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Abstract:

Background:

Pestivirus  genus  includes  animal  pathogens  which  are  involved  in  economic  impact  for  the  livestock  industry.  Among others,  Bovine  Viral
Diarrhoea Virus (BVDV) establish a persistent infection in cattle causing a long list of symptoms and a high mortality rate. In the last decades, we
synthesised and reported a certain number of anti-BVDV compounds.

Methods:

In them, imidazoquinoline derivatives turned out as the most active. Their mechanism of actions has been deeply investigated, BVDV RNA-
dependent RNA polymerase (RpRd) resulted as target and the way of binding was predicted in silico through three main H-bond interaction with
the target.

The prediction could be confirmed by target or ligand mutation. The first approach has already been performed and published confirming the in
silico prediction.

Results:

Here, we present how the ligand chemical modification affects the anti-BVDV activity. The designed compounds were synthesised and tested
against BVDV as in silico assay negative control.

Conclusion:

The antiviral results confirmed the predicted mechanism of action, as the newly synthesised compounds resulted not active in the in vitro BVDV
infection inhibition.
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1. INTRODUCTION

Bovine Viral Diarrhoea Virus (BVDV) is the prototype of
the Pestivirus genus of the Flaviviridae family. The Pestivirus
genus also contains other animal pathogens such as the Bovine
Viral Diarrhoea Virus (BVDV) [1], the Border Disease Virus
(BDV) and the Classical Swine Fever Virus (CSFV). BVDV
causes  infertility  [2,  3]  in  cattle  but  also  teratogenesis,  early
embryonic death, abortion, respiratory problems and immune
system disorder  on cows which results  in  acute infections of
immunocompetent cattle causing a mortality rate of 17 to 32%
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[4]  and  an  estimated  loss  between  10  and  40  million  $  per
million calvings [5, 6]. The virus was also considered to be a
valuable surrogate for the Hepatitis C Virus (HCV) in antiviral
drug studies [7]. During the years, several mammalians from
different species have been infected by BVDV [8], which was
not  host-specific.  BVDV  can  also  be  a  problematic  conta-
minant in the laboratory, BVDV strains have been identified in
commercially  available  lots  of  foetal  bovine  serum  and  cell
lines [9], and therefore in interferons and vaccines for medical
use [10, 11]. Several conventional live and killed vaccines in
the years have been developed, but they showed non-efficacy
or safety issues [12 - 14]. No antivirals are currently available
for controlling BVDV infections in laboratories or farms, only
voluntary  BVDV  control  programmes  [15]  seemed  to  be
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successful, but BVDV remains an agronomical burden, hence
the antiviral research on molecules that can specifically inhibit
the  virus  replication  could  be  useful  to  control  outbreaks  in
farms. In the last decades, a certain number of selective anti-
BVDV  compounds  have  been  reported,  this  includes  virus
targeting  and  host  targeting  derivatives,  e.g.  polymerase
inhibitors  [7,  16  -  18],  protease  inhibitors  [19]  and  human
cellular  enzymes  inhibitors  [20  -  22].  The  antiviral  research
against  animal  pathogens  of  the  Pestivirus  genus  is  still  a
challenge. In the framework of a long-lasting antiviral research
program,  our  group  designed  and  synthesised  a  series  of
angular  and  linear  N-polycyclic  derivatives  active  against
BVDV,  YFV,  HCV and  other  related  viruses  [23  -  30].  The
molecular  target  for  BVDV  inhibition  was  identified  in  the
viral  RNA  dependent  RNA  polymerase  (RdRp)  [24,  28,  31,
32].  Imidazo[4,5-g]quinoline  derivatives  were  published  as
interesting BVDV inhibitors and the most active derivative of
that  series,  4-(4-chloro-3H-imidazo[4,5-g]quinolin-2-
yl)benzonitrile (A) (EC50 0.3µM; CC50 >100 µM) [32, 33] was
docked and scored for affinity towards the binding site of the
BVDV  RdRp,  the  resulting  receptor/ligand  complex  was
relaxed by energy minimisation, followed by MD simulation.
The  naphthoimidazole  core  showed  significant  H-bond
interaction  between  nitrogen  atoms  and  key  amino  acids
(R295, Y674 and S411). In detail, arginine 295 interacts with
N5 of the lead compound as H-bond donor, while N1 resulted
as H-bond acceptor in the interaction with tyrosine 674 and the
nitrogen of the benzonitrile moiety gives H-bond with serine
411. Has also been predicted the decrease of affinity of some
molecules with the substrate when R295 and Y674 – critical
residues for compound binding - are mutated into alanine and
the  prediction  has  been  confirmed  by  in  vitro  assays  on  the
mutant RdRp [32]. In order to have a further negative control
for  these  simulations,  we  now  designed  some  chemical
modification  on  the  lead  compounds  and  parent  compounds
similarly active in BVDV RdRp inhibition, and we synthesised
the designed compounds. The replacement of the nitrogen atom
in  position  5  of  imidazo  [4,5-g]  quinoline  derivatives  with  a
carbon atom, resulted in naphtho [2,3-d] imidazole derivatives
(3a-j) designed to confirm the essential interaction between N5
and  the  arginine  295.  The  2-phenyl  moiety  was  modified  in
order to assess the relevance of interactions with serine 411.

2. MATERIALS AND METHODS

2.1. Synthetic Methods

Synthesis of derivatives 3a-j was carried on by using the
general  procedure  for  imidazole  ring  closure  as  described  in
literature [34] by mixing commercial naphthalene-2,3-diamine
(1) and corresponding commercial aldehydes (2a-j) in a ratio
1:1 dissolved in acetonitrile (CH3CN), added with H2O2  30%
(ratio  1:7)  and  HCl  37%  (ratio  1:3,5)  at  room  temperature
overnight, solid was obtained (Scheme. I). The solid has been
filtered  off  with  vacuum,  washed  with  acetonitrile  first  and
with water then, till neutral pH of the filtrate. The crude solid
has  been  stored  and  dried  in  the  oven  overnight  and  were
obtained pure by crystallisation from ethanol.

2.2. Chemical Characterisation

Compounds  melting  points  (m.p.)  were  taken  in  open
capillaries  in  a  Köfler  hot  stage  or  Digital  Electrothermal
melting point apparatus and are uncorrected. Retention factors
(Rf)  were  measured  by  Thin  Layer  Chromatography  (TLC)
using Merck F-254 commercial plates and a proper mixture of
petroleum spirit (PS) and ethyl acetate (EA) as eluent. Nuclear
Magnetic  Resonance  (NMR)  spectra  were  registered  in
solutions  in  deuterated  DMSO  and  were  recorded  with  a
Bruker  Avance III  400 NanoBay (400 MHz) instrument.  1H-
NMR chemical shifts are reported in parts per million (ppm)
downfield  from  tetramethylsilane  (TMS)  used  as  internal
standard.  Chemical  shift  values  are  reported  in  ppm  (δ)  and
coupling  constants  (J)  are  reported  in  Hertz  (Hz).  Signal
multiplicities  are  represented  as  s  (singlet),  d  (doublet),  dd
(doublet of doublets),  ddd (doublet of doublet of doublets),  t
(triplet),  td  (triplet  of  doublets),  q  (quadruplet)  and  m
(multiplet). The assignment of exchangeable protons (OH and
NH) was confirmed by the addition of D2O. 13C-NMR chemical
shifts are reported in downfield from tetramethylsilane (TMS)
used  as  internal  standard.  Suitable  method  among  APT
(Attached Proton Test)  and jmod (J-modulated spin-echo for
X-nuclei coupled to H-1 to determine the number of attached
protons)  was  selected  for  each  compound.  The  solutions  for
ESI-MS measurements were prepared by dissolving the solid
compounds in HPLC acetonitrile to obtain a concentration of
1.0-2.0  ppm.  Mass  spectra  in  the  positive-ion  mode  were
obtained  on  a  Q  Exactive  Plus  Hybrid  Quadrupole-Orbitrap
(Thermo Fisher  Scientific)  mass  spectrometer.  The  solutions
were  infused  at  a  flow  rate  of  5.00  μl/min  into  the  ESI
chamber. The spectra were recorded in the m/z range 150–800
at a resolution of 140 000 and accumulated for at least 2 min in
order  to  increase  the  signal-to-noise  ratio.  The  instrumental
conditions used for the measurements were as follows: spray
voltage 2300 V, capillary temperature 250 °C, sheath gas 10
(arbitrary units), auxiliary gas 3 (arbitrary units), sweep gas 0
(arbitrary units), and probe heater temperature 50 °C. ESI-MS
spectra  were  analysed  by  using  Thermo  Xcalibur  3.0.63
software  (Thermo  Fisher  Scientific),  and  the  average
deconvoluted monoisotopic masses were obtained through the
Xtract tool integrated with the software.

2.3. Cells and Viruses

Cell  lines  were  purchased  from  American  Type  Culture
Collection  (ATCC).  The  absence  of  mycoplasma  con-
tamination was checked periodically by the Hoechst  staining
method. Cell line supporting the multiplication of BVDV was
the following: Madin-Darby Bovine Kidney (MDBK) [ATCC
CCL 22 (NBL-1) Bos Taurus]. The virus was purchased from
American  Type  Culture  Collection  (ATCC),  Bovine  Viral
Diarrhoea  Virus  (BVDV)  [strain  NADL  (ATCC  VR-534)].

2.4. Cytotoxicity Assays

Cytotoxicity  assays  were  run  in  parallel  with  antiviral
assays. MDBK cells were seeded at an initial density of 6x105

cells/cm3  in  96-well  plates,  in  culture  medium  [Minimum
Essential  Medium  with  Earle’s  salts  (MEM-E)  with  L-
glutamine,  supplemented  with  10%  horse  serum  and  1  mM
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sodium pyruvate,  and  0.025  mg/L  kanamycin].  Cell  cultures
were  then  incubated  at  37  °C  in  a  humidified,  5%  CO2

atmosphere in the absence or presence of serial dilutions of test
compounds. Cell viability was determined after 48–96 h at 37
°C  by  the  3-(4,5-dimethylthiazol-2-yl)-2,5-  diphenyl-
tetrazolium  bromide  (MTT)  method  [35].

2.5. Antiviral Assay

Compounds  activity  against  BVDV  was  based  on
inhibition of virus-induced cytopathogenicity in MDBK cells
acutely infected with an m.o.i.  of 0.01.  Briefly,  MDBK cells
were seeded in 96-well plates at a density of 3x104 cells/well
and were allowed to form confluent monolayers by incubating
overnight  in  growth  medium  at  37  °C  in  a  humidified  CO2

(5%) atmosphere. Cell monolayers were then infected with 50
µL of virus dilution in maintenance medium (MEM-E with L-
glutamine,  supplemented  with  0.5%  inactivated  FBS,  1  mM
sodium pyruvate and 0.025 g/L kanamycin) to give an m.o.i of
0.01. After 2 h, 50 µL of maintenance medium, without or with
serial dilutions of test compounds, were added. After a 3 days
incubation at 37 °C, cell viability was determined by the MTT
method.  Linear  regression  analysis:  viral  and  cell  growth  at
each  drug  concentration  was  expressed  as  a  percentage  of
untreated controls and concentrations, resulting in 50% (EC50

and CC50) growth inhibition. NM 108 (2’-C-methylguanosine)
and ribavirin are used as reference controls.

2.6. Experimental Section

2.6.1. 2-phenyl-1H-naphtho[2,3-d]imidazole (3a)

Compound  3a  (C17H12N2,  MW  244.291)  was  obtained  in
total yield 95%; m.p. 254.6-255 °C; TLC (PS/EA 6/4): Rf 0.55.
1H-NMR (DMSO-d6): δ 8.49 (2H, d, J= 6.8 Hz, H-2’,6’), 8.37
(2H, s, H-4,9), 8.19 (2H, dd, J= 3.2 Hz, H-5,8), 7.77 (3H, m,
H-3’,4’,5’), 7.56 (2H, dd, J= 3.2 Hz, H-6,7). 13C-NMR (APT,
DMSO-d6): δ 152.9 (C-2), 133.7 (CH-4), 132.4 (C-9a), 130.9
(3C,  C-3a,4a,8a),  129.6  (3CH,  C-3’,4’,5’),  128.6  (2CH,
C-2’,6’),  128.1  (2CH,  C-6,7),  125.4  (2CH,  C-5,8),  123.8
(C-1’),  110.7  (CH-9).  ESI-MS  (m/z):  calcd.  for  C17H12N2

245.1073,  found  245.1072  [M+H]+.

2.6.2. 2-(p-tolyl)-1H-naphtho[2,3-d]imidazole (3b)

Compound  3b  (C18H14N2,  MW 258.317)  was  obtained  in
total yield 74%; m.p. 276.6-278 °C; TLC (PS/EA 6/4): Rf 0.62.
1H-NMR (DMSO-d6): δ 8.35 (2H, s, H-4,9), 8.26 (2H, d, J= 8
Hz,  H-2’,6’),  8.19  (2H,  dd,  J= 3.2  Hz,  H-5,8),  7.57  (4H,  m,
H-6,7,3’,5’), 2.47 (3H, s, CH3). 

13C-NMR (APT, DMSO-d6): δ
152.9 (C-2), 144.6 (C-3a), 131.9 (C-4’), 130.9 (2C, C-4a,8a),
130.2  (2CH,  C-3’,5’),  128.5  (2CH,  C-2’,6’),  128.0  (2CH,
C-6,7), 126.3 (C-9a), 125.5 (2CH, C-5,8), 120.6 (C-1’), 110.5
(2CH, C-4,9),  21.3 (CH3).  ESI-MS (m/z):  calcd. for C18H14N3

259.1230, found 259.1231 [M+H]+.

2.6.3. 2-(4-nitrophenyl)-1H-naphtho[2,3-d]imidazole (3c)

Compound  3c  (C17H11N3O2)  was  obtained  in  total  yield
72%; m.p.  236-238 °C;  TLC (PS/EA 6/4):  Rf  0.63.  1H-NMR
(DMSO-d6): δ 8.57 (2H, d, J= 8.8 Hz, H-3’,5’), 8.51 (2H, d, J=

8.8 Hz, H-2’,6’), 8.28 (2H, s, H-4,9), 8.10 (2H, q, J= 3.6 Hz,
H-5,8),  7.47  (2H,  q,  J=  3.2  Hz,  H-6,7).  13C-NMR  (APT,
DMSO-d6):  δ  152.5  (C-2),  148.8  (C-3a),  137.8  (C-4’),  133.9
(C-9a), 130.6 (2C, C-4a,8a), 128.4 (2CH, C-6,7), 127.9 (2CH,
C-5,8),  127.3  (C-1’),  124.4  (2CH,  C-2’,6’),  124.3  (2CH,
C-3’,5’),  111.5  (2CH,  C-4,9).  ESI-MS  (m/z):  calcd.  for
C17H11N3O2  290.0924,  found  290.0922  [M+H]+.

2.6.4. 4-(1H-naphtho[2,3-d]imidazol-2-yl)benzonitrile (3d)

Compound  3d  (C18H11N3,  MW 269.300)  was  obtained  in
total  yield  85%;  m.p.  237.7-239.1  °C;  TLC  (PS/EA  6/4):  Rf

0.58. 1H-NMR (DMSO-d6): δ 8.53 (2H, d, J= 8.4 Hz, H-3’,5’),
8.29 (2H, s, H-4,9), 8.17 (2H, d, J= 8 Hz, H-2’,6’), 8.12 (2H,
dd,  J= 3.2  Hz,  H-5,8),  7.49 (2H,  dd,  J= 3.2  Hz,  H-6,7).  13C-
NMR  (APT,  DMSO-d6):  δ  152.5  (C-2),  136.6  (C-3a),  133.2
(2CH,  C-3’,5’),  131.3  (C-9a),  130.7  (2C,  C-4a,8a),  128.3
(2CH, C-2’,6’), 127.9 (2CH, C-6,7), 124.5 (2CH, C-5,8), 118.2
(CN), 113.8 (C-4’), 111.3 (2CH, C-4,9). ESI-MS (m/z): calcd.
for C18H11N3 270.1026, found 270.1025 [M+H]+.

2.6.5. 2-(4-(trifluoromethyl)phenyl)-1H-naphtho[2,3-d]imida-
zole (3e)

Compound 3e (C18H11F3N2, MW 312.289) was obtained in
total yield 89%; m.p. 211.3-212 °C; TLC (PS/EA 6/4): Rf 0.78.
1H-NMR (DMSO-d6):  δ  8.66 (2H, d,  J= 8 Hz,  H-2’,6’),  8.38
(2H, s, H-4,9), 8.17 (2H, dd, J= 3.2 Hz, H-5,9), 8.14 (2H, d, J=
8.4  Hz,  H-3’,5’),  7.54  (2H,  dd,  J= 3.2  Hz,  H-6,7).  13C-NMR
(APT, DMSO-d6): δ 151.6 (C-2), 133.0 (C-3a), 132.4 (1C, m,
CF3),  131.0  (2C-4a,8a),  129.3  (2CH,  C-2’,6’),  128.0  (2CH,
C-6,7),  127.1  (C-9a),  126.4  (CH-5),  125.4  (2CH,  C-3’,5’),
125.0 (C-4’), 123.4 (CH-8), 122.3 (C-1’), 111.0 (2CH, C-4,9).
ESI-MS (m/z): calcd. for C18H11F3N2 313.0947, found 313.0946
[M+H]+.

2.6.6. 2-(4-methoxyphenyl)-1H-naphtho[2,3-d]imidazole (3f)

Compound 3f (C18H14N2O, MW 274.317) was obtained in
total yield 91%; m.p. 251-252.2 °C; TLC (PS/EA 6/4): Rf 0.40.
1H-NMR (DMSO-d6): δ 8.40 (2H, d, J= 8.8 Hz, H-2’,6’), 8.32
(2H, s, H-4,9), 8.19 (2H, dd, J= 3.2 Hz, H-5,8), 7.57 (2H, dd,
J= 3.2 Hz, H-6,7), 7.35 (2H, d, J= 8.8 Hz, H-3’,5’), 3.94 (3H,
s,  CH3).  13C-NMR  (APT,  DMSO-d6):  δ  163.7  (C-4’),  152.9
(C-2),  132.1  (2C,  C-3a,9a),  130.9  (3C,  C-4a,8a,1’),  130.6
(2CH, C-2’,6’), 128.0 (2CH, C-6,7), 125.4 (2CH, C-5,8), 115.3
(2CH, C-3’,5’), 110.2 (2CH, C-4,9), 55.9 (CH3). ESI-MS (m/z):
calcd. for C18H14N2O 275.1179, found 275.1176 [M+H]+.

2.6.7. 2-(5-nitrofuran-2-yl)-1H-naphtho[2,3-d]imidazole (3g)

Compound 3g (C15H9N3O3, MW 279.250) was obtained in
total yield 79%; m.p. 217-217.4 °C; TLC (PS/EA 6/4): Rf 0.46.
1H-NMR (DMSO-d6): δ 8.19 (2H, s, H-4,9), 8.05 (2H, dd, J=
3.2 Hz, H-5,8), 7.93 (1H, d, J= 3.6 Hz, H-4’), 7.68 (1H, d, J=
3.6, H-3’), 7.42 (2H, dd, J= 3.2 Hz, H-6,7). 13C-NMR (jmod,
DMSO-d6):  δ  152.1  (C-5’),  146.6  (C-2’),  144.7  (C-2),  138.9
(2C, C-3a,9a), 130.6 (2C, C-4a,8a), 127.8 (2CH, C-6,7), 124.0
(2CH, C-5,8), 114.8 (2CH, C-3’,4’), 111.80 (2CH, C-4,9). ESI-
MS  (m/z):  calcd.  for  C15H9N3O3  280.0717,  found  280.0717
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[M+H]+.

2.6.8.  2-(5-nitrothiophen-2-yl)-1H-naphtho[2,3-d]imidazole
(3h)

Compound 3h (C15H9N3O2S, MW 295.316) was obtained in
total yield 71%; m.p. 253-254.1 °C; TLC (PS/EA 6/4): Rf 0.54.
1H-NMR  (DMSO-d6):  δ  8.28  (1H,  d,  J=  4.4  Hz,  H-4’),  8.18
(2H, s, H-4,9), 8.12 (1H, d, J= 4.4 Hz, H-3’), 8.04 (2H, dd, J=
3.2  Hz,  H-5,8),  7.42  (2H,  dd,  J=  3.2  Hz,  H-6,7).  13C-NMR
(APT, DMSO-d6+TFA-d): δ 153.1 (C-5’), 149.2 (C-2), 147.4
(C-3a), 139.0 (C-9a), 136.4 (C-2’), 130.8 (2C, C-4a,8a), 130.4
(CH-3’),  129.2  (CH-4’),  1270.8  (2CH,  C-6,7),  124.6  (2CH,
C-5,8),  111.3  (2CH,  C-4,9).  ESI-MS  (m/z):  calcd.  for
C15H9N3O2S  296.0488,  found  296.0489  [M+H]+.

2.6.9. 2-(pyridin-4-yl)-1H-naphtho[2,3-d]imidazole (3i)

Compound  3i  (C16H11N3,  MW  245.279)  was  obtained  in
total  yield  85%;  m.p.  250.9-251.6  °C;  TLC  (PS/EA  6/4):  Rf

0.11. 1H-NMR (DMSO-d6): δ 9.03 (2H, d, J= 6 Hz, H-3’,5’),
8.60 (2H, d, J= 5.6 Hz, H-2’,6’), 8.31 (2H, s, H-4,9), 8.09 (2H,
dd,  J= 3.2  Hz,  H-5,8),  7.46 (2H,  dd,  J= 3.2  Hz,  H-6,7).  13C-
NMR (APT, DMSO-d6): δ 151.0 (C-2), 146.6 (2CH, C-2’6’),
139.7 (C-3a), 138.0 (C-9a), 130.8 (2C, C-4a,8a), 128.0 (2CH,

C-6,7),  127.5  (C-4’),  124.5  (2CH,  C-5,8),  122.6  (2CH,
C-3’,5’),  112.0  (2CH,  C-4,9).  ESI-MS  (m/z):  calcd.  for
C16H11N3  246.1026,  found  246.1025  [M+H]+.

2.6.10. 2-(pyridin-2-yl)-1H-naphtho[2,3-d]imidazole (3j)

Compound  3j  (C16H11N3,  MW  245.279)  was  obtained  in
total yield 65%; m.p. 238.3-239 °C; TLC (PS/EA 6/4): Rf 0.20.
1H-NMR  (DMSO-d6):  δ  8.79  (1H,  d,  J=  4.8  Hz,  H-3’),  8.46
(1H, d, J= 8 Hz, H-6’), 8.16 (2H, s, H-4,8), 8.05 (1H, td, 1J=
7.6 Hz, 2J= 1.6 Hz, H-5’), 8.01 (2H, dd, J= 3.2 Hz, H-5,8), 7.59
(1H, ddd, 1J= 7.6 Hz, 2J= 4.8 Hz, 3J= 1.2 Hz, H-4’), 7.38 (2H,
dd,  J=  3.2  Hz).  13C-NMR  (APT,  DMSO-d6):  δ  155.2  (C-2),
150.1  (CH-6’),  148.4  (C-2’),  138.2  (CH-4’),  137.1  (C-3a),
130.7 (2C, C-4a,8a), 129.1 (C-9a), 128.3 (2CH, C-6,7), 126.0
(CH-3’),  124.1  (2CH,  C-5,8),  122.2  (2CH,  C-4,9),  108.7
(CH-5’).  ESI-MS (m/z):  calcd.  for  C16H11N3  246.1026,  found
246.1026 [M+H]+.

3. RESULTS AND DISCUSSION

As described above, the driven idea for this project is the
isosteric substitution of a nitrogen atom with a carbon atom and
evaluate  the  antiviral  activity  of  the  resulted  molecules
compared  with  the  parental  compounds.

Scheme I. Synthetic route for derivatives 3a-j.

Table  1.  Antiviral  activity  and  cytotoxicity  of  naphthoimidazole  derivatives  (3a-j),  derivative  A  [28]  was  reported  for
comparison; NM 108 and ribavirin were used as positive controls.

Compound MDBK (aCC50) BVDV (bEC50)
3a 37.5±3.5 16.2±2.6
3b 11.6 >11.6
3c >100 >100
3d >100 >100
3e 11.8 >11.8
3f 2.8 >2.8
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Compound MDBK (aCC50) BVDV (bEC50)
3g >100 >100
3h 4.7 >4.7
3i >100 >100
3j >100 >100
A >100 0.3

NM 108 >100 1.5±0.2
Ribavirin >100 18±2

aCompound concentration (µM) required to reduce the viability of mock-infected MDBK cells by 50%, as determined by the MTT method.
bCompound concentration (µM) required to achieve 50% protection of MDBK cells from the BVDV-induced cytopathogenicity, as determined by the MTT method.

Naphthoimidazole derivatives ( 3a - j ) were designed and
synthesised in order to confirm the relevance of nitrogen atom
in  position  5  of  the  imidazoquinoline  derivatives  for  the
interaction  with  the  target,  these  molecule’s  antiviral  results
confirmed  the  predicted  affinity  data  previously  published
since they showed a  consistent  loss  of  antiviral  activity  with
respect  to  parental  compounds  [32].  Derivative  3a  still
maintains a weak antiviral activity, EC50 at 16 µM, but related
at cytotoxicity CC50 value of 37 µM. Cytotoxicity is consistent
in the greater part of analysed compounds, contrary to what is
detected for parental imidazoquinoline derivatives, 3b, 3e, 3f,
3h  presented CC50  values ranging between 2.8 and 11.8 µM,
(Table 1). Derivative 3d, which is as much like compound A,
revealed a total loss of activity and, therefore, loss of affinity
with the target. Clearly, the interactions between the aromatic
moiety - here labelled as phenyl-R or R’ - and serine 411 of the
target RdRp are not responsible for the anti-BVDV activity and
are only supportive to it.

CONCLUSION

The  naphthoimidazole  derivatives  were  designed  and
synthesized  as  isostere  of  imidazoquinoline  derivatives
(previously  reported)  to  evaluate  the  interactions  between
heteroatoms of the chemical scaffold of these derivatives and
the  key  amino  acids  of  the  BVDV  RdRp.  The  quinoline
nitrogen  atom  was  substituted  with  a  carbon  atom,  which
cannot make H-bond interactions with R295 amino acid, and
this resulted in total loss of activity, as showed by the antiviral
assay results. We can then confirm the predicted relevance of
N5 - R295 interaction from the docking studies published. This
isosteric  substitution  led  to  not  active  derivatives  against
BVDV. At the same time, the biochemical interaction between
the aromatic moiety - here labelled as R - and serine 411 of the
RdRp target is clearly not responsible but only bearing, for the
anti-BVDV activity.
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