0
(𝛾𝛾·)𝜓𝜓𝑝𝑝,ℎ2,ℎ3,...ℎ𝑁𝑁(𝐼𝐼) 𝑑𝑑 𝐼𝐼 ,  

and 

𝜓𝜓𝑝𝑝,ℎ2,ℎ3,...ℎ𝑁𝑁= = �
1
𝑚𝑚
�1 + 

2𝐼𝐼
𝑚𝑚𝑐𝑐2

��
ℎ2

 �
1
𝑚𝑚2 �1 + 

3𝐼𝐼
𝑚𝑚𝑐𝑐2

��
ℎ3

 . . . �
1

𝑚𝑚𝑁𝑁−1 �1

+ 
𝑁𝑁𝑁𝑁
𝑚𝑚𝑐𝑐2

��
ℎ𝑁𝑁

 𝜑𝜑(𝐼𝐼) 

The integrability of this last expression is an immediate 
consequence of the theorems proved in [13]. By substituting (6) and 
(7) in (4) we find the requested expression for the fields  𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝑛𝑛. 

We can now prove hyperbolicity of the resulting field equations for 
every value of the Lagrange multipliers. 

2.1. The convexity of ξα h’α 

Let us use the compact notation XA to denote λ, λα, and the notation 
YC n to denote 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛   for 2 ≤ n ≤ N. After that, for every constant time-
like congruence ξα, we consider the quadratic form 

𝐾𝐾 = 𝜉𝜉𝛼𝛼  �
𝜕𝜕2 ℎ′𝛼𝛼

𝜕𝜕 𝑋𝑋𝐴𝐴 𝜕𝜕𝑋𝑋𝐵𝐵
𝛿𝛿 𝑋𝑋𝐴𝐴 𝛿𝛿𝑋𝑋𝐵𝐵 +  2 

𝜕𝜕2 ℎ′𝛼𝛼

𝜕𝜕 𝑋𝑋𝐴𝐴 𝜕𝜕𝑌𝑌𝐶𝐶𝑛𝑛
𝛿𝛿 𝑋𝑋𝐴𝐴 𝛿𝛿𝑌𝑌𝐶𝐶𝑛𝑛

+
𝜕𝜕2 ℎ′𝛼𝛼

𝜕𝜕𝑌𝑌𝐶𝐶𝑛𝑛 𝜕𝜕𝑌𝑌𝐷𝐷
𝑞𝑞  𝛿𝛿𝑌𝑌𝐶𝐶𝑛𝑛 𝛿𝛿 𝑌𝑌𝐷𝐷

𝑞𝑞�  = 

= −  
𝑐𝑐
𝑘𝑘𝐵𝐵

 𝜉𝜉𝛼𝛼  � 𝑑𝑑 𝑃𝑃
→

𝑅𝑅3
� 𝑒𝑒−1−

𝜒𝜒𝜀𝜀
𝑘𝑘𝐵𝐵

+∞

0
�(𝛿𝛿 𝜒𝜒𝜀𝜀)2  ∑ 

𝑟𝑟=0

+∞
(−1)𝑟𝑟  

1
𝑟𝑟! �

𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟

−  2 𝛿𝛿 𝜒𝜒𝜀𝜀 𝛿𝛿 𝜒𝜒 ∑ 
𝑟𝑟=1

+∞
(−1)𝑟𝑟  

1
(𝑟𝑟 − 1)!�

𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟−1

+ (𝛿𝛿𝜒𝜒)2 ∑ 
𝑟𝑟=2

+∞
(−1)𝑟𝑟  

1
(𝑟𝑟 − 2)!�

𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟−2

� 𝑝𝑝𝛼𝛼 𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼 . 

But we have that 

∑ 
𝑟𝑟=1

+∞
(−1)𝑟𝑟  1

(𝑟𝑟−1)!
� 𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟−1

= − ∑ 
𝑅𝑅=0

+∞
(−1)𝑅𝑅  1

R!
� 𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑅𝑅
,  

 

∑ 
𝑟𝑟=2

+∞
(−1)𝑟𝑟  1

(𝑟𝑟−2)!
2 =  ∑ 

𝑅𝑅=0

+∞
(−1)𝑅𝑅  1

R!
� 𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑅𝑅
,  

 
where for the first line we have changed index with the law r=1+R, 
while for the second line we have changed index with the law r=2+R. 
The result allows us to rewrite K as 

K = −  
𝑐𝑐
𝑘𝑘𝐵𝐵

 𝜉𝜉𝛼𝛼  � 𝑑𝑑 𝑃𝑃
→

𝑅𝑅3
� 𝑒𝑒−1−

𝜒𝜒𝜀𝜀
𝑘𝑘𝐵𝐵

+∞

0
∑ 
𝑟𝑟=0

+∞
(−1)𝑟𝑟  

1
𝑟𝑟!�

𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟

(𝛿𝛿 𝜒𝜒𝜀𝜀

+ 𝛿𝛿 𝜒𝜒 )2   𝑝𝑝𝛼𝛼 𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼 . 

 
 
 
Since K is negative defined, we have that ξα h’α is a convex function 
for every value of the Lagrange multipliers and for every value of ξα; 
this property assures us that the field equations are hyperbolic.  
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But the expression (5) is burdened by the presence of the serial 
development. To avoid this, one could think of replacing it with the 
serial truncated to order r=M, i.e.,  
 

ℎ′𝑀𝑀𝛼𝛼  =  − 𝑘𝑘𝐵𝐵 𝑐𝑐 � 𝑑𝑑 𝑃𝑃
→

𝑅𝑅3
∫ 𝑝𝑝𝛼𝛼+∞
0 𝑒𝑒−1− 𝜒𝜒𝜀𝜀𝑘𝑘𝐵𝐵   ∑ 

𝑟𝑟=0

M
(−1)𝑟𝑟  1

𝑟𝑟!
 � 𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟

  𝜑𝜑(𝐼𝐼)𝑑𝑑𝑑𝑑 .    (9) 

In this way we find 

𝐾𝐾𝑀𝑀 ==  −  
𝑐𝑐
𝑘𝑘𝐵𝐵

 𝜉𝜉𝛼𝛼  � 𝑑𝑑 𝑃𝑃 
→

𝑅𝑅3
� 𝑒𝑒−1−

𝜒𝜒𝜀𝜀
𝑘𝑘𝐵𝐵

+∞

0
 �(𝛿𝛿 𝜒𝜒𝜀𝜀 + 𝛿𝛿𝜒𝜒)2 ∑ 

𝑟𝑟=0

𝑀𝑀−2
(−1)𝑟𝑟

1
𝑟𝑟!�

𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟

+ (𝛿𝛿 𝜒𝜒𝜀𝜀)2   �(−1)𝑀𝑀−1  
1

(𝑀𝑀− 1)!
 
𝜒𝜒𝑀𝑀−1

𝑘𝑘𝐵𝐵𝑀𝑀−1
  

+ (−1)𝑀𝑀  
1
𝑀𝑀!

 
𝜒𝜒𝑀𝑀

𝑘𝑘𝐵𝐵𝑀𝑀
  �  

+  2 𝛿𝛿 𝜒𝜒𝜀𝜀 𝛿𝛿 𝜒𝜒  (−1)𝑀𝑀  
1

(𝑀𝑀− 1)!
 
𝜒𝜒𝑀𝑀−1

𝑘𝑘𝐵𝐵𝑀𝑀−1
  � 𝑝𝑝𝛼𝛼 𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼  . 

 
Therefore  ξα h’α is a convex function for any value of its variables, 
while the convexity of  ξα ℎ′𝑀𝑀𝛼𝛼   is ensured only up to the order M-2 with 
respect to  equilibrium since in this case the second and third terms 
in the bracket […] of (10) are neglected.  
 
This is in perfect agreement with [14] which shows how the hyperbolic 
zone increases when the equations develop until the second order, 
rather than the first one (See also [15], [16]).  
 
So there is now the problem on how to "save goat and cabbage", i.e. to 
have field equations which are symmetric and at the same time 
hyperbolic for any value of the independent variables. We will now 
deal with this aspect. Let us substitute eq. (4) in eqs. (1) and distinguish 
the values n=0,1 and 2 ≤ n ≤ N, i.e.   
 
𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕 𝜆𝜆2
 𝜕𝜕𝛼𝛼 𝜆𝜆 + 𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕 𝜆𝜆 𝜕𝜕 𝜆𝜆𝛾𝛾
 𝜕𝜕𝛼𝛼 𝜆𝜆𝛾𝛾  +  ∑  𝑁𝑁

𝑞𝑞=2  𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕 𝜆𝜆 𝜕𝜕 𝜆𝜆𝛽𝛽1...𝛽𝛽𝑞𝑞
 𝜕𝜕𝛼𝛼  𝜆𝜆𝛽𝛽1...𝛽𝛽𝑞𝑞  =  0 , 

𝜕𝜕2 ℎ′𝛼𝛼

𝜕𝜕𝜆𝜆𝛽𝛽𝜕𝜕𝜕𝜕
 𝜕𝜕𝛼𝛼 𝜆𝜆 +  𝜕𝜕

2 ℎ′𝛼𝛼

𝜕𝜕𝜆𝜆𝛽𝛽𝜕𝜕𝜆𝜆𝛾𝛾
 𝜕𝜕𝛼𝛼 𝜆𝜆𝑌𝑌  + ∑  𝑁𝑁

𝑞𝑞=2
𝜕𝜕2 ℎ′𝛼𝛼

𝜕𝜕𝜆𝜆𝛽𝛽𝜕𝜕𝜆𝜆𝛽𝛽𝑞𝑞...𝛽𝛽𝑞𝑞
 𝜕𝜕𝛼𝛼 𝜆𝜆𝛽𝛽𝑞𝑞...𝛽𝛽𝑞𝑞 = 0  

𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛𝜕𝜕 𝜆𝜆
 𝜕𝜕𝛼𝛼𝜆𝜆 +  

𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛𝜕𝜕 𝜆𝜆𝛾𝛾
 𝜕𝜕𝛼𝛼𝜆𝜆𝛾𝛾  + �  

𝑁𝑁

𝑞𝑞=2

 
𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛𝜕𝜕 𝜆𝜆𝛽𝛽1...𝛽𝛽𝑞𝑞
 𝜕𝜕𝛼𝛼𝜆𝜆𝛽𝛽1...𝛽𝛽𝑞𝑞  

=  𝐼𝐼𝛼𝛼1...𝑎𝑎𝑛𝑛  ,  
or, in compact notation, 
 
𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕𝑋𝑋𝐴𝐴𝜕𝜕𝑋𝑋𝐵𝐵
𝜕𝜕𝛼𝛼𝑋𝑋𝐵𝐵  + 𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕𝑋𝑋𝐴𝐴𝜕𝜕𝑌𝑌𝐷𝐷
𝑞𝑞 𝜕𝜕𝛼𝛼𝑌𝑌𝐷𝐷

𝑞𝑞  = 0  ,                                               (11) 

 
𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕𝑌𝑌𝐶𝐶𝑛𝑛𝜕𝜕𝑋𝑋𝐵𝐵
𝜕𝜕𝛼𝛼𝑋𝑋𝐵𝐵  + 

𝜕𝜕2ℎ′𝛼𝛼

𝜕𝜕𝑌𝑌𝐶𝐶𝑛𝑛𝜕𝜕𝑌𝑌𝐷𝐷
𝑞𝑞 𝜕𝜕𝛼𝛼𝑌𝑌𝐷𝐷

𝑞𝑞  = 𝐼𝐼𝐶𝐶   , 

 
If we substitute h’α from eq. (5), there is no problem except for the 
presence of the serial expansion. Instead of this, if we substitute here 
h’α with the approximated expression (9), we see that the coefficients 
of ∂α XB and of ∂α YD

q   are calculated at different order with respect to 
equilibrium. A possibility is to think that the approximation is 
consistent only if these coefficients are calculated at the same order. 
This is the same thing that is done in the simple problems of Rational 
Mechanics of rigid bodies when one does the series development of 
the equations of motion around an equilibrium position: The 
coefficients of the second derivatives of the Lagrangian parameters 
are simply calculated at equilibrium. In this case it follows that the 
consistent order approximation of the field equations (11) is 

𝜕𝜕2ℎ′𝑀𝑀𝛼𝛼

𝜕𝜕 𝑋𝑋𝐴𝐴𝜕𝜕 𝑋𝑋𝐵𝐵
 𝜕𝜕𝛼𝛼 𝑋𝑋𝐵𝐵  +  

𝜕𝜕2ℎ′𝑀𝑀+1𝛼𝛼

𝜕𝜕 𝑋𝑋𝐴𝐴𝜕𝜕 𝑌𝑌𝐷𝐷
𝑞𝑞  𝜕𝜕𝛼𝛼 𝑌𝑌𝐷𝐷

𝑞𝑞  =  0 ,

𝜕𝜕2ℎ′𝑀𝑀+1𝛼𝛼

𝜕𝜕 𝑌𝑌𝐶𝐶𝑛𝑛𝜕𝜕 𝑋𝑋𝐵𝐵
 𝜕𝜕𝛼𝛼 𝑋𝑋𝐵𝐵  + 

𝜕𝜕2ℎ′𝑀𝑀+2𝛼𝛼

𝜕𝜕 𝑌𝑌𝐶𝐶𝑛𝑛𝜕𝜕 𝑌𝑌𝐷𝐷
𝑞𝑞  𝜕𝜕𝛼𝛼 𝑌𝑌𝐷𝐷

𝑞𝑞  

=   𝐼𝐼𝑀𝑀+1𝐶𝐶 ,                                          (12)   
 
where the order M+1 of Ic has been chosen because it was tested 
positevely in the articles [9], (17). 
 
It is easy to verify that this system is hyperbolic for every value of the 
independent variables. In fact, it is symmetric; so hyperbolicity holds 
if the matrix of coefficients of  ∂α XB and of ∂α YD

q  is negative defined, 
i.e., if the quadratic form 

𝐾𝐾𝑀𝑀
~

=  𝜉𝜉𝛼𝛼  �
𝜕𝜕2ℎ′𝑀𝑀𝛼𝛼

𝜕𝜕𝑋𝑋𝐴𝐴𝜕𝜕𝑋𝑋𝐵𝐵
   𝛿𝛿𝑋𝑋𝐴𝐴 𝛿𝛿𝑋𝑋𝐵𝐵   + 2   

𝜕𝜕2ℎ′𝑀𝑀+1𝛼𝛼

𝜕𝜕𝑋𝑋𝐴𝐴𝜕𝜕𝑌𝑌𝐶𝐶𝑛𝑛
   𝛿𝛿𝑋𝑋𝐴𝐴 𝛿𝛿𝑌𝑌𝐶𝐶𝑛𝑛   

+   
𝜕𝜕2ℎ′𝑀𝑀+2𝛼𝛼

𝜕𝜕𝑌𝑌𝐶𝐶𝑛𝑛 𝜕𝜕𝑌𝑌𝐷𝐷
𝑞𝑞     𝛿𝛿𝑌𝑌𝐶𝐶𝑛𝑛   𝛿𝛿 𝑌𝑌𝐷𝐷

𝑞𝑞  � 

is negative defined  for every value of the Lagrange multipliers. This 
property holds iff M is an even number. In fact, by using (9) we find 

𝐾𝐾𝑀𝑀
~

=  −  
𝑐𝑐
𝑘𝑘𝐵𝐵

 𝜉𝜉𝛼𝛼  � 𝑑𝑑 𝑃𝑃
→

𝑅𝑅3
� 𝑒𝑒−1− 𝜒𝜒𝜀𝜀𝑘𝑘𝐵𝐵 
+ ∞

0
�(−1)𝑟𝑟
𝑀𝑀

𝑟𝑟=0

 
1
𝑟𝑟!

𝑟𝑟=0

𝑀𝑀

�
𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟

 (𝛿𝛿 𝜒𝜒𝜀𝜀 

+ 𝛿𝛿 𝜒𝜒)2 𝑝𝑝𝛼𝛼 𝜙𝜙(𝐼𝐼) 𝑑𝑑 𝐼𝐼  . 
 
Now, in Appendix B we prove that iff  M is an even number we have 

that ∑ (−1)𝑟𝑟𝑀𝑀
𝑟𝑟=0  1

𝑟𝑟!
� 𝜒𝜒
𝑘𝑘𝐵𝐵
�
𝑟𝑟

> 0 for every value of 𝜒𝜒  and this fact proves 

our statement.  
 
It is interesting the similarity with the results of [18] related to the 
classical case according to which the hyperbolicity can be obtained 
only if the highest order of the moments N is even; this condition is 
no longer valid in the relativistic case (because in [12] it is shown that, 
by making  the non-relativistic limit, we obtain always a classical 
model with higher order of moments which is an even number). Here 
we have obtained instead that the highest order with respect to the 
equilibrium in which we stop the approximation must be an even 
number M.  
 
It must however be said that the advantage of having obtained a 
hyperbolic system for any value of the independent variables has a 
cost; in fact, the system (12) hasn't the divergence form. For example, 
(12)1 can be written as ∂α fαA=0 if and only if  
 
𝜕𝜕 𝑓𝑓𝛼𝛼𝛼𝛼

𝜕𝜕 𝑋𝑋𝐵𝐵
=  𝜕𝜕2ℎ′𝑀𝑀

𝛼𝛼

𝜕𝜕𝑋𝑋𝐴𝐴 𝜕𝜕 𝑋𝑋𝐵𝐵
 , 𝜕𝜕 𝑓𝑓𝛼𝛼𝛼𝛼

𝜕𝜕 𝑌𝑌𝐷𝐷
𝑞𝑞 =  𝜕𝜕

2ℎ′𝑀𝑀+1
𝛼𝛼

𝜕𝜕𝑋𝑋𝐴𝐴 𝜕𝜕 𝑌𝑌𝐷𝐷
𝑞𝑞  

whose integrability condition is 
𝜕𝜕3�ℎ′𝑀𝑀+1

𝛼𝛼 − ℎ′𝑀𝑀
𝛼𝛼 �

𝜕𝜕 𝑋𝑋𝐴𝐴 𝜕𝜕 𝑋𝑋𝐵𝐵 𝜕𝜕 𝑌𝑌𝐷𝐷
𝑞𝑞 = 0  

 
and this is not satisfied. A similar consideration can be done for (12)2.  
We conclude that with this choice of truncation with respect to 
equilibrium, we must renounce to the divergence form of the field 
equations.  
 
Thus two choices are present: The system 

𝜕𝜕2ℎ′𝑀𝑀𝛼𝛼

𝜕𝜕 𝑋𝑋𝐴𝐴𝜕𝜕 𝑋𝑋𝐵𝐵
 𝜕𝜕𝛼𝛼 𝑋𝑋𝐵𝐵  +  

𝜕𝜕2ℎ′𝑀𝑀𝛼𝛼

𝜕𝜕 𝑋𝑋𝐴𝐴𝜕𝜕 𝑌𝑌𝐷𝐷
𝑞𝑞  𝜕𝜕𝛼𝛼 𝑌𝑌𝐷𝐷

𝑞𝑞  =  0 ,

𝜕𝜕2ℎ′𝑀𝑀𝛼𝛼

𝜕𝜕 𝑌𝑌𝐶𝐶𝑛𝑛𝜕𝜕 𝑋𝑋𝐵𝐵
 𝜕𝜕𝛼𝛼 𝑋𝑋𝐵𝐵  + 

𝜕𝜕2ℎ′𝑀𝑀𝛼𝛼

𝜕𝜕 𝑌𝑌𝐶𝐶𝑛𝑛𝜕𝜕 𝑌𝑌𝐷𝐷
𝑞𝑞  𝜕𝜕𝛼𝛼 𝑌𝑌𝐷𝐷

𝑞𝑞  

=   𝐼𝐼𝑀𝑀−1𝐶𝐶 ,                                          (13)   
 
with I-1

C=0, I0
C=0, or the system (12). The first one is hyperbolic only up 

to a certain order with respect to equilibrium (with a zone of 
hyperbolicity increasing with the growth of M) and the second one 
which is hyperbolic for any order with respect to equilibrium but 
which doesn't have the divergence form. Here the idea is assumed to 
prefer the second one of the above choices; it is clear that this decision 
is unpopular because people are so used to the first choice to consider 
it natural and look at everything else with distrust. The first choice 
consists in developing h’α up to a certain order and then taking what 
comes out of it, letting it to decide the terms of the expansion around 
equilibrium. Now, it is true that h’α has a role of the utmost importance 
to obtain symmetric equations and it has also suggested us how to 
construct the second choice, but this doesn't mean that it has 
universal importance to lay down laws also on other aspects, such as 
choosing which terms to hold or not in the expansion around 
equilibrium. Therefore it is very important as a mathematical tool, but 
its physical meaning is doubtful, while the second choice is based on 
the need to have hyperbolic equations for any value of the 
independent variables and, therefore, on the physical principle of 
cause and effect and on the fact that wave propagation speeds must 
not exceed that of light. This consistency of order around equilibrium, 
which is the basis of the second choice, brings to mind the article [19] 
where, however, the consistency was based on the choice of moments 
to be withheld or refused. But the equations that came out were so 
complicated that no one had the courage to work on it, despite the 
subsequent simplified versions [20] , [21]. Since it has no relation to 
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the ideas here reported, we limit ourselves to remember with 
appreciation the existence of these articles.  
In any case,  the system (13) with M+2 instead of M can always be used 
but, after that,  from the coefficients of ∂α XB and ∂α YD

q    all the terms 
of order greater than M can be dropped obtaining in this way the 
system (12).   
 
We conclude this section with an interesting theorem which holds 
both for the system (12), than for the system (13) with M ≥ 2 (as in [6]):  
THEOREM: "A necessary and sufficient condition for the independent 
variables to tend towards an equilibrium value is that at the initial 
instant we have also ∂α λ=0, ∂(α λβ)=0, i.e., equilibrium in the sense of 
ordinary thermodynamics of viscous, heat conducting fluids as stated 
in [2] near eq. (7.21)".  
 
In fact, by calculating the field equations after that instant, they 
become 
 

𝜕𝜕2ℎ′𝐸𝐸𝛼𝛼

𝜕𝜕 𝜆𝜆2
 𝜕𝜕𝛼𝛼 𝜆𝜆 +

𝜕𝜕2ℎ′𝐸𝐸𝛼𝛼

𝜕𝜕 𝜆𝜆 𝜕𝜕 𝜆𝜆𝛾𝛾
 𝜕𝜕(𝛼𝛼𝜆𝜆𝛾𝛾)  = 0 , 

 
𝜕𝜕2ℎ′𝐸𝐸𝛼𝛼

𝜕𝜕 𝜆𝜆𝛽𝛽𝜕𝜕 𝜆𝜆
 𝜕𝜕𝛼𝛼 𝜆𝜆 +

𝜕𝜕2ℎ′𝐸𝐸𝛼𝛼

𝜕𝜕 𝜆𝜆𝛽𝛽 𝜕𝜕 𝜆𝜆𝛾𝛾
 𝜕𝜕(𝛼𝛼𝜆𝜆𝛾𝛾)  = 0 ,  

𝜕𝜕2ℎ′1𝛼𝛼

𝜕𝜕 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛𝜕𝜕 𝜆𝜆
 𝜕𝜕𝛼𝛼 𝜆𝜆 +

𝜕𝜕2ℎ′1𝛼𝛼

𝜕𝜕 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛  𝜕𝜕 𝜆𝜆𝛾𝛾
 𝜕𝜕(𝛼𝛼𝜆𝜆𝛾𝛾) = 0 ,  

 
where we have replaced ∂α λγ with its symmetric part ∂(α λγ) and this 
was possible because they were contracted with symmetric tensors 
with respect to α and γ. This is a system in the 14 unknown 
components of ∂α λ, ∂(α λγ). Obviously, ∂α λ=0, ∂(α λγ)=0 is a solution of this 
system. To prove that it is the unique solution, we can consider a part 
of these equations; in particular, we can consider the third equations 
only  with n=2 and take only the traceless part of this equation. In this 
way we can use the results of [6] and express the system multiplied by 
– kB /m  as 
 

𝑉𝑉𝐸𝐸𝛼𝛼 𝜕𝜕𝛼𝛼 𝜆𝜆 + 𝑇𝑇𝐸𝐸
𝛼𝛼𝛼𝛼 𝜕𝜕(𝛼𝛼𝜆𝜆𝛾𝛾)   =  0 ,𝑇𝑇𝐸𝐸

𝛼𝛼𝛼𝛼  𝜕𝜕𝛼𝛼 𝜆𝜆 +  𝑚𝑚𝐴𝐴𝐸𝐸11
𝛼𝛼𝛼𝛼𝛼𝛼 𝜕𝜕(𝛼𝛼𝜆𝜆𝛾𝛾)   =  0 ,

𝐴𝐴𝐸𝐸
𝛼𝛼<𝛽𝛽𝛽𝛽> 𝜕𝜕𝛼𝛼 𝜆𝜆 +  𝑚𝑚𝐴𝐴𝐸𝐸12

𝛼𝛼<𝛽𝛽𝛽𝛽>𝛾𝛾 𝜕𝜕(𝛼𝛼𝜆𝜆𝛾𝛾)   =  0 ,  
 
where AEαβγ, AE11αβγ  and AE12αβδγ  are the functions called  AEαβγ, A11αβγ  
and A12αβδγ   in eqs. (A.6)-(A.7) of [6].  We see that here the matrix of the 
coefficients of the unknows ∂α λ, ∂(α λγ) is the transposite of that in the 
system (54)1,2 of [6] even if with different unknowns. To be more sure, 
let us firstly consider eq.  (14)1 multiplied by c2/m, eq. (14)2  contracted 
with Uβ/m and eq. (14)3  contracted with (4 Uβ Uγ – c2 gβγ )/( 3 m c2); in 
this way we obtain a linear homogeneous system of 3 equations in the 
3 unknowns  
 
Uα ∂α λ, c-2 Uα Uγ ∂(α λγ) , c2 hαγ ∂(α λγ) whose determinant of the coefficients 

is the transposite of 𝐷𝐷
~
1
𝜋𝜋 reported in eq. (A.11)1 of [6]. Since we had 𝐷𝐷

~
1
𝜋𝜋 ≠

0, we now desume that Uα ∂α λ=0, Uα Uγ ∂(α λγ)=0,  hαγ ∂(α λγ) =0. 
We consider now eq.  (14)2 contracted with - hβδ/m and eq.  (14)3  
contracted with - 2hβδUγ /(mc2); in this way we obtain a linear 
homogeneous system of 2 equations in the 2 unknowns hαδ∂αλ, 2 c-2 
hδμ Uν ∂(μ λν) whose determinant of the coefficients is the transposite of 
  

��

𝑝𝑝
𝑚𝑚

2𝐴𝐴110

𝑚𝑚
𝐵𝐵4𝑐𝑐2

3
2𝐵𝐵2𝑐𝑐2

3

�� 

 
Now, on line 3 of page 444 of [6] a determinant D3 appears that is not 
null and proportional to the present one. So also the present 
determinant is not null and we can desume that hαδ ∂α λ = 0, hδμ Uν ∂(μ 
λν)=0.  
 
Finally, (14)3 contracted with hβ<δ hϑ>γ gives ∂<μ λν> =0, 
thus completing the proof.  
 

Obviously, ∂<μ λν> =0 is equivalent to λα= λEα = Uα/T=  Cαβ xβ + Cα  with Cαβ 
and Cα constants and Cαβ  skew-symmetric. From this result it follows  
C2 T-2 = Cαγ Cγβ xα xβ + 2 Cαγ Cγ xα + Cγ Cγ.  
 
 
 

3. On the integrability of eq. (3) 
 

Let us define 𝐺𝐺0 =  �𝜆𝜆𝜇𝜇𝜆𝜆𝜇𝜇 , 𝑙𝑙𝛽𝛽  =   𝑐𝑐 𝜆𝜆𝛽𝛽 
𝐺𝐺0

 , ℎ𝛼𝛼𝛼𝛼  =  − 𝑔𝑔𝛼𝛼𝛼𝛼  +  𝑙𝑙
𝛼𝛼𝑙𝑙𝛽𝛽

𝑐𝑐2
 . 

It follows that 𝜒𝜒𝜀𝜀 +  𝜒𝜒  =                   (15) 
 

= �𝝀𝝀𝜶𝜶𝟏𝟏...𝜶𝜶𝒏𝒏  
𝑵𝑵

𝒏𝒏=𝟎𝟎

 
𝟏𝟏

𝒎𝒎𝒏𝒏−𝟏𝟏 �𝟏𝟏 +
𝒏𝒏𝒏𝒏
𝒎𝒎𝒄𝒄𝟐𝟐

�  �− 𝒉𝒉𝒂𝒂𝟏𝟏
𝜷𝜷𝟏𝟏  +  

𝒍𝒍𝜷𝜷𝟏𝟏𝒍𝒍𝜶𝜶𝟏𝟏
𝒄𝒄𝟐𝟐 �  . . .�− 𝒉𝒉𝒂𝒂𝒏𝒏

𝜷𝜷𝒏𝒏  

+ 
𝒍𝒍𝜷𝜷𝒏𝒏𝒍𝒍𝜶𝜶𝒏𝒏
𝒄𝒄𝟐𝟐 � 𝒑𝒑𝜷𝜷𝟏𝟏 . . .𝒑𝒑𝜷𝜷𝒏𝒏  =  

=  𝒎𝒎 𝝀𝝀 + �𝟏𝟏 +
𝑰𝑰

𝒎𝒎𝒄𝒄𝟐𝟐
�  
𝑮𝑮𝟎𝟎
𝒄𝒄

 𝒍𝒍𝜷𝜷 𝒍𝒍𝜷𝜷  + �𝝀𝝀𝜶𝜶𝟏𝟏…𝜶𝜶𝒏𝒏

𝑵𝑵

𝒏𝒏=𝟐𝟐

  
𝟏𝟏

𝒎𝒎𝒏𝒏−𝟏𝟏 

�𝟏𝟏 +
𝒏𝒏𝒏𝒏
𝒎𝒎𝒄𝒄𝟐𝟐

�   �(−𝟏𝟏)𝒓𝒓
𝒏𝒏

𝒓𝒓=𝟎𝟎

 �𝒏𝒏𝒓𝒓�   𝒉𝒉𝒂𝒂𝟏𝟏
𝜷𝜷𝟏𝟏  … 𝒉𝒉𝒂𝒂𝒓𝒓

𝜷𝜷𝜷𝜷 

 
 𝒍𝒍𝜶𝜶𝒓𝒓+𝟏𝟏 . . . 𝒍𝒍𝜶𝜶𝒏𝒏  𝒍𝒍𝜷𝜷𝒓𝒓+𝟏𝟏 . . . 𝒍𝒍𝜷𝜷𝒏𝒏 𝒄𝒄𝟐𝟐𝒓𝒓−𝟐𝟐𝒏𝒏 𝒑𝒑𝜷𝜷𝟏𝟏 . . .𝒑𝒑𝜷𝜷𝒏𝒏  . 

 
We can valuate this expression in the reference frame where lα ≡ (c , 0 
, 0 , 0), pα ≡ m c (cosh s, sinh s qi) with qi qi = -1 and find 
 
𝝌𝝌𝜺𝜺 +  𝝌𝝌  

=  𝒎𝒎 𝝀𝝀 +  𝒎𝒎 �𝟏𝟏 +
𝑰𝑰

𝒎𝒎𝒄𝒄𝟐𝟐
� 𝑮𝑮𝟎𝟎 𝒄𝒄 𝐜𝐜𝐜𝐜𝐜𝐜𝒉𝒉 𝒔𝒔 

+ ∑ 
𝒏𝒏=𝟐𝟐

𝑵𝑵
�𝟏𝟏 +

𝒏𝒏𝒏𝒏
𝒎𝒎𝒄𝒄𝟐𝟐

�  ∑ 
𝒓𝒓=𝟎𝟎

𝒏𝒏
�𝒏𝒏𝒓𝒓�  (−𝟏𝟏)𝒓𝒓 𝑳𝑳𝒏𝒏,𝒊𝒊𝟏𝟏...𝒊𝒊𝒓𝒓  𝒒𝒒𝒊𝒊𝟏𝟏 . . .𝒒𝒒𝒊𝒊𝒓𝒓  𝐬𝐬𝐬𝐬𝐬𝐬𝒉𝒉𝒓𝒓 𝒔𝒔 𝐜𝐜𝐜𝐜𝐜𝐜𝒉𝒉𝒏𝒏−𝒓𝒓 𝒔𝒔 

where 𝐿𝐿𝑛𝑛,𝑖𝑖1...𝑖𝑖𝑟𝑟 =  𝜆𝜆𝛼𝛼1...𝛼𝛼𝑛𝑛  ℎ𝑖𝑖1
𝛼𝛼1 . . . ℎ𝑖𝑖𝑟𝑟

𝛼𝛼𝑟𝑟  𝑙𝑙𝛼𝛼𝑟𝑟+1 . . . 𝑙𝑙𝛼𝛼𝑛𝑛 𝑐𝑐𝑛𝑛 . So it is evident that 
the integrability of (3) holds iff 
lim
𝑠𝑠→∞

𝜒𝜒𝜀𝜀  + 𝜒𝜒  =  + ∞.                  (16) 
 
This result corresponds to eq. (29) of [18] which concerned the non 
relativistic monoatomic case. In particular,  (29)1 imposes that the 
number N must be even; in our case this condition is not present.   
In fact, the non relativistic limit of the present field equations has 
been considered in [12] and is summarized by its  eq. (11) where the 
tensor HSA appears. From its definition in eq. (12)1 we see that it is 
obtained by taking s traces of a tensor of order A + 2s. Since A ≤ N-s, it 
follows that A + 2 s ≤ N+s. Since s ≤ N, it follows that A + 2 s ≤  2 N. This 
value is effectively present; in fact, s=N and A=0 is an admissible set 
of values and with them we have A + 2 s = 2 N. In other words,  FN0 is 
obtained by taking N traces of a tensor of order 2N. So the highest 
order present in our independent variables is even (2N).  
But eq. (29)2 of [18] is another condition which has a counterpart also 
in the present model. In fact, from the above result, we can define 

𝑓𝑓𝑁𝑁 �𝑞𝑞
→
�, from 

 

lim 
𝑠𝑠→∞

cosℎ−𝑁𝑁𝑠𝑠 (𝜒𝜒𝜀𝜀 + 𝜒𝜒) =  𝑚𝑚 �1 +
𝑁𝑁𝑁𝑁
𝑚𝑚𝑐𝑐2

��(−1)𝑟𝑟
𝑁𝑁

𝑟𝑟=0

�𝑁𝑁𝑟𝑟� 𝐿𝐿𝑁𝑁,𝑖𝑖1...𝑖𝑖𝑟𝑟𝑞𝑞
𝑖𝑖1 . . . 𝑞𝑞𝑖𝑖𝑟𝑟

= 𝑓𝑓𝑁𝑁 �𝑞𝑞
→
�, 

 
because lim

𝑠𝑠→+∞
tanℎ 𝑠𝑠 = 1. So a necessary condition for (16) is that 

𝑓𝑓𝑁𝑁 �𝑞𝑞
→
�  ≥ 0 for all unitary vectors 𝑞𝑞

→
 , while a sufficient condition for 

(16) is that 𝑓𝑓𝑁𝑁 �𝑞𝑞
→
� > 0 for all unitary vectors 𝑞𝑞

→
. The doubtful case 

remains 𝑓𝑓𝑁𝑁 �𝑞𝑞
→
� = 0 for some unitary vector 𝑞𝑞

→
. Let us call m the 

minimum value of the function 𝑓𝑓𝑁𝑁 �𝑞𝑞
→
� on the closed and limited set qi 

qi =-1; then the necessary condition becomes m ≥ 0 and the sufficient 
one becomes m > 0. (The only difference with respect to (29)2 of [18] is 
due to the opposite sign of their χ and the present 𝜒𝜒𝜀𝜀 + 𝜒𝜒).  
Obviously, also the doubtful cases can be studied but the results are 
complicated and not relevant. The type of calculations involved can 
be understood by the following 3 subcases: 
 

• The case N=1. We see that (15) becomes 𝜒𝜒𝜀𝜀 + 𝜒𝜒= m  λ + m 

�1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

� G0 c cosh s  which surely satisfies the condition 
(16) and we are sure of integrability. 

• The case N=2. We see that m ≥ 0 is a necessary and 
sufficient condition for integrability. In fact, the doubtful 
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case is ∑ (−1)𝑟𝑟2
𝑟𝑟=0 �2

𝑟𝑟� 𝐿𝐿2,𝑖𝑖1...𝑖𝑖𝑟𝑟𝑞𝑞
𝑖𝑖1 . . . 𝑞𝑞𝑖𝑖𝑟𝑟=0 for some 𝑞𝑞

→
 and, in 

this case, we have that  

lim
𝑠𝑠→∞

  𝑒𝑒−𝑠𝑠(𝜒𝜒𝜀𝜀 + 𝜒𝜒) =  𝑚𝑚 �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

� = 𝐺𝐺0𝑐𝑐
2

 >0 so that also in this 
case (16) is satisfied. 

• The case N=3. We see that (15) gives  
 

𝜒𝜒𝜀𝜀 + 𝜒𝜒 =  𝑒𝑒
3𝑠𝑠

8
𝑓𝑓3 �𝑞𝑞

→
� + 𝑒𝑒2𝑠𝑠

4
𝑓𝑓2 �𝑞𝑞

→
� + 𝑒𝑒𝑠𝑠 𝑚𝑚 𝑔𝑔3 �𝑞𝑞

→
� plus a linear combination 

of e0, e-s, e-2s, e-3s and with 

𝑔𝑔3 �𝑞𝑞
→
� =  �1 +

𝐼𝐼
𝑚𝑚𝑐𝑐2

�
𝐺𝐺0𝑐𝑐

2
 + �1 +

3𝐼𝐼
𝑚𝑚𝑐𝑐2

�
3 𝐿𝐿3

8
 − 𝐿𝐿3,𝑖𝑖𝑞𝑞𝑖𝑖 − 𝐿𝐿3,𝑖𝑖𝑖𝑖 𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗  

+ 𝐿𝐿3,𝑖𝑖𝑖𝑖𝑖𝑖 𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗  𝑞𝑞𝑘𝑘 . 
 

It follows that, in the above mentioned doubtful case 𝑓𝑓3 �𝑞𝑞
→
� = 0 for 

𝑞𝑞
→

  belonging to a set S3  of unitary vectors, the necessary condition is 

𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0  for all 𝑞𝑞

→
∈ S3 and the sufficient condition is 𝑓𝑓2 �𝑞𝑞

→
� > 0.  So 

another doubtful case arises if 𝑓𝑓2 �𝑞𝑞
→
� = 0   for a subset S2 of S3. In this 

case the sufficient condition for integrability is 𝑔𝑔3 �𝑞𝑞
→
� > 0  for all 𝑞𝑞

→
∈ 

S2, while the necessary condition is 𝑔𝑔3 �𝑞𝑞
→
� ≥ 0 , otherwise the 

condition (16) is certainly not satisfied.  

It is not easy to study the conditions 𝑓𝑓𝑁𝑁 �𝑞𝑞
→
�  ≥ 0 , 𝑔𝑔3 �𝑞𝑞

→
�  ≥ 0  for all 

unitary vectors 𝑞𝑞
→

  and similar; for the sake of curiosity we consider 
now the cases N=2,3. In any case, it is a disappointment that 
hyperbolicity doesn't hold for every value of the independent 
variables. As we have seen, the loophole consists in replacing our field 
equations with their consistent approximation around the 
equilibrium. 
 

3.1. The condition 𝒇𝒇𝟐𝟐 �𝒒𝒒
→
�  ≥ 𝟎𝟎, for all unitary vectors 

• If L2,ij=0, L2,i=0 this condition is easy and is expressed by 
L2≥0. 

• If L2,ij=0, L2,i≠0 it is easy too and we prove now that it is 
equivalent to the two conditions L2>0, (L2)2 ≥ 4 L2,i L2,j δij. 

In fact, in this case we have  

𝑓𝑓2 �𝑞𝑞
→
� =  �1 + 2𝐼𝐼

𝑚𝑚𝑐𝑐2
� �𝐿𝐿2  − 2𝐿𝐿2,𝑖𝑖  𝑞𝑞𝑖𝑖�.  In the particular value  𝑞𝑞𝑖𝑖 =

 𝐿𝐿2,𝑖𝑖

�𝐿𝐿2,𝑗𝑗𝐿𝐿2,𝑘𝑘𝛿𝛿𝑗𝑗𝑗𝑗
 the condition 𝑓𝑓2 �𝑞𝑞

→
�  ≥ 0, becomes 𝐿𝐿2  ≥  2 �𝐿𝐿2,𝑗𝑗𝐿𝐿2,𝑘𝑘 𝛿𝛿𝑗𝑗,𝑘𝑘  

from which the above relations hold. Vice versa, if they are 

satisfied, we have �𝐿𝐿2,𝑖𝑖  𝑞𝑞𝑖𝑖�  =  �𝐿𝐿
→
2 · 𝑞𝑞

→
�  ≤ �𝐿𝐿2

→
� �𝑞𝑞
→
� = �𝐿𝐿2

→
� ≤ 𝐿𝐿2

2
, where 

we have applied the Schwartz's theorem. It follows that −  1
2

 𝐿𝐿2  ≤

𝐿𝐿2,𝑖𝑖  𝑞𝑞𝑖𝑖 ≤
1
2

 𝐿𝐿2 whose right hand side gives 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0. 

• If L2,ij≠0, we have  

𝑓𝑓2 �𝑞𝑞
→
� =  m �1 + 2𝐼𝐼

𝑚𝑚𝑐𝑐2
� �𝐿𝐿2  − 2𝐿𝐿2,𝑖𝑖  𝑞𝑞𝑖𝑖 + 𝐿𝐿2,𝑖𝑖𝑖𝑖 𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗�, so that 𝑓𝑓2 �𝑞𝑞

→
� = 0 is a 

quadratic surface S and we have the following cases:  

I. If S consists of two coinciding planes and L2,ij δij <0, then 

𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0 has no solution. 

II. If S consists of two coinciding planes and L2,ij δij >0, then 

𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0   is identically satisfied. 

III. If S consists of two complex parrallel and distinct planes 

and L2,ij δij <0, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0   has no solution.  

IV. If S consists of two complex parrallel and distinct planes 

and L2,ij δij >0, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0   is identically satisfied. 

V. If S consists of two real parrallel and distinct planes, they 
divide the space in 3 regions; in one or two of these regions 

R+ the condition 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0    is satisfied while in the 

remaining part R- it is not satisfied. Thus the sphere of 
center the origin and radius 1 must be contained all in one 
of the regions R+; this is equivalent to say that also 𝑞𝑞

→
=

0
→

  must  be contained  in one of the regions R+, i.e., L2 >0 and 

that the surface qi qi=-1 doesn't intersect S or it is tangent to 
one or both the planes of S. Obviously, this last condition 
may be expressed in terms of L2,ij, L2,i, L2.    

VI. If S consists of two complex incident and distinct planes 

and the matrix L2,ij is negative semidefined, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥

0     has no solution.  
VII. If S consists of two complex incident and distinct planes 

and the matrix L2,ij is positive semidefined, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0    

is identically satisfied. 
VIII. If S consists of two real incident and distinct planes,  they 

divide the space in 4 regions; in two of these regions R+ the 

condition 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0    is satisfied while in the remaining 

two regions R- it is not satisfied. Thus the sphere of center 
the origin and radius 1 must be contained all in one of the 
two regions R+; this is equivalent to say that also 𝑞𝑞

→
=

0
→

   must be contained  in one of the regions R+, i.e., L2 >0 and 
that the surface qi qi=-1 doesn't intersect S or it is tangent to 
one or both the planes of S. 

IX. If S is a complex cylinder and the matrix L2,ij is negative 

semidefined, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0    has no solution.  

X. If S is a complex cylinder and the matrix L2,ij is positive 

semidefined, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0    is identically satisfied. 

XI. If  S is a real cylinder, it divides the space in 2 regions (3 
regions if it is an hyperbolic cylinder): In one or two of these 

regions R+ the condition 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0     is satisfied while in 

the remaining one R- it is not satisfied. Thus the sphere of 
center the origin and radius 1 must be contained all in  the 

region R+; this is equivalent to say that also 𝑞𝑞
→

= 0
→

   must  be 
contained  in  this region R+, i.e., L2 >0 and that the surface 
qi qi=-1 doesn't intersect the cylinder or it is tangent to it. 

XII. If S is a complex cone and the matrix L2,ij is negative 

defined, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0    has no solution.  

XIII. If S is a complex cone and  the matrix L2,ij  is positive 

defined, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0    is identically satisfied. 

XIV. If S is a real cone, it divides the space in 2 regions: one of 
these is constitute by the two inner parts of the two 
semicones and the other is the external part.  In one of these 

regions R+ the condition 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0    is satisfied while in the 

remaining one R- it is not satisfied. Thus the sphere of 
center the origin and radius 1 must be contained all in  the 

region R+; this is equivalent to say that also 𝑞𝑞
→

= 0
→

   must  be 
contained  in  this region R+, i.e., L2 >0 and that the surface 
qi qi=-1 doesn't intersect the cone or it is tangent to it.  

XV. If S is a complex ellipsoid and  the matrix 𝐿𝐿 = �
𝐿𝐿2,𝑖𝑖𝑖𝑖 𝐿𝐿2,𝑖𝑖
𝐿𝐿2,𝑗𝑗 𝐿𝐿2

� is 

negative defined, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0  has no solution.  

XVI. If S is a complex ellipsoid and  the matrix L is positive 

defined, then 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0    is identically satisfied. 

XVII. If S is a real ellipsoid, it divides the space in 2 regions: one 
of these is its inner part and the other is its external part. 

In of these regions R+ the condition 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0     is satisfied 

while in the remaining one R- it is not satisfied. Thus the 
sphere of center the origin and radius 1 must be contained 
all in  the region R+; this is equivalent to say that also  must  
be contained  in  this region R+, i.e., L2 >0 and that the surface 
qi qi=-1 doesn't intersect the ellipsoid or it is tangent to it. 

XVIII. If S is a paraboloid or an elliptic hyperboloid, it divides the 
space in 2 regions; in of these regions R+ the condition 

𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0  is satisfied while in the remaining one R- it is not 

satisfied. Thus the sphere of center the origin and radius 1 
must be contained all in  the region R+; this is equivalent to 

say that also 𝑞𝑞
→

= 0
→

   must be contained  in  this region R+, 
i.e., L2 >0 and that the surface qi qi=-1 doesn't intersect  S or 
it is tangent to it. 

XIX. If S is an hyperbolic hyperboloid, it divides the space in 3 
regions: two of these are the internal parts of the two flaps 
of the hyperboloid and the other is the remaining one. In 

one or two of these regions the condition 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0 is 
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satisfied while in the remaining one it is not satisfied. Thus 
the sphere of center the origin and radius 1 must be 

contained all in one of the regions with 𝑓𝑓2 �𝑞𝑞
→
�  ≥ 0 ; this is 

equivalent to say that also 𝑞𝑞
→

= 0
→

  must be contained  in  this 
region R+, i.e., L2 >0 and that the surface qi qi=-1 doesn't 
intersect the hyperboloid or it is tangent to it. 
 

3.2. The condition 𝒇𝒇𝟑𝟑 �𝒒𝒒
→
�  ≥ 𝟎𝟎, for all unitary vectors 

The expression of 𝑓𝑓3 �𝑞𝑞
→
� = 𝑚𝑚 �1 + 3𝐼𝐼

𝑚𝑚𝑐𝑐2
� �𝐿𝐿3  −  3𝐿𝐿3,𝑖𝑖  𝑞𝑞𝑖𝑖 +

 3 𝐿𝐿3,𝑖𝑖𝑖𝑖  𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗 −  𝐿𝐿3,𝑖𝑖𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗𝑞𝑞𝑘𝑘�. 

Obviously, our condition is very complicated to study. So we are 
content to see that there are cases in which it is satisfied and 

cases in which it is not. For example, if L3,ijk}=L3,(i δjk), then 𝑓𝑓3 �𝑞𝑞
→
� 

becomes 𝑓𝑓3 �𝑞𝑞
→
� = 𝑚𝑚 �1 + 3𝐼𝐼

𝑚𝑚𝑐𝑐2
� �𝐿𝐿3  −  4𝐿𝐿3,𝑖𝑖  𝑞𝑞𝑖𝑖 +

 3 𝐿𝐿3,𝑖𝑖𝑖𝑖  𝑞𝑞𝑖𝑖𝑞𝑞𝑗𝑗� which is similar to that of 𝑓𝑓2 �𝑞𝑞
→
�   except for 

replacing 2I  with 3I, L2 with L3, L2,i with 2 L3,i and L2,ij with 3 L3,ij. 
So the considerations of the above subsection can be applied 
realizing our purpose in this way. 

4. New trends of the relativistic model for polyatomic gases 

Goal of this subsection is to present a completely new way to obtain 
balance equations for polyatomic gases. Instead of multiplying the 

Boltzmann-Chernikov equation by 𝑐𝑐
𝑚𝑚𝑗𝑗−1  𝑝𝑝𝛼𝛼1 . . .𝑝𝑝𝛼𝛼𝑗𝑗  �1 + 𝑗𝑗𝑗𝑗

𝑚𝑚𝑐𝑐2
�𝜑𝜑(𝐼𝐼), it is 

here multiplied by 

 𝑐𝑐
𝑚𝑚𝑗𝑗−1  𝑝𝑝𝛼𝛼1 . . . 𝑝𝑝𝛼𝛼𝑗𝑗  �1 + 𝐼𝐼

𝑚𝑚𝑐𝑐2
�
𝑗𝑗
𝜑𝜑(𝐼𝐼). This is physically more significant 

because the 4-momentum pα appears through pα �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�   so that 
its modulus is no more constant but it depends on the internal energy 
of the particle. The choice previously used in literature 
𝑐𝑐

𝑚𝑚𝑗𝑗−1  𝑝𝑝𝛼𝛼1 . . . 𝑝𝑝𝛼𝛼𝑗𝑗  �1 + 𝑗𝑗𝑗𝑗
𝑚𝑚𝑐𝑐2

�𝜑𝜑(𝐼𝐼) was motivated by the fact that with it 
the non-relativistic limit of the balance equations gives us those 
known in the literature for the classical case. But this is also true of 
the choice presented here.  

The present choice has notable mathematical consequences; for 
example, a single quantity (the energy e) is expressed by an integral 
and all the other constitutive functions can be expressed in terms of 
it and its derivatives with respect to temperature. Another useful 
consequence is its easier applicability to the case of diatomic and 
ultra-relativistic gases which are useful, at least for testing the model 
in simple cases.  

Therefore there is the possibility that all the articles already present 
in the literature, in this context, must be revisited following the 
directives of this article and citing it. Further investigations may 
then be possible, thanks to the more manageable form of the present 
balance equations.  

To justify this new approach, we observe that, in the article (12), the 
authors started from the definition: 

𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝐽𝐽 =
𝑐𝑐

𝑚𝑚𝑗𝑗−1 � 𝑑𝑑 𝑃𝑃 
→

𝑅𝑅3
� 𝑓𝑓
+∞

0
 𝑝𝑝𝛼𝛼𝑝𝑝𝛼𝛼1 . . . 𝑝𝑝𝛼𝛼𝑗𝑗 �1 + 𝑎𝑎𝑗𝑗  

𝐼𝐼
𝑚𝑚𝑐𝑐2

�𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼 ,  

and proved that the necessary and sufficient condition to obtain, at 
the non relativistic limit, the hierarchy of polyatomic gases is that 

aj=j. Now it is interesting to observe that �1 + 𝑗𝑗𝑗𝑗
𝑚𝑚𝑐𝑐2

� is nothing more 

than the first two terms in the binomial power  �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
𝑗𝑗
 . 

Therefore the same results are obtained, at the classical limit, if we 
replace the previous definition with   

𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝐽𝐽 = 𝑐𝑐
𝑚𝑚𝑗𝑗−1� 𝑑𝑑 𝑃𝑃 

→

𝑅𝑅3
∫ 𝑓𝑓+∞
0  𝑝𝑝𝛼𝛼𝑝𝑝𝛼𝛼1 . . . 𝑝𝑝𝛼𝛼𝑗𝑗 �1 + 𝐼𝐼

𝑚𝑚𝑐𝑐2
�
𝑗𝑗
𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼 ,  (18) 

Obviously, the expression of the closure must be changed 
accordingly.   

From the physical point of view, it seems  that �1 + 𝑗𝑗𝑗𝑗
𝑚𝑚𝑐𝑐2

� doesn't 

have great significance, while �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
𝑗𝑗
 (except for the exponent) is 

significant because  �1 +  𝐼𝐼
𝑚𝑚𝑐𝑐2

� is the total energy divided by mc2, i.e., 
the normalized total energy. This fact suggests the following new 
approach:  

Let us start from the Boltzmann-Chernikov equation 

𝑝𝑝𝛼𝛼 𝜕𝜕𝛼𝛼 𝑓𝑓 =  𝑄𝑄 ,                          (19) 

contract it by 𝑐𝑐
𝑚𝑚𝑗𝑗−1  𝑝𝑝𝛼𝛼1 . . .𝑝𝑝𝛼𝛼𝑗𝑗  �1 + 𝐼𝐼

𝑚𝑚𝑐𝑐2
�
𝑗𝑗
𝜑𝜑(𝐼𝐼) and integrate it in 𝑑𝑑 𝑃𝑃 

→
  

𝑑𝑑 𝐼𝐼. So we obtain the field equations 𝜕𝜕𝛼𝛼𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝐽𝐽 = 𝐼𝐼𝛼𝛼1...𝛼𝛼𝐽𝐽 with 𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝐽𝐽 
given by (18) for j=0,1,…, J. 
By applying the "Maximum Entropy Principle" (MEP), we find that  

𝑓𝑓 =  𝑒𝑒
−1−

𝜒𝜒

𝑘𝑘𝐵𝐵  with 𝜒𝜒 =  � 1
𝑚𝑚𝑗𝑗−1

𝐽𝐽

𝑗𝑗=0
  𝜆𝜆𝑎𝑎1...𝑎𝑎𝑗𝑗 𝑝𝑝

𝛼𝛼1 . . . 𝑝𝑝𝛼𝛼𝑗𝑗 �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
𝑗𝑗
. (20) 

By defining the four-potential h'α from 
 

ℎ′𝛼𝛼 =  − 𝑘𝑘𝐵𝐵 𝑐𝑐 � 𝑑𝑑 𝑃𝑃
→

𝑅𝑅3
∫ 𝑓𝑓+∞
0  𝑝𝑝𝛼𝛼𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼 ,                  (21) 

we obtain that the above definition (18) becomes 
 

𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗  =  𝜕𝜕 ℎ′𝛼𝛼

𝜕𝜕 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑗𝑗
 .                            (22) 

 
This is important because ensure the symmetric hyperbolic form of 
the field equations   
 

𝜕𝜕𝛼𝛼𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝐽𝐽 = 𝐼𝐼𝛼𝛼1...𝛼𝛼𝐽𝐽   i.e., 𝜕𝜕2 ℎ′𝛼𝛼

𝜕𝜕 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑗𝑗𝜕𝜕 𝜆𝜆𝛽𝛽1...𝛽𝛽𝑖𝑖
 𝜕𝜕𝛼𝛼𝜆𝜆𝛽𝛽1...𝛽𝛽𝑖𝑖  =  𝐼𝐼𝛼𝛼1...𝛼𝛼𝑗𝑗 ,    (23) 

 
provided the convexity of the function ξα h’α for any time-like unitary 
and constant congruence ξα. 

 
4.1. The variables at equilibrium 

Thermodynamical equilibrium is defined as the state where  𝜆𝜆𝑎𝑎1...𝑎𝑎𝑗𝑗 =
0 for j ≥ 2. In this case (18) becomes 

𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗 =  𝑐𝑐

𝑚𝑚𝑗𝑗−1 � 𝑑𝑑 𝑃𝑃
→

𝑅𝑅3
� 𝑒𝑒−1−

1
𝑘𝑘𝐵𝐵
�𝑚𝑚 𝜆𝜆𝐸𝐸 + 𝜆𝜆𝜇𝜇𝐸𝐸 𝑝𝑝𝜇𝜇 �1+ 𝐼𝐼

𝑚𝑚𝑐𝑐2
��

+∞

0
 𝑝𝑝𝛼𝛼𝑝𝑝𝛼𝛼1 . . .𝑝𝑝𝛼𝛼𝑗𝑗  �1 +

                    𝐼𝐼
𝑚𝑚𝑐𝑐2

�
𝑗𝑗
𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼  .                             (24) 

It is interesting for the future, that from (24) it follows 
𝜕𝜕𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1 ...𝛼𝛼𝑗𝑗

𝜕𝜕 𝜆𝜆𝛼𝛼𝑗𝑗+1
 =

 −  𝑚𝑚
𝑘𝑘𝐵𝐵

 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗+1 , so that the tensor of order j+2 can be easily obtined 

from that of order j+1. 

For j=0,1 q. (24) is the same of [6], so that we may copy the 
corresponding results and see that 𝜆𝜆𝐸𝐸 and 𝜆𝜆𝜇𝜇𝐸𝐸   are given by 

𝑛𝑛 = 4 𝜋𝜋 𝑚𝑚3𝑐𝑐3𝑒𝑒−1−
𝑚𝑚 𝜆𝜆𝐸𝐸

𝑘𝑘𝐵𝐵 ∫ 𝐽𝐽2,1
·  +∞

0 𝜑𝜑(𝐼𝐼) 𝑑𝑑𝑑𝑑 ,𝜆𝜆𝜇𝜇𝐸𝐸  =  𝑈𝑈𝜇𝜇
𝑇𝑇

 ,            (25) 

where T is the absolute temperature and we have used the functions 

𝐽𝐽𝑚𝑚,𝑛𝑛(𝛾𝛾) =  ∫ 𝑒𝑒−𝛾𝛾 cosℎ 𝑠𝑠+∞
0  𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑚𝑚𝑠𝑠 cosℎ𝑛𝑛𝑠𝑠 𝑑𝑑 𝑠𝑠 ,              (26) 

𝛾𝛾 =  𝑚𝑚𝑐𝑐2

𝑘𝑘𝐵𝐵𝑇𝑇
 , 𝛾𝛾· =  𝛾𝛾 �1 + 𝐼𝐼

𝑚𝑚𝑐𝑐2
�  , 𝐽𝐽𝑚𝑚,𝑛𝑛

·  =  𝐽𝐽𝑚𝑚,𝑛𝑛(𝛾𝛾·) .  

After that, we have 

𝑉𝑉𝛼𝛼  =  𝑚𝑚 𝑛𝑛 𝑈𝑈𝛼𝛼 ,𝑇𝑇𝐸𝐸
𝛼𝛼𝛼𝛼  =  𝑒𝑒

𝑐𝑐2
 𝑈𝑈𝛼𝛼𝑈𝑈𝛽𝛽  +  𝑝𝑝 ℎ𝛼𝛼𝛼𝛼 ,                 (27) 

Where ℎ𝛼𝛼𝛼𝛼  =  − 𝑔𝑔𝛼𝛼𝛼𝛼  +  𝑈𝑈
𝛼𝛼𝑈𝑈𝛽𝛽

𝑐𝑐2
 , e is the energy, p is the pressure and 

they are given by 
 

𝑝𝑝 = 𝑛𝑛 𝑚𝑚 𝑐𝑐2

𝛾𝛾
 , 𝑒𝑒 =  𝑛𝑛 𝑚𝑚 𝑐𝑐2  

� 𝐽𝐽2,2
·+∞

0  �1+ 𝐼𝐼
𝑚𝑚 𝑐𝑐2

�𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

� 𝐽𝐽2,1
·+∞

0  𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼
 .              (28) 
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The expression of 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗 in  (24) for j ≥ 2 is new but, by applying the 

Representation Theorems, we know that it must have the form 

𝐴𝐴𝐸𝐸
𝛼𝛼1...𝛼𝛼𝑗𝑗+1 =  � 𝜙𝜙ℎ,𝑗𝑗

�𝑗𝑗+12 �
ℎ=0   h( 𝛼𝛼1𝛼𝛼2 . . . ℎ𝛼𝛼2ℎ−1𝛼𝛼2ℎ  𝑈𝑈𝛼𝛼2ℎ+1 . . .𝑈𝑈𝛼𝛼𝑗𝑗+1 ) .    (29) 

 
(The second index in 𝜙𝜙ℎ,𝑗𝑗 remember us that it belongs to the tensor 𝐴𝐴𝐸𝐸...  
of order j+1). The right hand sides of this equation and of (24) must be 
equal; this gives an equation which we can contract by  
ℎ𝛼𝛼1𝛼𝛼2 . . . ℎ𝛼𝛼2𝑘𝑘−1𝛼𝛼2𝑘𝑘  𝑈𝑈𝛼𝛼2𝑘𝑘+1 . . .𝑈𝑈𝛼𝛼𝑗𝑗+1  so obtaining 
 

𝜙𝜙𝑘𝑘,𝑗𝑗 =  4 𝜋𝜋 �𝑗𝑗 + 1
2𝑘𝑘 � 1

2𝑘𝑘+1
𝑐𝑐2𝑘𝑘+3 𝑚𝑚4 𝑒𝑒−1−

𝑚𝑚 𝜆𝜆𝐸𝐸

𝑘𝑘𝐵𝐵  ∫ 𝐽𝐽2𝑘𝑘+2,+1−2𝑘𝑘
·+∞

0 �1 +

               𝐼𝐼
𝑚𝑚𝑐𝑐2

�
𝑗𝑗
𝜑𝜑(𝐼𝐼)  𝐼𝐼 ,                              (30) 

 
where the integrations have been calculted with the same method of 
[6], from the line after eq. (24) up to eq. (27).  
In particular, eqs. (29)-(30) with j=0 confirm eqs. (27)1 and (25)1 with 
𝜙𝜙0,0= m n.  

Now we can use eq. (25)1 to desume 𝑒𝑒−1−
𝑚𝑚 𝜆𝜆𝐸𝐸

𝑘𝑘𝐵𝐵  and substitute it in (30) so 
that it becomes 
 

𝜙𝜙𝑘𝑘,𝑗𝑗 =  𝑚𝑚 𝑛𝑛 𝑐𝑐2𝑘𝑘 1
2𝑘𝑘+1

�𝑗𝑗 + 1
2𝑘𝑘 �  

� 𝐽𝐽2𝑘𝑘+2,𝑗𝑗+1−2𝑘𝑘
·+∞

0  �1+ 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
𝑗𝑗
𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

� 𝐽𝐽2,1
·  

+∞
0 𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

 .          (31) 

 
In particular, eqs. (29), (31) with j=1 confirm eqs. (27)2 and (28) with 𝜙𝜙0,1= 
e c-2  and with 𝜙𝜙1,1= p (The identity γ J4,0 (γ) = 3 J2,1 (γ) has been used, 

from which it follows γ �1 + 𝐼𝐼
𝑚𝑚 𝑐𝑐2

� J4,0 (γ*) = 3 J2,1 (γ^*) ). 
 
Finally, eqs. (29), (31) with j=2 give 
 
𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1𝛼𝛼2  =  𝜙𝜙0,2 𝑈𝑈𝛼𝛼𝑈𝑈𝛼𝛼1 𝑈𝑈𝛼𝛼2 + 𝜙𝜙1,2 U(αℎ𝛼𝛼1𝛼𝛼2 )                (32) 

with  

                   𝜙𝜙0,2 =  𝑚𝑚 𝑛𝑛  
� 𝐽𝐽2,3

·+∞
0  �1+ 𝐼𝐼

𝑚𝑚𝑐𝑐2
�
2
𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

� 𝐽𝐽2,1
·  

+∞
0 𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

, 𝜙𝜙1,2 =  𝑚𝑚 𝑛𝑛 𝑐𝑐2 1
3

 
� 𝐽𝐽4,1

·+∞
0 �1+ 𝐼𝐼

𝑚𝑚𝑐𝑐2
� 𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

� 𝐽𝐽2,1
·  

+∞
0 𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

  .  

We see that (32)1 is the same of eq. (48) of [6] with the identification 
𝜙𝜙0,2  =  𝐴𝐴10 , 𝜙𝜙1,2  = 3 𝐴𝐴110  , and the expressions (32)2,3 correspond to eqs. 

(49), (50) of [6] except that now we have �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�2 instead of 1 + 2𝐼𝐼
𝑚𝑚𝑐𝑐2

, 
as expected for the present different choice. We note that also with 
the new variables the tensor (4) of order j+2 can be obtained from that 
of order j+1. In particular, we have 

𝜙𝜙ℎ,𝑗𝑗+1 =  𝑗𝑗+2
𝑗𝑗+2−2ℎ

 � 𝑒𝑒
𝑛𝑛𝑛𝑛𝑐𝑐2

 𝜙𝜙ℎ,𝑗𝑗  −  𝜕𝜕 𝜙𝜙ℎ,𝑗𝑗

𝜕𝜕 𝛾𝛾
�      𝑓𝑓𝑓𝑓𝑓𝑓 ℎ = 0, . . . , �𝑗𝑗+1

2
� ,  

𝜙𝜙𝑗𝑗+2
2 ,𝑗𝑗 +1     =  𝑐𝑐

2

𝛾𝛾
 𝜙𝜙𝑗𝑗

2,𝑗𝑗  (present only if j is even).    (32a) 

To prove these relations, let us take the derivative of eq. (31) with 

respect to γ and take into account that 𝜕𝜕
𝜕𝜕 𝛾𝛾

 �∫ 𝐽𝐽2,1
·+∞

0  𝜙𝜙(𝐼𝐼) 𝑑𝑑 𝐼𝐼�
−1

=

  �∫ 𝐽𝐽2,1
·+∞

0  𝜙𝜙(𝐼𝐼) 𝑑𝑑 𝐼𝐼�
−2

 �∫ 𝐽𝐽2,2
·+∞

0   �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�𝜙𝜙(𝐼𝐼) 𝑑𝑑 𝐼𝐼� =
𝑒𝑒

𝑛𝑛𝑛𝑛𝑐𝑐2
   �∫ 𝐽𝐽2,1

·+∞
0  𝜙𝜙(𝐼𝐼) 𝑑𝑑 𝐼𝐼�

−1
.  So we obtain  

 

𝜕𝜕 𝜙𝜙𝑘𝑘,𝑗𝑗

𝜕𝜕 𝛾𝛾
 = −  𝜙𝜙𝑘𝑘,𝑗𝑗+1  𝑗𝑗+2−2𝑘𝑘

𝑗𝑗+2
+ 𝜙𝜙𝑘𝑘,𝑗𝑗  𝑒𝑒

𝑛𝑛𝑛𝑛𝑐𝑐2
 ,   from which (32a)1 follows. To 

obtain (32a)2 let us write (31) with j+1 instead of j and use the identity 
of [2]: 

𝛾𝛾 𝐽𝐽2𝑘𝑘+2,𝑗𝑗+2−2𝑘𝑘  =  −(𝑗𝑗 + 2 − 2𝑘𝑘) 𝐽𝐽2𝑘𝑘,𝑗𝑗+1−2𝑘𝑘  (𝛾𝛾) + (𝑗𝑗 + 3)𝐽𝐽2𝑘𝑘,𝑗𝑗+3−2𝑘𝑘  (𝛾𝛾) .    

 

If j is even, this relation with k=(j+2)/2 gives (32a)2 .For the other values 
of j we can furtherly use the identity 𝐽𝐽2𝑘𝑘,𝑗𝑗+1−2𝑘𝑘

· = 𝐽𝐽2𝑘𝑘,𝑗𝑗+3−2𝑘𝑘
· −

𝐽𝐽2𝑘𝑘+2,𝑗𝑗+1−2𝑘𝑘
·  and our equation gives 𝜙𝜙𝑘𝑘,𝑗𝑗+1 =  

𝑗𝑗+2
𝛾𝛾
�𝜙𝜙𝑘𝑘,𝑗𝑗  + 𝑐𝑐2 𝑗𝑗+3−2𝑘𝑘

2𝑘𝑘
𝜙𝜙𝑘𝑘−1,𝑗𝑗�  for k= 1, …, [(j+1)/2].   (32b) 

So, for k=0 and for k=(j+2)/2 and j even we can take (32a), while for k= 
1, …, [(j+1)/2],  we can take (32a)1 or (32b). Obviously, 𝑓𝑓𝑓𝑓𝑓𝑓 ℎ =
1, . . . , �𝑗𝑗+1

2
� this fact implies the identity  

 1
𝛾𝛾
�𝜙𝜙ℎ,𝑗𝑗  + 𝑐𝑐2 𝑗𝑗+3−2ℎ

2ℎ
𝜙𝜙ℎ−1,𝑗𝑗� =  1

𝑗𝑗+2−2ℎ
 � 𝑒𝑒
𝑛𝑛𝑛𝑛𝑐𝑐2

 𝜙𝜙ℎ,𝑗𝑗  −  𝜕𝜕 𝜙𝜙ℎ,𝑗𝑗

𝜕𝜕 𝛾𝛾
�  .    (32c) 

A confirmation of this result can be obtained in the following way: 
From (25) we deduce the differentials  

𝑑𝑑 𝜆𝜆𝐸𝐸  =  −  𝑘𝑘𝐵𝐵
𝑚𝑚

 �𝑑𝑑 (ln 𝑛𝑛)  +  𝑒𝑒
𝑛𝑛𝑛𝑛𝑐𝑐2

 𝑑𝑑 𝛾𝛾� , 𝑑𝑑 𝜆𝜆𝜇𝜇𝐸𝐸  =  𝑘𝑘𝐵𝐵
𝑚𝑚𝑐𝑐2

�𝑈𝑈𝜇𝜇 𝑑𝑑 𝛾𝛾 +  𝛾𝛾 𝑑𝑑 𝑈𝑈𝜇𝜇� .  

The differential of (24) in the old variables is  

𝑑𝑑 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗 =  −  𝑚𝑚

𝑘𝑘𝐵𝐵
�𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗 𝑑𝑑 𝜆𝜆𝐸𝐸  + 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗+1 𝑑𝑑 𝜆𝜆𝛼𝛼𝑗𝑗+1

𝐸𝐸 �  =   

= 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗  �𝑑𝑑 (ln 𝑛𝑛)  + 𝑒𝑒

𝑛𝑛𝑛𝑛𝑐𝑐2
 𝑑𝑑 𝛾𝛾�  −  1

𝑐𝑐2
𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗+1 �𝑈𝑈𝛼𝛼𝑗𝑗+1 𝑑𝑑 𝛾𝛾 + 𝛾𝛾 𝑑𝑑 𝑈𝑈𝛼𝛼𝑗𝑗+1�.  

This must be equal to the differential of (24) with respect to the new 
variables, i.e.,  

𝑑𝑑 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗 =

𝜕𝜕 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗

𝜕𝜕 𝑛𝑛
 𝑑𝑑𝑑𝑑 + 

𝜕𝜕 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗

𝜕𝜕 𝛾𝛾
 𝑑𝑑𝑑𝑑 + 

𝜕𝜕 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗

𝜕𝜕 𝑈𝑈𝛼𝛼𝑗𝑗+1
 𝑑𝑑 𝑈𝑈𝛼𝛼𝑗𝑗+1 ; 

By equating the coefficients of dn, dγ, dUβ, we see that the first one 
gives an identity, while the other 2 can be used to desume 

𝑈𝑈𝛼𝛼𝑗𝑗+1
𝑐𝑐2

 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗+1 = 𝑒𝑒

𝑛𝑛𝑛𝑛𝑐𝑐2
𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗  −  𝜕𝜕𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗  

𝜕𝜕 𝛾𝛾
 ,   

𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗𝛽𝛽  ℎ𝛽𝛽

𝛼𝛼𝑗𝑗+1  =  𝑐𝑐
2

𝛾𝛾
 𝜕𝜕 𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1 ...𝛼𝛼𝑗𝑗  

𝜕𝜕 𝑈𝑈𝛽𝛽
ℎ𝛽𝛽
𝛼𝛼𝑗𝑗+1 .   From these it follows 

𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1…𝛼𝛼𝑗𝑗+1  =  

𝑐𝑐2

𝛾𝛾
 
𝜕𝜕𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1…𝛼𝛼𝑗𝑗

𝜕𝜕 𝑈𝑈𝛽𝛽
 ℎ𝛽𝛽

𝛼𝛼𝑗𝑗+1  + �
𝑒𝑒

𝑛𝑛𝑛𝑛𝑐𝑐2
 𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1…𝛼𝛼𝑗𝑗  −  
𝜕𝜕 𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1…𝛼𝛼𝑗𝑗

𝜕𝜕 𝛾𝛾 �  𝑈𝑈𝛼𝛼𝑗𝑗+1 . 

By using eq. (29) and (32c) we find that 𝐴𝐴𝐸𝐸
𝛼𝛼1...𝛼𝛼𝑗𝑗+2 is symmetric (as it must 

be). After that, we have that (29) holds with j+1 instead of j and with 
𝜙𝜙ℎ,𝑗𝑗+1  given by (32a). 

4.2. The first order parts of the closure with respect to 
equilibrium 

From eq. (20) we obtain 𝑓𝑓 − 𝑓𝑓𝐸𝐸 =  −  1
𝑘𝑘𝐵𝐵
𝑓𝑓𝐸𝐸  Δχ with 

Δχ=𝑚𝑚 (𝜆𝜆 − 𝜆𝜆𝐸𝐸) +  (𝜆𝜆𝛼𝛼 − 𝜆𝜆𝛼𝛼𝐸𝐸)𝑝𝑝𝛼𝛼 �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

� +

                                 � 1
𝑚𝑚𝑗𝑗−1

𝐽𝐽

𝑗𝑗=2
𝜆𝜆𝛼𝛼1...𝛼𝛼𝑗𝑗 𝑝𝑝

𝛼𝛼1 . . .𝑝𝑝𝛼𝛼𝑗𝑗 �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
𝑗𝑗
.  

This result can be used to desume from (18) the linear departure of 
𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝐽𝐽 from equilibrium 

𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗 −  𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗 =  −  𝑚𝑚

𝑘𝑘𝐵𝐵
 �(𝜆𝜆 − 𝜆𝜆𝐸𝐸)𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗 + �𝜆𝜆𝛼𝛼𝑗𝑗+1 −

        𝜆𝜆𝛼𝛼𝑗𝑗+1
𝐸𝐸 � 𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗+1  + � 𝜆𝜆𝛼𝛼𝑗𝑗+2 ...𝛼𝛼𝑗𝑗+𝑖𝑖

𝐽𝐽

𝑖𝑖=2
  𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1...𝛼𝛼𝑗𝑗𝛼𝛼𝑗𝑗+1...𝛼𝛼𝑗𝑗+𝑖𝑖�.  (33) 

In particular this relation, for j=0,1 is 

0 = 𝐴𝐴𝛼𝛼 −  𝐴𝐴𝐸𝐸𝛼𝛼 =  −  𝑚𝑚
𝑘𝑘𝐵𝐵

 �(𝜆𝜆 − 𝜆𝜆𝐸𝐸)𝐴𝐴𝐸𝐸𝛼𝛼 + �𝜆𝜆𝛼𝛼1 −     𝜆𝜆𝛼𝛼1
𝐸𝐸 � 𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1  +

         � 𝜆𝜆𝛼𝛼1 ...𝛼𝛼𝑖𝑖

𝐽𝐽

𝑖𝑖=2
  𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1...𝛼𝛼𝑖𝑖�  , 

𝐴𝐴𝛼𝛼𝛼𝛼1 −  𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1 =  −  𝑚𝑚

𝑘𝑘𝐵𝐵
 �(𝜆𝜆 − 𝜆𝜆𝐸𝐸)𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1 + �𝜆𝜆𝛼𝛼2 −  𝜆𝜆𝛼𝛼2
𝐸𝐸 � 𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1𝛼𝛼2  +

           � 𝜆𝜆𝛼𝛼2 ...𝛼𝛼2+𝑖𝑖

𝐽𝐽

𝑖𝑖=2
  𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1𝛼𝛼2...𝛼𝛼1+𝑖𝑖�.               (34) 

In the first one of these equations we have used the physical property 
that there isn't a linear deviation of four-velocity from equilibrim; for 
the second one we can use the physical property that there isn't a non 
equilibrium energy, i.e., Uα Uβ (Aαβ-AEαβ)=0. This last condition, jointly 
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with (34)1 contracted by c-2 Uα gives a system from which we desume 
the values 

𝜆𝜆 − 𝜆𝜆𝐸𝐸 =  −  1
𝐷𝐷

 ∑ 𝑈𝑈𝛼𝛼
𝐽𝐽
𝑖𝑖=2 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑖𝑖   �𝜙𝜙0,2 𝑐𝑐2 𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1...𝛼𝛼𝑖𝑖  −  𝑒𝑒
𝑐𝑐2

 𝑈𝑈𝛽𝛽𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼𝛼𝛼1...𝛼𝛼𝑖𝑖�,  (35) 

�𝜆𝜆𝜇𝜇  −  𝜆𝜆𝜇𝜇𝐸𝐸�𝑈𝑈𝜇𝜇 =  −  1
𝐷𝐷
∑ 𝑈𝑈𝛼𝛼
𝐽𝐽
𝑖𝑖=2 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑖𝑖  �𝑚𝑚𝑚𝑚 𝑈𝑈𝛽𝛽  𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼𝛼𝛼1...𝛼𝛼𝑖𝑖 −  𝑒𝑒 𝐴𝐴𝐸𝐸
𝛼𝛼𝛼𝛼1...𝛼𝛼𝑖𝑖�,   

Where 𝐷𝐷 =  �𝑚𝑚𝑚𝑚𝑐𝑐
2 𝑒𝑒

𝑒𝑒 𝜙𝜙0,2 𝑐𝑐2
� .  

We contract now eq. (34)1 with – hαβ so obtaining 

�𝜆𝜆𝜇𝜇 − 𝜆𝜆𝜇𝜇𝐸𝐸�ℎ𝜇𝜇𝜇𝜇 =  1
𝑝𝑝

 � ℎ𝛼𝛼
𝛽𝛽

𝐽𝐽

𝑖𝑖=2
 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑖𝑖𝐴𝐴𝐸𝐸

𝛼𝛼𝛼𝛼1...𝛼𝛼𝑖𝑖  .  

This result, jointly with (35)2 allows us to obtain 

𝜆𝜆𝛼𝛼 − 𝜆𝜆𝛼𝛼𝐸𝐸 = −  � 𝜆𝜆𝛼𝛼2...𝛼𝛼𝑖𝑖+1 

𝐽𝐽

𝑖𝑖=2
�𝑈𝑈𝛼𝛼
𝐷𝐷
�𝑚𝑚𝑚𝑚 𝑈𝑈𝛼𝛼1 𝑈𝑈𝛼𝛼𝑖𝑖+2 𝐴𝐴𝐸𝐸

𝛼𝛼1𝛼𝛼2...𝛼𝛼𝑖𝑖+2 −

                      𝑒𝑒 𝑈𝑈𝛼𝛼1 𝐴𝐴𝐸𝐸
𝛼𝛼1𝛼𝛼2...𝛼𝛼𝑖𝑖+1�+ 1

𝑝𝑝
ℎ𝛼𝛼𝛼𝛼1𝐴𝐴𝐸𝐸

𝛼𝛼1𝛼𝛼2...𝛼𝛼𝑖𝑖+1� .         (36) 

By substituting (35)1  and (36) in (33), the dependence on 𝜆𝜆 − 𝜆𝜆𝐸𝐸  and  
𝜆𝜆𝛼𝛼 − 𝜆𝜆𝛼𝛼𝐸𝐸  is there eliminated. In particular, (34)1  becomes simply 𝜕𝜕α 
(mnUα)=0. 

In this way the independent variables remain n, γ, Uα and 𝜆𝜆𝛼𝛼1...𝛼𝛼𝑖𝑖   fro 
i≥2.  

4.3. A possible change of integration variables 

We note that in the above expression (31) of 𝜙𝜙𝑘𝑘,𝑗𝑗  there are two 
integrations, one over d I  and the other over ds which is implicit in 
the definition of 𝐽𝐽𝑚𝑚,𝑛𝑛 . To try to reduce one of integrations, we 
introduce the following change of variables from (I, s) belonging to [0, 

+ ∞[ X [0, + ∞ [ to (r , q) belonging to the domain 𝐷𝐷 = { 𝑟𝑟 ∈  [0, + ∞[, 

0 ≤ q  ≤ sinh r}: 𝑠𝑠 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠cosℎ cosℎ 𝑟𝑟
�cosℎ2𝑟𝑟 − 𝑞𝑞2

 ,     𝐼𝐼 =  𝑚𝑚 𝑐𝑐2 ��cosℎ2𝑟𝑟 −  𝑞𝑞2  −

1� ,    (37)  

The Iacobian of this transformation has absolute value |𝐽𝐽|  =
 𝑚𝑚 𝑐𝑐2  sinℎ 𝑟𝑟

�cosℎ2𝑟𝑟 − 𝑞𝑞2
 . 

It can be seen that the above transformation is invertible and its 
inverse is 

𝑟𝑟 =  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠cosℎ ��1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�  cosℎ 𝑠𝑠�  ,   𝑞𝑞 =  sinℎ 𝑟𝑟 �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

� ,   

By using this transformation, we can transform the following 
expression appearing in (31): 

� 𝐽𝐽2𝑘𝑘+2,𝑗𝑗+1−2𝑘𝑘
·+∞

0  �1+ 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
𝑗𝑗
𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

� 𝐽𝐽2,1
·  

+∞
0 𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

 =                (38) 

= 
∫ 𝑑𝑑𝑑𝑑+∞
0 � 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟sinℎ𝑟𝑟

0  𝑞𝑞2𝑘𝑘+2 cosℎ𝑗𝑗+1−2𝑘𝑘𝑟𝑟 sinℎ 𝑟𝑟 𝜂𝜂(𝑟𝑟,𝑞𝑞)𝑑𝑑 𝑞𝑞

∫ 𝑑𝑑𝑑𝑑+∞
0 ∫ 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟sinℎ𝑟𝑟

0  𝑞𝑞2 cosℎ 𝑟𝑟 sinℎ 𝑟𝑟 𝜂𝜂(𝑟𝑟,𝑞𝑞)𝑑𝑑 𝑞𝑞
 ,  with 

𝜂𝜂(𝑟𝑟, 𝑞𝑞) =  
𝜑𝜑�𝑚𝑚𝑐𝑐2��cosℎ2𝑟𝑟 − 𝑞𝑞2 −1��

(cosℎ2𝑟𝑟 − 𝑞𝑞2)2
 . 

Now, in eq. (19) of [6], it has been shown that the measure φ(I) can be 
whatever funtion whose limit for c going to infinity is Ia.  

• A possibility is to take directly φ(I) = Ia. In this case, in 
eq. (38) we can substitute   

𝜂𝜂(𝑟𝑟, 𝑞𝑞) =  
��cosℎ2 𝑟𝑟 −𝑞𝑞2  −1�

𝑎𝑎

(cosℎ2 𝑟𝑟 −𝑞𝑞2)2
 .     (39) 

• Another possibility is to take  

  𝜑𝜑(𝐼𝐼) =  �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
4

 𝐼𝐼𝑎𝑎 .   In this case, in eq.(38) we can substitute 

𝜂𝜂(𝑟𝑟, 𝑞𝑞) =  ��cosℎ2 𝑟𝑟 −  𝑞𝑞2  −  1�
𝑎𝑎

 .       (40) 

In the particular case of a diatomic gas we have a=0 and eqs. (39), (40) 
become 𝜂𝜂(𝑟𝑟, 𝑞𝑞) = (cosℎ2 𝑟𝑟 − 𝑞𝑞2)-2 and 𝜂𝜂(𝑟𝑟,𝑞𝑞) = 1 respectively. In the 

second case the integrations in d q can be easily calculated and (38) 
becomes 

 
� 𝐽𝐽2𝑘𝑘+2,𝑗𝑗+1−2𝑘𝑘

·   
+∞
0 �1+ 𝐼𝐼

𝑚𝑚𝑐𝑐2
�
𝑗𝑗
𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

� 𝐽𝐽2,1
·  

+∞
0 𝜑𝜑(𝐼𝐼) 𝑑𝑑 𝐼𝐼

 =   3
2𝑘𝑘+3

 𝐽𝐽2𝑘𝑘+4,𝑗𝑗+1−2𝑘𝑘(𝛾𝛾)

𝐽𝐽4,1(𝛾𝛾)
 .              (43) 

It is evident that this expression can be written in terms of the 
modified Bessel functions 

𝐾𝐾𝑛𝑛(𝛾𝛾) =  ∫ 𝑒𝑒−𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑠𝑠+∞
0  𝑐𝑐𝑐𝑐𝑐𝑐ℎ (𝑛𝑛𝑛𝑛) 𝑑𝑑 𝑠𝑠 which, in turns, can be written in 

terms of K2 and K3 by means of the recurrence relation (29) of [6].  

Also with the choice (39) the integrations in d q  can be calculated but 
the result isn't so much elegant as in (43) and it isn't clear how it can 
be expressed in terms of the Bessel functions. To do this integration 

we need to calculate first the integral  � 𝑞𝑞2𝑘𝑘+2

(𝑞𝑞2 − cosℎ2 𝑟𝑟)2

sinℎ 𝑟𝑟

0
 𝑑𝑑 𝑞𝑞 .        (44) 

This is calculated in the Appendix C. By using it (38) with the first 
choice becomes  

�𝐽𝐽2,1(𝛾𝛾) − ∫ 𝑟𝑟+∞
0  𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟  sinℎ 𝑟𝑟 𝑑𝑑 𝑟𝑟�

−1
�𝐽𝐽2𝑘𝑘+2,𝑗𝑗+1−2𝑘𝑘(𝛾𝛾) − (2𝑘𝑘 +

1) ∫ 𝑟𝑟+∞
0 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟 cosℎ𝑗𝑗  𝑟𝑟 sinℎ 𝑟𝑟 𝑑𝑑 𝑟𝑟 + � 2𝑘𝑘+1

2𝜂𝜂+1

𝑘𝑘−1

 𝜂𝜂=0
  𝐽𝐽2𝜂𝜂+2,𝑗𝑗−𝜂𝜂−1� ,      

which obviously cannot be expressed in terms of the Bessel functions. 
These results suggest a more physically meaningful approach; this is 
shown in the next subsection. 

4.4. A more physically meaningful approach 

We  note that (18) remains unchanged if we use, instead of  the 
variables pα the expressions p*α=pα(1+I/mc2). These are more more 
physically significative because they take into account the fact that 
the moment of the particle has also a contribution from internal 
energy. Obviously, the new variables are linked by the condition 

𝑃𝑃·𝛼𝛼 𝑝𝑝·𝛼𝛼  =  𝑚𝑚2 𝑐𝑐2  �1 + 𝐼𝐼
𝑚𝑚 𝑐𝑐2

�
2

 ≥ 𝑚𝑚2 𝑐𝑐2 .         (45) 

which represents a cone C of the 4-dimensional space. So we can 
multiply the Boltzmann-Chernikov equation (19) by 
𝑐𝑐

𝑚𝑚𝑗𝑗−1  𝑝𝑝·𝛼𝛼1 . . . 𝑝𝑝·𝛼𝛼𝑗𝑗  �1 + 𝐼𝐼
𝑚𝑚 𝑐𝑐2

�  𝐼𝐼𝑎𝑎   and integrate it in 𝑑𝑑 𝑝𝑝
→·  over the cone C. 

So we obtain again (23)1 but with 𝐴𝐴𝛼𝛼𝛼𝛼1...𝛼𝛼𝐽𝐽 =
𝑐𝑐

𝑚𝑚𝑗𝑗−1  ∫  𝑓𝑓 𝑝𝑝∗𝛼𝛼𝐶𝐶  𝑝𝑝∗𝛼𝛼1 . . .𝑝𝑝∗𝛼𝛼𝑗𝑗𝐼𝐼𝑎𝑎 𝑑𝑑 𝑝𝑝
→· ,     (46) 

𝐼𝐼𝛼𝛼1...𝛼𝛼𝐽𝐽 = 𝑐𝑐
𝑚𝑚𝑗𝑗−1  ∫  𝑄𝑄𝐶𝐶  𝑝𝑝∗𝛼𝛼1 . . . 𝑝𝑝∗𝛼𝛼𝑗𝑗𝐼𝐼𝑎𝑎 𝑑𝑑 𝑝𝑝

→· ,      

Moreover, we obtain again (20), (21) but with 

𝜒𝜒 =  � 1
𝑚𝑚𝑗𝑗−1

𝐽𝐽

𝑗𝑗=0
  𝜆𝜆𝑎𝑎1...𝑎𝑎𝑗𝑗  𝑝𝑝

∗𝛼𝛼1 . . . 𝑝𝑝∗𝛼𝛼𝑗𝑗 ,   ℎ′𝛼𝛼 =  − 𝑘𝑘𝐵𝐵 𝑐𝑐 ∫ 𝑓𝑓𝐶𝐶  𝑝𝑝∗𝛼𝛼𝐼𝐼𝑎𝑎  𝑑𝑑  𝑃𝑃
→
∗,                 

We call now m c q the modulus of the spatial component of 𝑃𝑃·𝛼𝛼 and m 
c cosh r its time-like component. In this way (45) becomes cosh2 r - q2 
≥ 1$, i.e., cosh2 r - 1 ≥ q2 or, equivalently, sinh r  ≥ q ≥ 0. After that, by 
introducing spherical coordinates for the spatial components of 𝑃𝑃·𝛼𝛼, 
we have the parametrization 

𝑃𝑃·𝛼𝛼=mc(cosh r, q sin ϑ cos φ, q sin ϑ sin φ, q cos ϑ) with r ≥ 0, 0 ≤ ϑ ≤ π, 
0 ≤ φ ≤ 2π, 0 ≤ q ≤ sinh r.  

The Jacobian of this transformation is J= m4c4 sinh r  q2 sin ϑ. After 
that, we can integrate (46)1 at equilibrium. It becomes as (24), except 
that now the integration is in d 𝑝𝑝

→·, over the 4-dimensional domain C. 
For j=0,1 we obtain again (24) but with 

𝑛𝑛 = 4𝜋𝜋 𝑚𝑚5𝑐𝑐5(𝑚𝑚𝑐𝑐2)𝑎𝑎 𝑒𝑒−1−
𝑚𝑚 𝜆𝜆𝐸𝐸

𝑘𝑘𝐵𝐵                         (47) 

� 𝑑𝑑 𝑟𝑟
+∞

0
  � 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟

sinℎ 𝑟𝑟

0
 cosℎ 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑟𝑟 ��cosℎ2𝑟𝑟 − 𝑞𝑞2  − 1 �

𝑎𝑎
 𝑞𝑞2 𝑑𝑑 𝑞𝑞 ,  

𝑒𝑒
𝑛𝑛𝑛𝑛𝑐𝑐2

=  
∫ 𝑑𝑑 𝑟𝑟+∞
0   � 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟sinℎ 𝑟𝑟

0  cosℎ2 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑟𝑟 ��cosℎ2𝑟𝑟 −𝑞𝑞2 −1 �
𝑎𝑎

 𝑞𝑞2 𝑑𝑑 𝑞𝑞 

∫ 𝑑𝑑 𝑟𝑟+∞
0   ∫ 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟sinℎ 𝑟𝑟

0  cosℎ 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑟𝑟 ��cosℎ2𝑟𝑟 −𝑞𝑞2 −1 �
𝑎𝑎

 𝑞𝑞2 𝑑𝑑 𝑞𝑞 
 ,  
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3𝑝𝑝
𝑛𝑛𝑛𝑛𝑐𝑐2

=  
∫ 𝑑𝑑 𝑟𝑟+∞
0   � 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟sinℎ 𝑟𝑟

0  𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑟𝑟 ��cosℎ2𝑟𝑟 −𝑞𝑞2 −1 �
𝑎𝑎

 𝑞𝑞2 𝑑𝑑 𝑞𝑞 

∫ 𝑑𝑑 𝑟𝑟+∞
0   ∫ 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟sinℎ 𝑟𝑟

0  cosℎ 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑟𝑟 ��cosℎ2𝑟𝑟 −𝑞𝑞2 −1 �
𝑎𝑎

 𝑞𝑞2 𝑑𝑑 𝑞𝑞 
 .   

To modify the last one of these expressions, we start from the known 
identity Jm,0 (γ) = 𝑚𝑚−1

γ
 Jm-2,1(γ) from which it follows 

∫ 𝑑𝑑𝑑𝑑+∞
0 � 𝑒𝑒−𝛾𝛾�1+

𝐼𝐼
𝑚𝑚𝑐𝑐2

�cosℎ 𝑠𝑠
+∞

0
sinℎ𝑚𝑚𝑠𝑠 �1 + 𝐼𝐼

𝑚𝑚𝑐𝑐2
�  𝜑𝜑(𝐼𝐼)  𝑑𝑑𝑑𝑑 =  

𝑚𝑚−1
γ

 ∫ 𝑑𝑑𝑑𝑑+∞
0 � 𝑒𝑒−𝛾𝛾�1+

𝐼𝐼
𝑚𝑚𝑐𝑐2

�cosℎ 𝑠𝑠
+∞

0
sinℎ𝑚𝑚−2𝑠𝑠 cosh 𝑠𝑠 �1 + 𝐼𝐼

𝑚𝑚𝑐𝑐2
�  𝜑𝜑(𝐼𝐼)  𝑑𝑑𝑑𝑑 .  

If we use the change of integration variables (37) and use 𝜑𝜑(𝐼𝐼) =

 �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
4

 𝐼𝐼𝑎𝑎 ,  as in the choice before eq. (40), we transform this 
identity in another one; in the particular case m=4 it becomes   

∫ 𝑑𝑑𝑑𝑑+∞
0 ∫ 𝑒𝑒−𝛾𝛾cosℎ 𝑟𝑟sinh𝑟𝑟

0 sinh 𝑟𝑟    ��cosℎ2𝑟𝑟 − 𝑞𝑞2  − 1 �
𝑎𝑎

 𝑞𝑞4 𝑑𝑑 𝑞𝑞 = 3
γ

 ∫ 𝑑𝑑𝑑𝑑+∞
0  

∫ 𝑒𝑒−𝛾𝛾cosℎ 𝑟𝑟sinh𝑟𝑟
0 sinh 𝑟𝑟  cosh 𝑟𝑟 ��cosℎ2𝑟𝑟 − 𝑞𝑞2 − 1 �

𝑎𝑎
 𝑞𝑞4 𝑑𝑑 𝑞𝑞 .   

By using this identity we see that (47)3 becomes 𝑝𝑝 = 𝑛𝑛 𝑚𝑚 𝑐𝑐2

𝛾𝛾
 as in eq. (28). 

Also (47)1,2  are equal to (25) and (28)2, as it can be seen by using the  

integration variables (37) and  𝜑𝜑(𝐼𝐼) =  �1 + 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
4

 𝐼𝐼𝑎𝑎. 

For the other values of j, eq. (46)1 at equilibrium becomes again (29) but 
with 𝜙𝜙𝑘𝑘,𝑗𝑗 = 

=  4 𝜋𝜋 �𝑗𝑗 + 1
2𝑘𝑘 �

1
2𝑘𝑘 + 1

𝑐𝑐2𝑘𝑘+5 𝑚𝑚6 𝑒𝑒−1−
𝑚𝑚 𝜆𝜆𝐸𝐸
𝑘𝑘𝐵𝐵  � 𝑑𝑑𝑑𝑑

+∞

0
� 𝑒𝑒−𝛾𝛾cosℎ 𝑟𝑟
sinh𝑟𝑟

0
𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑗𝑗+1−2𝑘𝑘 𝑟𝑟  

sinh 𝑟𝑟  (𝑚𝑚 𝑐𝑐2 )𝑎𝑎 ��cosℎ2𝑟𝑟 − 𝑞𝑞2  − 1 �
𝑎𝑎

 𝑞𝑞2𝑘𝑘+2 𝑑𝑑 𝑞𝑞  ,            

instead of (30). Now we can use eq. (47)1  to desume 𝑒𝑒−1−
𝑚𝑚 𝜆𝜆𝐸𝐸

𝑘𝑘𝐵𝐵  and 
substitute it in the previous equation so that it becomes                   

𝜙𝜙𝑘𝑘,𝑗𝑗 =  𝑚𝑚 𝑛𝑛 𝑐𝑐2𝑘𝑘 1
2𝑘𝑘+1

�𝑗𝑗 + 1
2𝑘𝑘 �   .      

    
∫ 𝑑𝑑 𝑟𝑟+∞
0   � 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟sinℎ 𝑟𝑟

0  𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑗𝑗+1−2𝑘𝑘 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑟𝑟 ��cosℎ2𝑟𝑟 −𝑞𝑞2 −1 �
𝑎𝑎

 𝑞𝑞2𝑘𝑘+2 𝑑𝑑 𝑞𝑞 

∫ 𝑑𝑑 𝑟𝑟+∞
0   ∫ 𝑒𝑒−𝛾𝛾 cosℎ 𝑟𝑟sinℎ 𝑟𝑟

0  cosℎ 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑟𝑟 ��cosℎ2𝑟𝑟 −𝑞𝑞2 −1 �
𝑎𝑎

 𝑞𝑞2 𝑑𝑑 𝑞𝑞 
 .     

instead of (31). Obviously, in the particular case of a diatomic gas, 
where a=0, in all these scalar functions it is easy to integrate in dq and 
the results become expressed in terms of Jm,n(γ); consequently, they 
can be expressed easily in terms of the Bessel functions. 

 

Conclusion 
 

In this article the reason have been identified  why the so far known 
relativistic models for polytomic  gases suffer from the drawback  of a 
narrow zone of hyperbolicity: The approximations used there. Since 
some kind of approximations around equilibrium are still necessary, 
a method has been identified to make them in a consistent way. This 
allowed us to find a new model that is hyperbolic for any value of its 
independent variables, thus satisfying the principles of cause and 
effect and that Einstein's relativity. Finally, a new way of constructing 
relativistic balance equations has been identified which is physically 
more significant and which is more manageable for applications to 
particular cases, such as that of diatomic and ultra-relativistic gases. 
It also has the undoubted advantage of having all its constitutive 
scalar functions expressed in terms of energy and its derivatives with 
respect to temperature. 

 

Appendix 

5. A - An useful set of integrals above used 
 

In the main text of this article we faced integrals of the type 

� 𝑑𝑑 𝑃𝑃
→

𝑅𝑅3
� 𝑒𝑒−1−

𝜒𝜒𝜀𝜀
𝑘𝑘𝐵𝐵

+∞

0
 𝑝𝑝𝛼𝛼1 . . . 𝑝𝑝𝛼𝛼𝑛𝑛 𝜓𝜓(𝐼𝐼) 𝑑𝑑 𝐼𝐼 =               (49) 

 =𝑒𝑒−1−
𝑚𝑚𝑚𝑚
𝑘𝑘𝐵𝐵 � 𝑑𝑑 𝑃𝑃

→

𝑅𝑅3
� 𝑒𝑒−

1
𝑘𝑘𝐵𝐵

 λμ 𝑝𝑝𝜇𝜇 �1+ 𝐼𝐼
𝑚𝑚𝑐𝑐2

�
+∞

0
 𝑝𝑝𝛼𝛼1 . . . 𝑝𝑝𝛼𝛼𝑛𝑛 𝜓𝜓(𝐼𝐼) 𝑑𝑑 𝐼𝐼 =                   

= 𝑒𝑒−1−
𝑚𝑚𝑚𝑚
𝑘𝑘𝐵𝐵 � 𝜙𝜙𝑟𝑟,𝑛𝑛

�𝑛𝑛2�
𝑟𝑟=0

(𝜆𝜆,𝛾𝛾)  h(α1α2  … hα2r-1α2r  lα2r+1
  …lαn)  , 

where the expression in the right hand side is suggested by the 
Representation Theorems and  

𝛾𝛾 = 𝑚𝑚 𝑐𝑐
𝑘𝑘𝐵𝐵

 �𝜆𝜆𝛼𝛼𝜆𝜆𝛼𝛼  , 𝑙𝑙𝛼𝛼 =  𝑚𝑚𝑐𝑐2

𝛾𝛾 𝑘𝑘𝐵𝐵
 𝜆𝜆𝛼𝛼 .                    

By contracting (49) with ℎ𝛼𝛼1𝛼𝛼2 . . . ℎ𝛼𝛼2𝑅𝑅−1𝛼𝛼2𝑅𝑅 𝑙𝑙𝛼𝛼2𝑅𝑅+1 . . . 𝑙𝑙𝛼𝛼𝑛𝑛 we find that only 
the term with r=R survives in the summation and, moreover, 

𝜙𝜙𝑟𝑟,𝑛𝑛 = � 𝑛𝑛2𝑟𝑟�
4𝜋𝜋

2𝑟𝑟 + 1
𝑚𝑚𝑛𝑛+2 𝑐𝑐2𝑟𝑟+2  

� 𝑑𝑑𝑑𝑑
+∞

0
 � 𝑒𝑒−�1+

𝐼𝐼
𝑚𝑚𝑐𝑐2� 𝛾𝛾 cosℎ 𝑠𝑠

+∞

0
  sinℎ2𝑟𝑟+2𝑠𝑠  cosℎ𝑛𝑛−2𝑟𝑟𝑠𝑠 𝜓𝜓(𝐼𝐼) 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 , 

where calculations have been performed in the reference frame where 
𝑙𝑙𝛼𝛼  has only the zero component, i.e., 𝑙𝑙𝛼𝛼 ≡ (c , 0, 0, 0) and the same 
procedure used in [6] has been followed. The result can be written also 
as 

𝜙𝜙𝑟𝑟,𝑛𝑛 = � 𝑛𝑛2𝑟𝑟�
4𝜋𝜋

2𝑟𝑟 + 1
𝑚𝑚𝑛𝑛+2 𝑐𝑐2𝑟𝑟+2  � 𝐽𝐽2𝑟𝑟+2,𝑛𝑛−2𝑟𝑟

+∞

0
(𝛾𝛾·) 𝜓𝜓(𝐼𝐼) 𝑑𝑑𝑑𝑑 . 

6. B - A property used above 
 

In the main text of this article we have used the following  

THEOREM: Let us consider the function 

𝑓𝑓𝑀𝑀(𝑥𝑥) =  ∑ (−1)𝑟𝑟 𝑀𝑀
𝑟𝑟=0   1

𝑟𝑟!
 𝑥𝑥𝑟𝑟;  it satisfies the properties: 1) If M is even, 

then 𝑓𝑓𝑀𝑀(𝑥𝑥) > 0  ∀ 𝑥𝑥 while 2) if M is odd, then ∃ 𝑥𝑥𝑀𝑀· ∶  𝑓𝑓𝑀𝑀 (𝑥𝑥)  >
0 ⇔  𝑥𝑥 <  𝑥𝑥𝑀𝑀·  . 
Let us prove it with the iterative procedure on M. 

• It is true for M=0 because f0(x) = 1, 

• It is true for M=1 because f1(x) = 1-x>0 ⇔  x<1, so that 
x1

*=1. 
• Let us suppose that it holds up to the number M=2p 

and prove that it holds also for M=2p+1 and M=2p+2. 
 

In fact, we have f'2p+1(x)= - f2p(x) <0 so that f2p+1(x) is a decreasing 
function. Since lim

𝑥𝑥→−∞
 f2p+1(x)= +∞ and lim

𝑥𝑥→+∞
 f2p+1(x)= -∞, our property is 

satisfied for M=2p+1. Let us prove it also for M=2p+2: We have f'2p+2(x)= 
- f2p+1(x) so that f2p+2(x) is a decreasing function for x< x*

2p+1 and  an 
increasing function for x > x*2p+1.  

Moreover, we have f2p+2(x)= f2p+1(x)+ 𝑥𝑥2𝑝𝑝+2

(2𝑝𝑝+2)!
 so that f2p+2(x*2p+1)= 

�𝑥𝑥2𝑝𝑝+1· �
2𝑝𝑝+2

(2𝑝𝑝+2)!
 > 0. In other words, f2p+2(x) decreases from + ∞ to the 

minimum value 
�𝑥𝑥2𝑝𝑝+1· �

2𝑝𝑝+2

(2𝑝𝑝+2)!
 > 0 and, after that, increases up to +  ∞. It 

follows that f2p+2(x)>0 for every value of x and this concludes  our 
proof. 
 
7. C - Calculation of the integral (44) 
 
Let us perform firstly an integration by parts so that it becomes 
1
2
� � −1

𝑞𝑞2−cosℎ2𝑟𝑟
�
′sinℎ 𝑟𝑟 

0
 𝑞𝑞2𝑘𝑘+1 𝑑𝑑 𝑞𝑞 =  

             =1
2

sinℎ2𝑘𝑘+1𝑟𝑟 + 2𝑘𝑘+1
2

 � 𝑞𝑞2𝑘𝑘

𝑞𝑞2 − cosℎ2 𝑟𝑟

sinℎ 𝑟𝑟

0
 𝑑𝑑 𝑞𝑞. 

So there remains to calculate the integral � 𝑞𝑞2𝑘𝑘

𝑞𝑞2 − cosℎ2 𝑟𝑟

sinℎ 𝑟𝑟

0
 𝑑𝑑 𝑞𝑞. To this 

end we start from the well known identity  
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𝑞𝑞2𝑘𝑘  −  cosℎ2𝑘𝑘𝑟𝑟 = =  (𝑞𝑞2  −  cosℎ2𝑟𝑟 ) ∑ 
𝜂𝜂=0

𝑘𝑘−1
𝑞𝑞2𝜂𝜂 cosℎ2𝑘𝑘−𝜂𝜂−2𝑟𝑟  → 

→  𝑞𝑞2𝑘𝑘

𝑞𝑞2 − cosℎ2𝑟𝑟
 =  cosℎ2𝑟𝑟

𝑞𝑞2 − cosℎ2𝑟𝑟
 +  ∑ 

𝜂𝜂=0

𝑘𝑘−1
𝑞𝑞2𝜂𝜂 cosℎ2𝑘𝑘−𝜂𝜂−2𝑟𝑟 . 

So we can now integrate and find � 𝑞𝑞2𝑘𝑘

𝑞𝑞2 − cosℎ2 𝑟𝑟

sinℎ 𝑟𝑟

0
 𝑑𝑑 𝑞𝑞 =  

= � 𝑐𝑐𝑐𝑐𝑐𝑐ℎ2𝑘𝑘−1𝑟𝑟
2

sinℎ 𝑟𝑟

0
� 1
𝑞𝑞−cosℎ 𝑟𝑟

−  1
𝑞𝑞+cosℎ 𝑟𝑟

� 𝑑𝑑 𝑞𝑞+∑ 
𝜂𝜂=0

𝑘𝑘−1
  �𝑞𝑞

2𝜂𝜂+1

2𝜂𝜂+1
�
0

sinℎ 𝑟𝑟 
cosℎ2𝑘𝑘−𝜂𝜂−2 𝑟𝑟 = cosℎ

2𝑘𝑘−1 𝑟𝑟
2

 � ln �𝑞𝑞−cosℎ 𝑟𝑟
𝑞𝑞+cosℎ 𝑟𝑟

�  �
0

sinℎ 𝑟𝑟
 +  

+∑ 
𝜂𝜂=0

𝑘𝑘−1
   1

2𝜂𝜂+1
 sinℎ2𝜂𝜂+1 𝑟𝑟 cosℎ2𝑘𝑘−𝜂𝜂−2 𝑟𝑟 = cosℎ

2𝑘𝑘−1 𝑟𝑟 
2

 ln �sinℎ 𝑟𝑟−cosℎ 𝑟𝑟
sinℎ 𝑟𝑟+cosℎ 𝑟𝑟

�   +  

+∑ 
𝜂𝜂=0

𝑘𝑘−1
   1

2𝜂𝜂+1
 sinℎ2𝜂𝜂+1 𝑟𝑟 cosℎ2𝑘𝑘−𝜂𝜂−2 𝑟𝑟= - r  cosℎ2𝑘𝑘−1 𝑟𝑟 + 

+∑ 
𝜂𝜂=0

𝑘𝑘−1
   1

2𝜂𝜂+1
 sinℎ2𝜂𝜂+1 𝑟𝑟 cosℎ2𝑘𝑘−𝜂𝜂−2 𝑟𝑟 ,  

where we have used the property  

ln �sinℎ 𝑟𝑟 − cosℎ 𝑟𝑟
sinℎ 𝑟𝑟 + cosℎ 𝑟𝑟

�  = ln �−𝑒𝑒
−𝑟𝑟

𝑒𝑒𝑟𝑟
�  =  ln (𝑒𝑒−2𝑟𝑟) =  −2 𝑟𝑟.  
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