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EQUILIBRIUM AND STABILITY OF NON-LINEARLY ELASTIC BODIES 
WITH CAVITIES CONTAINING FLUID* 

V.A. YEREMEYEV and L.M. ZUBOV 

Boundary conditions are formulated on the surface of a cavity filled with 
a compressible fluid or gas for the equilibrium problem of an elastic 
body experiencing large deformations. A formulation is given of the 
stability problem for the equilibrium of a non-linearly elastic body with 
fluid inclusions. The stability problem is solved for a thick-walled 
closed spherical shell filled with gas and loaded by external pressure. 

1. We consider an elastic body occupying a volume v in the reference configuration. Let 
the boundary of the domain v consist of m + 1 closed surfaces U, cl, . . . . Urn, where Uk (k = 1, 
2 ) . . . 4 are surfaces of simply-connected cavities, and rJ = a' u (JI is the outer boundary 
enclosing the body with the cavities. Each cavity is filled entirely with a compressible 
barotropic homogeneous liquid or gas. The body is deformed under the action of external 
forces distributed over parts of the surface u'. Displacements are given on the surface u*. 
We neglect the action of the mass forces. The pressure of the liquid is constant in each of 
*Prikl.Matem.Mekhan.,51,3,453-457,1987 
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the cavities in the equilibrium state and the equilibrium equations for an elastic body are 
satisfied in the domain L: /l/ 

V'.D : 0, D = cilV/‘dC, C = V"R (1.1) 

Here R is the radius-vector of points of the body in the deformed configuration, V" is 
the nabla operator in the reference configuration,C is the site gradient, W is the specific 
strain potential energy, and D is the Piola stress tensor. The boundary conditions on the 
boundary of the volume u have the form 

n.DI,,=t,, RI,w=R,, n+D],,=p,Jn.C-T Iox, J-detC (1.2) 

Here t, is the external load intensity per unit area in the reference configuration, R, 
is a function given on cz, n is the unit normal vector external to the volume u, and pk is the 
pressure in the liquid in the k-th cavity. Since pkare unknown in advance, the equations of 

Pk = qk (pk), Pk = Mk/vk (1.3) 

state of the liquid must be used to obtain the closure of the set of boundary conditions, where 
pk is the liquid density in the k-th cavity, Mk is its mass , and V, its volume in the deformed 
state. The volume vk is expressed in terms of the displacement of the cavity boundary by 
means of the formula 

Vk~-~~~~.RdL=-3ZSJR.C-1.ndo (1.4) 

ax 

(N iS the normal t0 the SUrfaCe XI, bounding the cavity in the deformed state). Relation- 
ships result from (1.3) and (1.4) that close the system of boundary conditions on the elastic 
body boundary 

pk=$p[- 3Mk(ss JR.C-l.ndoj-l] 
“k 

2. The stability of the solutions of problem (l.l), (1.2) and (1.5) can be investigated 
for conservative external forces by a static method consisting of studying the bifurcation 
of equilibrium. The linearized equilibrium equations and linearized boundary conditions on 
U have the form /l/ 

V".D'=O, n.D'I,,=t,', w/c=0 (2.1) 

Here w is the vector of the additional displacements and the dot denotes linear increments 
due to the superposition of additional displacements. Linearization of boundary conditions 
in (Jk yields 

n.D'I,,=- pk’Jn.C-TI”k- pkJn.C-T.(V.~E-Vw*)l,,k (2.2) 

In (2.2) the V is the nabla-operator in the deformed state, related to V" by the formula 
/l/: v = c-'.V", and pk’ is the pressure variation in the liquid that is expressed in terms of 
the additional displacements of the interfacial surface as follows 

. d’bk M, ss @k Mk 
Pk =dp,V,L 

Jn.C-‘.wdo 
=k 

N.wdkK T 
ss 
‘k 

(2.3) 

We note that condition (2.2) differs from the known boundary condition /l/ when the first 
component, due to the influence of deformation of the elastic solid on the pressure in the 
liquid, is given for the constant hydrostatic pressure pk on (Tk. 

3. As an illustration, we consider the Stability of a centrally symmetric deformation 
of a thick-walled dosed spherical shell from a semilinear material filled with a gas and 
loaded by an external hydrostatic pressure g. 

Let r, 'p, 0 (O,( cp <2S, -n/2< e<ni2)be spherical Lagrange coordinates, and e,, e,, ee 
an orthonormal vector basis associated with these coozidinates. The centrally symmetric 
deformation is given in the form 

R = A (r) e, (3.1) 

From (3.1) we find the gradient of the strain C,the measure of the distortion U = (C.CT)"P, 
and the rotation tensor A = U-'.C 

c= $e,e, f +(e,e, + eeee), U =C, A= E, 

Satisfaction of the condition detC>O is required here from R (r). 
The governing relationship of the medium filling the cavity is taken in the form of the 

equation of state of an ideal gas in an isothermal process (since there is one cavity we omit 



the subscript k) 

p = $ (P) = PO/POP 

Here Poand p. are the gas density and the pressure 
which are considered known. We note that the reference 
body occupies the volume u is not stress-free. 
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(3.3) 

therein in the reference configuration, 
configuration in which the elastic 

The constitutive law of a semilinear material is written as follows /l/: 

D = (h (trU’ - 3) - 2P)A' + 2PC' (3.4) 

where h and P are elastic constants. The strain gradient c', the measure of the distortion U', 
and the rotation tensor A' in (3.4) are measured from the stress-free state of the elastic 
body v'. 

We examine the reference configuration v' that agrees with this reference configuration 
v for pu=O. The configuration v can be obtained from v' by centrally-symmetric deformation 
under the effect of the constant hydrostatic pressure p ,, given on the surface of the cavity 
and the insertion of a gas in this cavity underthebpressure po. Let T’,(P’,~’ be spherical 
coordinates in v'. We write the mentioned deformation in a form analogous to (3.1): r== 

R, (r') e,. We likewise introduce the deformation R = R, (r’)e, from v' in the desired deformed 
configuration V. 

Then the function R (r)in (3.1) can be determined in terms of the functions RI and R, as 
follows': R (r) = R, (RI-l (r)) (R,+ is the inverse function to R,). A governing relationship in' 
the form of (3.4) can be used to find R,.and R,. The functions R, and Rz are known solutions 
of the Lam4 problem for a hollow sphere /l, 2/ 

R, = c,r’ + d,lP, a = 1, 2 (3.5) 

The boundary conditions to determine the constants c,, d, (a = 1,2) have the form 

(3h + 2~) (cr - 1) - 4yd,ib3 = 0 

(31 + 2~) (cl - 1) - 4pd,/as = -p. (cl + d,la3)a 

(31 + 2~) (c$ - 1) - 4pd,ib3 = -q (c, + d,lb3)2 

(3h + 2~) (c? - 1) - 4Pd,/a3 = -p (c2 -I- d,/a3)2 

(3.6) 

(3.7) 

Here a is the cavity radius, and b is the radius of the exterior shell surface in the 
configuration C'. 

Relationship (1.5) to determine the pressure p is and ideal gas in the case of central 
symmetry takes the form 

p = poR13 (a)iRz3 (a) 

We note thatthesystem of Eqs.(3.6) to determine the constants ~1 and dI has no solutions 
for pO>pO*, where 

po* = 2p (1 - x3)( 2 -+ 49 +$+)-I t x=Q 
h 

b ’ ‘= z(h+P) 

A solution exists for p. <po* but is not determined in a unique manner. The dependence 
R,(a)ia on PO =p0/(2P) is given in Fig.1 for v = 0.3 and different x. The dashes denote those 
partsofthe curves where the condition detV'R,>O is violated. The values x = 0.7; 0.95 
correspond to curves ,l, 2. It can be verified that the mentioned violation of the uniqueness 
of thesolutionis not associated with violation of the Hadamard condition /l/. 

I 3 5 R,/n 

Fig.1 

To analyse buckling, we writetheneutral equilibrium in 
the case of a semilinear material 

V".D' s hV"V".w + 2PV".V"w + (h(trU - 3) - 2P)VO.A 

Following /2/, we obtain their solution in the form (P, 
is a Legendre polynomial) 

w = U, (r) P, (sin 9) e, + W, (r) P,’ (sin 6) cos 9ea 

U, (r) = nrn-‘@,, (r) - (n $- 1) r-n-*Pn (r) 

W, (r) = rn-Wn (r) - r-n-aF, (r), Q),, (r) = 

(3.3) 

h ( ((n + 1) X, (r) + (P,, (r)) r-*+ldr + cn 
a 

FnW=+S n ’ ( X, (r) - (P,, (r)) rn+2 dr + D, 
(L 
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n=f,2, . . . 

where A,, B,, C,, D,, are arbitrary constants. 
In the example under consideration the quantity p'defined by (2.3) equals zero. This 

follows from the form of the subcritical state (3.1), the form (3.8) of the perturbed solution 
and the orthogonality of the Legendre polynomials. The boundary conditions are the following 
system of relationships: 

(2}L - 0) I;,'(b) + (X + B) (Cn (b) = 0 

g (6) X, (L-) f b-’ (2~ - fi) (U, (b) - W, (b)) = 0 

(2~ - 4 U,,’ (a) + (h -t 4 vn (4 = 0 

g (a) x, (a) + .-I (2tc - a) (U, (a) - w, (a)) = 0 

(a = pR, (a)ia, f3 = qR, (b)lb) 

The bifurcation pressure q* is found from the condition of non-trivial solvability of 
this system of linear algebraic equations for the constants of integration A,, B,,C,,D,. The 
value of 2' was set equal to 0.3 for the numerical computations. 

Fig.2 Fig.3 Fig.4 

In order to clarify the influence of the pressure change in the liquid during deformation 
on the value of the bifurcation pressure q*, the computations were also performed in the case 
when a constant hydrostatic pressure equal to the pressure PC in the liquid in the reference 
configuration ~1 on the inner surface is given. This corresponds to neglecting the influence 
of pressure changes in the liquid on q*. The corresponding bifurcation pressure is denoted 

by qi*. The results of computations showed that ql* <q*. Fig.2 shows the dependence of ql* 
and q* on p. for x= 0.4 (curve 1) and x=0.7 (curves 2). Here and henceforth, the dimension- 
less pressures, i.e. , the pressures referred to 2p, are marked with a bar. 

The qlf and q* above were understood to be the least values in n. The numbers n correspond- 
ing to these pressures increase as x grows and, as a rule, agree and are independent of po. 
The dependence on PO appeared in the case x= 0,7. Precisely for B0>0.13 the numbers 
corresponding to the minimal pressure in n was replaced by n=2 from n=3. The same 
replacement occurs for &>0.16 for the bifurcation pressure qk*. The remaining values of R 
as a function of x are presented below 

x= 0.4 0.7 0.91 0.97 0.99 
n=2 3;2 5 10 18 

A graph of the dependence of q* on n is represented in Fig.3. Here the function of the 
discrete argument n is represented by a continuous curve for clarity. Asp, increases the 
curves of the dependence of q* on n are shifted upward, while qualitatively unchanged. Curves 
1 correspoind to x = 0.91, j& = 0; 0.01 and curves 2 to x-O.97 and p0 = 0; 0.01. 

Graph of the dependence of q* on & are presented in Fig.4 for different values of x 
The shallower curves correspond to smaller values of x which are taken equal to 0.91, 0.97, 
0.99. The presence of intersections in Fig.4 means that for sufficiently large j, the bi- 
furcation pressures 4' can agree for shells of different thickness. 
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