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Abstract In this paper, we demonstrate a method for self-organization and leader following of nonholonomic
robotic swarm based on spring damper mesh. By self-organization of swarm robots we mean the emergence
of order in a swarm as the result of interactions among the single robots. In other words the self-organization
of swarm robots mimics some natural behavior of social animals like ants among others. The dynamics of
two-wheel robot is derived, and a relation between virtual forces and robot control inputs is defined in order
to establish stable swarm formation. Two cases of swarm control are analyzed. In the first case the swarm
cohesion is achieved by virtual spring damper mesh connecting nearest neighboring robots without designated
leader. In the second case we introduce a swarm leader interacting with nearest and second neighbors allowing
the swarm to follow the leader. The paper ends with numeric simulation for performance evaluation of the
proposed control method.

Keywords Swarm robots - Swarm self-organization - Nonholonomic robots - Leader following - Virtual
spring damper mesh

1 Introduction

Recently, swarm robotics includes the both robots design and the developments in the controls of their behav-
ior. Here we consider a swarm consisting of two-wheel robots and propose some algorithms for their self-
organization. By self-organization of swarm robots we mean the emergence of order in a robotic system as
the result of interactions among the single robots constituting the swarm. In other words this self-organization
mimics that one which we often observe in biology, and in particular in animal societies, not limited to social
insects like bees, ants or termites, see, e.g., [1-5]. For example, swarms of submarine robots which mimics
some fish behavior were analyzed in [6,7], where in particular were described how the configuration of the
swarm can be calculated from the individual element, in order to achieve the desired shape of the swarm. The
objective of swarm control algorithm is to achieve desired swarm behavior by introducing the proper local
interaction between swarm members. A collective behavior emerges from all combined decisions made by
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robots according to relatively simple rules. As a decision-making input, robots take into consideration their
relative position with respect to the local neighbors and to the environment that they can sense and/or interact
with. Besides, other requirements are swarm scalability and robustness that have to be ensured in designing
swarm control algorithms. Available methods of swarm control that met all the listed requirements are either
bioinspired, based on physics phenomena, or various optimization approaches. Similar works using virtual
spring-based approach have been released; for example, Urcola et al. [8] present a formation control based on
virtual structure composed of virtual spring dampers connecting following robots to the leader. Shucker and
Bennett [9] propose a fully distributed robotic macrosensor in which control algorithm was influenced by spring
damper mesh connectivity. Robotic swarm interconnected by virtual spring and damper connected in parallel
was proposed by Chen et al. [10] where formation control of satellites under a gravitational potential field
is investigated. Belkacem and Foudil [11] study a swarm aggregation model based on equilibrium emerging
from robots interconnected with virtual springs and dampers. A slightly different approach can be found in the
works [12,13] where a centroid-based interaction is analyzed; in particular, these works are focused on local
and nonlocal interactions; in [14], a mathematical proof of the cohesion of a monodimensional swarm is given.

The study of discrete systems as those analyzed is particularly interesting not only to evaluate the behavior
of robotic swarms, but can also be used for other purposes: In fact, considering the single constituent of the
swarm as a material particle that can interact with neighboring particles with suitable potentials, the discrete
approach can be seen as a possible numerical implementation tool for the study of deformable continua which
may also show nonlocal interaction effects (see, e.g., for possible fields of application [15-22]). The presented
approach to robotic swarm is rather similar to the modeling of a discrete system by a continuum and vice versa
which has very long traditions in the continuum mechanics.

In our approach, the swarm control algorithm is similar in the behavior of point mass particles intercon-
nected with spring dampers. Such swarm mimics the behavior of viscoelastic fluid which falls into the category
of physics-based method. For movement control of nonholonomic robot, we define the relation between virtual
net forces acting on the robots and their linear and angular velocity. The paper is organized as follows. In Sect. 2
we introduce the ordinary differential equations describing the motion of the two-wheel robots. In Sect. 3 we
propose new swarm control methods based on spring damper mesh. The results of the model are discussed in
Sect. 4 where we considered the motion of 21 two-wheel robots with and without swarm leader. It is shown
that the technique based on the control of one robot called swarm leader with properly introduced inter-robot
forces may lead to the formation of relative stable ordered structure of the swarm. Moreover controlling the
behavior of the swarm leader we can almost get a priory desired configuration of the whole swarm. In addition
we also consider the swarm leader technique in the case of avoiding of obstacles.

2 Dynamics of robot swarms

The most commonly used robots in swarm research are nonholonomic two-wheel robots. The robot is shown
in Fig. 1.

To describe the dynamics of a two-wheel robot, we could use Euler—Lagrange’s equations with multipliers.
Unfortunately, one of the drawbacks is the necessity of decoupling the multipliers from robot torques. To avoid
having to decouple multipliers we will use different formalism using Maggie’s equations [23,24], derived from
the principle of virtual work. The equations are given by

X":C d (0E oE 6 o — (1)
il —l——)——|[=0;,, 1=1,...,s, =1...,n,
Yldr \ 8g; aqi ' /

Jj=1

where s is the number of independent parameters in the generalized coordinates g; equal to the numbers of
the system degrees of freedom. The generalized velocities and the right-hand sides of Eq. (1) can be expressed
explicitly by

N
G=Y Cijéi+Gj, )
i=1
s N n
D Oisei =) ey CijQ;. 3)
i=1 i=1 j=1

where é¢;,7 = 1, ...s, are called kinetic parameters and in this case they are equal to &1, a2, i.e., the rotation
angles of the two wheels.
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Fig. 1 Two-wheel robot schematic

The generalized coordinates and generalized velocities for two-wheel robot are
g =1[xa.ya B.ar, o],
. A S
G = [Xa, ya, B, a1, a2 ] (4)

where B is the angle between the line perpendicular to the segment joining the wheel centers and the x-axis.
For the described robot, we have two degrees of freedom and the independent generalized coordinates are the
wheels rotation angles o1, 2. Using kinematics analysis, we determine the velocities relationships as follows

. roo. . . ro. . . ro . . .
B = 2—l(a1 — ), Xq = 5(011 +az)cos B, ya = E(oq + dp) sin B Q)

where r is the radius of the wheels and / half the distance between the wheel centers.
The total kinetic energy E is equal to the sum of the kinetic energies of both wheels and robot chassis:

E=Ey +Ey+E, (6)

Explicitly, we have:

1 2 1 ‘2
E, = EmrvA + E]zr,B s

1 1 . 1 .
Ey1 = _mwv%; + = szl]Z + _wa,BZ,

2 2 2
1 5 1 oo o
Eyp = Emwvc + E w® + Elxwﬁ s (7

where my,, my, Iy, Iy, I are, respectively, the masses and the moments of inertia of wheels and robot
chassis with respect to the x- and z-axes.

Using Eqgs. (2) and (5) we can calculate the coefficients C;;, G ;, and with Eqgs. (1) and (3) we determine
the generalized forces Q; in the following form

Cii=5cosB, Ca=35cosp, G =0, Q1= 2my +m;)Xa,

Cip=35sinf, Cp=j3sinf, G2=0, 02 = (2my, +2mr) Va,

Ci3= 4. Cn=-%. G3=0, Q3=2mylPf+2Ly (L) f+2Luf+ 1,8  ®
Cis =1, Cyp =0, G4 =0, 04 = Iy

Ci5=0, Crys =1, G5 =0, Os = Iyo.
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The generalized forces and coefficients C;;, G jin (8) and Eq. (1) yield the following the Maggie equations
AP o ..
(2my, +my) (E) (o1 +a2) + (zmwl2 + 21w + Izr) 21 (@) — &) + Lwey = M| — Ny,

-t mp) (5) 8 = @mal® + 2 + L) 55 G — )+ Lo = Mo = Ny, ©)
If we write Eq. (9) in matrix form, we get
Mg+ F (g =U, (10)
where M is the inertia matrix, F (§) is the friction function, and U is the wheels torque vector.

M — ay +ax + a3 ap —ar
ay—ay ay+a+az|’

F@ = [““g“d“ } ,

assgnoy
T
U =M M] (11)
The parameters ay, .. ., as are calculated using the relations

r\2 r
ay = 2my +m;) <5> ,ap = (2mwl2 + 2L + 1) 5= Lw,a4 = Ny fi,as = Naf2,  (12)
where Ny, N, are the loads applied to wheels 1 and 2, while fi, f> are the coefficients of rolling friction of
both wheels.
Robot control inputs are wheels angular acceleration ¢ = [d], i>]T and wheels angular velocities
g = [a1, a>]" given by the equations

i =S p =t B (13)

3 Swarm control method

Swarm members are linked together with springs and dampers connected in parallel, see Fig. 2. We assume
the robots have mass m and are connected via springs with stiffness £ and dampers with damping coefficient
c. The length of the springs at rest is equal to dj.

Virtual springs and dampers are connected in the centers of mass of each robot, depicted in what follows
as point A.

Every link between the robots exerts a force F;; equal to the sum of elastic spring and viscous damper forces
such as discussed in [8—11]. We assume that the spring and damper are linear and their forces are proportional,
respectively, to the displacement and relative velocity between spring ends.

d
Fij = Fsij + Fpij = k (dij — do) + % (dij — do) . (14)

Fig. 2 Spring dampers mesh connecting mobile robots
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Fig. 3 Sensing range in nearest neighbors link connection

where k stands for the spring stiffness coefficient, c is the damping coefficient, and d;; is the current length of
the spring connecting the robots iand j.

Each robot has limited sensing range SR, which determines how many spring damper links are present;
the number of links is, in this way, equal to the number of visible neighboring robots. To establish links with
only the nearest neighbors, the sensing range has to meet the inequality

dov/3 > SR, > do. (15)

For example, setting the sensing range at the value 1.2dj results in creating links between only nearest neigh-
bors forming the swarm in the equilateral triangle formation shown in Fig. 3. Let us note that the sensing range
is quite similar to the notion of horizon used in the peridynamics, see [25], or the interaction range in the lattice
dynamics [26]. The nearest neighbors do not remain the same all the time, in general.

The total force exerted on a robot i is equal to the sum of all link forces between robot i and its visible
neighbors N,

Fi= )Y Fj= Y Fsj+Fpi. (16)
JEN; JEN;

From Eq. (13) we conclude that we require values of linear velocity v4 and angular velocity 8, to specify
robot control inputs, having the net force Fl as known value. To determine the values of v4, ,B we first have
to find the corresponding forces causing the robot to move forward or backward (force Fy/) and rotate around
the point A (force F,/). These forces are shown in Fig. 4.

The origin of the vectors W, F,/isin the point D. If we know the values of link forces and their orientation,

we can find the x and y components of the total force F; given by
F, = ) Fjjcosaj,
Fy =]€21:v, Fjjsinaj. A7)
JEN,
The vectors F_y/, F,/ are the components of the vector F; ;j in a rotating frame of reference around the point A

by an angle ¢; = B; — 5. The addition of -7 brings W (instead of vector F/) in the direction of the velocity
vector v4. The values Fy/, Fy/ are calculated using the following equation

F, = —Fysing; + F, cos ¢;, (18)
Fy’, = Fy cosg; + Fysing;.
Using the above equations the values of the linear velocity v4 and the angular velocity f are determined by
_ Ry
vA = [ 2y A1 (19)
B = —AF],
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Fig. 4 Robot i driving forces

Table 1 Simulation parameters

my, (kg) my (kg) I (kgm?®) Ly, (kgm®) I, (kgm?) N (N) [(m) r(m) f(m) k(N/m) ¢(Ns/m) i (=) do(m)

0.05 0.4 0.08 0.01 0.03 22 0.058 0.032 0.004 7 1 4 1
0.05 0.4 0.08 0.01 0.03 22 0.058 0.032 0.004 15 1.5 4 1

where A is the gain constant.

The gain constant A allows one to control the robots’ rotation speed around the point A, aligning the robot
frame with the direction of the total force F; acting on the robot. Moreover, the damping coefficient ¢ and
stiffness coefficient k can be set by the designer so that the values of v4 and B are adequate for the task at hand.

4 Simulation experiments

In order to evaluate the performance of the presented control method, two simulations were performed, that
is without and with a leader. The robots were initially randomly distributed with random headings. In both
simulations 21 robots were used. The parameters and the control algorithm constants for both simulations are
listed in Table 1.

4.1 Self-organization without swarm leader

In the first case the swarm self-organizes with no leader, forming equilateral triangle formation, the results are
shown in Fig. 5.

In Fig. 6 it is seen some oscillations during first seconds in the linear and angular velocities of the robots
which vanish in finite time due to the presence of friction and limited time response of robot actuators. In the
first simulation, the formation reached by the swarm is imperfect (disordered), and this may suggest a change
of control gains to different values.

Forces from virtual springs and dampers acting on the robots also oscillated around zero or in some cases
reached zero. For the second simulation in case of robot no. 5 marked in Fig. 5 the velocities and forces acting
on the robot oscillate around zero, whereas heading has nonzero value (Fig. 6).
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Fig. 5 Swarm self-organization for first set of parameters a robots trajectories, b final robot positions

Oscillations at the first 2 s are present due to the termination of links with robots going out of range. This
process creates sudden change of acting force value as well as its heading, which results in change of angular and
linear velocity of the robot. With correctly chosen values of k, ¢, A the swarm reaches the desired formation. As
we mention before there are some similarities between swarm robots and other discrete models, such as lattices
[26]. Let us also underline the similarities with dynamic fracture of discrete lattices, where the breakage of a
link leads to the local oscillations or a wave propagation for infinite systems, see, e.g., Slepyan et al. [27-30].

4.2 Self-organization with swarm leader

In the second case one of the robots is designated to be the swarm leader, interacting with nearest and second
neighbors. Swarm cohesion is achieved due to two types of interactions. Inter-agent interaction as in previous
example and additional virtual forces acted by the leader on its first and second neighbors. In calculating
leader—follower forces the same values of k and ¢ are used as given in Table 1. The length of the unstressed
spring between leader and its nearest neighbors is equal to d, while the one between the leader and its second
neighbors is equal to 1.5d.

Followers position themselves around the leader and are shown in Fig. 7. The diameter of the swarm is
between 2dy and dy. In this case it is equal to 1.57 m.

With robots organized around the leader the swarm will follow the leader trajectory. Example of leader
following is shown in Fig. 8.

During the swarm movement, the swarm maintains its cohesion. The swarm moves in the same heading as
the leader. The individual robots are rotating around the leader to the left, which is the same direction as the
first turn of the swarm. The followers continue to rotate with constant speed until the next turn of the swarm
to the right which slows the rotation of the robots. If friction is present, the system of robots would eventually
stop rotating around its leader.

The swarm trajectory can be represented as trajectory of the swarm center of mass. The swarm trajectory
is calculated only for the followers and compared to the trajectory of the leader.

The difference between position of the swarm leader and center of mass is smaller than 4 [cm] in X and Y
directions. The calculated error could be used as a design parameter for choosing correct values of &, ¢, A and
do for swarm leader following.

4.3 Obstacle and collision avoidance

Obstacle and collision avoidance can be achieved using the same approach as for maintaining the cohesion
of the swarm. If a robot moves near its neighbor closer than allowed minimal distance d,;,, a spring damper
link is established between the robots creating a repulsive force, moving the robots apart. The same happens in
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Fig. 6 Simulation results for robot no. 5

case robots driving near obstacles. One of the simplest forms of such forces for i-th robot the force is given by

F = k (dmin —d), 0 <d < dnin
T 0, d>dmn ’

where k = kop, dmin = dminob and for obstacles and k = k¢y, dmin = dminco to prevent collisions, and d is the
distance between i-th robot and the nearest neighbor or the obstacle. The link robot—obstacle is perpendicular
to the obstacle and created between the robot and the closest point on the obstacle. Simulations for swarm
obstacle avoidance were performed using the parameters given in Table 2.

Here k., ki, kob, kco are the spring constants, respectively, for neighboring robots, leader, obstacles and
robots collision avoidance, dy is the resting spring length for springs between robots, and dminob, @minco are
the minimal allowed distances from obstacles and between robots.
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Fig. 9 Swarm center of mass position compared to the leaders position a X and Y error, b swarm center of mass and leader
trajectory

Table 2 Simulation parameters

ky (N/m) ki (N/m) kob (N/m) keo (N/m) ¢ (Ns/m) dp (m) dminob (M) dminco (M)
22.5 45 975 135 1 0.5 0.2 0.1
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Fig. 10 Examples of swarm obstacles avoidance

5 Conclusions and future work

In this paper, we have presented a method for self-organization of nonholonomic robotic swarm using virtual
spring damper mesh. Choosing appropriate values of spring stiffness, damping coefficient and angular veloc-
ity constant, the swarm is able to achieve equilateral triangle formation. Moreover, if we introduce a swarm
leader, with correct design parameters, the swarm follows the leader almost keeping the established formation.
Numerical simulations show that for the detailed nonholonomic vehicle dynamics it is possible to design a
self-organizing swarm control algorithm based on restoring force of spring with damping. It is of interest in
future works to address to problem of selecting the optimal values of control gains to achieve better algorithm
performance including the determination of the level of nonlocality that is determination of the sensing range.
Moreover, future works should include the development of an extended version of the presented method with
obstacle avoidance and swarm shape formation control.

Acknowledgements Victor A. Eremeyev gratefully acknowledges his appointment as a Visiting Research Professor at the Uni-
versita di Roma ‘La Sapienza’ in 2017.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate
if changes were made.

References

1. Trianni, V.: Evolutionary Swarm Robotics: Evolving Self-organising Behaviours in Groups of Autonomous Robots. Studies
in Computational Intelligence, Vol. 108. Springer, Berlin (2008)


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1102 J. Wiech et al.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

30.

. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review from the swarm engineering perspective.

Swarm Intell. 7(1), 1-41 (2013)

. Sahin, E., Spears, W. M. (Eds).: Swarm Robots. Lecture Notes in Computer Science book series (LNCS, vol. 3342).

Springer, Berlin (2005)

. Moriconi, C. dell’Erb, R.: Social Dependability: a proposed evolution for future Robotics, Sixth IARP-IEEE/RAS-EURON

Joint Workshop on Technical Challenges for Dependable Robots in Human Environments May 17-18, (2008), Pasadena,
California

. Bossi, S., Cipollini, A., dell’Erba, R., Moriconi, C.: Robotics in Italy. Education, Research, Innovation and Economics

outcomes. Enea, Rome, (2014)

. dell’Erba, R., Moriconi, C.: HARNESS: a robotic swarm for environmental surveillance. In 6th IARP Workshop on Risky

Interventions and Environmental Surveillance (RISE). Warsaw, Poland, (2012)

. dell’Erba, R.: Determination of spatial configuration of an underwater swarm with minimum data. Int. J. Adv. Robotic Syst.

12(7), 97-114 (2015)

. Urcola, P., Riazuelo, L., Lazaro, M., Montano, L.: Cooperative navigation using environment compliant robot formations.

In: IEEE/RS]J International Conference on Intelligent Robots and Systems, IROS 2008, pp. 2789-2794, IEEE (2008)

. Shucker, B., Bennett, J.K.: Virtual spring mesh algorithms for control of distributed robotic macrosensors. University of

Colorado at Bulder, Technical Report CU-CS-996-05 (2005)

. Chen, Q., Veres, S.M., Wang, Y., Meng, Y.: Virtual spring, -damper mesh-based formation control for spacecraft swarms in

potential fields. J. Guid. Control Dyn. 38(3), 539-546 (2015)

Balkacem, K., Foudil, C.: A virtual viscoelastic based aggregation model for self-organization of swarm robots system.
TAROS 2016: Towards Autonomous Robotic Systems, pp. 202-213, Springer (2016)

Della Corte, A., Battista, A., dell’Isola, F.: Referential description of the evolution of a 2D swarm of robots interacting
with the closer neighbors: perspectives of continuum modeling via higher gradient continua. Int. J. Non-Linear Mech. 80,
209-220 (2016)

Battista, A. et al.: Numerical investigation of a particle system compared with first and second gradient continua: Deformation
and fracture phenomena. Math. Mech. Solids, https://doi.org/10.1177/1081286516657889 (2016)

Della Corte, A., Battista, A., dell’Isola, E., Giorgio, I.: Modeling deformable bodies using discrete systems with centroid-
based propagating interaction: fracture and crack evolution. In: Mathematical Modelling in Solid Mechanics, pp. 59-88.
Springer Singapore, (2017)

Pideri, C., Seppecher, P.: A second gradient material resulting from the homogenization of an heterogeneous linear elastic
medium. Contin. Mech. Thermodyn. 9(5), 241-257 (1997)

Samuel, F., Sab, K.: Finite-deformation second-order micromorphic theory and its relations to strain and stress gradient
models. Math. Mech. Solids. (2017). https://doi.org/10.1177/1081286517720844

Steigmann, D.J.: Theory of elastic solids reinforced with fibers resistant to extension, flexure and twist. Int. J. Non-Lin.
Mech. 47, 742-743 (2012)

Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical
comparison with second gradient continuum models. ZAMP 67(4), 1-28 (2016)

Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement
gradients. Math. Mech. Solids 8(1), 51-73 (2003)

Butta, P., De Masi, A., Rosatelli, E.: Slow motion and metastability for a nonlocal evolution equation. J. Stat. Phys. 112(3-4),
709-764 (2003)

Cuomo, M., dell’Isola, F., Greco, L., Rizzi, N.L.: First versus second gradient energies for planar sheets with two families
of inextensible fibres: investigation on deformation boundary layers, discontinuities and geometrical instabilities. Compos.
Part B Eng. 115, 423-448 (2017)

dell’Isola, F., Cuomo, M., Greco, L., Della Corte, A.: Bias extension test for pantographic sheets: numerical simulations
based on second gradient shear energies. J. Eng. Math. 103(1), 127-157 (2017)

. Giergiel, J., Zylski, W.: Description of motion of a mobile robot by Maggie’s equations. J. Theor. Appl. Mech. 43(3),

511-521 (2003)

. Gutowski R.: Mechanika Analityczna, 1971, PWN, Warszawa

. Madenci, E., Oterkus, E.: Peridynamic Theory and Its Applications. Springer, New York (2014)

. Born, M., Huang, K.: Dynamical Theory of Crystal Lattices. Clarendon Press, Oxford (1988)

. Slepyan, L.I.: Models and Phenomena in Fracture Mechanics. Springer, Berlin (2002)

. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Waves and fracture in an inhomogeneous lattice structure. Waves Random

Complex Media 17, 409-428 (2007)

. Mishuris, G.S., Movchan, A.B., Slepyan, L.I.: Dynamics of a bridged crack in a discrete lattice. Q. J. Mech. Appl. Math.

61, 151-160 (2008)
Slepyan, L.I.: Wave radiation in lattice fracture. Acoust. Phys. 56(6), 962-971 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affil-
iations.


https://doi.org/10.1177/1081286516657889
https://doi.org/10.1177/1081286517720844

	Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following
	Abstract
	1 Introduction
	2 Dynamics of robot swarms
	3 Swarm control method
	4 Simulation experiments
	4.1 Self-organization without swarm leader
	4.2 Self-organization with swarm leader
	4.3 Obstacle and collision avoidance

	5 Conclusions and future work
	Acknowledgements
	References




