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Abstract: Non-intrusive load monitoring (NILM) is a process of determining the operating states and
the energy consumption of single electric devices using a single energy meter providing aggregate
load measurements. Due to the large spread of power electronic-based and nonlinear devices
connected to the network, the time signals of both voltage and current are typically non-sinusoidal.
The effectiveness of a NILM algorithm strongly depends on determining a set of discriminative
features. In this paper, voltage and current signals were combined to define, according to the
definitions provided in Standard IEEE 1459, different power quantities, that can be used to distinguish
different types of appliance. Multi-layer perceptron (MLP) classifiers were trained to solve the
appliance detection problem as a multi-class event classification problem, varying the electric features
in input. This allowed to select an optimal set of features guarantying good classification performance
in identifying typical electric loads.

Keywords: non-intrusive load monitoring; nonlinear devices; feature selection; machine learning;
power definitions

1. Introduction

Home energy management systems (HEMS) measure the energy consumption data of
the household in real time for monitoring and optimizing the energy usage. Traditional
intrusive monitoring systems collect fine-grained electricity data, posing higher initial
cost for the homeowners since several smart meters must be plugged into the appliances.
Non-intrusive load monitoring (NILM) systems allow to reduce hardware and maintenance
costs since only one household-level smart meter is needed. As a consequence, the energy
consumption at appliance-level is not available. NILM identifies a set of techniques that
can disaggregate the power usage into the individual appliances that are functioning and
disaggregate the consumption of electricity for each of them.

NILM has been an active area of research in the last years. One of the earliest studies
about the NILM system was developed by Schweppe and Hart. In [1] the authors classify
different appliances applying clustering algorithm in the active-reactive power features
plane. Since the publication of this algorithm in 1992, the field of load-disaggregation
has seen a tremendous amount of further research and novel approaches, see [2,3] for
recent reviews. Furthermore, once the load has been disaggregated through a proper
NILM technique, the disaggregated data can be used to improve the performance of some
other important functionalities in the energy management system. This holds in particular
for load demand forecasting [4], which may play a key role in the active management of
modern distribution grid [3,5]. As an example, the method proposed in [6] first disaggre-
gates the overall power into single appliances, so that the consumptions of each appliance
can be forecasted separately, and then forecasts the total power of an aggregated set of
houses by aggregating the single predicted powers. These NILM-based methods allow
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improving forecasting accuracy with respect to traditional methods that operate directly
on the aggregate signal.

The most promising approaches recently presented in the literature for load disaggre-
gation are based on machine learning techniques. A machine learning system classifies the
switching events associating them to a particular appliance, processing significant features
from the measured electrical parameters. Solutions based on machine learning range from
classic supervised machine-learning algorithms (e.g., support vector machines, artificial
neural networks, random forests) to supervised statistical learning methods (e.g., K-nearest
neighbours and Bayes classifiers) and unsupervised method (e.g., hidden-Markov Mod-
els and its variants). Recently, deep learning (DL) methods were also employed and
seem promising for the most challenging problem posed by the consumption profiles of
multi-state appliances [7–10].

Commercial household smart meters usually provide the electric active and reactive
power quantities measured at low frequency, typically on the order of a few values per
second. As a consequence, these are the most widely used features and measurement rates
reported in NILM-related literature. Since different appliances may show overlapping
power values, performance is often unsatisfying. To overcome this issue, different features
can be considered. Instantaneous samples acquired at high frequency (up to tens of
kilohertz) have been proposed to extract information on the transient behavior of the
supplied loads, but the drawbacks of these approaches are the increase in computational
complexity and the real-time constraints associated with their implementation [3]. On the
other hand, considering that the use of nonlinear appliances has increased continuously
during the last decades, the frequency content of the involved electric signals can be
exploited to improve the accuracy in the load identification process [11]. This implies the
sampling rate used to acquired voltage and current signals must be sufficiently high to
allow the frequency components of interest to be assessed correctly, but the measurement
rate used in the disaggregation algorithm (i.e., the number of measured values per time
unit, where each value is often obtained by processing a large number of instantaneous
voltage and current samples), can be still in the order of few values per second, thus greatly
improving the feasibility of these approaches with respect to the drawbacks mentioned
above for the high-frequency solutions.

Based on these considerations, to take into account the presence of non-sinusoidal
power draws, several authors recently resorted to additional information, extracting ex-
tremely detailed features such as, for example, V/I trajectory, harmonics of different
orders [12], the harmonic phase [13,14], percentage total harmonic distortion (THD) [15],
active and non-active current components [16], spectrograms of high-frequency current
data [9]. The choice of the optimal set of features among them is crucial to maximize
NILM effectiveness.

The literature contains few contributions where the different features were applied
simultaneously. In [17] six different signal signatures have been applied such as current,
current harmonics, real and reactive power, geometrical properties of the V–I curve and
instantaneous power, for ten appliances.

Liang et al. [18] combine single-feature single-algorithm disaggregation methods,
processing current waveform, active/reactive power, harmonics, instantaneous admittance
waveform, instantaneous power waveform, eigenvalues, and switching transient waveform.

Gao et al. [19] apply real and reactive power, harmonics, quantized currents and
voltages waveforms and V–I binary image obtaining better results with respect to those
obtained with features belonging to one category.

In [20] the authors first explored a systematic approach of optimally combining
features analyzing a plug load appliance identification dataset (PLAID) [21] retaining
58 features. Then, they performed several training sessions of the algorithm and the feature
ranking and finally selected 20 features eliminating all of the voltage harmonics and all
of the power-based features from transient state. The selected features included the total
harmonic distortion (THD) of current, energy of detail wavelet coefficients at 2nd scale,
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enclosed area by V–I trajectory, current root mean square, 3-rd, 5-th, 9-th and 11-th current
harmonic coefficient, THD of nonactive current and normalized real power.

In [22] the authors apply a complex hybrid energy disaggregation approach and pro-
pose a monitoring system consisting of a composite dual sliding window-based cumulative
sum control chart (DSWC) to detect the transient event, a multi-layer Hungarian matching
process to match load events. The detected events are converted to a bipartite graph opti-
mization; a supervised clustering procedure is used to activate the corresponding category.
Input data consist of rms current and voltage, active power, reactive power and the 15-th
harmonic of the current.

This paper focuses on the choice of a suitable set of features for a non-intrusive load
monitoring system, providing the following main contributions:

• different power terms, accounting for possible distortion in the voltage and current
signals, have been considered as possible features;

• the power terms have been evaluated in different time intervals after the detected event;
• a systematic approach to rapidly obtain the lowest possible number of features preserv-

ing model performance has been explored applying two procedures of feature selection.

The most effective feature sets are given as input to a multi-layer perceptron (MLP)
classifier trained to identify the on/off events for each device. The procedure is applied to
Building-Level fUlly-labeled for Electricity Disaggregation (BLUED) dataset [23]. BLUED
is a big dataset consisting of real voltage and current measurements for a single-family
residence in the United States, sampled at 12 kHz for a whole week. BLUED is pub-
licly available and it has been applied as benchmark dataset in several recent papers on
NILM [22,24].

2. Feature Definition

Nowadays, due to the large spread of power electronic-based and nonlinear devices
connected to the network, the time signals of both voltage and current, respectively v(t)
and i(t), are typically non-sinusoidal. In particular, for steady state conditions, these signals
can be modelled by considering two components:

• the fundamental component, typically denoted with the subscript 1, that is a sinusoidal
signal at system frequency f 1:

v1(t) =
√

2V1 sin(ωt− α1) (1)

i1(t) =
√

2I1 sin(ωt− β1) (2)

where ω = 2π f1, while V1, α1 and I1, β1, are the root mean square (rms) and the initial
phase angle for voltage and current, respectively

• the remaining term, typically denoted with the subscript H, which is obtained by
summing up the sinusoids of all the harmonics and the possible dc component.

vH(t) = V0 +
√

2 ∑
h 6=1

Vh sin(hωt− αh) (3)

iH(t) = I0 +
√

2 ∑
h 6=1

Ih sin(hωt− βh) (4)

where Vh, αh, Ih, and βh are the rms and the initial phase angle of the voltage and
current h-th order harmonic component.

Consequently, the time signals of both voltage and currents can be obtained as follows:

v(t) = v1(t) + vH(t) (5)

i(t) = i1(t) + iH(t) (6)
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With reference to the analysis of a single-phase system, and according to the standard
IEEE 1459 [25], it is possible to combine the two components of both voltage and current
signals to define a number of different rms and power quantities. Among all the quan-
tities proposed in the standard [25], the focus of this work will be on the 4 power-based
quantities shown in Table 1, where θh is the phase displacement between the h-th harmonic
components of voltage and current. Parameters related to voltage were excluded because
voltage variations are minimal while connecting and disconnecting loads mainly affect the
current draws and power consumptions.

Table 1. Definitions of the considered power quantities under non-sinusoidal conditions, according
to [25].

Name Measurement Unit Definition

Active power W P = P1 + PH (7)
Fundamental active power W P1 = V1 I1cosθ1 (8)

Harmonic active power W PH = V0 I0 + ∑
h 6=1

Vh Ihcosθh (9)

Fundamental reactive power Var Q1 = V1 I1sinθ1 (10)

According to their definitions, the power terms shown in Table 1 include information
on the fundamental components (namely active, fundamental active and fundamental
reactive power) and on the harmonic components (namely harmonic active power). These
quantities will be considered as possible features in the proposed NILM approach and will
be referred to as parameters in the following, for the sake of brevity. In the following, the
variation of all the parameters due to an event will be used as possible source of information
to determine which load caused the event.

3. Database Creation

When testing the performance of a NILM technique, it is important to consider real
data. Due to the challenges in the creation of such data sets, mainly related to the required
time and the high costs involved, researchers typically refer to data sets that have been
shared online and can be used as common reference. This choice also allows comparing
the performance of different approaches.

3.1. BLUED

Among all the datasets available in literature, in this work the BLUED dataset [23]
has been considered. This dataset was built in 2011 by monitoring a whole house located
in Pennsylvania (USA), for 8 days. It contains the samples of voltage and current signals,
and the corresponding timestamps, collected with a sampling frequency of fs = 12 kHz.
During the creation of the data set, all the changes in the state of power consumption
higher than 30 W and lasting at least 5 s, for almost 50 appliances, have been labelled
and recorded. This results in 2355 events recorded from known sources, and additional
127 events recorded from unknown sources, for a total of 2482 events. In this work, only
the events involving appliances with a nominal active power higher than 30 W, with more
than 10 recorded events, have been considered, resulting in 1585 events. In Table 2, the
list of the considered appliances is reported, together with the identification code in the
BLUED dataset (appliance label), and the number of recorded events.

3.2. Signal Processing

In order to be able to evaluate all the electrical quantities in Table 1, the time signals
stored in the BLUED database have been processed through a standard scheme, described
in the following.
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Table 2. Lists of the considered appliances from BLUED dataset.

Appliance Label Appliance Name Number of Recorded Events

101 Desktop Lamp 25
103 Garage Door 23
108 Kitchen Aid Chopper 12
111 Fridge 546
118 Computer A 45
120 Laptop B 14
123 DVR—Blue ray player 33
127 Air Compressor 20
129 TV 53
131 Printer 146
134 Iron 40
140 Monitor 222
147 Backyard lights 16
149 Office lights 53
150 Closet lights 21
151 Upstairs hallway light 17
152 Hallways Stairs lights 58
155 Kitchen overhead light 56
156 Bathroom upstairs lights 97
157 Dining room overhead light 32
158 Bedroom lights 18
159 Basement light 38

TOT: 1585

Before to proceed with the evaluation of the electrical quantities of interest, according
to a generic timeline such as the one represented in Figure 1, it is important to focus
on a specific section of both voltage and current signals. Given te, the time instant in
which an event occurs for the generic device, a 2 s time window, centered in te, is selected.
Consequently, the selected portion of the signal is divided in 8 observation windows
(ow1, ow2, . . . , ow8), each one 15 cycles long (250 ms at the 60 Hz rated frequency).

Figure 1. Representation of a generic timeline.

For each observation window, a calculation window is selected, by considering
10 cycles starting from the first zero-crossing in the voltage signal. Then, the fast Fourier
transform (FFT) is applied to each calculation window of both voltage and current signals.
In particular, since the bandwidth of the acquisition system for the BLUED database was
limited to 300 Hz, only the frequency components up to the 5th order have been considered
to evaluate all four electric parameters by means of Equations (7)–(10). This results in eight



Appl. Sci. 2021, 11, 533 6 of 14

values for each one of the four parameters: four values for the pre-event period and four
values for the post-event period, stored in a matrix P ∈ <4∗8:

P =


P(ow1) · · · P(ow8)

P1(ow1) · · · P1(ow8)
PH(ow1) · · · PH(ow8)
Q1(ow1) · · · Q1(ow8)

 (11)

In order to define a reference value representative of the pre-event scenario for the
k-th parameter, the mean value among the four pre-event values has been considered:

re fk =
(Pk(ow1) + Pk(ow2) + Pk(ow3) + Pk(ow4))

4
(12)

The obtained reference values have been then considered to evaluate the varia-
tion of the k-th parameter due to the occurrence of the event, ∆Pk, according to the
following equation:

∆Ppost−4
k = Pk

(
owpost

)
− re fk (13)

where, given post = [5, 6, 7, 8], the superscript post− 4 denotes the index of the post-event
values of the parameter Pk. Consequently, the matrix containing the variations of all the Pk
parameters, named ∆P ∈ <4∗4, has been obtained:

∆P =


∆P(ow5) ∆P(ow6) ∆P(ow7) ∆P(ow8)

∆P1(ow5) ∆P1(ow6) ∆P1(ow7) ∆P1(ow8)
∆PH(ow5) ∆PH(ow6) ∆PH(ow7) ∆PH(ow8)
∆Q1(ow5) ∆Q1(ow6) ∆Q1(ow7) ∆Q1(ow8)

 =


∆P1 ∆P2

∆P1
1 ∆P2

1

∆P3 ∆P4

∆P3
1 ∆P4

1
∆P1

H ∆P2
H

∆Q1
1 ∆Q2

1

∆P3
H ∆P4

H
∆Q3

1 ∆Q4
1

 (14)

Then, these values have been used to train and test the neural network in charge of
the identification of the device that caused the event. The time instants corresponding to
the ON/OFF events are considered known.

4. The Multilayer Perceptron

Multilayer perceptrons (MLPs) are feedforward artificial neural networks consisting
of at least three layers of nodes called input layer, hidden layer and output layer.

The relationship between input and output patterns is described by the following
algebraic equations system:

Input layer
Hidden layer
Output layer


W1
=
· i + b1 = y

hl = f
(

y
)

W2
=
· hl + b2 = o

(15)

where i is the input vector, W1
=

is the weights matrix of the input layer, b1 is the bias vector

of the input layer, y is the input of the hidden layer, hl is the output of the hidden layer,
f (·) is the hidden neurons nonlinear activation function, W2

=
is the weights matrix of the

output layer, b2 is the bias vector of the output layer, o is the output vector. Feedforward
networks can be trained for classification purposes, i.e., to classify input data according to
the specified target classes.

Learning occurs through a supervised learning procedure, by evaluating the error in
the neural network output after each input pattern is fed to the network and modifying
the connection weights, in order to minimize the error. In this case the conjugate gradient
algorithm is applied to train any network [26] and the error function to be minimized
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with respect to the weight and bias variables is the cross entropy. For each pair of output
class/target class oc/tc the cross-entropy is calculated as:

ce = −tc · log(oc) (16)

The cross entropy penalizes the classification errors in the different classes, mainly
penalizing misclassifications that are confident. The aggregate cross-entropy performance
is the mean of the individual values.

Figure 2 shows the structure of the MLP neural network considered in this paper.
The variables used as input are the selected features, whereas the output of the network
consists of a binary vector in which the neuron corresponding to the ON or OFF event
of an appliance is set equal to 1. Hence, the dimension of the output vector is twice the
number of the considered appliances (44 in the case study).

Figure 2. The MLP architecture.

In order to obtain an unbiased evaluation of the neural model fit, the available dataset
is generally split into three sets. The Training set is used to fit the model and determine
weights and biases; the Validation set is used for parameter selection and it should provide
an unbiased evaluation of the fit during the network training. During training, the error
of each model is checked on the validation set and the model that achieves the lowest
validation error is selected. This is the final choice of features and model. The Test set is
used once the training is completed to evaluate the performance of the final model.

5. Feature Selection

Feature selection is the procedure performed to reduce the number of input vari-
ables when developing a model in order to facilitate the learning and the interpretation,
reduce the computational cost and often improve the model performance. The addition of
unrelated or redundant features influences model accuracy: redundant features increase
the model complexity enhancing the risk of overfitting. Moreover, they could introduce
spurious correlations between the features and the class labels.

Many feature extraction algorithms map the parameters in a lower dimensional feature
space, suffering from the lack of interpretation of the projection dimensions. In this case,
the two methods chosen in this work retain a subset of original features allowing further
interpretation of physical meaning behind the selection.

The first method is based on neighborhood component analysis (NCA) [27], which
implements a feature weighting approach to optimize the nearest neighbor classifier per-
formance by maximizing an objective function that evaluates the average leave-one-out
classification accuracy over the training data. However, the cost function of NCA is prone
to overfitting, and an improved version of NCA with a regularization term was proposed
by Yang et al. [28], where the regularization term was selected empirically.

In the second method, the ranking is done applying minimum redundancy maximum
relevance (MRMR) algorithm. The MRMR algorithm [29] minimizes the redundancy of



Appl. Sci. 2021, 11, 533 8 of 14

a feature set while maximizing the relevance of the feature set to the target. Redundancy
and relevance are expresses by the mutual information of features and mutual information
of a feature and the target.

It is worth noting that there is no guarantee that the feature selection algorithm will
supply a feature ranking applicable to a generic classifier, based on a different algorithm.
However, in practice, the significance of features can often be generalized, especially when
both algorithms show good performance in classification. The outcome of the feature
ranking was used to design a set of tests employing an increasing number of features.

6. Performance Indexes

The results have been evaluated using the metric F-score, which is defined as:

F− score = 2· Precision ·Recall
Precision + Recall

(17)

Precision is the ratio between the number of correctly detected appliances (true pos-
itive (TP)) and the total number of the detected ones (TP + false positive (FP)), and it
represents the fraction of correct detections.

The recall is the ratio between the number of correctly detected appliances (TP) and
the total number of appliances in the dataset (TP + false negative (FN)) and it represents
the fraction of events that has been detected.

The confusion matrix is useful for visualizing precision and recall for the different
classes. A confusion matrix for multiclass classification shows the different classifier
answers. The actual values form the columns, and the predicted values form the rows. The
intersection of the rows and columns show one of the answers.

7. Test and Results

To obtain the results, data where split in three parts. For each appliance, the 80%
of events is used for training, the 10% for validation and the other 10% for test. On this
training set, cross-validation was applied in order to avoid overfitting. From the cross-
validation results, optimal configuration settings for the methods were obtained and the
evaluation on the test set gave us the final performance. The composition of the three
datasets is reported in Table 3.

Table 3. Training, Validation and Test sets composition.

Training Validation Test

# Events 1252 160 173

7.1. Feature Selection

Figure 3a,b report the cumulative feature weights (CFW) obtained applying the NCA
and MRMR methods to the training set respectively, cumulating from the most important
to the less one.

As it can be noticed, the CFW curve for NCA algorithm shows a clear linear growth
for the top eight features of the ranking and saturation after a knot point. As shown in
Figure 4, these features include active power, fundamental active and reactive power for
the 3rd and 4th time instant after the event; and harmonic active power in the 2nd and
4th time instant after the event. Thus, also the dynamic of these parameters supplies
useful information, since in some cases the same parameter is selected in different time
instants. In order to detect the relevant features, the best regularization parameter that
corresponds to the minimum average loss has been obtained using cross-validation. In
Figure 5 the average loss values versus the regularization parameter values obtained with
this optimization procedure is shown.
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Figure 3. Cumulative Feature Weights for training data (a) NCA algorithm (b) MRMR algorithm.

Figure 4. The feature weights obtained with the NCA algorithm. The weights of the irrelevant features are very close to
zero. The superscript identifies the observation window after the event.

Figure 5. The average loss values versus the regularization parameter for the NCA algorithm.
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The feature score proposed by MRMR algorithm does not suggest any cut on the
feature ranking since the CFW curve continues to linearly grow until the bottom feature is
added. Thus, no useful information is supplied by the algorithm in this context.

7.2. Load Classification Results

Following the NCA suggestion, for each number of features, a bunch of training
sessions was done varying the number of hidden neurons from 10 to 100 for an MLP,
choosing as input the 8 top features.

Results are reported in Table 4 for the network with 50 hidden neurons showing the
best validation error. Figure 6 shows the confusion matrix. Since training, validation and
test sets show similar performance, the confusion matrix is built for the entire dataset.

Table 4. Performance of MLP trained with the top 8 features.

Set ce TP FP FN Precision Recall F-Score

Training 0.05 1182 70 70 0.94 0.94 0.94
Validation 0.05 151 9 9 0.94 0.94 0.94

Test 0.08 157 16 16 0.91 0.91 0.91

Figure 6. Confusion matrix for the entire dataset.

In order to verify the goodness of the approach, the MLP classifier was trained varying
the number of hidden neurons from 10 to 100. The network with 50 hidden neurons shows
the minimum validation error, so it has been assumed as the best model.

Figure 7 shows the performance in term of cross-entropy obtained by progressively
entering the input features following the ranking provided by NCA algorithm. As it can
be noticed, increasing the number of features initially improves model performance. The
major improvement is obtained adding the fundamental active power. Then, the validation
error fairly decreases, and best results are obtained when 8 features are selected. Further
increasing the input dimension does not provide more accurate classifications. Thus, the
test confirms the goodness of the choice suggested by the NCA algorithm.
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Figure 7. Training, Validation and Test sets error for different number of input features. The horizontal
axis shows the features added to the MLP input for each training session. The superscript identifies
the observation window after the event.

The model performance was compared with those shown when the MLP is fed with
the fundamental active and reactive power ∆P1 and ∆Q1, widely applied in literature,
also by the authors [30,31], and adding to them the harmonic power that includes the
information on the non-sinusoidal current.

Table 5 reports the results for the described tests.

Table 5. Training, Validation and Test sets performance for additional tests.

Input Set ce TP FP FN Precision Recall F-Score

P1, Q1
(3rd and 4th time instant)

Training 0.09 1138 114 114 0.91 0.91 0.91
Validation 0.11 143 17 17 0.89 0.89 0.89

Test 0.11 154 19 19 0.89 0.89 0.89

P1, Q1, PH
(3rd and 4th time instant)

Training 0.06 1158 94 94 0.92 0.92 0.92
Validation 0.06 148 12 12 0.925 0.93 0.93

Test 0.08 157 16 16 0.91 0.91 0.91

Although the obtained performances are slightly worse than those achieved by the
NMR top features, results confirm that relevant information is carried out by the funda-
mental and harmonic active power features in different time instants.

Performance evaluation and comparison of different approaches to NILM remain
open issues in literature because the authors test their techniques on different datasets,
with different criteria and metrics. In this paper, in order to make a meaningful comparison,
the techniques proposed in [22,24] and [9] have been considered. In all three cases BLUED
dataset is used and the performance is evaluated with the same indices considered in the
present paper.

In particular, in [22] the authors apply a complex multivariable hybrid energy disag-
gregation approach to a subset of BLUED database consisting of 24 h of monitoring. The
study is limited to the following six devices: fridge, air compressor, hair dryer, backyards
lights, bathroom upstairs light, bedroom lights for 107 events, obtaining a F-score equal to
91.8%. Table 6 reports the obtained performance for five individual appliances both for [22]
and the present paper.
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Table 6. Comparison with the performance reported in [22] for five appliances of BLUED.

[22] MLP

Appliance # Events in 24 h F-Score # Events in One Week F-Score

Fridge 99 99.5 546 99.54
Air Compressor 2 100 20 100
Backyard lights 2 66.67 16 91.43

Bathroom upstairs light 16 94.12 97 93
Bedroom lights 6 85.71 18 88.24

In [24] random forest algorithms are applied to active and reactive powers for the
devices in BLUED dataset. The performance for the load classification step is reported in
Table 7.

Table 7. Performance reported in [24] for random forest algorithms applied to BLUED dataset.

Precision Recall F-Score

0.89 0.90 0.89

In [9] the authors apply a deep neural network, called concatenate convolutional
neural network, to high-dimensional spectrograms of high-frequency current data. Data
are a subset of BLUED database (537 samples) sampled to 2 kHz and the devices are
grouped in six classes: fridge, two groups of lights, two groups of high-power devices and
one group with computer and monitor. Table 8 reports the classification performance.

Table 8. Performance reported in [9] for concatenate convolutional neural networks applied to six
classes of devices in BLUED dataset.

Precision Recall F-Score

0.90 0.81 0.84

Even if all these results are not directly comparable since the datasets, although
selected from BLUED data, are different in composition and size, they confirm the goodness
of the proposed approach for the appliance classification.

8. Conclusions

This study presents the effectiveness of NCA as a feature selection method to en-
hance the classification performance of a multilayer perceptron for non-intrusive load
monitoring. Two feature selection methods, namely the neighborhood component analysis
and minimum redundancy maximum relevance algorithms, have been applied to a set of
sixteen features including active fundamental and harmonic active power and fundamental
reactive power in four windows successive to a switching event. The results reveal that
NCA feature selection method can select an optimal set of features tackling the model
complexity. Indeed, the top features of the algorithm, fundamental active and reactive
power and active power harmonics, allows one to obtain the best MLP performance also
reducing the model complexity. Comparisons with results presented in literature show
that the procedure achieves competitive performance despite the model simplicity.
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13. Djordjevič, S.; Dimitrijević, M.; Litovski, V. A Non-Intruive Identification of Home Appliances Using Active Power and Harmonic
Current. FACTA Univ. Electron. Energ. 2017, 30. [CrossRef]

14. Shi, X.; Ming, H.; Shakkottai, S.; Xie, L.; Yao, J. Nonintrusive Load Monitoring in Residential Households with Low-Resolution
Data. Appl. Energy 2019, 252, 113283. [CrossRef]

15. Devarapalli, H.P.; Dhanikonda, V.S.S.S.S.; Gunturi, S.B. Non-Intrusive Identification of Load Patterns in Smart Homes Using
Percentage Total Harmonic Distortion. Energies 2020, 13, 4628. [CrossRef]

16. Faustine, A.; Pereira, L. Multi-Label Learning for Appliance Recognition in NILM Using Fryze-Current Decomposition and
Convolutional Neural Network. Energies 2020, 13, 4154. [CrossRef]

17. Lin, S.; Zhao, L.; Li, F.; Liu, Q.; Li, D.; Fu, Y. A Nonintrusive Load Identification Method for Residential Applications Based on
Quadratic Programming. Electr. Power Syst. Res. 2016, 133, 241–248. [CrossRef]

18. Liang, J.; Ng, S.K.K.; Kendall, G.; Cheng, J.W.M. Load Signature Study—Part I: Basic Concept, Structure, and Methodology. IEEE
Trans. Power Deliv. 2010, 25, 551–560. [CrossRef]

19. Gao, J.; Kara, E.C.; Giri, S.; Bergés, M. A Feasibility Study of Automated Plug-Load Identification from High-Frequency
Measurements. In Proceedings of the 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Orlando,
FL, USA, 14–16 December 2015; pp. 220–224.

20. Sadeghianpourhamami, N.; Ruyssinck, J.; Deschrijver, D.; Dhaene, T.; Develder, C. Comprehensive Feature Selection for Appliance
Classification in NILM. Energy Build. 2017, 151, 98–106. [CrossRef]

http://doi.org/10.1109/5.192069
http://doi.org/10.1016/j.rser.2017.05.096
http://doi.org/10.3390/en12112203
http://doi.org/10.1109/TSG.2017.2743760
http://doi.org/10.1109/TCSII.2019.2891704
http://doi.org/10.1109/TSG.2019.2918330
http://doi.org/10.1109/ICASSP.2019.8682543
http://doi.org/10.3390/en12081572
http://doi.org/10.1109/ICASSP.2019.8682658
http://doi.org/10.3906/elk-1705-262
http://doi.org/10.2298/FUEE1702199D
http://doi.org/10.1016/j.apenergy.2019.05.086
http://doi.org/10.3390/en13184628
http://doi.org/10.3390/en13164154
http://doi.org/10.1016/j.epsr.2015.12.014
http://doi.org/10.1109/TPWRD.2009.2033799
http://doi.org/10.1016/j.enbuild.2017.06.042


Appl. Sci. 2021, 11, 533 14 of 14

21. Gao, J.; Giri, S.; Kara, E.C.; Bergés, M. PLAID: A Public Dataset of High-Resoultion Electrical Appliance Measurements for
Load Identification Research: Demo Abstract. In Proceedings of the 1st ACM Conference on Embedded Systems for Energy-
Efficient Buildings, Memphis, TN, USA, 4–6 November 2014; Association for Computing Machinery: New York, NY, USA, 2014;
pp. 198–199.

22. Liu, H.; Zou, Q.; Zhang, Z. Energy Disaggregation of Appliances Consumptions Using HAM Approach. IEEE Access 2019,
7, 185977–185990. [CrossRef]

23. Anderson, K.; Ocneanu, A.; Benitez, D.; Carlson, D.; Rowe, A.; Berges, M. BLUED: A Fully Labeled Public Dataset for Event-Based
Non-Intrusive Load Monitoring Research. In Proceedings of the 2nd KDD workshop on data mining applications in sustainability
(SustKDD), Beijing, China, 12–16 August 2012; pp. 1–5.

24. Taveira, P.R.Z.; Moraes, C.H.V.D.; Lambert-Torres, G. Non-Intrusive Identification of Loads by Random Forest and Fireworks
Optimization. IEEE Access 2020, 8, 75060–75072. [CrossRef]

25. IEEE Standard Definitions for the Measurement of Electric Power Quantities under Sinusoidal, Nonsinusoidal, Balanced, or
Unbalanced Conditions. IEEE Std 1459-2010 Revis. 2010, 1–50. [CrossRef]

26. Møller, M.F. A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Netw. 1993, 6, 525–533. [CrossRef]
27. Goldberger, J.; Roweis, S.; Hinton, G.; Salakhutdinov, R. Neighbourhood Components Analysis, Advances in Neural Information

Processing Systems; MIT Press: Cambridge, MA, USA, 2005; pp. 513–520.
28. Yang, W.; Wang, K.; Zuo, W. Neighborhood Component Feature Selection for High-Dimensional Data. J. Comput. 2012, 7, 161–168.

[CrossRef]
29. Ding, C.; Peng, H. Minimum Redundancy Feature Selection from Microarray Gene Expression Data. J. Bioinform. Comput. Biol.

2005, 3, 185–205. [CrossRef] [PubMed]
30. Cannas, B.; Canetto, B.; Carcangiu, S.; Fanni, A.; Fresi, L.; Marceddu, M.; Muscas, C.; Porcu, P.; Sias, G. Non-Intrusive Loads

Monitoring Techniques for House Energy Management. In Proceedings of the 2019 1st International Conference on Energy
Transition in the Mediterranean Area (SyNERGY MED), Cagliari, Italy, 28–30 May 2019; pp. 1–6.

31. Cannas, B.; Carcangiu, S.; Carta, D.; Fanni, A.; Muscas, C.; Sias, G.; Canetto, B.; Fresi, L.; Porcu, P. Real-Time Monitoring System
of the Electricity Consumption in a Household Using NILM Techniques. In Proceedings of the 24th IMEKO TC4 International
Symposium and 22nd International Workshop on ADC and DAC Modelling and Testing, Palermo, Virtual, Italy, 14–16 September
2020; pp. 90–95.

http://doi.org/10.1109/ACCESS.2019.2960465
http://doi.org/10.1109/ACCESS.2020.2988366
http://doi.org/10.1109/IEEESTD.2010.5439063
http://doi.org/10.1016/S0893-6080(05)80056-5
http://doi.org/10.4304/jcp.7.1.161-168
http://doi.org/10.1142/S0219720005001004
http://www.ncbi.nlm.nih.gov/pubmed/15852500

	Introduction 
	Feature Definition 
	Database Creation 
	BLUED 
	Signal Processing 

	The Multilayer Perceptron 
	Feature Selection 
	Performance Indexes 
	Test and Results 
	Feature Selection 
	Load Classification Results 

	Conclusions 
	References

