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Abstract: In this paper we present a mixture of technologies tailored for e-learning related to the
Deep Learning, Sentiment Analysis, and Semantic Web domains, which we have employed to
show four different use cases that we have validated in the field of Human-Robot Interaction. The
approach has been designed using Zora, a humanoid robot that can be easily extended with new
software behaviors. The goal is to make the robot able to engage users through natural language for
different tasks. Using our software the robot can (i) talk to the user and understand their sentiments
through a dedicated Semantic Sentiment Analysis engine; (ii) answer to open-dialog natural language
utterances by means of a Generative Conversational Agent; (iii) perform action commands leveraging
a defined Robot Action ontology and open-dialog natural language utterances; and (iv) detect which
objects the user is handing by using convolutional neural networks trained on a huge collection of
annotated objects. Each module can be extended with more data and information and the overall
architectural design is general, flexible, and scalable and can be expanded with other components,
thus enriching the interaction with the human. Different applications within the e-learning domains
are foreseen: The robot can either be a trainer and autonomously perform physical actions (e.g., in
rehabilitation centers) or it can interact with the users (performing simple tests or even identifying
emotions) according to the program developed by the teachers.

Keywords: human-robot interaction; voice assistant technology; virtual reality; robotic operating
system

1. Introduction

The latest findings within the domain of Artificial Intelligence (AI) and Robotics
have paved the way for the design of an increasing number of advanced robot-oriented
applications. This has further led to the hypothesis that robotics and Artificial Intelligence,
in just over 100 years, will likely beat humans in performing any kind of job [1]. Looking
back in history, the first autonomous robots independent from human operators were
adopted for hazardous tasks, (e.g., exploration of deep oceans, volcanoes, and the surface of
the Moon and Mars). It was well understood that the next generation of robots should have
fit into everyday human life, a much harder task if we consider all the social development
and intricacies of human beings. Thus, since the early 1990s, AI and robotics researchers
have been developing robots that explicitly engaged users on a social level.

The challenge to designing an autonomous social robot is huge because the robot
should correctly assess the actions of the people and respond accordingly. Furthermore,
to increase the difficulties of this challenge, based on science fiction representations of
advanced social robots, a person that interacts with it might hold a very high expectancy of
its capabilities.

As a workaround, to simulate advanced behaviors and capabilities, some social robots
were partially or fully remote controlled. Clearly, this was not a solution that could
be applied on a large scale and an autonomous social robot should not require manual
intervention to fully operate [2]. Instead, the design of an autonomous social robot that
can independently interact with people in homes, schools, hospitals, and workplaces is a
serious scientific challenge.
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Besides, the creation of robots able to understand humans is only half the equation.
Developers should also identify the features humans will need to trust and engage with
robots. For example, during conversations people apply social-psychological constructs
such as beliefs, emotions, and motivations to try to understand what another person does
and why. The same would happen for human-robot interactions, therefore designing an
autonomous social robot is not a matter of just understanding well the natural language
text expressed by humans but also identifying hidden psychological elements, emotions,
sarcasm and irony, jokes, and so on which might come in different ways (from words,
sounds, facial and gesture expressions, and combinations of them).

Robot adoption has shifted to common places where daily life is carried out. Japan,
for example, uses robots in restaurant kitchens to make sushi and chop vegetables. Some
robots work as receptionists, cleaners, drink servers, and others are tailored for making
coffee, starting with the beans, and serving drinks. Within the assisted living domain,
robots have already proven to bring benefits. For example, some can help the elderly get
out of bed and provide a sense of companionship against loneliness. Robots can also be
programmed to interface with smart hospital elevators to reach any floor and distribute
medications to patients. Or, they can be programmed to perform complex surgeries.
Around the home, robots can help in keeping a house clean or cutting the grass and
cleaning the pool. Within the education domain, robots have been employed as teacher’s
assistants, helping kids to perform easy tasks such as singing. Given their increasing and
large adoption, a new discipline known as Educational Robotics has been designed to
introduce students to robotics and programming interactively from a very early stage.
Educational robotics provides a microcosm of technologies that support STEM (Science,
Technology, Engineering, and Mathematics) education. Besides the fun, robots apply a
variety of learning tools that engage the students.

Therefore, following these directions and exploiting some of the cutting-edge tech-
nologies that have appeared in the literature of various domains, in this paper we present
four different modules we have developed on top of a humanoid robotic platform and that
augment the robot with the following skills:

• The robot is able to perform sentiment analysis by understanding whether the state-
ment expressed by a human is positive, neutral, or negative;

• The robot can generate answers to open-dialog natural language utterances of the user;
• The robot can perform an action command (walk, move, change posture, etc.) depend-

ing on open-dialogue natural language utterances that the user expresses;
• The robot can identify objects through its camera according to a two-level de-

fined taxonomy.

Each skill can be used within the learning domain and represents a research problem
that has been addressed, analyzed, and solved through a performance evaluation carried
out on different datasets and domains. It is also straightforward to plugin further modules
as the overall architectural design is general, flexible, and scalable. Therefore, the main
scientific contributions of this paper have been summarized in the following items:

• We provide a general, flexible, and scalable architectural design for human-robot
interaction where different modules tailored for the learning domain can be developed,
embedded and whose priority of execution can be easily configured;

• We develop four modules that correspond to four use cases to Zora, a humanoid
robotic platform which extends NAO. The reader may notice that everything we
have developed for Zora, server-side frameworks, source codes, and use cases, is
compatible with NAO, the humanoid and programmable robot from SoftBank, too;

• An evaluation has been carried out by six stakeholders on five different scenarios
using a Software Architecture Analysis method and stakeholders provided useful
feedback that we employed to further improve the architecture;

• Each module along with its related source code has been stored in a public repository
that can be freely downloaded and each used case comes with a video example,
showing the human-robot interaction.
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The remainder of our paper is organized as follows. In Section 2 we report some related
works within other software architectures employing NAO and the differences with the one
we propose. Zora, the humanoid robot we have leveraged and extended for the human-robot
interaction use cases, is depicted in Section 3. In Section 4 the architectural design of our
system is proposed and described along with the four modules it contains: The Semantic
Sentiment Analysis module (Section 4.3), the Generative Conversation Agent (Section 4.4),
the Robot Action Ontology (Section 4.5), and the Object Detection module (Section 4.6).
Moreover, this section includes the flowchart of the robot;s behavior with respect to the
four mentioned modules and the priority of execution of any developed module with
respect to the others.

In Section 5 we will show the evaluation analysis of the proposed architecture we
have carried out and the results of the user experience. Finally, Section 6 ends the paper
with conclusions and future works.

2. Related Work

In this section, we include other software architectures on top of NAO present in the
literature and illustrate the differences with ours.

Authors in [3] have presented a software architecture used to drive several robotic
platforms including a simulated agent and a real robot NAO. The main goal for which
the architecture was designed was to develop the team behavior of a robot soccer team.
The architecture consists of several parts: Platform interface, modular framework, commu-
nication, debug, tools, and tests. Some components are independent whereas others are
platform-specific. Moreover, all the components have a simple user interface. Our proposed
architecture allows using the same module for multiple NAOs at the same time moreover,
it has been thought for a general domain and any module of any kind can be plugged in.
Within the same domain (soccer cup), other authors have proposed in [4] an open-source
accessory for NAO with the form of a backpack including an ODROID XU4 board to pro-
cess algorithms externally with ROS (the robotic operating system https://www.ros.org/
(accessed on 25 January 2021)) compatibility. The developed software architecture is fo-
cused on the communication between the B-Human’s framework [5] and ROS to have
access to the robot’s sensors close to real-time. The main difference with the one we propose
in this paper is that it is completely based on ROS and the B-Human’s libraries and focused
on the soccer cup whereas our proposed architecture is not based on ROS and works in the
general domain. Other authors have employed voice assistant technologies such as Google
Assistant to provide NAO an architecture with further capabilities that let the robot exploit
their strength and software development kit [6].

3. The Used Robotic Platform

Zora extends NAO, the first humanoid robot designed by Aldebaran Robotics, which
was renovated by the SoftBank Group. The extension regards a software middleware layer
that includes a control panel and high-level composer which allows non-expert users to
program certain actions and behaviors for Zora to execute. They include physical and
verbal actions (Zora speaks eight different languages) that the robot can perform.

Zora inherits from NAO the possibility to be programmed using Choregraphe (http://
doc.aldebaran.com/1-14/software/choregraphe/index.html (accessed on 25 January 2021)),
which lets developers:

• Design and integrate several robot actions and complex behaviors utilizing an inte-
grated development environment making use of the Python programming language
and external Internet libraries;

• Develop robot movements by leveraging a built-in and effective graphical user interface;
• Experiment the developed actions on the simulated robot;
• Experiment the developed actions on the real robot connected on the same local area

network (LAN) as the developer’s machine.

https://www.ros.org/
http://doc.aldebaran.com/1-14/software/choregraphe/index.html
http://doc.aldebaran.com/1-14/software/choregraphe/index.html
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NAO is provided with a minimal Linux-based OS, known as NAOqi, which controls
the robot’s mics, speakers, and two high-definition cameras. NAO is provided with
4 mics in the head (2 in the front and 2 in the back) to store in its memory any sound
(including audio from humans). Human natural language is analyzed and transformed into
text using speech-to-text technologies of Nuance (https://www.nuance.com (accessed on
25 January 2021)). To increase the accuracy of the speech to text process, we are massively
making use of cloud technologies. This enables faster pre-processing of the sound stored by
the robot and removes background noise, which may compromise the analogical conversion
into digital information. To capture images, to give wider operating space to the developer,
and for further interactions with humans, Zora has two high-definition cameras providing
a 640 × 480 resolution at 30 fps, contact and tactile sensors, sonars, an inertial unit, force-
sensitive resistors, eye LEDs, infra-red, 2 loud speakers in the ears, and two network ports
(wifi and Ethernet). More details can be found at http://doc.aldebaran.com/2-1/family/
robots/index_robots.html (accessed on 25 January 2021).

4. The Proposed Architectural Design

Figure 1 shows the high-level architectural design we propose in this paper. The de-
veloper’s pc is connected to the same LAN as the robot. They develop a module consisting
of both the Choregraphe Component (CC) and the Server-Side-Support Component (SSSC).
The former is uploaded into the robot whereas the latter into a cloud system. The CC
is informed of the IP address of the SSSC. In the figure, there are four different modules
loaded into the robot, each consisting of a CC and a SSSC. The four SSSCs reside in the
cloud. To load a given module to a new robot, it would be enough to plug the robot in
the same LAN, and just load the CC to the new robot as the SSSC can be shared with
that of other robots. In the figure there is a second robot with the Object Detection CC
loaded and enabled and whose related Object Detection SSSC is shared with that of the
first robot. In such an example, two users may interact at the same time with the two
robots. Sharing the same LAN for multiple robots might flag potential traffic congestion
problems. However, the messages sent to/from the robot through the Choregraphe suite
are optimized for network streaming. It is the responsibility of each module to make sure
that the network protocol used for sending/receiving messages is efficient and optimized.

The robot uses its WiFi port to connect through a hot-spot to the Internet and to a local
area network. If the developer needs to upload a new module, they connect to the same
hot-spot in order to belong to the same local area network of the robot and can easily handle
the uploads with the Choregraphe suite running in the pc. The Choregraphe Component
(CC) and the Server-Side-Support Component (SSSC) are illustrated in the following. Next,
each module shown in Figure 1 will be detailed.

Figure 1. Proposed high-level architectural design.

https://www.nuance.com
http://doc.aldebaran.com/2-1/family/robots/index_robots.html
http://doc.aldebaran.com/2-1/family/robots/index_robots.html
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4.1. Choregraphe Component (CC)

The first one, the Choregraphe Component (CC), is mandatory in Python program-
ming language and is developed with the Choregraphe suite, which directly controls the
robot behaviors and actions, and is responsible for any interaction between the robot and
human. Any sensor of the robot that is employed (e.g., microphone, camera, tactile sensors)
is controlled using API functions from this software component. Furthermore, this software
component is not demanding as far as the computational resources are concerned (CPU,
disk storage, and RAM) and is uploaded to the robot from the Choregraphe environment.
As soon as the component is loaded into the robot it is enabled. For testing purposes,
Choregraphe allows using a virtual robot, embedded in the same Choregraphe suite, that
simulates the real robot along with all its capabilities. In the rest of the paper, we will use
the term ’enable’ to indicate a module that has been loaded into the robot and is ready to
be ’activated’ depending on the user’s input text.

4.2. Server-Side-Support Component (SSSC)

The second part a new module might consist of is the server-side program, developed
with any back-end technology, containing the support software (e.g., heavy computation,
or storage capabilities), and exposing the REST APIs. The back-end is hosted either in the
cloud or in a dedicated server. The Python program of the CC needs to know the IP address
of the cloud system or the server where the back-end of the program resides to be able
to call its REST APIs and exploit its capabilities. The reader notices that this component
is not essential as a new module may consist of just the CC when there are not heavy
computations to be executed. As an example, a simple Bingo game may be developed as
Python code as a CC only and uploaded into the robot. In such a case, there would not be
an external program in charge of any specific computation.

To note, each newly created module can run independently from each other and
it is possible to include as many modules as desired. Moreover, when different CCs of
multiple modules are loaded into the robot, a priority for each module must be assigned so
that when the user speaks to the robot, one module at a time may be activated. The four
modules presented in this paper and that are shown in Figure 1 have the following priority
importance: Semantic Sentiment Analysis Module, Object Detection, Action Command
Ontology Module, and Conversational Agent Module. This means that when the robot
gets some text from the user, it checks in that order if one of those modules can be triggered.
Section 4.7 will illustrate how the modules’ priorities are set. Only one module can be
triggered for the underlying text.

This scheme is scalable and flexible as:

• The Python programs directly loaded into the robot from Choregraphe are usually
very light, and we can upload a very high number of them before the physical space
of the robot ends;

• There are no limits to the number of SSSCs we can host/call into/from the cloud or a
given server;

• The same SSSC can be uploaded in several robots and in such a case the robots may
either lie within the same local area network or on a different network while still
being able to share the same program running on a server or cloud system. As an
example, in Figure 1 there is another robot connected to the same LAN, with the
Object Detection CC loaded and whose Object Detection SSSC is shared with the
existing one.

The robotic platform is only responsible for interaction with humans. Such an interac-
tion evolves according to the underlying module that is being triggered and by what each
SSSC returns depending on the user’s action. Basically, the robot itself is a mere interface
that interacts with humans through its sensors. The cognitive skills, learning skills, and any
other smart capabilities are provided by the SSSC where NLP, Semantic Web, Computer
Vision, AI, and other innovative research applications may be executed providing a more
and more effective human-computer interaction.
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Noticeably, the robot does not perform any action if there are no loaded modules.
As soon as one module is loaded, the robot starts performing some action accordingly.
When the robot is shut down and boots again, the loaded modules are still available in the
robot. The programmer has to explicitly disable them (at least the related CC using the
Choregraphe framework) to unload them from the robot.

4.3. Semantic Sentiment Analysis Module

In this section, we will describe the two components (CC and SSSC) that constitute
this module.

Choregraphe Component (CC). The CC of the Semantic Sentiment Analysis module is
responsible for interactions with humans through the sensors of the robot. It allows the
robot to wait for natural language expressions spoken by the user which are converted into
text by using speech-to-text technologies mentioned in Section 3. The Semantic Sentiment
Analysis module is triggered when the user says “Play Sentiment Analysis”. In such a case
the robot is ready to perform sentiment analysis and waits for a further text from the user.
From now on, the input text spoken by the user is first processed through speech-to-text
technologies and then forwarded to the SSSC for the Sentiment Analysis classification task.
To note that at this point the Semantic Sentiment Analysis Module takes over any other
loaded module and any further sentence expressed by the user is processed for Sentiment
Analysis only. The SSSC returns as output to the CC one among the positive, negative,
or neutral class. The robot performs a different action according to the returned output
class and then goes back in listening mode waiting for further input from the user to
be processed for the Sentiment Analysis. To exit from the current behavior and to allow
future user expressions activating other enabled modules as well, the user needs to simply
say exit.

Server-Side-Support Component (SSSC). The SSSC includes the Semantic Sentiment
Analysis engine that has been developed following directions and insights of our previous
works in [7–12]. The engine has been significantly extended, augmented, tuned, and im-
proved to achieve better performance in a general domain. The task we have addressed
was the simple polarity detection: Given an input sentence, return whether the sentence
expresses a positive, negative, or neutral sentiment. We have employed a Deep Learning
approach for such a classification task using Recurrent Neural Networks (RNNs).

We adopt a single model that uses LSTM units only and, at the same time, it keeps
the ability of a CNN to learn the most effective features. In particular, we played with
different word embeddings and our resulting approach is able to improve the pre-trained
word embeddings at training time, by applying a new set of embeddings.

The architecture of the proposed semantic sentiment analysis engine is based on a
2-layer Bidirectional LSTM with attention, as shown in [8].

As training and validation sets, we have considered the entire dataset released by the
Semantic Sentiment Analysis challenge held at ESWC 2018 [13]: 90% of it has been used as
the training set and 10% as the validation set. The evaluation has been carried out using
nine different word embeddings provided by the organizers of the challenge and those
pre-trained on Google News [14]. We trained each model twice: Once with the fine tuning
and once without it. The resulting 20 networks have been ensembled using three different
strategies: Majority voting, weighted average, and prudential multiple consensus.

In Table 1 we show the results of the single models before and after performing the
polarization of the embeddings.

The ensemble strategies described above allow further improvements in the per-
formance of the system. Table 2 shows the F1 score obtained by the different ensemble
strategies on the final test set released by the challenge’s organizers. The best results are
obtained with the Majority Voting and Weighted Average strategy whose F1 is 0.967, beat-
ing all the competing systems participating in the Semantic Sentiment Analysis Challenge
previously mentioned.
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Table 1. Results obtained before and after embedding polarization.

Size Epochs Pre-Trained Fine-Tuning

ESWC 2018
Embeddings

128 15 0.949 0.961
128 30 0.949 0.963
128 50 0.949 0.962

256 15 0.951 0.963
256 30 0.951 0.965
256 50 0.951 0.965

512 15 0.951 0.965
512 30 0.955 0.966
512 50 0.957 0.966

Google News Embeddings 0.936 0.963

Table 2. Results of the ensemble strategies.

Ensemble Strategy F1 Score

Majority Voting 0.967
Weighted Average 0.967

Balanced PMC 0.966

The system has been developed in JAVA and employs the Stanford CoreNLP [15]
for standard preprocessing tasks, such as sentence detection, tokenization, POS tagging,
and stop-word removal. We have also leveraged Deeplearning4j (https://deeplearning4j.
org (accessed on 25 January 2021)) to deal with feature extraction and for the classification
task. The Semantic Sentiment Analysis engine has been embedded in a server-side applica-
tion, hosted in the cloud, which exposes REST APIs that take an input sentence and return
to the CC one of the three output classes. Last but not least, the engine uses Deeplearning4j
with cuDNN (https://developer.nvidia.com/cudnn (accessed on 25 January 2021)) in order
to leverage NVidia GPUs technology to speed up the creation of the neural network, its
training, and the prediction phases.

4.4. Generative Conversational Agent Module

In the following, we will describe the two components (CC and SSSC) this module
consists of.

Choregraphe Component (CC). The Generative Conversational Agent Module is
responsible for the open-domain dialog generation. With such a skill, the robot is therefore
able to reply to the user with meaningful and coherent responses taking into account the
user’s dialog history and the current context. Once the CC is loaded into the robot from
the Choregraphe suite, it is enabled and triggered as soon as the text spoken by the user
does not activate any other module loaded into the robot.

Server-Side-Support Component (SSSC). Our system has been built on top of [16,17]
and is based on the sequence to sequence modeling. The rationale for that is to have
the approach able to understand a conversation extracting and learning semantics and
syntax out of it. The other reason is to have the approach language-independent. We make
use of GloVe word embeddings (https://nlp.stanford.edu/projects/glove/ (accessed on
25 January 2021)) for the embedding layer it uses. This layer takes words with the same
distribution as input and output. Moreover, it is used by both the encoding and decoding
processes. It disposes of two LSTM which analyze the dialog context and the unfinished
answer being created. The output vectors of the two LSTM are integrated and delivered
to the dense layers whose goal is to forecast the current token of the answer. We used the
Cornell Movie Dialogs Corpus [18] as a training set. Like the Semantic Sentiment Analysis
SSSC discussed within the previous section, the Generative Conversational Agent SSSC has
been developed in Java using Deeplearning4j with cuDNN and, as such, it exploits GPUs

https://deeplearning4j.org
https://deeplearning4j.org
https://developer.nvidia.com/cudnn
https://nlp.stanford.edu/projects/glove/
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technology. It is hosted in the cloud with GPUs availability. A video that illustrates how
the robot works with an old version of the Semantic Sentiment Analysis Module and the
Generative Conversational Agent Module is publicly available (https://bit.ly/2GIxPma
(accessed on 25 January 2021)).

4.5. Robot Action Commands Module

In this section, we will show the two components the module consists of. In particular,
we will discuss the CC, employed for the interaction with the user, and the engine of the
SSSC that we have implemented [19] to identify natural language sentences expressing
robot action commands.

Choregraphe Component (CC). Once the module has been loaded into the robot, it is
active and makes the robot wait for an input text from the user. As soon as the CC has an
input text to process, it sends to the SSSC the text to be processed and waits for the output.
The output from the SSSC might be an action that the robot performs or a question for
the user asking to specify further the action that was meant. This occurs when the action
command of the user misses some important entities (e.g., Zora, life your foot, where the
user did not specify whether they meant the left or right foot). From the CC component,
the user can also set the HOLD or SEQUENTIAL mode by simply saying hold mode or
sequential mode. The details of these two modes will be given in Section 4.5.2.

Server-Side-Support Component (SSSC). In Section 4.5.1 we will describe the ontology
we have defined for the identification of all the actions of Zora involving each body part
whereas Section 4.5.2 includes the details related to the identification and mapping of
natural language expressions to ontology actions instances.

4.5.1. Robot Action Commands Ontology

We have designed the robot action ontology (https://www.w3id.org/zoraActions
(accessed on 25 January 2021), https://bit.ly/2M4B7EN (accessed on 25 January 2021)) in
OWL/RDF using Protege (https://protege.stanford.edu (accessed on 25 January 2021)).
It is divided in two sections:

• The first part deals with the robot and the actions and includes RobotAction and
RobotBody, shown in Figures 2 and 3.
The individuals of RobotAction and those of RobotBody have been linked through
the involves and isInvolved relationships. Overall, RobotAction and RobotBody
include a total of 48 individuals. As an example, there are 4 individuals for the
ArmAction class (subclass of BaseAction): ArmDown, ArmForward, ArmSide, ArmUp,
and that correspond to the four movements that either the left or right arm of the
robot (two individuals of the class RobotArm, subclass of RobotBody) may perform;

• The second part of the ontology is employed for machine reading, reasoning, and ac-
tion command identification of natural language expressions given by the users.
It consists:

1. ActionWord, that defines the list of keywords (individuals) for all the actions
that the robot may perform;

2. BodyPartWord, which defines the list of keywords for all the body parts of
the robot.

The keywords are used for the mapping of natural language expressions to ontology
action instances that will be covered in Section 4.5.2.

It is recommended that the reader look at the entire ontology to see all the classes and
individuals that have been defined.

https://bit.ly/2GIxPma
https://www.w3id.org/zoraActions
https://bit.ly/2M4B7EN
https://protege.stanford.edu
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Figure 2. rdf:subClassOf relationship of actions in the Zora actions ontology.

Figure 3. rdf:subClassOf relationship and rdf:type relationship section of the Zora actions ontology.

4.5.2. Mapping Natural Language Expressions to Ontology Actions Instances

To understand natural language expressions, the user’s utterance is fed to the NLP
Engine we have developed. It is built on top of Stanford CoreNLP and its output consists
of a structured document that carries the syntactical information of words (e.g., Part-Of-
Speech (POS), parse, and dependency trees).

To identify and extract the actions from the sentence, the NLP Engine starts identifying
the verbs by searching the words tagged with the verb POS tag. Furthermore, by exploit-
ing the information returned by Stanford CoreNLP (e.g., basic dependencies from the
dependency parser), it also analyzes the words directly associated to the identified verbs
to capture possible modifiers related to verb (e.g., up, down, etc.) or phrasal verbs. The
detected expression is mapped against a list of verbs associated with the action instances of
the ontology. Our method proceeds by checking the syntactic dependencies to understand
whether the extracted verbal expressions are linked with a direct object dependency. After
the verbs and body parts are identified, the ontology can now be analyzed to understand
which actors are involved and which activity should be executed.

To note that single or multiple action commands might be given within the same sentence
and will be executed sequentially. As the actions after the first one executed by NAO may be
non compatible with the robot’s position, we made use of the incompatibleWithPrevious
relationship of the instances of RobotAction. When the user expresses a command that
is not compatible with the current posture of the robot, Zora replies indicating such an
incompatibility issue and without performing the underlying action.

To stress out the incompatibilities among actions, we have provided the robot with
two modes: SEQUENTIAL and HOLD. With the former, the robot goes back to its default
posture position after each action sentence is executed and the incompatibility might occur
only in presence of multiple actions expressed within a single sentence. When set to HOLD
mode, the robot remains in the position acquired after the last performed action of the
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user. If the next action provided by the user is compatible with the robot’s current posture,
then the robot performs the new action, otherwise, the robot indicates the presence of
incompatibility and skips that action remaining still. To let the robot change its position,
the user will have to either change the robot mode to SEQUENTIAL, so that NAO will
go back to its starting position, or give an action command compatible with the robot’s
current posture. In detail, the commands that the user must say to the CC to change the
mode of this module are Mode Sequential and Mode Hold. A video showing this module in
action with examples of incompatibilities and the different modes is publicly available
(https://bit.ly/2EiFWEk (accessed on 25 January 2021)).

4.6. Object Detection Module

Choregraphe Component (CC).The CC of this other module is responsible for the
interaction with the user. If the user says recognize, the CC is activated and informs the user
that in five seconds the robot will take a picture (whose resolution is 640 x 800) from its front
camera. Once the picture has been taken, it is forwarded to the SSSC to be processed and
classified. The SSSC computes the bounding boxes and the related object categories and
confidence values. The CC receives the output of the classification process performed by the
SSSC and informs the user about the recognized objects asking if they are correct. The user,
finally, does or does not confirm and their annotations are stored in a database within the
SSSC and added to the existing training set. Periodically the classifier is re-trained with the
updated (increased) training set.

Server-Side-Support Component (SSSC). The SSSC includes an object detection engine
able to identify 91 different objects types. Moreover, to provide a more accurate object
detection, for two object types (dogs and cats), the module performs one more fine-grained
classification. In fact, when the recognized object is either a dog or a cat, the module
employs two more classifiers to understand which breed the dog or the cat represents.
Overall there are three classifiers we have trained: One for the general objects, one for the
dog breeds, and the other for cat breeds.

We employed the TensorFlow Object Detection APIs (https://bit.ly/2lPqHJk (accessed on
25 January 2021)), which provides an open-source framework built on top of TensorFlow
that makes it easy to construct, train, and deploy object detection models. TensorFlow
Object Detection APIs can be used with different pre-trained models.

For the general object detection task, we have chosen a Single Shot MultiBox De-
tector (SSD) model with Mobilenet (ssd_mobilenet_v1_coco) which has been trained us-
ing the Microsoft COCO dataset (http://cocodataset.org (accessed on 25 January 2021)),
and that consists of 2.5 M labeled instances in 328,000 images, containing 91 object types.
The ssd_mobilenet_v1_coco is reported to have a mean average precision (mAP) of 21 on
the COCO dataset. For further details on the SSD and the evaluation carried out on the
COCO dataset please check the work of authors in [20].

For the object detection of the second level, we have employed the Oxford-IIIT-Pet
dataset (http://www.robots.ox.ac.uk/~vgg/data/pets/ (accessed on 25 January 2021)),
which consists of 4110 images distributed along 37 dog breeds and 12 cat breeds.

The SSSC has been embedded into a server-side application that exposes REST APIs
that, given an input image, return the bounding box of each recognized object in the image
along with a category and confidence value. We considered valid only the recognized
objects having a confidence value equal to or higher than 60%. The SSSC is hosted in the
cloud, where it can exploit GPU technology to largely speed up the classification process.
Figure 4 shows an example image is already processed and with several bounding boxes
related to different recognized items. The two with a label have a confidence value higher
than 60%.

https://bit.ly/2EiFWEk
https://bit.ly/2lPqHJk
http://cocodataset.org
http://www.robots.ox.ac.uk/~vgg/data/pets/
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Figure 4. Example of objects detection. Several boxes are identified corresponding to different objects.
Only those with confidence values higher than 60% are labeled and shown.

A video example of the interaction between the human and the object detection
module of Zora is freely available (https://www.youtube.com/watch?v=WLjUPBTtdkE
(accessed on 25 January 2021)).

4.7. Robot Behaviour Flowchart of the Proposed Modules

In this section, we will explain how the different modules we have described in the
sections above are called and which reasoning the robot follows to decide to trigger each of
them. Basically, there are particular statements that activate each of the module (e.g., ’play
sentiment analysis’, ’recognize’, etc.). When the robot enables a specific module, there
might be further options for the user: If the user specifies a command statement for that
module, some option is activated, otherwise the module acts as programmed taking care
of the user’s expression. The scheme is illustrated in Algorithm 1. The input is the text
from the user, already processed with speech-to-text technologies. First, the robot checks
if a previous text activated the Semantic Sentiment Analysis module. If yes, the text is
forwarded to the Semantic Sentiment Analysis SSSC to be processed. If not, the robot
checks if the current text activates the Semantic Sentiment Analysis. The same thing
happens with the Object Recognition Module. If none of the above occurs, the text is
further checked if it toggles the SEQUENTIAL or HOLD mode of the Action Command
Ontology Module. If it does not, the text is forwarded to the Action Command Ontology
Module to identify potential robot actions. If at least one action command is recognized,
then the Action Command Ontology Module is activated. Otherwise, the text is forwarded
to the Conversational Agent Module which replies back to the user with an appropriate
message related to the input text. Note that only one module at a time can be activated.
To exit from the module currently activated, the user must say to the robot the word exit.
The Action Command Ontology module has its peculiarities. In fact, when the user says an
incomplete action command (e.g., Zora, please lift your leg), and there are no other modules
activated, the Action Command Ontology module is activated. In such a case, the robot
will ask the user to specify which leg it should lift. During the next interaction, the user
will probably specify either left or right. Following the algorithm, the new text is forwarded
again to the Action Command Ontology Module and the robot can therefore perform the
required action. The module is therefore deactivated without the need for the word exit.
The Conversational Agent Module does not need to be exited and it is activated when none
of the other modules are. The described flowchart is hard-coded (it can be modified with
different priority needs) into a Choregraphe script of a configuration module and if a new

https://www.youtube.com/watch?v=WLjUPBTtdkE
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module is added, this script should be updated depending on the programmer and their
desires to include the new module and with which priority.

Algorithm 1 Robot Behavior Algorithm of the four modules described in the paper.
Data: Text from the user to be processed
Result: Robot Action

1 if the Semantic Sentiment Analysis module is activated then
2 send the input to the Semantic Sentiment Analysis module;
3 return
4 end
5 if input is “Play Sentiment Analysis" then
6 activate the Sentiment Analysis module;
7 return
8 end
9 if the Object Recognition Module is activated then

10 send the input to the Object Recognition module;
11 return
12 end
13 if the input is “Recognize" and there are not modules activated then
14 activate the object recognition module;
15 return
16 end
17 if the input is “Mode Sequential" or “Mode Hold" then
18 set the mode of the Action Command Ontology module accordingly;
19 return
20 end
21 Send the input to the Action Command Ontology module;
22 if no actions are identified then
23 send the text to the Conversational Agent module;
24 return
25 else
26 activate the Action Command Ontology module;
27 return
28 end

5. Experimental Results

In this section, we will show an evaluation analysis we have carried out for the
proposed architecture in Section 5.1 and the results of the user experience interacting with
the robot in Section 5.2.

5.1. Architecture Evaluation

The software architecture of a program or computing system is the structure or
structures of the system, which comprise software components, the externally visible
properties of those components, and the relationships among them [21].

Software architecture evaluation is built around a suite of three methods, all developed
at the Software Engineering Institute: ATAM (Architecture Tradeoff Analysis Method) [22],
SAAM (Software Architecture Analysis Method) [23], and ARID (Active Reviews for
Intermediate Designs) [24]. Other methods created from their extension or mixing have
appeared in the literature as well [25]. We have initially developed our architecture on
a MacOS with 8GB RAM and 2,2 GHz Dual-Core Intel Core i7 using Choregraphe 2.1.4,
connected to a hot-spot. Within the same hot-spot, the Zora robot was also connected. Two
Amazon EC2 instances have been employed to run the modules. Python has been the
adopted programming language (for CCs and SSSCs). Given the early development stage
of our architecture, for our evaluation, we have chosen to use SAAM. In fact, it was first
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proposed in 1994 with the basic goal to analyze system qualities early in the life cycle of the
software architecture. This allows for a comparison of architectural options. Among the
benefits that SAAM provides we have: (i) Potential problems can be detected in the early
phase; (ii) the documentation can be improved and the understanding related to software
architecture problems can be enhanced; (iii) it relates the different stakeholders (architect,
maintainer, and developer); and (iv) it provides various techniques to improve the quality
and classify different scenarios.

SAAM concentrates on modifiability in its various forms (such as portability, sub-
setability, and variability) and functionality. Modifiability is the ability to make changes to
a system quickly and cost-effectively. Portability is the ability of the system to run under
different computing environments. Subsetability is the ability to support the production
of a subset of the system or incremental development. Variability represents how well
the architecture can be expanded or modified to produce new architectures that differ in
specific ways. Functionality is the ability of the system to do the work for which it was
intended. The steps of a SAAM evaluation, which we have carried out within our analysis
are the following:

• Identify and assemble stakeholders;
• Develop and prioritize scenarios;
• Classify scenarios as direct or indirect;
• Perform scenario evaluation;
• Reveal scenario interactions;
• Generate overall evaluation.

5.1.1. Identify Stakeholders

For the domain and context of our proposed architecture, we have chosen four differ-
ent types of stakeholders: End-users, developers, testers, and the maintainers. End-users
are those that use the robotic platform we have provided. Developers are people that are
more interested in the clarity, completeness of the architecture, and clear interaction mech-
anisms. Testers are those checking error-handling consistency, cohesion, and conceptual
integrity. Maintainers are those interested in maintaining the platform and in the ability to
locate places of change. Two end-users, two developers, one tester, and one maintainer
have been chosen for our analysis. The six persons were different and chosen among
master students (end-users) and senior software engineers working within the university
for a spin-off (developers, testers, and maintainers).

5.1.2. Identifying and Classifying Scenarios

Typical scenarios of the kind of evolution that the proposed system must support,
such as functionality, development activities, and change activities, have been chosen. They
can be either direct or indirect. Direct scenarios are those that can be executed by the system
without any modification. Indirect scenarios are those that require edits. In the following,
we list each chosen scenario and in parenthesis, we report if it is direct or indirect.

1. A maintainer with the task of installing the entire architecture using a different OS
(Windows) than the one (MacOS) used for initial development (DIRECT);

2. A user interacting with the robot using each of the four presented modules (DIRECT);
3. A tester that performs all the needed debugging of the software architecture and the

installed modules (DIRECT);
4. A developer needed to integrate into the current architecture a new module (INDIRECT);
5. A developer that needs to change the priority of activation of the installed mod-

ules (INDIRECT).

5.1.3. Scenarios Evaluation and Interactions

Scenario 1 has been evaluated by the maintainer. She used a PC with an OS (Windows)
different than that used for development. She went through the documentation and was
able to install all the required software. After making sure the installation was successful
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and everything worked properly, she handed over everything to one end-user for deeper
testing (indicated in Scenario 2).

Scenario 2 has been evaluated by two end-users. They have tested each of the four
presented modules following the related user documentation and have thus interacted
with the robot. They both have spent separately 2 h each playing with the robot. One used
the architecture with the current settings (MacOS as OS). The other used the architecture
configured by the maintainer as indicated in Scenario 1. They raised a few concerns. On the
one hand, each module was correctly triggered by the user according to Algorithm 1.
On the other hand, some of the modules returned an unexpected output showing some
accuracy problem with the internal function of the module but not with the architecture
itself. In particular, most of the problems were with the Conversational Agent module
that often returned statements too far from the user input sentence. Besides the accuracy
problems of the module (which can be improved with updates on just the module), the two
users were satisfied with the overall interaction and usage.

Scenario 3 has been analyzed by a tester who set the debug mode through a configu-
ration file and was able to generate the output of each module. He activated each of the
four modules and looked at the output (in form of logs) of each (by looking at the cloud
where each module was executed) and the used PC (which included the text to be sent and
received to/from the robot for the interaction with the human). The tester did not find any
critical issue or weakness in the entire testing process related to this scenario.

Scenarios 4 and 5 have been carried out by the two developers. One developed and
embedded a Bingo game in the current architecture whereas the other developed an Odd or
Even game. They went through the developer guide and the code identifying the needed
components to interact with, their connections, and which interface to add. Hence they
developed their games by means of CCs only. For the final integration of their games,
they had to edit the main flow of the current modules depicted in Algorithm 1. As such,
they identified the underlying interface (the Robot Behavior Interface depicted in Figure 1,
which consists of a Python file running within the main Choregraphe software), and added
the software hooks for their games. Basically, their games were activated by saying the
words Bingo Game and Odd or Even Game. These two checks (one for each game) were
included at the top of Algorithm 1, gaining priority with respect to the other modules.
When one game was activated, the following interactions of the user affected the module
related to the game only. As soon as the game was over, the control went back to the
main Algorithm. The two developers were able to perform those changes and install
smoothly the two modules. Their feedback was related to some improvement (more clear
statements related to some technical aspects) in the documentation which would improve
comprehension. The steps followed by the two developers to implement two new modules
have been added to the developer guide as Hello World examples.

5.2. User Experience

In this section we will show the results of the user experience related to the interaction
with the robot. We demoed the functionalities of the robot for about 30 minutes and
then asked 10 participants to use the robot for performing four tasks: Sentiment analysis,
conversation with the robot, ask the robot to perform some action, and ask the robot to
identify some object. We took advantage of this session to gather further feedback about
new potential use cases. Each of them had to fill a two-parts survey about their experience.
The first part included six open questions (the first four also included five levels of reply,
very bad, bad, normal, good, and very good), whereas the second part was a standard
System Usability Scale (SUS) (https://www.usability.gov/how-to-and-tools/methods/
system-usability-scale.html (accessed on 25 January 2021)) questionnaire to assess the
usability of the application. Here we summarize their answers to the open questions.

Q1. How do you find the interaction with the robot? Five users considered it good
to use and three of them found it very good. The last two suggested to improve the
speech-to-text capabilities because the robot could not understand well their statements.

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html


Future Internet 2021, 13, 32 15 of 17

We investigated why and it turned out that the problems derived from speech impediment
(they were Italians that talked in English to the robot).

Q2. How effectively did the robot support you in classifying positive and negative
sentences? Five users stated that the robot had an extremely positive accuracy (very
good), whereas three found some errors on the ability of recognizing the correct sentiment
(normal).

Q3. How effectively did the robot perform the action commands you gave? Nine
users agreed on the same score (good) commenting that the robot always performed the
action (from a list of possible actions) that was told to. One user (normal) commented
that the robot had some problem identifying his commands. The problem was that the
user employed some words not covered within the dictionary of the robot action ontology
module and it was easy for us to add the missing terms.

Q4. How effectively did the robot support you in identifying objects? Eight users
gave a score of good commenting that the robot identified the correct object they showed
to her cameras. Two users (normal) commented that the robot did not correctly identify
the objects they showed. The problem was that they were too far from the robot when
performing this action. We fixed this by letting the robot say when the object detection
module was triggered, to maintain a certain distance from her.

Q5. What are the main weaknesses of the resulting interaction? Users did not flag
any particular weakness. One of them pointed out that weaknesses might appear when
used extensively.

Q6. Can you think of any additional features to be included in the robot interaction?
The suggested features were: (1) To have the robot say better instructions when she was
turned on and each time a certain module was triggered and (2) the ability of saving all the
data pertaining to the interaction with the user.

The SUS questionnaire confirmed a good opinion of the users, scoring 81.2/100,
equivalent to an A grade and places our architecture in the 91% percentile rank (percentiles
of SUS https://measuringu.com/interpret-sus-score/ (accessed on 25 January 2021)). All
users felt very confident in playing with the proposed architecture (with an average score
of 4.2 ± 0.5) and thought that it was easy to use (4.2 ± 0.6). In addition, they were happy
to use it frequently (4.4 ± 0.3) and did not think that it was complex (1.5 ± 0.5) or that they
would need the help of a technical person to use it in the future (1.7 ± 0.5).

6. Conclusions and Future Works

In this paper, we showed the architectural design for human-robot-interaction within
the learning domain where we employed Deep Learning, Semantic Web, Sentiment Analy-
sis, and Object Detection technologies for the development of four use cases. The architec-
ture is scalable and flexible. The source code of the shown use cases is freely available on a
public GitHub repository (https://github.com/hri-unica (accessed on 25 January 2021)).
The robotic platform we leveraged is Zora, a NAO robot extended with a software mid-
dleware and accessible by non-expert users. The modules included in the architecture
allowed the robot to perform sentiment analysis, generate answers to open-dialog natural
language utterances, perform action commands depending on a robot action ontology that
was developed, and identify objects which are seen by the robot camera. Each module
has been described along with the two components it is composed of: The Choregraphe
Component (CC), which is developed using the Python programming language within
the Choregraphe suite, and the Server-Side-Support Component (SSSC), which contains
the back-end and software needed for the underlying module. The SSSC resides in the
cloud or in a server, where the most time-consuming computation lies and is performed.
Moreover, it exposes REST APIs that may be called by the CC. One dedicated module
handles the priority of the four modules through a configuration script that should be
updated each time a new module is developed. Furthermore, we carried out an evaluation
of the proposed architecture testing possible scenarios with several stakeholders who
identified the following potential weaknesses. Only one Python file (the Robot Behavior

https://measuringu.com/interpret-sus-score/
https://github.com/hri-unica
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Interface) running within the main Choregraphe software and corresponding to the logic
depicted in Algorithm 1 was concurrently affected by the last two scenarios, indicating
low modularity of this component. From the developer’s point of view, it would have
been better to use a mechanism of module registration where information related to its
activation and priority could be stored. This was invaluable feedback and, as such, we
are already working to provide such a mechanism in the next version of our architecture.
Furthermore, the interaction among different stakeholders was definitely a benefit for the
resulting version of the documentation and architecture as it helped to see different sides
of the same concept at a different level. Low coupling and high cohesion were two features
observed by the developers involved in the last two scenarios.

One more evaluation has been carried out as far as the user experience is concerned.
Answers from 10 participants to a two-part questionnaire showed good user opinions
toward the proposed architecture.

Several other modules employing the sensors of Zora (microphones, cameras, etc.)
can be added to the architecture to solve tasks in many other different domains. To this
aim, there are several ongoing research efforts that we are carrying out to try to improve
the human-robot interaction. One of them we are already exploring is to equip Zora with a
virtual assistant such as Google Home so that the robot will be able to interact further with
a human and to exploit the Google Home APIs to create new skills, controlling new home
sensors, and, in general, have more knowledge.

As a further future direction, we would like to carry out a detailed analysis of the
network traffic when incrementally using the proposed modules on several robots and
over the same LAN.
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