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Featured Application: Non-destructive tests to have a rapid condition assessment of bridges,
using the Fast-Falling Weight Deflectometer.

Abstract: In this paper, the use of Fast Falling Weight Deflectometer (Fast-FWD) is analyzed as
a non-destructive and quick test procedure to evaluate the efficiency of short-span bridges. The
Fast-FWD is an instrument that can produce a broadband dynamic force up to an impact value
of 120 KN: The impact is constant and replicable, providing accurate action measures of bridge
stiffness in a truly short period (30 ms). In this paper, a single-span reinforced concrete bridge is
investigated, using the Fast-FWD. The considered bridge, approximately 12.0 m long and 15.5 m
wide, was in critical condition. The bridge is in a suburban principal road near to the City of Cagliari
in Sardinia (Italy), with an Annual Average Daily Traffic of 13,500 vehicles/day, and was suddenly
closed, creating serious problems for urban mobility. In these conditions, the investigation through
other standard techniques is time-consuming and labor intensive. For this reason, it is important
to introduce methods that can be rapid, accurate and cost-efficient. In this paper, bridge stiffness
values obtained during the in situ experimental campaign were compared with finite element models
values. The Fast-FWD has the potential to provide engineering information that can help us to better
understand bridge condition, in a rapid and cost-effective procedure.

Keywords: Fast Falling Weight Deflectometer (Fast-FWD); bridge health monitoring; structural
response; non-destructive test; finite element modelling

1. Introduction

Health monitoring of civil infrastructure is nowadays a pivotal point in civil engi-
neering and in the maintenance program of the infrastructures. Nowadays the collapse of
bridges or similar artwork, also induced by extreme climatic events [1,2], plays a strategic
role even in the emergency plan [2,3]. The decay due to aging, deterioration of the materi-
als and lack of maintenance can induce a sensible modification of the static and dynamic
response of the infrastructure [4,5].

A significant element of vulnerability of this kind of infrastructure is the hydraulic
one [1,6]. Recent collapses [7] highlighted a significant role of rainstorms in the safety
evaluation of reduced-span bridges.

Several strategies are available to determine the structural conditions and mechanical
performances of bridges and viaducts. An interesting review of a method of damage
assessment is presented in References [8-11], in which the possibility to derive a structural
condition index throughout the displacement and strain monitoring is investigated. At
this purpose, the most effective approach is to perform a continuum investigation of the
infrastructure during its life span [12], from the construction through the life cycle. Given
that this is not possible for a large part of the existing infrastructures, other strategies
should be developed.
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In References [13,14], a fast method to relieve the geometry and furnish a safety
evaluation of the infrastructure is proposed. Ongoing research is focused on the identifica-
tion of the mechanical property of concrete throughout ultrasonic method and combined
method [15-19]. Although the traditional non-destructive methods had a significant en-
hancement [20] in the last period, a benchmark Finite Element (FE) model for the evaluation
of the structural vulnerability is often necessary also improved with several tuning meth-
ods [21].

Furthermore, full-scale tests are performed to determine bridge stiffness that derives
from the stiffness of each structural component [22]. Tests consist essentially of non-
destructive static and dynamic methodologies. Stiffness can be obtained by measuring
strains and displacements resulting from static load tests. In this field, the research in
dynamic [23] and earthquake engineering [24] furnishes interesting insight.

Another branch of investigation is based on the modal identification of the structural
response and the comparison of this with numerical results from FE models [25,26]. The
natural frequency of a bridge can be measured with the detection of the acceleration
induced by vibrating mass or impacts. The Experimental Modal Analysis (EMA) [27]
is an interesting way to investigate structural health [27]. This method encounters the
principal limits in the interpretation of the dynamic response with an FE. In addition,
the environmental actions, as well as temperature, wind and environmental vibration,
affect the dynamic response in a sensible way [28]. Each technique is time-consuming in
terms of setting the instrumentation and performing the tests and back calculation of the
results. In many cases, tests must be performed by closing the bridge to traffic, causing
severe disruption to the daily flow of traffic. For these reasons, new strategies should be
introduced that are more rapid, accurate and cost-efficient [29,30].

A crucial issue for stakeholders is monitoring infrastructures in a more accurate and
rapid way, to achieve results in short time and address efficiently the economic resources
for maintenance and/or rehabilitation works. In Italy, there are more than 1.5 million
bridges (from short to large span), and approximatively only 4% of these are monitored.

After the Morandi bridge disaster in Genova (Italy) on 14 August 2018, a dramatic
collapse of a 210 m central section of the viaduct in which 43 people died, a vast public
debate has focused on the needs of the bridges maintenance in Italy and Europe. In May
2020, the Italian Higher Council of Public Works of the Ministry of Infrastructure and
Transport approved the “Guidelines for the classification and management of risk, the
assessment of safety and the monitoring of existing bridges”. The importance to develop
efficient, low-cost, replicable, accurate and low time-consuming tools to monitoring bridges
is clear.

The original Falling Weight Deflectometer (FWD) allows us to perform one test in
5 min, while traditional impulsive methods need hours or days. The Fast-FWD is five
times faster per drop than the original one. The original hydraulic load lifting system
has been replaced by an electric motor. Its main field of application is in monitoring of
pavement engineering, capable of performing tests on flexible (asphalt), rigid (concrete)
and semi-rigid pavements (asphalt and concrete). The Fast-FWD is mounted on a trailer
and towed by a vehicle especially instrumented (Figure 1): The operator can control the
testing unit with a laptop computer. A test can be performed in less than one minute once
the testing position has been reached. It is possible to reply to a high number of tests in
a limited time, by applying impulsive loads on the structure surface and recording the
deflections at different distances from the load application.

The use of Fast-FWD to evaluate stiffness values of pavement structure [31] was
introduced in the late 1970s. Its application gradually spread in the middle of the 1990s,
becoming more used, especially in the USA. [32,33]. Some case studies are available in
the literature: in 1996, tests regarded two bridges in Virginia (USA) measuring deflections
on bridge decks [33]; in 2001, it was used to measure natural frequency of a bridge and
compared it with prior test results, to identify damage [34]. Moreover, it has been suggested
to consider the use of a large impulse source, such as the FWD, for locating natural
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frequencies during preliminary vibrating testing of bridges [35]. In a recent study, the
feasibility was explored of FWD as an impact force on two bridges and compared with an
impact hammer test [36].

(a) (b)

Figure 1. (a) Fast Falling Weight Deflectometer (Fast-FWD) with the main elements: falling mass and geophones of measure
bar [37] and (b) on trailer towed by vehicle ready for testing.

The application of a Fast Falling Weight Deflectometer to determine the modal shape
of existing bridges is described in Reference [38], in which two case studies are considered:
a Parker Pony Truss (Hartbarger Bridge) and a modern concrete deck on rolled steel
beam (Baptist Ford Bridge). The modal shape is analyzed through an accelerometer. It is
highlighted how the FWD can create proper impact forces that are useful for screening
bridges and detecting performance and conditions.

The aim of the research is to evaluate whether Fast-FWD can furnish bridge stiffness
values, to help engineers to understand bridge performance and conditions, detecting also
possible deteriorations replacing tests over time.

This paper presents a case study in which the Fast-FWD used as a controlled exci-
tation device was analyzed, performing impact dynamic testing on a single span-bridge
approximately 12.0 m long and 15.5 m wide. It overpassed the Perdalonga canal (Figure 2),
located in the city of Quartu Sant’Elena (Sardinia, Italy), along Colombo Avenue.

Figure 2. Bridge on Perdalonga canal Quartu Sant’Elena (Sardinia, Italy).

Forty-eight tests were performed in less than one hour, on the bridge deck, abut-
ment and also on the approach paved embankment. The results obtained were analyzed
throughout an FE analysis in ANSYS (R18.1) environment.
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2. Methods of Analysis
2.1. Fast Falling Weight Deflectometer (Fast-FWD)

The deflections induced by Fast-FWD were obtained by a series of impulses from a
repeated falling load. The deflectometric data registered by Fast-FWD data acquisition
system were processed to assess deflection basin parameters and pavement layers stiffness
through ELMOD 6 software [39] developed by Dynatest [40]. The load is pushed by a
circular steel plate of diameter 300 mm. The plate is segmented in four angular sectors,
to better match the shape of the tires footprint. Twelve velocity transducers (geophones)
are along a line radiating out from the load plate to a max distance of 2100 (Figure 3).
The geophone numbers 11 and 12 were placed in approximately symmetric position with
respect to the geophone numbers 2 and 3, to check the deflection basin nearest to the impact
point. The impulse was given in correspondence with the measurement axis, aligned with
the geophones zero. The measurement axis was moved along all the bridge deck during
the experimental campaign. In this experimental campaign, the geophone bar was moved
alongside the road axis; so, for each drop, longitudinal deflection is measured.

The weight and the drop height of the falling mass can be modified: The weighting
mass range is 50-350 kg, while the drop height is from 50 to 390 mm, so the impulse load
can range from 40 to 120 kN, acting on mass and drop height. The duration of the impulse
load ranges from 25 to 30 ms. For each drop, the system samples the load and measures
the time history of the deflection in a period of 60 ms. The load is applied by a falling mass
with a fixed height drop and is verified with a Dynamometer. The kind of pavement can
influence the local pressure, but the axial load is fixed.

The standard test comprises three repeated drops with the same load or through
progressive impulse with growing stress. It is useful to perform the test with three different
vertical stresses, to investigate if the response of the system is linear with respect to the
intensity of the impulse.

Figure 3 shows a typical deflection basin measured by the geophones after the impul-
sive load. The deflection profile is influenced by the properties of the pavement layers,
as well of the magnitude and frequency of the loading [31]. The largest deflection is in
correspondence of the loading point, measured by the D; and Dy; geophones. The am-
plitude and the shape of the basin contain information about the stiffness of the layers of
the pavement; the time history of the deflection contains information about the dynamic
properties of the underlying layers.

Subgrade related zone

Foundation layer related zone
Surface layer related zone Deflection basin shape

Figure 3. Basin shape profile, number and position of the Geophone.

AN

From this data, some synthetic indicators can be drawn. Conventional stiffness values
were obtained by dividing the applied load with the displacement obtained measured by

the axial geophone Dj.
F

~ Dy

where F—impulsive load and Dp—maximum deflection measured at the center of the plate.

K 1)
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In addition, the analysis of the basin shape furnishes some indicators called “Basin
Indexes”. These are defined in References [41,42]. The more relevant ones in the analysis
of the concrete deck are defined in Equations (2)—(6) and described below. The radius of
curvature (RC) defines the average radius of curvature of the deflection basin related to
the radius of the load plate. The Surface Condition Index (SCI), Base Distress Index (BDI),
and Deep Condition Index (DCI) are defined as the difference of the deflection at different
distance from the load points. Rectangular Area (RA) indicator is a synthetic that considers
the summation of all the displacements related to D;.

R2
"= 20y~ D) @
SCI =Dy — D3 3)
BDI = Dy — Dgo (4)
DCI = Dggo — Da100 ®)
RA = 22’511[% ©)

where R—radius of the circular load plate, D;—deflection of the i-th geophone and i—
distance in millimeter from the center of the load plate.

2.2. Description of the Structure

The bridge is an in situ cast reinforcement concrete bridge. The crossing girders
have comparable dimensions and are joined with a reinforcement concrete deck. This
makes the structure near to the so-called “plate-behavior”. The limited length, related to
the width of the deck, makes an analysis with the Plate Theory or a Finite Element (FE)
analysis an effective way to estimate the structural behavior, since simplified beam models,
such as the Eulero Bernulli’s one, are not valid for it. The considered bridge structure is
composed of a concrete deck with trellis girders measuring 11.86 m (length) and 15.45 m
(width). The thickness of the deck, also considering that the road pavement, is 45 cm. The
intradoses cross-beam are casted on site. In Figure 4 is drawn the planimetric view and
the structural cross-section of the deck. This is characterized by eight primary bearing
beams (in Section B-B) and four diaphragms in the transverse section (Section A-A), with
the support diaphragm of double thickness, as compared to the central ones. The primary
beams are of T-shape with an overall height of about 90 cm and a thickness of 35 cm. The
transverse girders are 90 per 30 cm (60 cm the ones placed on the side).

The bridge was preliminarily investigated with pull out, sclerometer and coring
tests, to assess the concrete compression strength. The asphalt was similarly assessed:
Mechanical data of the numerical model are summarized in Table 1.

The visual inspection of concrete (Figure 5) revealed a high level of spalling, whilst
the steel rebars revealed a high level of corrosion. The original shear strength was made
by stirrups and longitudinal profiled ties. A relevant number of cracked stirrups (on the
combined effect of load and aggressive environmental conditions) highlighted a relevant
risk of brittle shear failure.

The Fast-FWD tests campaign was performed in May 2019, in one single hour. In
Figure 6, an aerial view shows the bridge road and the testing site. On each of the 48 testing
points, three load impulses were applied with increasing contact pressure, respectively, of
1300, 1400 and 1500 kPa.

Table 1. Mechanical properties for the Finite Element (FE) model.

Concrete Asphalt Steel
E. (GPa) Ve E, (GPa) Va Es (GPa) Vs
10.52 0.35 1.50 0.35 206 0.20
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Figure 4. View of the deck: (a) planimetric view of the trellis girder and (b) longitudinal and transversal sections.

Figure 5. Picture of the bridge, showing significant corrosion: (a) lateral view of the deck and (b) view of the intrados of the
beam.

Before tests, a geometric grid was established on the deck of the bridge, whose origin
of the reference system is in Figure 6. Testing-point positions are in Figure 7 and the
positions of the geophones are in Figure 7. Comparing Figure 7 with Figure 4, it is evident
that the test net is different from the structural net of girders. This is motivated by the fact
that test net is established with the criteria to measure equally spaced points on all the
bearing surface of the bridge, aside from the actual position of the bearing element. This is
done in order to validate the method, also in the case of lack of knowledge of the structural
net that is sustaining the deck.
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The Fast-FWD Load Cell is a low-profile shear web designed with strain gauges.
Despite its high range of 250 kN, it features a height of only 45 mm. Due to design
specifications, the cell will deflect less than 30 microns at peak load. Nominal sensitivity is
approximately 16 uV/V/kN.

Figure 6. Aerial view of the testing site.
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Figure 7. Survey grid and schematic position of the station points.
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The twelve geophonic sensors should be very robust and with high-precision trans-
ducing seismic velocity, protected in a sealed housing. The available movement is = 2 mm
with 2 um precision. The displacements are determined by integrating geophones’ signal.
Load cell and geophones are both calibrated periodically and before daily use, according
AASHTO R32-11 protocol [43].

All tests performed had the bar that holds the geophones aligned along the y-axes.
Thus, the longitudinal deflection of the girder was also reordered. Tests performed on the
middle line of deck and on the abutment were performed twice in the same position, with
the geophone bar once facing Quartu (N-W) and then Poetto (5-E). Each test is identified
by a number from 1 to 48. The tests on the approach pavement were performed only once
(Figure 7).

The impulse duration was 30 ms; the 1200 values of displacements and load were
recorded for each drop (i.e., one value every 0.05 ms), recording 60 ms for each test. An
average load and displacement were determined for each tested point, obtaining a time
history basin deflection stiffness value for the bridge for each tested position.

2.3. Numerical Simulations

The FE model was developed in ANSYS™ Mechanical (see Figure 8). The mesh is
made of SHELL181 Elements for the concrete beams and SOLID187 Tetrahedral Elements

for the concrete slab and the asphalt roadbed. The characteristic size of each finite element
is 0.15 m.

(a) (b)

Figure 8. (a) Elements merging nodes with the ones belonging to the surface of the asphalt. (b) Thus, a rigid contact between
the loading plate and asphalt is developed during the whole loading time.

Concrete, asphalt and steel properties are reported in Table 1. Moreover, the Rayleigh
damping coefficients values are a = 53.66 and B = 0.0069.

A first static analysis was performed, to check the reliability of the model, and the
contour of vertical displacements can be seen in Figure 9. The bridge is simply supported
by the abutments on the longer side; thus, the vertical displacement peak can be found,
at midspan, in most external lateral edges. Then, the basin shape profile was simulated
through a static analysis of the loading scenario corresponding to point 48 (Figure 7). For
the sake of brevity, just three geophones (1, 2 and 4 in Figure 4) were considered in the
analysis.

A static load of 91.74 kN was applied to point 48, and the deflection in the location of
each geophone was calculated and reported in Figure 10. The envelope of the maximum
deflection of each geophone during the dynamic experimental test is also reported in
Figure 10, confirming the accuracy of the numerical model. In addition, the maximum
displacement is located near the loading plate, and the deflection is reduced as the distance
from the loading plate is increased.
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Figure 9. Contour of vertical displacement under inertia loads.
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Figure 10. Comparison between experimental and numerical basin shape profile for load point 48.

A transient analysis was able to represent the Fast-FWD dynamic load on the structure.
The load is applied as a transient force on the loading plate, and the time-history of
the deflection recorded in the positions of each geophone is recorded (Figure 11). The
selected time step is At = 1 ms. It represents the best compromise between accuracy and
computational costs reduction; indeed, with an i9-x series processor with 48 cores and
128 Gb of RAM, it is possible to obtain the transient results in 25 min.
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Figure 11. Vertical displacement at (a) t = 3.5 ms, (b) t = 26 ms and (c) t = 55 ms for the load at

point 48.
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For the sake of synthesis, in the following, we consider just the loading condition in
which the Fast-FWD load plate is in point 48. The contour of the vertical displacements
at different time steps is shown in Figure 12. It can be seen how the load wave is moving
from the loading plate to the positions of the geophones. A first comparison between the
deflection measured by the geophones in the field and the corresponding simulation is
shown in Figure 12. The general trend of the FE results is almost similar to the experimental
ones. However, in dynamic analysis, it is possible to highlight a difference in the amplitude
and a time lag in maximum point. Figure 13 shows a significant diversion in the peak
than in the relative abscissa. The structural behavior of the bridge is not straightforward,
considering that the damages present in the bridge strongly affect its performance. More
accurate models will be developed in the future, considering also the data coming from the
Fast-FWD.
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Figure 12. Cont.
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3. Results and Discussion

In the center of the deck (test points 3748, Figure 8), deflection test values are between
599 and 638 um, while tests performed on the abutment (test points 1-24, see Figure 8)
show deflection values between 272 and 285 um (N-W side) and 238 e 248 um along (S-E
side). Considering, instead, the approach pavement (test points 25-36), higher values of
deflection were measured, that is, 981 e 1094 um (S-E side) and 1212 e 1368 um (N-W side).

The average value of stiffness in the center of the deck was of 0.16 GN/m, while, on
the two abutments, an average value of di 0.41 GN/m was measured (Figure 13). The
approach pavement had an average stiffness value of 0.091 GN/m.

The above stiffness is significant to evaluate the condition and deterioration of bridges
over time, throughout repeated tests [5,44]. Moreover, the stiffness values of the abutment
are greater than those measured on the center of the deck and on the approach pavement.
In Figure 14 are plotted the values of the stiffness on the deck of the bridge.
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The indexes introduced in Section 2.1 indicate the condition of the layers placed at
different depths. Those are plotted in Figures 15-18. The Federal Highway Administration
(FHA) gives tables [41] with the limits of acceptability of the indexes for road pavement,
depending on the kind of material. Reinterpretation of the deflection basin parameters
can be used to investigate other non-standard situations, such stone pavement, airport
pavement instrumentation and pavement management system [45-47].
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Figure 15. Contour of stiffness values.

It can be highlighted that the Fast-FWD allows us to induce a significant vertical
impulse to the deck, like the one induced by a big sclerometer. This impulse can be
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analyzed throughout different indexes. The more significant is probably the stiffness K.
The maximum displacements of the Fast-FWD test are from the 33% (Figure 12c) to the 49%
(Figure 12a) greater than the one attended from the FE model. This is a clear indicator of
the degradation of the deck.

The contours of Figures 16-18 show the variation of the vertical stiffness and of the
Basin Indexes. The color maps are derived by the point measures made, as shown in
Figure 8. The interpolation of the tests was carried out with the software Surfer rel. 8.

Figure 16 illustrates that vertical stiffness varies in the range 0.00-0.65 MN/m.
Figures 17 and 18 illustrated, respectively, SCI, BDI and DCI in um, indicators that re-
veal the condition of the investigated pavements and structural layers.

The variation of these indexes on the surface of the bridge is an interesting indicator
of the response of the surrounding structural layer. This is more significant for bridges in
which the depth of the pavement is very thin. All the indexes represented in the graphs
bellow present some range of variation in a different zone of the deck that represents a
different structural response induced by aging.

By providing the reduced depth of the road pavement on the bridge deck, the Base
Distress Index (BDI) can be considered an interesting indicator for the structural response.
For example, the BDI in the centerline varies between 20 and 80. Thus, the BDI, here, is
a relevant indicator of the differential corrosion of the reinforcement of the bridge. An
accurate record of the response of the bridge is recommended at different abscissa in
various positions (both on the crossbeams and on the slab).

4 6 8 10 12

Figure 16. Contour of the Surface Condition Index (SCI).
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Figure 18. Contour of Deep Condition Index (DCI).
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4. Conclusions

The screening of existing bridge with Fast-FWD represents a promising technique for
quick assessment of the vulnerability of these infrastructures. The main advantage is given
by the low impact and short time necessary to record static and dynamic information from
the structural behavior and the fast back calculation procedure. This suggests application
of the Fast-FWD test for the periodical monitoring of bridges and viaducts. The variation
of the mentioned indexes over time is a significant tool for assessing the effects of aging or
other events on the structures.

Indeed, the deflection time histories can be a benchmark dataset for model tuning
methods. In this way, it is possible to develop a theoretical model of the structure and
tune input parameters (mechanical characteristics of materials, and geometrical values), to
achieve numerical results similar to the tested ones.

The thread, at this point of the research, is to carry out a continuous and periodical in
situ measurement on the infrastructure, to have live monitoring. An initial check (ideally
made at the construction of the bridge or, if not possible, in parallel with an accurate
structural screening) is needed as landmark and furnish the initial status Cy. The periodical
investigation C; will give a continuous time monitoring of the structural state. When
the measurement C; had a significant deviation from the initial one, Cy, a more accurate
investigation is required, as in the case of study here presented.

The ongoing activity of the research teams aims to have some quantitative indication
form Fast-FWD investigation through a back analysis of the infrastructure with an FE
Models. This requires us to study several case of study with different span and technology.
The aim will be to have some abacus with a direct and quantitative relationship between
Basin indexes and structural condition.

For the most recurrent beam-type structures, the response assessment can be carried
out by studying different types of infrastructure and with different aging (from new bridges
to structures nearing the end of their life cycle). Moreover, the evaluation of Indexes for
homogeneous structures and aging condition will consent to produce specific forms and
schedules with limit ranges, to simply verify the status of the bridge.
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