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a b s t r a c t 

This paper considers a single-walled composite nano-shell (SWCNS) exposed in a torsional 

critical stability situation. As the magnetic field affects remarkably nanostructures in the 

small size, a three-dimensional magnetic field is assessed which contains magnetic effects 

along the circumferential, radial and axial coordinates system. Based on the results of the 

nonlocal model of strain gradient small-scale approach and the first-order shear deforma- 

tion shell theory (FSDST), the problem is estimated. Afterward, the numerical results are 

taken analytically and compared with other existing literature. Hereafter, the influences of 

various factors, such as the magnetic field, are discussed deeply. It is observed that when 

the magnetic field is studied in three dimensions, the transverse magnetic effect is the 

most serious factor that affects fundamentally the torsional stability of the shell. 
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1. Introduction 

Due to the urgent need of industries for high strength structures with low weight, nano-composite shells are a good

choice for this field. Over the years, nano-composite materials have been found from laboratory to commercial and indus-

trial applications and have also many applications in various industries such as aerospace, defense, offshore and automotive.

Some nano-composite structures which have been made, e.g. magnetic nano-composite structures, have received further

attention over the previous years. These materials present impressive properties that outweigh the properties of conven-

tional composite materials. The magnetic nano-composite structures are useful for producers of actuators and small motors,

especially computer hardware, audio and video ( Elimelech, Gregory, Jia & Williams, 1995 ). 

To design different structures, analyzes such as static, dynamic, vibrational, fracture and buckling ones are performed.

Since cylindrical nano-shell/tube structures are more susceptible to buckling loads, stability analysis is one of the most
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serious analyses of these types of structures. Among the nano-shell structures, the carbon nanotubes (CNTs) are the most

customary nano-shells that have been greatly investigated. Han and Lu (2003) based on the local continuum mechanics,

studied the torsional stability of a double-walled carbon nanotube (DWCNT) based on considering an elastic substrate.

They employed the classical shell model and solved the gained equations by means of the Navier solution technique.

Wang, Yang and Dong (2005) considered multi-walled carbon nanotubes (MWCNTs) under a torsional stability condition

based on the local classical continuum shell model. Lu and Wang (2006) combined torsional and axial stability condi-

tions in order to estimate the local continuum shell MWCNTs. Zhang and Shen (2006) examined a single-walled carbon

nanotube (SWCNT) with the help of molecular dynamics (MD) simulation subjected to torsion, axial and external pres-

sures by assuming a thermal surrounding. In some valuable research works, other researchers have also studied CNTs in

the case of torsional stability ( Jeong, Lim & Sinnott, 2007 ; Wang, Quek & Varadan, 2007 ; Yang & Wang, 2007 ; Zhang &

Wang, 2008 ). Later, Shen and Zhang (2010) modeled a DWCNT by using first-order shear deformation shell theory (FS-

DST) and in conjunction with nonlocal elasticity and also considering the thermal environment. Hao, Guo and Wang (2010) ,

Natsuki, Tsuchiya, Ni and Endo (2010) , on the other hand, worked on the shell model of DWCNTs based on the nonlo-

cal elasticity theory. Khademolhosseini, Rajapakse and Nojeh (2010) used a modified Timoshenko shell model to evaluate

a SWCNT in a shell domain based on the nonlocal theory of Eringen. In various conditions and cases, some other studies

have been done on the CNTs exposed to torsional stability ( Chowdhurry, Wang & Koh, 2014 ; Parvaneh, Shariati, Torabi, Ma-

sood & Sabeti, 2012 ; Song & Zha, 2011 ; Zhang & Li, 2015 ). More newly, Xiaohu, Yugang and Hanzhou (2013) carried out an

electric and thermal field around the CNTs exposed to torsion by examining size effects. Ghorbanpour Arani, Abdollahian,

Kolahchi and Rahmati (2013) analyzed a DWCNT subjected to the torsional critical force and thermal effects with consider-

ing piezoelectricity impact. They applied the FSDST and also assumed a matrix outer the system. The piezoelectric field was

assumed in one direction. They solved the harvested stability relations regarding the Navier approach. In an effective paper,

Mehralian, Tadi Beni and Karimi Zeverdejani (2017) simulated natural frequencies of a shell FSDST-CNTs by using MD based

on different small-scale theories, namely modified couple stress theory (CST), nonlocal elasticity theory (NT), strain gradient

theory (ST) and nonlocal strain gradient theory (NSGT). Their numerical outcomes approved more conformity of the results

of nonlocal strain gradient theory with MD. More recently, however, Shojaeefard, Mahinzare, Safarpour, Saeidi Googarchin

and Ghadiri (2018) presented the natural frequencies of a Timoshenko nano-composite shell by taking electric-magnetic and

thermal environments into account. They assumed that the shell was under an ultra-fast rotation and was inserted in an

elastic substrate. To capture the small-scale effects, the modified couple stress theory was discussed. Finally, they calculated

the natural frequencies of the shell in the mentioned conditions based on the Navier analytical method and also generalized

differential quadrature (GDQ) numerical method. Sahmani and Aghdam (2018) established the nonlocal strain gradient ap-

proach to study axial stability and post-stability responses of a nano-shell incorporating electric and magnetic field effects.

They used the classical shell model in employing the cartesian coordinate system. To give their results numerically, they

applied an improved perturbation technique. 

Until the date, no paper has been recorded on an analysis of the torsional stability of nano-composite shells regarding a

three-dimensional magnetic field based on the NSGT. Therefore, this paper studies a nano-composite material, i.e. BaTiO 3 -

CoFe 2 O 3 in a shell-like structure. As this material is a smart piezomagnetic structure, it could be utilized in several nano-

electro/magneto-mechanical systems. Hence, torsional stability analysis of such the nanostructure can be significant resulting

in many advantages. This motivated authors to assess the torsional stability of the nano-composite shell while the magnetic

field has three-dimensional influences. To predict the motion of the model’s nodes, the first-order shear deformation shell

hypothesis is employed. To address the size effects, the nonlocal theory of strain gradient is practiced. To attain the graphs

based on the numerical outcomes, an analytical solution technique is exploited. In the results section, different key factors,

such as the magnetic field and small-scale act, are taken into the investigation. 

2. Basic formulation 

A schematic picture of the SWCNS is below presented in which the radius, length, and thickness of the model are re-

spectively, R, L , and h Figure 1 . 

In this research, concerning the cylindrical shape of the nano-shell, the first-order shear deformation shell theory (FSDST)

is given by Ghorbanpour Arani et al. (2013) , Mehralian et al. (2017) , Shojaeefard et al. (2018) { 
u 1 ( x , θ, z ) 
u 2 ( x , θ, z ) 
u 3 ( x, θ, z ) 

} 
= 

{ 
u ( x, θ ) + z ϕ x ( x, θ ) 
v ( x, θ ) + z ϕ θ ( x, θ ) 

w ( x, θ ) 

} 
(1) 

in which u i ( i = 1 , 2 , 3 ) represents the displacement components of each point of the nano-shell along axial, circumferential

and radial axes, respectively, u ( x, θ ), v ( x, θ ) and w ( x, θ ) correspond to the mid-plan displacements along with axial, cir-

cumferential and radial directions, ϕx and ϕθ display the rotation around the axial and circumferential axes. Furthermore, a

coordinate for the thickness of the nano-shell is chosen as z . 

Based on the Lagrangian strain, a continuum nonlinear strain-displacement equation can be written as 

{
ε i j 

}
= 

1 

2 

{
∂ u i 

∂ x j 
+ 

∂ u j 

∂ x i 
+ 

∂ u k 

∂ x i 

∂ u k 

∂ x j 

}
(2) 
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Fig. 1. A SWCNS under a three-dimensional magnetic field exposed to the torsional force. 

 

 

 

 

 

 

 

 

 

 

 

 

Regarding the principle of curvilinear derivation and also the model of cylindrical shell, the components of strain for the

shell SWCNS based on the Eq. (2) can be expanded as below 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ε xx 

ε θθ

γxz 

γxθ

γθz 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂u 
∂x 

+ z ∂ ϕ x 
∂x 

+ 

1 
2 

(
∂w 

∂x 

)2 
1 
R 

(
w + 

∂v 
∂θ

)
+ 

1 
2 R 2 

(
∂w 

∂θ

)2 + 

z 
R 

∂ ϕ θ
∂θ

ϕ x + 

∂w 

∂x 

∂v 
∂x 

+ 

1 
R 

(
∂u 
∂θ

+ 

∂w 

∂θ
∂w 

∂x 

)
+ z 
(

∂ ϕ θ
∂x 

+ 

1 
R 

∂ ϕ x 
∂θ

)
1 
R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(3)

The tensor of classical stresses of an element of the nano-shell along axial, circumferential and radial directions that

includes the terms of magnetic and mechanic can be written as ( Ghorbanpour Arani et al., 2013 ; Mehralian et al., 2017 ;

Shojaeefard et al., 2018 ) ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

σxx 

σθθ

τxθ

τxz 

τθz 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

= 

⎡ 
⎢ ⎢ ⎢ ⎣ 

C 11 C 12 0 0 0 

C 12 C 22 0 0 0 

0 0 C 44 0 0 

0 0 0 C 55 0 

0 0 0 0 C 66 

⎤ 
⎥ ⎥ ⎥ ⎦ 
⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ε xx 

ε θθ

γxθ

γxz 

γθz 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

−

⎡ 
⎢ ⎢ ⎣ 

0 0 q 31 

0 0 q 32 

0 0 0 

q 15 0 0 

0 q 24 0 

⎤ 
⎥ ⎥ ⎦ 
⎧ ⎨ 

⎩ 

H x 

H θ

H z 

⎫ ⎬ 

⎭ 

(4)

where the H k is the magnetic field. Moreover, q i j depicts piezomagnetic moduli related to the magnetic property of the

nano-shell. Also, σ
i j 

and ɛ ij are respectively the static stress and strain fields. Additionally, C i jkl ( i, j = 1 , ..., 6 ) is the stiffness

matrix defined as follows ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C 11 

C 12 

C 22 

C 44 

C 55 

C 66 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C 11 − C 2 13 

C 33 

C 12 − C 13 C 23 

C 33 

C 22 − C 2 23 

C 33 

C 44 

C 55 

C 66 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(5)

The Hamilton’s principle is utilized to derive the equilibrium equations as ( Mikhasev, Eremeyev, Wilde & Maevskaya,

2019 ) 

δ
 = 

∫ t 2 

t 1 

( δK − ( δU − δW ) ) dt = 0 (6)

in which the variated kinetic and strain energies are respectively δK and δU . On the other hand, the work of outer loads is

δW . Note that, in this paper, the effects of mass moment of inertia are removed. 

The variated strain energy is presented below 

δU = 

∫ ∫ ∫ 
v 

(
σi j δε i j − B k δH k 

)
dV = 0 (7)
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where the B k is the magnetic induction which can be formulated as follows 

⎧ ⎨ 

⎩ 

B x 

B θ

B z 

⎫ ⎬ 

⎭ 

= 

[ 
0 0 0 q 15 0 

0 0 0 0 q 24 

q 31 q 32 0 0 0 

] ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ε xx 

ε θθ

γxθ

γxz 

γθz 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

+ 

[ 
η11 0 0 

0 η22 0 

0 0 η33 

] ⎧ ⎨ 

⎩ 

H x 

H θ

H z 

⎫ ⎬ 

⎭ 

(8) 

in which ηi j shows a magnetic quantity. The magnetic constants can be expressed as ⎧ ⎪ ⎨ 

⎪ ⎩ 

q 31 

q 32 

q 15 

q 24 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

q 31 − C 13 q 33 

C 33 

q 32 − C 23 q 33 

C 33 

q 15 

q 24 

⎫ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎭ 

;
{ 

η11 

η22 

η33 

} 
= 

⎧ ⎨ 

⎩ 

η11 

η22 

η33 + 

q 2 33 

C 33 

⎫ ⎬ 

⎭ 

(9) 

Based on the available magnetic potential, the following linear function can be employed ( Ghorbanpour Arani et al., 2013 ;

Mehralian et al., 2017 ; Shojaeefard et al., 2018 ) 

�(x, θ, z) = − cos 

(
πz 

h 

)
�(x, θ ) + 

2 z ψ 0 

h 

(10) 

in which the initial magnetic potential is symbolized with �(x, y), and the magnetic potential is ψ 0 . 

By means of Eq. (10) , the magnetic field can be indicated in three dimensions as below ⎧ ⎨ 

⎩ 

H x 

H θ

H z 

⎫ ⎬ 

⎭ 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

− ∂ �
∂x 

− 1 
R + z 

∂ �
∂θ

− ∂ �
∂z 

⎫ ⎪ ⎬ 

⎪ ⎭ 

= 

⎧ ⎪ ⎨ 

⎪ ⎩ 

cos 
(

πz 
h 

)
∂�
∂x 

1 
R + z cos 
(

πz 
h 

)
∂�
∂θ

−π
h 

sin 

(
πz 
h 

)
� − 2 ψ 0 

h 

⎫ ⎪ ⎬ 

⎪ ⎭ 

(11) 

Assuming an element of the nano-shell in an equilibrium condition gives us the stress resultants as 

{ N xx , N θθ , N xθ , M xx , M xθ , M θθ , Q xz , Q θz } = 

∫ 0 . 5 h 

−0 . 5 h 
{ σxx , σθθ , σxθ , σxx z, σxθ z, σθθ z, k τxz , k τθz } dz (12) 

where the moment stress resultants ( M xx , M x θ , M θθ ), the transverse shear stress resultants ( Q xz , Q θz ), and the axial stress

resultants ( N xx , N θθ , N x θ ) are shown. In addition, k defines a shear correction factor by which the value of the transverse

shear stress along the thickness of the model can be refined. 

Hence, based on Eq. (4) , Eq. (12) can be developed as below 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

N xx 

N θθ

N x θ

M xx 

M θθ

M x θ

Q xz 

Q θz 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎡ 
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

A 11 

A 21 

0 

0 

0 

0 

0 

0 

A 12 

A 22 

0 

0 

0 

0 

0 

0 

0 

0 

A 44 

0 

0 

0 

0 

0 

0 

0 

0 

D 11 

D 21 

0 

0 

0 

0 

0 

0 

D 12 

D 22 

0 

0 

0 

0 

0 

0 

0 

0 

D 66 

0 

0 

0 

0 

0 

0 

0 

0 

k A 55 

0 

0 

0 

0 

0 

0 

0 

0 

k A 66 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

×

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂u 
∂x 

+ 

1 
2 

(
∂w 

∂x 

)2 
1 
R 

(
w + 

∂v 
∂θ

)
+ 

1 
2 R 2 

(
∂w 

∂θ

)2 
∂v 
∂x 

+ 

1 
R 

(
∂u 
∂θ

+ 

∂w 

∂θ
∂w 

∂x 

)
∂ ϕ x 
∂x 

1 
R 

∂ ϕ θ
∂θ

∂ ϕ θ
∂x 

+ 

1 
R 

∂ ϕ x 
∂θ

ϕ x + 

∂w 

∂x 

1 
R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

+ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

2 ̄q 31 ψ 0 

2 ̄q 32 ψ 0 

0 

X 35 �
X 63 �

0 

−X 21 
∂�
∂x 

−X 23 
∂�
∂θ

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

(13) 

in which 

A i j = 

∫ h 
2 

− h 
2 

C̄ ij dz : ( i, j = 1 , 2 , 4 , 6 ) , D i j = 

∫ h 
2 

− h 
2 

C̄ ij z 
2 dz : ( i, j = 1 , 2 , 6 ) (14) 

By doing δ
i = 0, the equilibrium equations can be obtained as 

δu 1 = 0 : 
∂ N xx 

∂x 
+ 

1 

R 

∂ N xθ

∂θ
= 0 (15a) 

δu 2 = 0 : 
1 

R 

∂ N θθ

∂θ
+ 

∂ N xθ

∂x 
+ 

Q θz 

R 

= 0 (15b) 

δu 3 = 0 : 
∂ 

∂x 

(
N xx 

∂w 

∂x 

)
+ 

1 

R 

∂ 

∂θ

(
N θθ

1 

R 

∂w 

∂θ

)
+ 

1 

R 

∂ 

∂θ

(
N xθ

∂w 

∂x 

)
+ 

1 

R 

∂ 

∂x 

(
N xθ

∂w 

∂θ

)
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− N θθ

R 

+ 

∂ Q xz 

∂x 
+ 

1 

R 

∂ Q θz 

∂θ
= 0 (15c)

δϕ x = 0 : 
∂ M xx 

∂x 
+ 

1 

R 

∂ M xθ

∂θ
− Q xz = 0 (15d)

δϕ θ = 0 : 
1 

R 

∂ M θθ

∂θ
+ 

∂ M xθ

∂x 
− Q θz = 0 (15e)

δ� = 0 ;
∫ h/ 2 

−h/ 2 

[
∂ ̄B x 

∂x 
cos 

(
πz 

h 

)
+ 

1 

R + z 

∂ ̄B θ

∂θ
cos 

(
πz 

h 

)
+ 

π

h 

B̄ z sin 

(
πz 

h 

)]
dz = 0 (15f)

where { 
B̄ x 

B̄ θ

B̄ z 

} 
= 

∫ h/ 2 

−h/ 2 

⎧ ⎪ ⎨ 

⎪ ⎩ 

B x cos 
(

πz 
h 

)
B θ

1 
R + z cos 
(

πz 
h 

)
B z 

π
h 

sin 

(
πz 
h 

)
⎫ ⎪ ⎬ 

⎪ ⎭ 

dz = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

X 21 

(
ϕ x + 

∂w 

∂x 

)
+ Y 11 

∂�
∂x 

X 23 

(
1 
R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

)
+ Y 22 

∂�
∂θ

X 34 
∂u 
∂x 

+ X 35 
∂ ϕ x 
∂x 

+ X 63 
1 
R 

(
∂v 
∂θ

+ w 

)
+ X 64 

1 
R 

∂ ϕ θ
∂θ

− Y 33 �

⎫ ⎪ ⎬ 

⎪ ⎭ 

(16)

The additional parameters in Eqs. (13) and (16) are 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

X 21 

X 23 

X 34 

X 35 

X 63 

X 64 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

= 

∫ h/ 2 

−h/ 2 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

q̄ 15 cos 
(

π
h 

z 
)

q̄ 24 
1 

R + z cos 
(

π
h 

z 
)

q̄ 31 
π
h 

sin 

(
π
h 

z 
)

q̄ 31 
π
h 

z sin 

(
π
h 

z 
)

q̄ 32 
π
h 

sin 

(
π
h 

z 
)

q̄ 32 
π
h 

z sin 

(
π
h 

z 
)

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

dz ;
{ 

Y 11 

Y 22 

Y 33 

} 
= 

∫ h/ 2 

−h/ 2 

⎧ ⎪ ⎨ 

⎪ ⎩ 

η̄11 cos 2 
(

π
h 

z 
)

η̄22 

(
1 

R + z 
)2 

cos 2 
(

π
h 

z 
)

η̄33 

(
π
h 

)2 
sin 

2 
(

π
h 

z 
)
⎫ ⎪ ⎬ 

⎪ ⎭ 

dz (17)

Following on from the application of small-scale theories, such as ( Eringen, 1983 ; Farajpour, Ghayesh & Farokhi, 2019 ;

Mikhasev & Nobili, 2019 ; Reddy, 2007 ), couple stress ( Akbarzadeh Khorshidi, 2018 ; Akgöz & Civalek, 2012 ; Malikan, 2017 )

and the strain gradient ( Gholami, Darvizeh, Ansari & Sadeghi, 2016 ; Lurie & Solyaev, 2019a ; Lurie and Solyaev, 2019b ;

Solyaev, Lurie, Koshurina, Dobryanskiy & Kachanov, 2019 ; Solyaev & Lurie, 2019 ), a new theory has been proposed

( Lim, Zhang & Reddy, 2015 ) that presents two different properties of nanomaterials (stiffness-hardening and stiffness-

softening), namely nonlocal theory of strain gradient with which much research works have been demonstrated ( Arefi, Kiani

& Rabczuk, 2019 ; Karami, Shahsavari & Janghorban, 2019 ; Malikan & Nguyen, 2018 ; Malikan, Dimitri & Tornabene, 2019 ;

Sahmani & Aghdam, 2017 ; She, Yuan, Karami, Ren & Xiao, 2019 ). This theory in its differential form is formulated as (
1 − μ∇ 

2 
)
σi j = C ijkl 

(
1 − l 2 ∇ 

2 
)
ε kl (18)

in which the ∇ 

2 = 

∂ 2 

∂ x 2 
+ 

1 
R 2 

∂ 2 

∂ θ2 is the Laplace operator in cylindrical coordinates, l , and μ exhibit the small scale parameters

which respectively define two independent effects for nanostructures. The first one assigns hardening effect resulted from

reducing the size from macro to nano and the second one defines the interaction between atoms in an atomic lattice which

means stress nonlocality. 

According to Eq. (18) , Eq. (13) in the NSGT form becomes [
N xx − μ

(
∂ 2 N xx 

∂ x 2 
+ 

1 

R 

2 

∂ 2 N xx 

∂ θ2 

)]
= 

(
1 − l 2 ∇ 

2 
){ 

A 11 

[ 
∂u 

∂x 
+ 

1 

2 

(
∂w 

∂x 

)2 
] 

+ A 12 

[ 
1 

R 

(
w + 

∂v 
∂θ

)
+ 

1 

2 R 

2 

(
∂w 

∂θ

)2 
] } 

+ 2 ̄q 31 ψ 0 (19a)

[
N θθ − μ

(
∂ 2 N θθ

∂ x 2 
+ 

1 

R 

2 

∂ 2 N θθ

∂ θ2 

)]
= 

(
1 − l 2 ∇ 

2 
){ 

A 21 

[ 
∂u 

∂x 
+ 

1 

2 

(
∂w 

∂x 

)2 
] 

+ A 22 

[ 
1 

R 

(
w + 

∂v 
∂θ

)
+ 

1 

2 R 

2 

(
∂w 

∂θ

)2 
] } 

+ 2 ̄q 32 ψ 0 (19b)

[
N xθ − μ

(
∂ 2 N xθ

∂ x 2 
+ 

1 

R 

2 

∂ 2 N xθ

∂ θ2 

)]
= A 44 

(
1 − l 2 ∇ 

2 
)[∂v 

∂x 
+ 

1 

R 

(
∂u 

∂θ
+ 

∂w 

∂θ

∂w 

∂x 

)]
(19c)
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[
M xx − μ

(
∂ 2 M xx 

∂ x 2 
+ 

1 

R 

2 

∂ 2 M xx 

∂ θ2 

)]
= 

(
1 − l 2 ∇ 

2 
)(

D 11 
∂ ϕ x 

∂x 
+ D 12 

1 

R 

∂ ϕ θ

∂θ

)
+ X 35 � (19d) 

[
M θθ − μ

(
∂ 2 M θθ

∂ x 2 
+ 

1 

R 

2 

∂ 2 M θθ

∂ θ2 

)]
= 

(
1 − l 2 ∇ 

2 
)(

D 21 
∂ ϕ x 

∂x 
+ D 22 

1 

R 

∂ ϕ θ

∂θ

)
+ X 63 � (19e) 

[
M xθ − μ

(
∂ 2 M xθ

∂ x 2 
+ 

1 

R 

2 

∂ 2 M xθ

∂ θ2 

)]
= D 66 

(
1 − l 2 ∇ 

2 
)(∂ ϕ θ

∂x 
+ 

1 

R 

∂ ϕ x 

∂θ

)
(19f) 

[
Q xz − μ

(
∂ 2 Q xz 

∂ x 2 
+ 

1 

R 

2 

∂ 2 Q xz 

∂ θ2 

)]
= A 55 

(
1 − l 2 ∇ 

2 
)(

ϕ x + 

∂w 

∂x 

)
− X 21 

∂�

∂x 
(19g) 

[
Q θz − μ

(
∂ 2 Q θz 

∂ x 2 
+ 

1 

R 

2 

∂ 2 Q θz 

∂ θ2 

)]
= A 66 

(
1 − l 2 ∇ 

2 
)(1 

R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

)
− X 23 

∂�

∂θ
(19h) 

By substituting Eq. (19) into Eq. (15) , and based on Eq. (13) , and also by linearizing the obtained equations, we derive

the stability equations as below (
1 − l 2 ∇ 

2 
){[

A 11 
∂ 2 u 

∂ x 2 
+ A 12 

1 

R 

(
∂w 

∂x 
+ 

∂ 2 v 
∂ x∂ θ

)]
+ A 44 

1 

R 

(
∂ 2 v 
∂ x∂ θ

+ 

1 

R 

∂ 2 u 

∂ θ2 

)}
= 0 (20a) 

(
1 − l 2 ∇ 

2 
){

A 44 

(
∂ 2 v 
∂ x 2 

+ 

1 

R 

∂ 2 u 

∂ x∂ θ

)
+ 

[
A 21 

R 

∂ 2 u 

∂ x∂ θ
+ 

A 22 

R 

2 

(
∂w 

∂θ
+ 

∂ 2 v 
∂ θ2 

)]
+ 

A 66 

R 

[
1 

R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

]}
− X 23 

R 

∂�

∂θ
= 0 

(20b) 

(
1 − μ∇ 

2 
)(

N 

0 
xx 

∂ 2 w 

∂ x 2 
+ 

2 

R 

N 

0 
xθ

∂ 2 w 

∂ x∂ θ

)
+ 

(
1 − l 2 ∇ 

2 
){

A 55 

(
∂ ϕ x 

∂x 
+ 

∂ 2 w 

∂ x 2 

)
+ A 66 

[
1 

R 

2 

(
∂ 2 w 

∂ θ2 
− ∂v 

∂θ

)
+ 

1 

R 

∂ ϕ θ

∂θ

]

−1 

R 

[
A 21 

∂u 

∂x 
+ A 22 

1 

R 

(
w + 

∂v 
∂θ

)]}
− X 21 

∂ 2 �

∂ x 2 
− X 23 

R 

∂ 2 �

∂ θ2 
= 0 (20c) 

(
1 − l 2 ∇ 

2 
){(

D 11 
∂ 2 ϕ x 

∂ x 2 
+ D 12 

1 

R 

∂ 2 ϕ θ

∂ x∂ θ

)
+ 

D 66 

R 

(
∂ 2 ϕ θ

∂ x∂ θ
+ 

1 

R 

∂ 2 ϕ x 

∂ θ2 

)
− A 55 

(
ϕ x + 

∂w 

∂x 

)}
+ X 35 

∂�

∂x 
+ X 21 

∂�

∂x 
= 0 

(20d) 

(
1 − l 2 ∇ 

2 
){

D 66 

(
∂ 2 ϕ θ

∂ x 2 
+ 

1 

R 

∂ 2 ϕ x 

∂ x∂ θ

)
+ 

(
D 21 

R 

∂ 2 ϕ x 

∂ x∂ θ
+ D 22 

1 

R 

2 

∂ 2 ϕ θ

∂ θ2 

)
−A 66 

[
1 

R 

(
∂w 

∂θ
− v 
)

+ ϕ θ

]}

+ 

X 63 

R 

∂�

∂θ
+ X 23 

∂�

∂θ
= 0 (20e) 

X 21 

(
∂ ϕ x 

∂x 
+ 

∂ 2 w 

∂ x 2 

)
+ X 23 

[
1 

R 

(
∂ 2 w 

∂ θ2 
− ∂v 

∂θ

)
+ 

∂ ϕ θ

∂θ

]
+ Y 22 

∂ 2 �

∂ θ2 
+ Y 11 

∂ 2 �

∂ x 2 
+ X 34 

∂u 

∂x 
+ X 35 

∂ ϕ x 

∂x 

+ X 63 
1 

R 

(
∂v 
∂θ

+ w 

)
+ X 64 

1 

R 

∂ ϕ θ

∂θ
− Y 33 � = 0 (20f) 

in which the axial membrane magnetic and torsional membrane mechanical forces are as [33–35] 

Magnetic force : N 

0 
xx = N 

mag 
xx = 

∫ h/ 2 

−h/ 2 

q̄ 31 
2 ψ 0 

h 

dz (21a) 

Torsional mechanical force : T = 2 πR 

2 N 

0 
xθ (21b) 

where T denotes the torsional mechanical critical force, which should be dependent on the radius ( Han & Lu, 2003 ), which

determines the torsional stability condition of the SWCNS. 
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Fig. 2. (a) The axial half-wave number vs. stress nonlocality ( l = 0. 5 nm , n = 1 ). (b) The axial half-wave number vs. stress nonlocality ( l = 0. 5 nm , n = 5 ). 

Fig. 3. (a) The circumferential half-wave number vs. stress nonlocality ( l = 0. 5 nm , m = 1 ). (b) The circumferential half-wave number vs. stress nonlocality 

( l = 0. 5 nm , m = 5 ). 

Fig. 4. (a) The axial half-wave number vs. strain gradient parameter ( e 0 a = 0. 5 nm , n = 1 ). (b) The circumferential half-wave number vs. strain gradient 

parameter ( e 0 a = 0. 5 nm , m = 1 ). 
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3. Solution of equations 

In this section, the obtained Eq. (20) is considered to be solved with both ends simply-supported edge conditions. To do

this, the below trigonometric displacement functions are utilized ( Mehralian et al., 2017 ). 

u ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

U mn cos 

(
mπ

L 
x 

)
cos ( nθ ) (22a) 

v ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

V mn sin 

(
mπ

L 
x 

)
sin ( nθ ) (22b) 

w ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

W mn sin 

(
mπ

L 
x 

)
cos ( nθ ) (22c) 

ϕ x ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

�xmn cos 

(
mπ

L 
x 

)
cos ( nθ ) (22d) 

ϕ θ ( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

�θmn sin 

(
mπ

L 
x 

)
sin ( nθ ) (22e) 

�( x, θ, t ) = 

∞ ∑ 

m =1 

∞ ∑ 

n =1 

�mn sin 

(
mπ

L 
x 

)
cos ( nθ ) (22f) 

in which the axial and circumferential half-wave numbers are defined with m and n . By embedding Eq. (22) into Eq. (20) ,

manipulating and also simplifying, we get ⎡ 
⎢ ⎢ ⎢ ⎢ ⎣ 

K 11 K 12 K 13 0 0 0 

K 21 K 22 K 23 0 K 25 K 26 

K 31 K 32 K 33 K 34 K 35 K 36 

0 0 K 43 K 44 K 45 K 46 

0 K 52 K 53 K 54 K 55 K 56 

0 K 62 K 63 K 64 K 65 K 66 

⎤ 
⎥ ⎥ ⎥ ⎥ ⎦ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

U mn 

V mn 

W mn 

�x mn 

�θ mn 

�mn 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

0 

0 

0 

0 

0 

0 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

(23) 

where the matrix K ij is the coefficients one (The elements of the matrix are presented in Appendix A ). Setting the determi-

nant of the coefficients matrix to zero gives the characteristic equation of the torsional stability of the SWCNS. 

4. Numerical results 

4.1. Verification of results 

As far as no literature has been reported till now on the torsional buckling of a nano-composite shell inserted in a

three-dimensional magnetic field, therefore, the formulation would be reduced into a nano-shell/tube under torsion with

removing magnetic effects. On the other hand, in order to compare the results of the torsional buckling of the nano-shell,

the molecular dynamics (MD) simulation as Table 1 in which the comparable results are found, is taken into validation

( Chowdhurry et al., 2014 ). As can be observed, outcomes of the FSDT shell model while the size-dependent approach is

NSGT, are in good agreement with those of MD. Although the numerical results originated from NSGT completely depend

on the correct values of the parameters e 0 a and l , these factors should be obligatory obtained in an experiment. 

4.2. Parametric study 

To proceed with the parametric solution for the nano-composite shell, the properties mentioned in Table 2 are employed.

To make the numerical outcomes, first, the effect of stress nonlocality versus magnetic field by variations in axial half-

wave numbers is depicted. To do this, Figure 2 a is for n = 1 and Figure 2 b is drawn for n = 5. As it is shown, the increase

of axial half-wave numbers tends to increase the torsional capacity. In addition to this, an increase in the magnetic field

enlarges the torsional capacity. It is also worthy to note that an increase in axial half-wave numbers remarkably increases the

effect of stress nonlocality. This is due to the increase in the distance of curves of the results of various nonlocal parameters.

It is also observed that the increase of axial half-wave numbers makes the torsional stability noticeably larger in a local

condition than while the stress nonlocality is considered. This is due to the softening effect of the nonlocality. That’s why

the slope of the results of e 0 a = 0 in both cases is much steeper. Besides these, it can be conducted that for higher axial

half-wave numbers, the impact of magnetic potential in a nonlocal domain is more than a local one. This is because of

more gaps between the results of cases e a = 0.5 nm, ψ= 0, with e a = 0.5 nm, ψ= 0.5 A, and also another one. Based on the
0 0 
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Table 1 

Results of torsional buckling ( nN/nm ) of MD for single-walled carbon nanotubes. 

SWCNT ( ∗a = 5, b = 5) SWCNT (10, 10) SWCNT (15, 15) SWCNT (20, 20) 

d = 0.678 nm d = 1.356 nm d = 2.034 nm d = 2.713 nm 

L/d MD Present ∗∗ L/d MD Present L/d MD Present L/d MD Present 

2 16 16 1 43.6 43.6 1 53.3 53.3 1.5 46 46 

3.1 11.2 11.2 1.5 30.6 30.6 1.4 43.8 43.8 1.8 42 42 

4.2 8.9 8.9 2.1 24.6 24.6 1.6 39.1 39.1 2 39.2 39.2 

4.9 8 8 2.4 22.9 22.9 2 35.3 35.3 2.2 38.7 38.7 

6 7.2 7.2 3 20.2 20.2 2.4 31 31 2.6 36.8 36.8 

7 6.7 6.7 3.5 19.5 19.5 2.7 27.8 27.8 3 31.7 31.7 

8.1 6.5 6.5 4.1 18.5 18.5 3 26.7 26.7 3.5 29 29 

8.9 6.3 6.3 4.4 16.8 16.8 3.3 24.6 24.6 3.8 28.4 28.4 

9.9 6.2 6.2 5 14.8 14.8 4 22.6 22.6 4 27.7 27.7 

6.1 12.5 12.5 4.6 21.8 21.8 4.5 26.3 26.3 

7 11.2 11.2 5 20.9 20.9 

7.5 10.8 10.8 5.4 20.8 20.8 

8 10.4 10.4 6 19 19 

9 9.9 9.9 6.7 16.8 16.8 

10 9.6 9.6 

20 8.4 8.4 

∗ d(nm ) = 

2 . 46 
π

√ 

a 2 + ab + b 2 ( Kok & Wong, 2016 ). 
∗∗ FSDT shell theory in conjunction with NSGT (0 < e 0 a ≤ 1.5 nm, 0 < l ≤ 8 nm). 

Table 2 

Mechanical and magnetic characteristics of Barium Titanate–Cobalt Ferrite nano-composite shell 

( Gholami & Ansari, 2017 ; Ghorbanpour Arani et al., 2013 ; Mehralian et al., 2017 ; Shojaeefard et al., 

2018 ). 

Elastic properties ( GPa ) 

BaTiO 3 –CoFe 2 O 4 C 11 = C 22 = 226, C 12 = 125, C 13 = C 23 = 124, C 33 = 216, C 44 = C 55 = 44.2, C 66 = 50.5 

Piezomagnetic quantities ( N/A.m ) 

q 15 = q 24 = 275 , q 31 = q 32 = 290.1 , q 33 = 349.9 

Magnetic quantities ( N.s 2 /C 2 ) 

η11 = η22 = −297e-6, η33 = 83.5e-6 

Sundry quantities 

h = 4 nm , R = 6 nm , L = 10R, l ∗= l/h 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

second figure, it is clear that while the circumferential half-wave number is greater than one, the increase of axial half-wave

numbers does not make the increasing effect only for the numerical results of torsional buckling. And the buckling results

would be initially decreased and then increased. Plus, there has been found that when the circumferential half-wave number

is bigger than one, the effect of stress nonlocality is remarkable even at lower values of the half-waves. But according to the

first figure, the effect is not noticeable for the lower values of the half-waves. 

To consider the influence of stress nonlocality and magnetic field more deeply, Figure 3 a,b as similar as the previous

ones are indicated, however by changes in circumferential half-wave numbers. Regarding both presented figures, it can be

witnessed that the increase of the circumferential half-wave numbers makes the torsional stability fundamentally further

than axial ones. It is noteworthy that the increase of circumferential half-wave numbers even if the axial wave number is

chosen as greater than one, leads to a steadily increasing trend for buckling loads. The important point of these two figures,

however, can be the fact that for larger circumferential half-wave numbers, there has never been seen any major impact on

variations of the magnetic potential. 

To clarify the influences of the strain gradient scale parameter, Fig. 4 a and b are revealed, respectively. Based on these

figures it can be remarked that the increase of the strain gradient parameter leads to decreasing the effect of the magnetic

field. This is in light of the distances between results of l = 0, ψ= 0 and l = 0, ψ= 0.5A with l = h, ψ= 0 and l = h, ψ= 0.5A.

In fact, the distance is lower for the second case leads to this conclusion that the increase of torsional buckling loads which

resulted from the increase of the magnetic potential is lower in the larger values of the strain gradient parameter. It can be

somehow stated that if the material is stiffer, the increase of magnetic potential does not affect outstandingly the stability.

On the other hand, as is clear, the increase of the axial half-wave numbers when the strain gradient parameter is chosen

as larger, results in a greater impact of the waves on the torsional stability. This means the larger the values of the strain

gradient factor, the greater the impact of the axial half-wave numbers. 

To study the effect of an increase of magnetic potential on the torsional stability response of the nano-composite shell,

the Fig. 5 a–c is displayed, respectively. The first two figures are plotted for changes of axial half-wave numbers and the

third figure shows the role of changes of circumferential half-wave numbers. For the first figure, the circumferential half-

wave is chosen as n = 1 and subsequently the n = 10 for the second figure. As shown by the first figure, the increase of



10 M. Malikan, M. Krasheninnikov and V.A. Eremeyev / International Journal of Engineering Science 148 (2020) 103210 

Fig. 5. (a) The axial half-wave number vs. magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, n = 1 ). (b) The axial half-wave number vs. magnetic influences 

( e 0 a = 0. 5 nm , l ∗= 0.5, n = 10 ). (c) The circumferential half-wave number vs. magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, m = 1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the magnetic potential increases further the torsional stability by an increase of the axial half-wave numbers. This result is

also achieved for the second figure. Additionally, by comparing Figs. 2 b and 5 b, it is interesting to say that whenever the

circumferential half-wave number is selected bigger, the negative slope of curves of results which is related to the lower

axial wave numbers, is steeper. On the other side, Fig. 5 c illustrates that even powerful and high magnetic environments

cannot affect the torsional stability of the nano-composite shell while the circumferential half-wave number is large. Either

way, about the effect of the magnetic surrounding on the circumferential wave numbers, it can be said that the strong

magnetic field affects the shell’s stability if and only if the circumferential half-wave number is small. 

In order to consider the effect of a three-dimensional magnetic field versus other magnetic fields, initially, the axial half-

wave number is investigated while the magnetic potential is for two cases, weak and powerful magnetic fields which are

shown by Fig. 6 a and b respectively. From the first figure, as it is vividly seen, when the magnetic field three-dimensionally

affected the model, the torsional stability capacity of the shell is lower. But, on the other hand, when the effect is two-

dimensional as well as while the transverse effect ( B z = 0) is neglected, the highest stability for the nano-shell is predicted.

This means that the transverse magnetic effect makes weaker the composite shell under torsional conditions. By comparing

the results of three cases of one-dimensional magnetic effect, one can find that on the torsional stability of nano-shells, the

transverse magnetic effect ( B z = 0), circumferential magnetic effect ( B θ= 0) and axial magnetic effect ( B x = 0) respectively are

making the model weaker under torsion. This can prove that the effect of transverse magnetic is more significant than the

others. It is also worth mentioning that when we have a three-dimensional magnetic effect; the stability is further than

when there is a two-axis effect by assuming B x = 0. It is also interesting to note that by the increase of the axial half-wave

numbers the importance of analysis of magnetic effect in various directions can be demonstrated. In fact, this can be in light

of the increase in the distances between the results of various cases in the diagram by the increase of the wave numbers.

Moreover, after looking into the second plotted figure, it can be clearly seen that the second diagram also approves the
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Fig. 6. (a) The axial half-wave number vs. three-axis magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, n = 1, ψ= 0.1A ). (b) The axial half-wave number vs. three-axis 

magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, n = 1, ψ= 100A ). 

Fig. 7. (a) The circumferential half-wave number vs. three-axis magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, m = 1, ψ= 0.1A ). (b) The circumferential half-wave 

number vs. three-axis magnetic influences ( e 0 a = 0. 5 nm , l ∗= 0.5, m = 1, ψ= 100A ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

significance of the transverse magnetic effect in a magneto-elastic analysis. The analysis of the high magnetic environment

which is appeared by the second figure presents that in a high potential magnetic field, the effect of direction for magnetic

potential is lesser. To conclude, these two figures confirmed that even in a nanoscale the direction of magnetic influences is

very important. 

Fig. 7 a and b respectively exhibit the influence of an increase of the circumferential half-wave number under different

cases of the magnetic field, first, in a weak magnetic condition and second for a high magnetic condition. First off, in

comparison of these two figures with the Fig. 6 a and b, one can find that the increase of the circumferential half-wave

numbers increases dramatically the importance of the different magnetic fields. In other words, whatever the circumferential

wave numbers increased, the results in the figures have become far from each other by a very steep slope. Consequently, in

very large circumferential wave numbers, the direction of the magnetic field is seriously important. Furthermore, as shown

in the figures, for lower circumferential half-wave numbers, the directions of the magnetic field cannot be considerable. 

5. Conclusions 

This paper performed a study on the torsional resistance of the nano-composite shell under a three-dimensional mag-

netic field based on the first-order shear deformation shell approach in combining with the nonlocal theory of strain gradi-

ent. In order to take the numerical findings, an analytical approach was used. After validation of numerical outcomes, the

role of key parameters was investigated on the torsional behavior of the shell. According to the remarkable findings, some

notes are summarized as below 
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• In a three-dimensional magnetic analysis of the nano-composite shell, the most important magnetic effect can be for the

transverse effect. 
• While the larger amounts of circumferential half-wave numbers are considered, it is very important to study the three-

dimensional magnetic field. 
• The influence of the magnetic environment is more remarkable for the larger axial half-wave numbers. 
• The larger amounts of the strain gradient parameter, the smaller the effect of magnetic potential. 
• The higher values of the axial half-wave number, the higher the impact of the magnetic potential in a nonlocal domain. 
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