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Abstract 

This research predicts theoretically post-critical axial buckling behavior of truncated 

conical carbon nanotubes (CCNTs) with several boundary conditions by assuming a 

nonlinear Winkler matrix. The post-buckling of CCNTs has been studied based on the 

Euler-Bernoulli beam model, Hamilton’s principle, Lagrangian strains, and nonlocal 

strain gradient theory. Both stiffness-hardening and stiffness-softening properties of the 

nanostructure are considered by exerting the second stress-gradient and second strain-

gradient in the stress and strain fields. Besides small-scale influences, the surface effect 

is also taken into consideration. The effect of the Winkler foundation is nonlinearly taken 
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into account based on the Taylor expansion. A new admissible function is used in the 

Rayleigh-Ritz solution technique applicable for buckling and post-buckling of nanotubes 

and nanobeams. Numerical results and related discussions are compared and reported 

with those obtained by the literature. The significant results proved that the surface effect 

and the nonlinear term of the substrate affect the CCNT considerably. 

Keywords: Post-critical buckling; Euler-Bernoulli beam; Conical carbon nanotubes; Nonlinear 

Winkler foundation; Rayleigh-Ritz method 

1. Introduction 

Carbon nanotubes (CNTs) are hollow ring-shaped structures, comprising carbon atoms. 

The CNTs can be classified into single- and multi-walled carbon nanotubes (SWCNTs 

and MWCNTs) and have metallic properties and also quasi-conductivity [1]. These two 

types of CNTs are already known which are different in the appearance and structure 

discovered in 1991 and 1993 [2-3], respectively. These types of nanotubes during 

production can be uncontrollably made in different shapes (twisted, curved, straight, and 

other irregular geometrical situations). However, another type of irregularity can be made 

in CNTs, namely nanotubes with a changeable diameter. A CNT with such the inconstant 

diameter along the length is called conical carbon nanotubes (CCNTs). The CCNTs, due 

to dominant applications in the modern industries, have been of important interest to 

engineers and scientific researchers [4-10]. In the case of CCNTs, Chang and Lee [11] 

mechanically studied a CCNT in vibrating based on the surface effect. Two boundary 

conditions, namely, clamped-free and clamped-clamped boundary conditions were 
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applied using the Rayleigh-Ritz method. Lee and Chang [12] analyzed the surface effect 

for nanotubes and nanowires in vibration. The unique properties of carbon nanotubes, 

including the high modulus of elasticity and good tensile strength on one side and the 

carbon nature of CNTs on another side, have led to significant research over the last 

decade into the efficiency and growth processes of nanotubes’ proliferation. Because of 

difficult conditions and high costs of experiments in nanoscale for considering 

mechanical behavior of size-dependent nanomaterials, the theoretical researches based on 

the continuum stress/strain gradients and molecular dynamics simulation have attracted 

much attention to researchers. Heretofore, in terms of critical stability of straight CNTs, 

in a molecular mechanics study, Chang et al. [13] studied buckling of CNTs subjected to 

axial compression. Their important results displayed that the stability of a zigzag CNT is 

further than an armchair one. Yan et al. [14] modeled the carbon nanotubes as a three-

walled shell and analyzed it with exposing to the axial compression forces. They 

implemented the small-scale influence through the nonlocal elasticity approach. On the 

other side, the influences of the thermal surround on the buckling loads have been taken. 

Their achieved mathematical relations were analytically solved based on pivot 

boundaries. Shima [15] analyzed the nonlinear static buckling of CNTs. Wang et al. [16] 

developed gradients of stress and strain to investigate the stability of nanoscale tubes by 

considering a polymer matrix based on the pivot-pivot Timoshenko beam model. 

Berrabah et al. [17] investigated axial buckling of hinged nanotubes rested in a polymer 

medium based on the Timoshenko beam theory. To consider small-scale effects, the 

nonlocal continuum mechanic was used in the form of Eringen’s nonlocal elasticity 
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theory. Akgöz and Civalek [18] considered the Pasternak substrate for an axially 

compressed hinged-hinged CNT based on the nonlocal elasticity theory. A 

comprehensive review of the concept of vibration, buckling and thermal analyses of 

SWCNTs was presented by Rafiee and Moghadam [19]. Different approaches as 

continuum elasticity, nonlocal elasticity, and molecular dynamics simulation were taken 

into the investigation. Sudak [20] analyzed axial buckling of concentric multi-walled 

carbon nanotubes based on the van der Waals forces and using nonlocal elasticity theory. 

Rahmanian et al. [21] modeled nonlocal elasticity for analysis of fundamental frequencies 

of CNTs rested on the Winkler medium. They modeled the nanotube into two categories, 

a beam model and shell one. 

Moreover, in terms of post-critical buckling studies, rarely investigations have been done 

on nanobeams/tubes. Mao and Ling [22] analyzed the post-stability response of thin-

walled anisotropic composite beams based on the Fourier expansion. The nonlinear 

equations were solved using the Galerkin procedure. Song and Li [23] modeled a pinned-

fixed classical local beam subjected to the thermal environment under thermal stability 

and post-stability situations. The beam was also placed on a polymer foundation. 

Challamel [24] investigated elastic beams under post-buckling conditions and assumed a 

gradient foundation by using an exact solution method. Silvestre et al. [25] presented a 

molecular dynamics simulation to study buckling and post-buckling of CNTs under pure 

twisting. Ansari et al. [26] predicted post- thermomechanical buckling response of 

nonlocal Euler-Bernoulli SWCNTs by considering thermal and axial in-plane forces. 

Akbas [27] studied post-critical stability with a large behavior for axially compressed the 
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Timoshenko beam model. Ansari et al. [28] employed nonlocal elasticity theory to 

examine size-dependent effects for a Timoshenko SWCNT under buckling and post-

buckling conditions. Recently, She et al. [29] developed functionality and porosity for a 

SWCNT under thermal stability and post-buckling condition. They applied both stress 

nonlocality and microstructural size dependency to evaluate the nanotube in a nanoscale 

schema. The obtained nonlinear equations were solved based on the two-step perturbation 

technique. Dai et al. [30] assumed an axial magnetic field around nanotubes and derived 

exact modes to analyze nonlocal post-buckling of CNTs. 

The review of the above research related to static buckling and post-buckling of CNTs 

vividly showed that there is no paper in which a truncated CCNT is studied under post-

buckling conditions. This led to the motivation of authors to write this paper. This 

research also considers both stiffness-hardening and stiffness-softening and also 

nonlinear behavior of Winkler foundation. To this, the Euler-Bernoulli beam model is 

applied in the energy method via Hamilton’s principle by employing nonlinear 

Lagrangian strains. To examine small-scale effects, nonlocal strain gradient theory is 

taken into consideration which includes microstructural size-dependent effects and a 

second stress gradient. In light of the importance of the surface effect for nanomaterials, 

the effect is here investigated. The Winkler matrix covers the tube and behaviors 

nonlinearly based on the Taylor expansion. To solve the post-buckling mathematical 

relations, the Rayleigh-Ritz solution method is applied based on a new shape function. 

By using this function, the post-critical buckling load can be presented for several 

boundary conditions particularly free edges. Thereafter, numerical results are shown by 
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changes in the essential and key parameters with and without considering the nonlinear 

behavior of the foundation. 

2. The constitutive model 

2.1 Energy formulation 

Fig. 1 in a Cartesian coordinate system displays a CCNT. The symbols are respectively, 

the thickness of the tube (h), the exterior radius of the smaller diameter of the tube (R1o), 

the internal radius of the smaller diameter of the tube (R1i), the inner radius of the larger 

diameter of the tube (R2o), and the taper angle (). 

 

(a) 
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(b) 

Fig. 1. Cross section (a) and three-dimensional (b) of the CCNT 

To assume the motion of nanotubes’ nodes, the classical beam theory is applied [23]. 

According to this beam approach the displacement field can be expanded as  

( )

( )

( )
( )

( )

1

3

,

,

dw x
u x  z

u

u x z
dx

x z
w x

 
  −   

=   
    

 

                                                                            (1a-b) 

in which u1(x,z) and u3(x,z) represent the displacement of points along x and z-axis and 

u(x) and w(x) are displacement of the mid-surface of the undeformed CCNT along x and 

z-axis. Moreover, z is a coordinate for the thickness direction in the continuum domain. 

First, the Hamilton principle is defined as 

( )
2

1

0
t

t
W U dt   = − =                                                                                                (2) 

in which δU, and δW are virtual strain energy and work done by external forces, 

respectively.  

The virtual strain energy and the work done by external forces would be formulated as  
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0 0

1

2

L L

xx xx xx xx
A A

U dAdx U dAdx    = → =                                                         (3) 

2

0

0 0

1

2

L L

x W W

dw dw d w
W N K w dx W N K w dx

dx dx dx


 

    
= − + → = − +    

     
               (4) 

in which δU (Note that δ means the variations of the energies) shows the virtual strain 

energy,  and  are the stress and strain tensors and also dV displays the integral on the 

volume of the domain. Furthermore, KW is the Winkler foundation. It is assumed that the 

post-buckling axial force is as Nx =- N0 where N0 demonstrates the post-critical axial 

buckling load (PCL). 

The tensor of nonlinear strains can be obtained based on the applying nonlinear 

Lagrangian strains on Eqs. (1) which leads to 

 
22

2

1

2
xx

du d w dw
z

dx dx dx


   
= − +  

   

                                                                                 (5) 

The local stress resultants can be written as 

xx

A
xx

N
dA

zM





   
=   

  
                                                                                                   (6a-b) 

in which the in-plane, moment and shear stress resultants are Nx, Mx and Qx, respectively. 

Therefore, based on the Eq. (5), Eqs.  (6) can be expanded as 

2

2

2

1

2
e

e

x

x

e

c

du dw
E A

N dx dx

d w
E I

dx

M

 
 

 

 
+ 




  
   
   







=







                                                                             (7a-b) 

in which 
( )4 4

4

o i

c

R R
I

 −
=  represents the moment of area of the cross section.
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Meanwhile, the relationship between the equivalent smaller and larger radii of the CCNT 

can be derived as  

( )1 sino oR R x = +                                                                                                       (8a) 

( )1 sini iR R x = +                                                                                                        (8b) 

where 
oR and 

iR  denote equivalent inner and outer radii for a straight CNT which resulted 

from the conic CNT. For the large elasticity domains, the surface effect can be ignorable. 

However, for a small-scale particle, the effect of the surface becomes important due to 

the high surface-to-volume ratio [11-12]. To study such an effect, the following relation 

can be employed [11] 

( ) ( )2 2 2 22e e s s o i s o iE A EA E A E R R E R R = + = − + +                                                       (9) 

in which Es and As depict surface elasticity and surface area modules, E denotes the 

Young’s modulus and A is the cross section area of the nanotube. 

Assigning δΠ=0 , the constitutive equation would be derived for a CCNT as 

0 : 0xdN
u  

dx
 = =                                                                                                         (10a) 

2 2
0

2 2
0 0x

W

d M d w
w  : N K

dx dx
 = − − =                                                                        (10b) 

The nonlinear Winkler model (Fig. 2) can be estimated by the third-order term of Taylor 

expansion as [31-32] 

3

W w L w NLK k w k w− −= +                                                                                                (11) 
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in which w Lk − and w NLk − are symbolized to show linear and nonlinear values of the 

foundation module. 

 

Fig. 2. The Winkler model covers the CCNT 

2.2 The size-dependent effects 

To take into consideration the stress nonlocality and microstructural size-dependent effects, 

the nonlocal strain gradient theory (NSGT) is given by [33] 

2 2
2

2 2
1 1xx ijkl xx

d d
C l

dx dx
  

   
− = −   

   
                                                                        (12) 

in which μ depicts nonlocality which is equal to (e0a)2 and also l denotes a length scale 

factor in the NSGT. Moreover, e shows a physical constant and a=0.142 nm is the bond 

length of carbon-carbon atoms. 

By substituting Eq. (12) into Eqs. (7), the small-scale stress resultants can be obtained as 

[34-48] 

22 2
2

2 2

1
1

2

x
x e e

d N d du dw
N =E A l

dx dx dx dx


    
− − +    

    
                                                       (13) 
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2 2 2
2

2 2 2
1x

x e c

d M d d w
M = E I l

dx dx dx


  
− − −   

  
                                                                 (14) 

And from Eqs. (7a), (10a) and (13), the axial stress resultant in a nonlocal strain gradient 

form can be expressed as 

22
2

2

1
1 ; 0

2

x x
x e e

dN dNd d du dw
N = E A l  

dx dx dx dx dx dx


       
+ − + =       

       
                          (15) 

As the initial axial displacements for beams with immovable ends should be set to zero, 

hence 

( ) ( )0u x =0;   u x L =0= =                                                                                          (16) 

Then 

22
2

2

1
1

2
x e e

d dw
N =E A l

dx dx

    
−     

    
                                                                                (17) 

And from Eqs. (7b), (10b) and (14), the bending moment stress resultant in a nonlocal 

strain gradient form can be expressed as 

2 2 2
2 0

2 2 2
1x e c W

d d w d w
M = E I l N K

dx dx dx


    
− − + +    

    
                                                  (18) 

Then, the strain energy can be written as below 

22

20 0

22

20

1

2

1

2

L L

xx xx xx
A A

L

x x

d w dw
U dAdx z dAdx

dx dx

d w dw
U M N dx

dx dx

  
   

= = − +   
   

  
= − +      
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2 2
2 2 2 2

2 0

2 2 2 20

42
2

2

1

1
1

4

L

e c W

e e

d d w d w d w
U E I l N K

dx dx dx dx

d dw
E A l dx

dx dx


       

  = − − − + +              

    
− −     

     


                                  (19) 

Therefore, the equation of post-critical buckling load can be achieved as 

2 2
2 2 2 2

2 0

2 2 2 20

4 22
2 0

2

1

1
1 0

4

L

e c W

e e W

d d w d w d w
U W E I l N K

dx dx dx dx

d dw dw
E A l N K w dx

dx dx dx


      
  + = − − +              

        
− − + + =        

           


                         (20) 

Consequently, the aforementioned post-buckling relations for a CCNT with assuming 

nonlinear behavior of the matrix will be 

( )

2 222 2 2
2 0

2 2 20 0

2
3

20

42
2

20

1

1

1
1 0

4

L L

e c

L

w L w NL

L

e e

d d w dw d w
E I l dx N dx

dx dx dx dx

d w
K w K w dx

dx

d dw
E A l dx

dx dx



− −

        
 −  −  +      

           

 
+ + − 

 

     
− − =     

      

 





                                 (21) 

3. Rayleigh-Ritz solution process 

As the post-buckling discussions are geometrically nonlinear ones; therefore, in order to 

solve nonlinear eigenvalue problems, the Rayleigh-Ritz solution technique can be a good 

choice [49-52], owing to its capability to give high accurate numerical outcomes. The 

method is a semi-analytical one and satisfies eigenvalue problems, a few of which should 

be solved nonlinearly for which the numerical solutions have to be employed. However, 
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such numerical methods have larger solution time [53-56] and cannot be cost-effective. 

Hence, semi-analytical methods can be a better suggestion to solve nonlinear eigenvalue 

problems, for example, post-buckling ones. The transverse displacement for the 

Rayleigh-Ritz method was presented as [52] 

( ) ( ) ( )
1

, , exp 1
N

i i

i

w x t a x t t 
=

= −                                                                             (22) 

in which ( ),i x t  is the fundamental mode shapes and   is the natural frequency in 

vibration analyses based on time. Further, ia  represents the unknown variable which 

should be calculated for deflection analyses. 

( ) ( ) 1, , i

i ix t f T x t f x  −= =                                                                                        (23) 

The only difficult thing in the semi-analytical solution methods like the Rayleigh-Ritz 

might be determining mode shapes which should satisfy boundary conditions. In this 

research, a new mode shape is assumed by which a very good agreement has been 

obtained while comparing the numerical outcomes with the literature [49-52]. The mode 

shape which determines several boundary conditions is innovatively derived as below 

1
x x

f
L L

 



   
=  −   
   

                                                                                                   (24) 

in which η and ζ define several boundary conditions as shown by Table 1.  

Table 1. Admissible quantities for several boundary conditions 
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Boundary 

conditions 
η(x=0) ζ(x=L) 

SS 1 1 

SC 1 2 

CS 2 1 

CC 2 2 

CF 2 0 

FC 0 2 

The conditions alluded in Table 1 can satisfy the geometrical and force boundary 

conditions given in Table 2. The stress resultants in boundaries can be written in the 

nonlocal strain gradient forms as force boundary conditions [57]. There are also other 

references in which the nonlocal boundary conditions are presented [58-60]. 

Table 2. Essential and Natural boundary conditions 

Configurations 
In nonlocal strain gradient conditions at  

(0, L) 

In local conditions  

( 0l = = ) at  

(0, L) 

S 

w=0 
0M =  

0hM =  

w=0 

0clM =  

C 

w=0  

w'=0 
0M   

0hM   

w=0 

w'=0 

0clM   

F 

w≠0 

 

2
2

2
1 0cl

d
N l N

dx

 
= − = 
 

 

2
2

2
1 0cl cl

d d dw
M l M N

dx dx dx


   
= − + + =   

  
 

2 2
2

2 2
1 1 0cl

cl

dMd d dw
Q l N

dx dx dx dx


    
= − + − =    

    
 

0h clN N= =  

0cl
h

dM
M

dx
= =  

w≠0 

0clN N= =  

0clM M= =  

0clQ Q= =  

* cl and h in sub-indexes mean classical and higher-order cases, respectively. 
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4. Accuracy of results  

To use the semi-analytical polynomial methods like the Rayleigh-Ritz one, first, the 

convergence rate of the solution method should be investigated. To this, Fig. 3 is 

presented with which it is observed that a suitable rate for convergence of the solution 

can be chosen as N=5. By choosing the value, the numerical outcomes would be acquired 

correctly. Moreover, due to solving a symmetrical problem and being the beam an 

isotropic one, naturally, the behavior of the SC should be as same as the CS boundary 

conditions. Note that this claim can be true for CF and FC boundaries. 

 

Fig. 3. The convergence rate of the Rayleigh-Ritz vs. different boundary conditions for a 

SWCNT (l=0, e0a=0, L=20d, E=1TPa, ν=0.19, d=1nm) 

The numerical results and the related discussion would be begun with the formulation’s 

validation. To do this, according to Tables 3-6 taken from references [61-62], the critical 

buckling load of a nanobeam is evaluated whilst the elasticity properties were chosen as 

E=1TPa, υ= 0.19, and diameter of the beam was selected as d=1nm. The numerical 
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results within the Tables are for the Euler-Bernoulli beam equation solved with an explicit 

analytical solution [61] and the differential transform method (DTM) [62]. As it is found, 

in the three cases (µ=0 nm2, µ=1 nm2, and µ=2 nm2), the results of the references and the 

present work are close to each other and reveal an excellent agreement into clamped-

clamped, hinged-hinged and clamped-free boundary conditions. Although the results of 

clamped-hinged boundary conditions are slightly farther from the literature, it can be 

acceptable. These Tables approve the efficiency and accuracy of the present admissible 

function for various boundary conditions. 

Table 3. Comparison of critical loads originated from literature for a hinged-hinged beam.  

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=4 nm2 

[61], 

EB, 

Explicit 

[62], 

EB, 

DTM 

Present-

EB, 

Rayleigh-

Ritz 

[61] [62] Present [61] [62] Present 

10 4.8447 4.8447 4.8447 4.4095 4.4095 4.4095 3.4735 3.4735 3.4735 

12 3.3644 3.3644 3.3644 3.1486 3.1486 3.1486 2.6405 2.6405 2.6405 

14 2.4718 2.4718 2.4718 2.3533 2.3533 2.3533 2.0574 2.0574 2.0574 

16 1.8925 1.8925 1.8925 1.8222 1.8222 1.8222 1.6396 1.6396 1.6396 

18 1.4953 1.4953 1.4953 1.4511 1.4511 1.4511 1.3329 1.3329 1.3329 

20 1.2112 1.2112 1.2112 1.182 1.182 1.182 1.1024 1.1024 1.1024 
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Table 4. Comparison of critical loads originated from literature for a clamped-hinged beam. 

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

[61], 

EB, 

Explicit 

[62], 

EB, 

DTM 

Present-

EB, 

Rayleigh-

Ritz 

[61] [62] Present [61] [62] Present 

10 9.887 9.887 9.911 8.2295 8.2295 8.2461 7.048 7.048 7.060 

12 6.886 6.886 6.883 6.0235 6.0235 6.0363 5.3651 5.3651 5.3753 

14 5.044 5.044 5.056 4.5744 4.5744 4.5844 4.1844 4.1844 4.1928 

16 3.8621 3.8621 3.8715 3.5804 3.5804 3.5884 3.337 3.337 3.344 

18 3.0516 3.0516 3.0589 2.873 2.873 2.879 2.7141 2.7141 2.7199 

20 2.4718 2.4718 2.4777 2.3533 2.3533 2.3587 2.2456 2.2456 2.2505 

Table 5. Comparison of critical loads originated from literature for a clamped-clamped beam. 

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

[61], 

EB, 

Explicit 

[62], 

EB, 

DTM 

Present-

EB, 

Rayleigh-

Ritz 

[61] [62] Present [61] [62] Present 

10 19.379 19.379 19.379 13.8939 13.8939 13.8938 10.828 10.828 10.828 

12 13.458 13.458 13.458 10.652 10.652 10.652 8.6917 8.6917 8.6917 

14 9.877 9.877 9.887 8.2296 8.2296 8.2296 7.0479 7.0479 7.0479 

16 7.4699 7.4699 7.4699 6.5585 6.5585 6.5585 5.7854 5.7854 5.7855 

18 5.9811 5.9811 5.9811 5.3375 5.3375 5.3375 4.8091 4.8091 4.8091 

20 4.8447 4.8447 4.8447 4.4095 4.4095 4.4095 4.046 4.046 4.046 
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Table 6. Comparison of critical loads originated from literature for a clamped-free beam. 

PCr (nN) 

L 

(nm) 

µ=0 nm2 µ=1 nm2 µ=2 nm2 

[61], 

EB, 

Explicit 

[62], 

EB, 

DTM 

Present-

EB, 

Rayleigh-

Ritz 

[61] [62] Present [61] [62] Present 

10 1.2112 1.2112 1.2112 1.1820 1.1820 1.1820 1.1542 1.1542 1.1542 

12 0.8411 0.8411 0.8411 0.8269 0.8269 0.8269 0.8132 0.8132 0.8132 

14 0.6179 0.6179 0.6179 0.6103 0.6103 0.6103 0.6027 0.6027 0.6027 

16 0.4731 0.4731 0.4731 0.4686 0.4686 0.4686 0.4641 0.4641 0.4641 

18 0.3738 0.3738 0.3738 0.3710 0.3710 0.3710 0.3682 0.3682 0.3682 

20 0.3028 0.3028 0.3028 0.3009 0.3009 0.3009 0.2991 0.2991 0.2991 

In addition to the above validation of the present solution’s shape function, we can use 

the ref. [63] in which some admissible functions were employed (Table 7) which had 

appropriate results. As can be noticed, Fig. 4 exhibits an excellent agreement between the 

results of the present admissible function with those obtained from ref. [63]. The 

superiority of the present admissible function versus those pointed out in Table 7 can be 

the possibility of applying free edges and also simpler utilization and application. 

Table 7. Admissible functions from literature 

Boundary 

conditions 
Suitable functions 

SS Sin(πx/L) 

CC 0.5(1-Cos(2πx/L) or Sin2(πx/L) 

CS 
0.1709382933(Sin(k1x)- k1LCos(k1x)+ k1L(1-(x/L))) 

k1=1.4318π/L 
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Fig. 4. Comparison of critical buckling loads for several boundary conditions vs. literature for a 

SWCNT (l=0, e0a=0, E=1TPa, ν=0.19, d=1nm) 

5. Post-buckling of truncated conical SWCNTs  

This section is concerned to assess and predict the post-critical buckling loads (PCL) of 

a truncated conical carbon nanotube (CCNT). First, in order to analyze the CCNT, the 

following material properties are utilized as [63-72] 

0.5 nm<e0a<0.8 nm [64], 0<e0a≤2 nm [65-66],  

E=1000 nN/nm2, ν=0.19, Es=5.1882 N/m 

h=0.066 nm, R1o=0.5 nm, d=2 R1o 

It is important to note that the above-mentioned quantities are averaged values and are 

related to an armchair carbon nanotube in a continuum schema [73-78]. As the armchair 

is a symmetrical nanotube, it is presumed as an isotropic beam. 

To describe the influences of the Winkler foundation, Fig. 5a is shown for which the 

CCNT is in two cases, with the foundation and without it. To do this, SS boundary 
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conditions are taken into consideration. It is simply seen that increasing the length-to-

diameter ratio whilst the foundation is eliminated leads to dropping the slope of the results 

of the PCL. However, while the foundation is embedded, the slope of the results decreased 

so that L/d=15 and then the slope goes up rapidly. These contrary outcomes for both cases 

can be interpreted physically based on the reverse transverse forces of the foundation. 

This means that when the CCNT is larger, the matrix embraces a stronger foundation. 

Because the foundation depends on the length of the model. And its length increases with 

the increase of the length of the CCNT, which leads to further stiffness of the medium. 

 

Fig. 5a. Post-critical buckling loads for present and absent of the foundation (=π/36, kw-

L=0.1GPa, kw-NL=0.2GPa, e0a=0.5 nm, l=0.1 nm, SS) 

On the other hand, Fig. 5b briefly examines several small-scale models for the CCNT 

with the increase of the length-to-diameter ratio for SS boundary conditions. There are 

strain gradient theory (SGT) for which we take e0a=0 and l=0.5 nm, nonlocal theory of 

Eringen (NT) for which we have e0a=0.5 nm and l=0, nonlocal strain gradient theory 
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(NSGT) for which the e0a=0 and l=0.2 nm are used and classical (local) mechanics for 

which the e0a=0 and l=0 should be employed. As it is clear, the large CCNTs make the 

various size-dependent theories insignificant leading to a macro scale model. In the 

nanoscale model, the SGT, separately, cannot be applicable in light of its results which 

are greater than classical mechanics. But, the NT and NSGT pose closer results to each 

other, and these are more executive theories in terms of continuum mechanics of 

nanomaterials. It is worth mentioning that the NSGT strongly depends on the value of the 

length scale parameter which can be determined for each nanomaterial in an experiment. 

 

Fig. 5b. Post-critical buckling loads for several small-scale theories (=π/36, kw-L=0.1GPa, kw-

NL=0.2GPa, SS) 

Fig. 6a considers the effects of the nonlinear term of the substrate versus the linear one 

by shifts in the strain gradient length scale parameter. As the literature proved it [79], in 

order to show the microstructural size-dependency of the nanostructures, there is a need 

to use the length scale parameter. The increase in this parameter presents a larger stiffness 
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of the nanomaterial. Such the property which is owing to lessening of size of the material 

from the macro up to nano has been found in the experiments for some 

micro/nanomaterials [80-82]. It is noteworthy to state that the influence of the nonlinear 

term is smaller than the linear one on the PCL. This is because the numerical results for 

post-buckling by use of the linear term of the Winkler are greater values in contrast to the 

results of the nonlinear term of the foundation. This result is taken from the four cases of 

Fig. 6a. 

 

Fig. 6a. Effect of the linear Winkler medium vs. nonlinear one on the PCL (L/d=20, =π/18, kw-

L=0.1GPa, kw-NL=0.1GPa, e0a=1 nm, SS) 

Figures 6b and 6c reveal a comparison between two terms of the Winkler foundation. 

This means it has linear behavior versus nonlinear one for different boundary conditions. 

For the first figure, the value of the nonlinear term is neglected and the second figure, the 

value of the linear term is chosen as 0.1GPa. From the first figure, it can be seen that an 

increase in the linear term of Winkler affects considerably CS boundary conditions. And 
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also, the results of these edges conditions tend to be closer to the SS boundary conditions. 

The galvanized result for clarifying the effect of the nonlinear term can be, however, the 

parallelism of the three curves in using the nonlinear term by Fig. 6c. 

 

Fig. 6b. Effect of the Linear response of the foundation vs. various boundary conditions on the 

PCL (L/d=20, l=h, =π/18, e0a=0.5 nm) 

 

Fig. 6c. Effect of the nonlinear response of the foundation vs. various boundary conditions on 

the PCL (L/d=20, l=h, kw-L=0.1GPa, =π/18, e0a=0.5 nm) 
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Fig. 7a considers the effect of the taper angle for two boundary conditions, i.e. CC and 

CS groups in two cases of the matrix, linear and nonlinear behaviors. From this figure, 

one can observe that the nonlinear term of the foundation has no serious impact on the 

results of PCL under less flexible boundary conditions (clamped edges). In other words, 

in a CCNT with a large taper angle, there is no serious need to employ the nonlinear term 

of the matrix. Besides, it is seen that an increase in the taper angle generates the greater 

PCL which means that the taper angle establishes a stiffer nanotube. 

 

Fig. 7a. Effect of the taper angle vs. the Winkler foundation on the PCL (L/d=20, l=h, kw-

L=0.1GPa, kw-NL=0.1GPa, e0a=0.8 nm) 

Fig. 7b shows the changes in the taper angle for CF and SS boundary conditions. It is 

germane to note that the increase of the taper angle leads to reducing the effect of the 

nonlinear term of the Winkler medium. This is due to the decline of the gap between the 

results of both nonlinear and linear foundation cases with increasing the conical angle. 

Furthermore, by comparing Fig. 7b with 7a, it is demonstrated that the influences of the 
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nonlinearity of the elastic matrix for nanotubes with CF and SS edge conditions are 

remarkably more than CC and CS ones. On the other hand, by looking at Fig. 7b, it is 

seen that the effect of the increase in the taper angle is noticeably more for the SS 

boundary conditions than CF ones. This is because the slope of the increase of the results 

of SS boundary conditions is considerably further than CF ones whilst the taper angle will 

increase. To conclude from Fig. 7a and Fig. 7b, one can claim that the effect of the 

nonlinear elastic foundation for less flexible boundary conditions is smaller.  

 

Fig. 7b. Effect of the taper angle vs. the Winkler foundation on the PCL (L/d=20, l=h, kw-

L=0.1GPa, kw-NL=0.1GPa, e0a=0.8 nm) 
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angle results in increasing the effect of surface in the CCNTs (because for SS when the 
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(related to considering the surface effect and avoiding the effect) will be larger while the 

taper angle has been grown. This can be a rational conclusion in light of the increase of 

the taper angle which leads to an increase of the surface of the model and then the surface-

to-volume ratio (STV). Therefore, more STV illustrates markedly the effect of the 

surface. As a matter of fact, for hinged boundaries, the surface effect is further significant 

than others. This can be proved by comparing the outcomes of SS boundary conditions 

and CF ones when the value of the taper angle has gone up. To conclude, although the 

results whilst the surface effect is investigated are approximately close to the results 

whilst the effect is neglected, the effect can play a crucial role in a small-scale domain in 

particular in some special situations and cannot be ignorable at all. 

 

Fig. 7c. Effect of the taper angle vs. the surface effects on the PCL (L/d=20, l=h, kw-L=0.1GPa, 

kw-NL=0.1GPa, e0a=0.8 nm) 

Fig. 7d plots the results of the PCL for two boundary conditions, namely CF and SS with 
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foundation has been removed, the numerical results for SS by the increase of the taper 

angle are more than CF at all. However, when the foundation is taken into consideration, 

before = 8, the results of SS are smaller than the CF. This behavior can be because of 

this fact that the elastic foundation makes the free edge of CCNT more rigid. Additionally, 

it can be found from this figure that by increasing the taper angle the importance of the 

foundation would be diminished. This is because of decreasing the distances of the curves 

between two cases; with the nonlinear foundation and without the substrate for both 

boundary conditions while the taper angle is getting larger. 

 

Fig. 7d. Effect of the taper angle vs. the Winkler foundation on the PCL (L/d=20, l=h, kw-

L=0.1GPa, kw-NL=0.1GPa, e0a=0.8 nm) 

Fig. 8a and 8b exhibit the impact of nonlocality versus the surface effect along with 

different boundary conditions. As can be seen, with an increase in the nonlocal parameter 

the slope of reducing results for the less flexible boundary conditions is increased. 

Moreover, the increase of the nonlocality parameter does not affect the surface effect. In 
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addition, for CS and SS boundaries, the surface effect is a vital factor and for CC and CF 

ones the effect cannot play a serious role in order to analyze the nanostructure. It is 

interesting to declare that in CC boundary conditions, considering surface effect generates 

the results smaller than the manner of ignoring this effect. However, this behavior is 

completely reversed for SS, CF, and CS. 

 

Fig. 8a. Effect of the nonlocal parameter vs. different boundary conditions on the PCL (L/d=20, 

l=h, kw-L=0.1GPa, kw-NL=0.1GPa, =π/18) 
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Fig. 8b. Effect of the nonlocal parameter vs. different boundary conditions on the PCL (L/d=20, 

l=h, kw-L=0.1GPa, kw-NL=0.1GPa, =π/18) 

5. Conclusions 

This research was conducted to reveal the post-critical stability response of a truncated 

conical carbon nanotube by taking the nonlinear Winkler elastic substrate. To model the 

nanotube in the nanoscale domain, the surface, nonlocal and small size influences were 

captured. To solve the derived relations, the Rayleigh-Ritz semi-analytical solution 

technique was applied for which a new admissible function was also presented. The 

outcomes of this function perfectly showed its accuracy and precision. The numerical 

outcomes were demonstrated by figures and some obtained remark points are listed 

below: 

* The CS and SS boundary conditions are influenced by the surface effect more than other 

ones. 
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* Increasing the taper angle increased the effect of surface and decreased the effect of the 

nonlinear term of the matrix. 

* The taper angle increased remarkably the PCL for less flexible boundary conditions. 

* The nonlinear term of the foundation was further effective for the more flexible 

boundary conditions. 

* Taking the surface effect made the PCL larger for CF, CS and SS and smaller for CC 

boundary conditions. 
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