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Abstract The complete nonlinear resultant 2D model of shell thermodiffusion is developed. All 2D balance
laws and the entropy imbalance are formulated by direct through-the-thickness integration of respective 3D
laws of continuum thermodiffusion. This leads to a more rich thermodynamic structure of our 2D model with
several additional 2Dfields not present in the 3Dparentmodel. Constitutive equations of elastic thermodiffusive
shells are discussed in more detail. They are formulated from restrictions imposed by the resultant 2D entropy
imbalance according to Coleman–Noll procedure extended by a set of 2D constitutive equations based on
heuristic assumptions.

Keywords Thermodiffusion · Nonlinear shell · Thermodynamics · Resultant shell theory

1 Introduction

Different approaches to description of thermodiffusion phenomena in 3Dbodieswere proposed in the literature,
see the historic review by [38]. A deeper physical understanding of diffusion indicates that it is caused by
Brownian motion of atoms and molecules, which can jump in large numbers between various interstitial sites
in the body structure. Thus,most theories of diffusion in 3Dbodies are basedon the randomwalk theory and laws
of statistical physics. They are used tomodel and analysemany processes inmodernmicro- and nanotechnology
leading to development of such devices as computer chips, accumulator batteries, solid-state lasers, elements
of mobile phones and so on. This approach is partly summarized, for example, by [18,37,41,53], where many
references are available.

In the present paper, we are interested in developing the alternative nonlinear phenomenologic contin-
uum model of thermodiffusion as applied to thin-walled solid shell structures. The first empirical law for the
3D diffusion flux of the species in the body was proposed already by [25] as the linear function of species
concentration gradient field. Later experiments indicated that in various circumstances, diffusion coefficients
in the Fick law may depend also on temperature, direction, internal stress, deformation and structure of the
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body, speed and/or relaxation of thermodynamic process, electrical field, possible chemical reactions and other
factors. The contemporary linear phenomenologic model of stress-assisted thermodiffusion in solids undergo-
ing infinitesimal deformations was formulated by [46,49] and [32,33]. This research was partly summarized
in some books, for example, by [50] and [43], where a number of analytically solved examples and many
references to earlier works are given.

Within the continuummodel of diffusion in addition to displacements and temperature, a new independent
field appears called the species mass fraction or concentration cR . The general assumption is that cR is small
as compared with the body mass, so it does not influence the body mass distribution but may affect elastic
properties, heat flux and other phenomena. The model was generalized in different directions, see, e.g., [62]
and [3] for plasticity, [63] for viscoelasticity and [19] for phase transitions. Recently, the stress-assisted
diffusion found applications, for example, for modelling lithium-ion batteries, see [9–11,14,17,29,30,56],
where the action of electrical field plays a crucial role. It is also worth to mention similar problems related
to moisture influence on thin-walled structures, i.e. environments, see, e.g., [15] and the reference therein.
Another application is the hydrogen transport in metals which is important in pipelines due to so-called
hydrogen embrittlement [1,3,5,6,18,37,44,51].As an interesting application of the coupledmechano-diffusion
problems to thin structures, we also mention the model of paintings degradation [24]. As temperature changes,
diffusion may play a significant role for thin adhesive layers, see, e.g., [39,45,57].

To describe properly general thermodiffusion phenomena in shell structures, one needs to base the ther-
modynamic model on possibly most complete theoretical basis.

1. Thin-walled structural elements often work in the large deformation regime, requiring to account for
loss of stability, non-elastic large-strain deformations, dependence on initial stress and strains, etc. Thus,
one has to base the continuum shell thermodiffusion model on 3D nonlinear continuum thermodynamics
supplemented by appropriate general relations accounting for influence of diffusing species.

2. The 2D model of shell thermodiffusion should result directly from 3D one by application of some 3D-
to-2D reduction procedure. Well-known 2D shell models of Kirchhoff–Love or Timoshenko–Reissner
(shear-deformable) type are based on application of some constraints applied to kinematical relations of
3D continuum deformation. The accuracy of such constraints is still being analysed in the literature. The
most general 3D-to-2D reduction procedure, which does not require applying any kinematic constraints,
uses an exact through-the-thickness integration of balance laws of 3D continuum thermomechanics as
described in [12,34]. Unfortunately, nobody as yet applied this approach to formulate the resultant 2D
laws of shell thermodiffusion.

3. The general 3D nonlinear laws can be formulated in either description: the Eulerian (actual), the Lagrangian
(referential) or various versions of mixed ones. At the 3D level, these descriptions are interrelated by known
transformation formulae. When developing the 2Dmathematical model for thermodiffusion of thin-walled
shell structures, the Lagrangian description is preferable, because all the laws have to be finally reduced
to those valid on the 2D shell base surface. In applications, the initial undeformed geometry of the base
surface is usually the only one known in advance.

Taking account of argumentation given above, in the present paper we develop the new resultant 2D model of
shell thermodiffusion. Our 2Dmodel is fully nonlinear, the 3D-to-2D reduction procedure is based on through-
the-thickness integration of 3D basic balance laws and entropy imbalance of continuum thermodiffusion, and
2D laws are given in the Lagrangian description.

The paper is organized as follows. In Sect. 2 we recall, after [60] and [59], basic integral 3D laws of
continuum thermomechanics written here in the Lagrangian description. In particular, the entropy imbalance
law is taken in the Clausius–Duhem form suggested already by [61]. The 3D integral balance law of mass of
the single diffusing species is formulated for the general case of deformation as well. The additional energy
flow due to the species transport in the body is accounted for in the form analogous to that of the heat flow, see
[27]. The nonlinear thermodiffusion problem in 3D solids is finally governed by five integral balance laws (of
mass, of linear momentum, of angular momentum, of species mass and of energy) together with the integral
law of entropy imbalance.

Direct through-the-thickness integration is applied in Sect. 3 to reduce the six 3D integral laws into their
corresponding resultant 2D integral laws of shell thermodiffusion. In this reduction process, the 3D temperature
and chemical potential scalar fields are represented by their 2D mean fields defined only on the middle surface
of the shell. As a result of 3D-to-2D reduction procedure, on the 2D level the resultant shell thermodiffusion
problem becomes described by more thermomechanic fields than the original 3D thermodiffusion problem
of the body. Then, the 2D local laws of shell thermodiffusion and corresponding 2D mechanical and thermal
boundary conditions are formulated in Sect. 4 applying the surface divergence theorems.
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In Sect. 5, we discuss possible forms of 2D constitutive equations allowed by the resultant 2D entropy
imbalance. Introducing the 2D free energy and 2D grand-canonical energy, we derive various forms of the
entropy production. The analysis of constitutive relations of elastic thermodiffusive shells is given. Since the
entropy production should always be nonnegative, from the Coleman–Noll procedure this results in several
constitutive restrictions leading to the 2D constitutive equations. As a result, we derive the relations between
the stress resultants and couples, resultant entropy, mean chemical potential of the species and the 2D free
energy density. For thermoelastic shells with diffusion, the entropy production reduces to more simple form
called the reduced entropy inequality which restricts the possible forms of the 2D heat, species mass and other
fluxes.

2 Basic 3D relations of continuum thermodiffusion

Let P with boundary ∂P be a part of the fixed reference placement B of the material body B at time t = 0.
The 3D continuum thermodiffusion phenomena are governed by six integral laws, which are extensions of five
integral laws of continuum thermomechanics, see, for example, [47,59,60], with additional account for the
species diffusion. Since in applications time scales associated with species diffusion are usually considerably
longer than those associated with wave propagation, we neglect here the kinetic energy and all inertial effects.

The kinematics of a medium is described by a mapping χt from the reference placement B into the actual
placement B(t), which has the form y = y(x, t).Here y is the position vector of a material particle in deformed
placement of the body relative to the inertial frame (o, ei ), i = 1, 2, 3, o ∈ E , where E is the 3D physical
space with V its translation vector space, whereas x is the position vector of the same material particle in the
reference placement relative to the same inertial frame, see Fig. 1. In what follows, we also denote by x and y
the position in space corresponding to x and y in the reference and actual placements, respectively.

The mechanical balance laws of mass, linear momentum and angular momentum of any part P ⊂ B of the
3D body in the referential description are well known:

d

dt

∫∫∫
P
ρR dv = 0, (1)

∫∫∫
P
ρRb dv +

∫∫
∂P

tn dv = 0, (2)
∫∫∫

P
y × ρRb dv +

∫∫
∂P

y × tn da = 0. (3)

Here ρR is the referential mass (density) of the body, b is the body force (density) per unit mass of B, tn = PnR
is the contact force (density) per unit area of ∂P with P the Piola stress tensor and nR the external unit normal
vector orienting ∂P, and × is the cross product. Since mass is not created here, it follows from (1) that ρ̇R ≡ 0
everywhere within B, so that the balance of body mass is identically satisfied. Hereinafter, the overdot stands
for the derivative with respect to t .

The 3D thermomechanic balance of energy and the entropy imbalance of any part P ⊂ B of the material
body B in the referential description are

d

dt

∫∫∫
P
ρRεR dv =

∫∫∫
P
P : Grad ẏ dv +

∫∫∫
P

ρRrR dv

−
∫∫

∂P
qRn · nR da, (4)

d

dt

∫∫∫
P
ρRηR dv ≥

∫∫∫
P
ρRkR dv −

∫∫
∂P

jRn · nR da. (5)

Here εR , ηR , rR and kR are the referential strain energy, entropy, heat supply and entropy supply (densities), all
per unit mass of B, qRn and jRn are the referential vectors of heat flux and entropy flux through the boundary
∂P, and Grad is the gradient operator in the reference placement, respectively. The scalar multiplication : in
the 3D tensor space means that for any A, B ∈ V ⊗ V, A : B = tr (ATB), where tr and T stand for the trace
and transpose of a second-order tensor, and ⊗ and · denote the tensor (diad) product and the scalar product of
two vectors, respectively. The balance of energy (4) is an example of a conservation law. Here the heat flux



V. A. Eremeyev, W. Pietraszkiewicz

o

e1

e2

e3

x y(t)

B

B(t)x

y

P

∂P
∂B

P(t)

∂P(t)

∂B(t)

Fig. 1 Deformation: mapping form a reference placement into actual one

plays a role of the energy flux, because for simple thermoelastic media there is no other ways to transmit the
non-mechanical energy, see [59].

The entropy imbalance in the form (5) is entirely decoupled from the balance laws (2), (3) and (4). In
continuum thermomechanics, such coupling is achieved by introducing the absolute temperature θ(x, t) > 0
through which the fields kR and jRn are related to rR and qRn . Within rational thermomechanics used here,
see [60] or [59], the coupling is assumed to be kR = rR/θ and jRn = qRn/θ, so that the entropy imbalance (5)
takes the Clausius–Duhem form,

d

dt

∫∫∫
P
ρRηR dv ≥

∫∫∫
P
ρR

rR
θ
dv −

∫∫
∂P

qRn · nR

θ
da. (6)

Another approach to the relation between jRn and qRn was proposed by Ingo Müller, see [40], who introduced
the extra entropy flux jRn − qRn/θ �= 0; see also [35,36].

Let the single diffusing species be of ionic, atomic, molecular or chemical type. Let it have referential
mass (density) ρRcR , where cR > 0 is the species referential mass fraction. Changes in cR in a part P ⊂ B are
brought about by diffusion across the boundary ∂P and supply in P. These are characterized by the referential
vectorial flux hRn , per unit area of ∂P, and the referential scalar supply ζR , per unit mass of P, of the species
mass, so that ∫∫∫

P
ρRζR dv −

∫∫
∂P

hRn · nR da

represents the net species mass entering P per unit time. Because nR is the outward unit normal to ∂P, the
minus sign renders this term nonnegative when the flux points into P. Thus, the net rate of change of mass of
the diffusing species in P is given by

d

dt

∫∫∫
P
ρRcRdv =

∫∫∫
P
ρRζR dv −

∫∫
∂P

hRn · nR da. (7)

This is the balance law of mass of the diffusing species.
To account for energy flow due to the species transport, several approaches were presented in the literature,

see, for example, [4,26,59,60,63]. Here we use an approach suggested by [27] that this flow should be
structurally similar to the heat flow in the body. Thus, let the energy flow due to the species transport be
characterized by the chemical potential φ. We assume that the species carries energy into the body by the flux
φhRn across the boundary ∂P and the supply ρRφζR inside P, so that for an arbitrary part P ⊂ B the energy
flow due to the species transport is ∫∫∫

P
ρRφζR dv −

∫∫
∂P

φhRn · nR da. (8)

As a result, now the energy flux and supply consist of two parts: qRn + φhRn and ρR(rR + φζR). Then, the
3D thermomechanical balance of energy (4) with account of the species energy can be refined into
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Fig. 2 Geometry of the reference shell-like region

d

dt

∫∫∫
P
ρRεR dv =

∫∫∫
P
P : Grad ẏ dv +

∫∫∫
P
ρR(rR + φζR) dv

−
∫∫

∂P
(qRn + φhRn) · nR da. (9)

The five global integral laws (2), (3), (6), (7) and (9) govern the 3D problem of continuum thermodiffusion
with one diffusing species. Assuming that all fields are smooth in any P ⊂ B, it is easy to transform these
integral laws into their 3D local forms by applying corresponding divergence theorems. However, for our needs
here it is more convenient to reduce first the 3D integral laws into corresponding resultant 2D integral laws of
shell thermodiffusion and only then to transform the 2D laws into the 2D local forms.

3 Resultant 2D relations of shell thermodiffusion

In the shell-like body, the boundary surface ∂B of the reference region consists of three parts: the upperM+ and
the lowerM− shell faces, and the lateral boundary surface ∂Bl such that ∂B = M+∪M−∪∂Bl ,M+∩M− = ∅.
Relative to the origin o ∈ E of the inertial frame the position vectors x of B and y of B(t) = χt (B) are usually
described by

x(x, ξ) = x(x) + ξn(x), y(x, ξ, t) = y(x, t) + z(x, ξ, t). (10)

Here x(x) = x(x, 0) is the position vector of corresponding point of some reference base surface M ⊂ E ,
n(x) is the unit normal vector orienting M , and ξ ∈ [−h−(x), h+(x)] is the distance along n from M to x ∈ B,
with h = h− + h+ the initial shell thickness. In this paper for convenience we assume that M be the middle
surface of B, h+ = h− = h/2, with h be constant everywhere, Fig. 2. Moreover, y(x, t) is the position vector
of the deformed base surface M(t), and z(x, ξ, t), z(x, 0, t) = 0, is a deviation of y ∈ B(t) from the deformed
base surface M(t), see Fig. 3. Vectors xl and yl denote the position vectors of the part of the boundary where
external forces tln act, defined in the reference and actual placements, respectively. Here and in what follows
we use the convention that the fields defined on the shell base surface M are written by italic symbols, except
in a few specially denoted cases.

Each placement of any part P(t) ⊂ B(t) of the shell-like body can be represented through a part Π(t) of
the shell base surface M(t) taken here to be the material surface, i.e. consisting of the same material particles
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Fig. 3 Loading of the shell-like region

during the shell motion. By y ∈ Π(t), we denote a point of Π(t) and by y = y − o its position vector in the
inertial frame. Then, Π ⊂ M represents a part of M , while x ∈ Π is the point of Π and x = x − o its position
vector in the same inertial frame.

3.1 Resultant 2D mechanical relations

Let us define the following resultant 2D mechanical surface fields, Fig. 3:

ρ =
∫ +

−
ρR μdξ, nν =

∫ +

−
tn μdξ, mν =

∫ +

−
z × tn μdξ,

ρ f =
∫ +

−
ρRbμdξ + t+n μ+ + t−n μ−,

ρc =
∫ +

−
ρRz × bμdξ + z+ × t+n μ+ + z− × t−n μ−,

∫ +

−
≡

∫ h+

−h−
, (11)

where the geometric expansion factor is μ = μ(ξ) ≡ 1− 2ξH + ξ2K , with H the mean curvature and K the
Gaussian curvature of M .

In (11), ρ(x, t) > 0 is the referential resultant surface mass (density), while f (x, t) and c(x, t) are the
resultant surface force and couple vectors per unit mass of M , respectively. Additionally, nν(x, t) andmν(x, t)
are the surface contact-stress and couple-stress vectors describing internal mechanical interactions between
the shell parts at the boundary ∂Π\∂M f . By the Cauchy surface postulate, these contact stress vectors can
be represented by the respective surface stress resultant N(x, t) ∈ V ⊗ TxM and couple-stress resultant
M(x, t) ∈ V⊗ TxM tensors of the Piola type, nν = Nν and mν = Mν, with ν ∈ TxM the surface unit vector
externally normal to ∂Π and TxM the 2D vector space tangent to M at x ∈ M .

As a result, the global balances of momentum and moment of momentum of the shell-like body become∫∫
Π

ρ f da +
∫

∂Π

Nν ds = 0, (12)
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∫∫
Π

ρ (c+ y × f ) da +
∫

∂Π

(Mν + y × Nν) ds = 0. (13)

Note that the 3D stress field P is represented here by two resultant surface fields N and M.

3.2 Reduced 2D form of entropy imbalance

Three different 2D temperature fields appear naturally in shell thermodynamics: a reference temperatureϑ asso-
ciatedwith the base surface, and temperatures θ−(x, t) = θ(x, ξ, t)|ξ=−h−(x) and θ+(x, t) = θ(x, ξ, t)|ξ=h+(x)

of the lower and upper shell faces, respectively, where here h+ = h− = h/2, i.e. the undeformed base surface
M is themiddle surface of 3D region P of the shell. Postulating some reasonable relations between the three sur-
face temperatures, one can reduce the number of independent 2D temperature fields to two or to one, whichever
is appropriate. Review of several such relations available in the literature is given in [7,20,22,42,47,54,58],
see also [2,8,55] for thermoelastic beams.

In the present paper, we introduce after [47] the mean referential surface temperature ϑ(x, t) by

1

ϑ
= 1

2

(
1

θ−
+ 1

θ+

)
,

1

θ(ξ)
= 1

ϑ
+

(
1

θ(ξ)
− 1

ϑ

)
, ϑ > 0, (14)

where the temperatures θ± are taken to be equal those prevailing in the adjoining external media. The decom-
position (14)2 is quite formal and does not introduce any approximation.

The boundary surface ∂P in (6) consists of three parts: ∂P = (M+ ∩P)∪ (M− ∩P)∪ ∂Pl . Then, the direct
through-the-thickness integration in (6) with (14) allows one to represent (6) in the form

∫∫
Π

[
ρη̇ − ρ

( r

ϑ
− s

)]
da +

∫
∂Π

(qν

ϑ
− sν

)
ds ≥ 0, (15)

where

ρη =
∫ +

−
ρRηR μdξ,

ρr =
∫ +

−
ρRrR μdξ − (

q+
Rn · n+

Rμ+ + q−
Rn · n−

Rμ−)
,

ρs =
∫ +

−

(
1

θ(ξ)
− 1

ϑ

)
ρRrR μdξ + 1

2

(
1

θ−
− 1

θ+

) (
q+
Rn · n+

Rμ+ + q−
Rn · n−

Rμ−)
,

qν =
∫ +

−
qlRn · nlR μdξ, sν =

∫ +

−

(
1

θ(ξ)
− 1

ϑ

)
qlRn · nlR μdξ. (16)

Here η(x, t), r(x, t), and s(x, t) are the respective surface resultant entropy supply, heat supply and extra heat
supply fields, all per unit mass of M , q−

Rn and q+
Rn are the given vectors of heat flux through the lower M−

and upper M+ shell faces, respectively, qlRn is the heat flux vector through the lateral shell boundary surface
∂Pl having nlR as its external unit normal, while qν(x, t) and sν(x, t) are the resultant contact heat and extra
heat fluxes through the internal boundary ∂Π ⊂ Π ⊂ M . By the Cauchy surface postulate, the fields qν and
sν can be represented as qν = q · ν and sν = s · ν, where q and s are the referential 2D resultant vectors of
heat flux and extra heat flux, respectively.

3.3 Resultant 2D species mass balance

For the balance of species mass (7), we introduce the following resultant fields:

ρc =
∫ +

−
ρRcR μdξ, hν =

∫ +

−
hlRn · nlR μdξ,

ρζ =
∫ +

−
ρRζR μdξ − (h+

Rn · n+
Rμ+ + h−

Rn · n−
Rμ−), (17)
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where c(x, t) is the 2D resultant mass fraction of the species, per unit mass of M , h−
Rn and h+

Rn are given
species mass flux vectors through the lower M− and upper M+ shell faces, respectively, hlRn is the species
mass flux vector through the lateral shell boundary surface ∂Pl , hν = h · ν is the resultant species mass flux
through ∂Π with h the corresponding 2D resultant mass flux vector, per unit length of ∂Π , and ζ(x, t) is the
2D resultant species mass supply per unit mass of Π .

Now the species mass balance takes the resultant form

d

dt

∫∫
Π

ρc da =
∫∫

Π

ρζ da −
∫

∂Π

h · ν ds. (18)

3.4 Resultant 2D energy balance

Finally, we can introduce the resultant 2D internal energy surface field

ρε =
∫ +

−
ρRεR μ dξ, (19)

In (19), ε(x, t) is defined per unit mass of M .
Reduction to 2D form of the first 3D term P : Grad ẏ ≡ σ in the right-hand side of (9) requires a special

attention. The term mechanically means the 3D stress power (density) and contains scalar multiplication of
two 3D tensor fields: the Piola stress tensor P and the gradient of deformation rate Grad ẏ. Thanks to [12,34]
and [48], the 2D resultant stress power can uniquely be expressed in the following 2D coordinate-free form,
see [21]:

σ ≈ σe = N : E◦ + M : K ◦, (20)

E = JF − QI, K = CF − QB, (21)

E◦ = Q
d

dt
(QT E) = Grad Sv − ΩF, K ◦ = Q

d

dt
(QT K ) = Grad Sω. (22)

Here the scalar product : used for twomixed tensors A, D ∈ V⊗TxM is also defined as A : D = tr (AT D). In
definitions of the natural surface stretch E(x, t) andbending K (x, t) tensors, I ∈ V⊗TxM and J ∈ V⊗TyM(t)
are the inclusion operators at x ∈ M and y ∈ M(t), see [28], while B ∈ V ⊗ TxM and C ∈ V ⊗ TyM(t)
are the structure tensors of the shell in the reference and actual placements, respectively, F ∈ TyM(t) ⊗ TxM
is the tangential surface deformation gradient such that dy = Fdx , F = JF = Grad S y, and Grad S is the
surface gradient operator in the reference geometry of M , see [28]. The co-rotational time derivative (. . .)◦ is
defined in (22) through the rotation tensor Q = di ⊗ t i ∈ V ⊗ V, QT = Q−1, det Q = +1, where di (x, t)
and t i (x, t), i = 1, 2, 3, are the orthonormal base vectors (directors) in the actual and reference placement,
respectively. The expression (20) is some direct resultant representation of the 3D stress power by only 2D
fields defined on M .

Moreover, now
u = y − x, v = ẏ = u̇, ω = ax( Q̇ QT ), Ω = ω × 1, (23)

where u(x, t) is the surface translation vector, v(x, t) is the referential surface velocity vector, Q(x, t) is the
surface rotation tensor and ω is the referential surface angular velocity vector. The fields u (or y ) and Q are
independent kinematic variables of the shell motion. In addition, (axT) ∈ V means the axial vector of the
skew tensor T ∈ V ⊗ V, T = −TT , so that T = (axT) × 1, where 1 ∈ V ⊗ V is the 3D identity tensor.

A reasonable reduction in two last integrals in (9) to their 2D representation is still the open problem. These
integrals also contain multiplication of two 3D fields: the chemical potential φ by the flux vector hRn or by the
scalar supply ζR , respectively. In some analogy to temperature distribution along the shell thickness, we note
that three different 2D chemical potential fields could appear in shell thermodiffusion: a reference chemical
potential ϕ associated with the base surface M and chemical potentials φ− and φ+ of the lower and upper
shell faces, respectively. Postulating some reasonable relations between these three chemical potentials, one
can reduce the number of independent 2D chemical potentials to two or to one.

In the present paper, we use the mean referential 2D chemical potential ϕ defined by

ϕ = 1

2
(φ+ + φ−), φ(ξ) = ϕ + (φ(ξ) − ϕ) . (24)
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Again, the decomposition (24)2 is quite formal and does not introduce any approximation. Then, by direct
through-the-thickness integration the 3D energy flow due to the species transport (8) can be reduced to its 2D
form ∫∫

Π

ρ(ϕζ + ς) da −
∫

∂Π

(ϕhν + pν) ds, (25)

where ρζ and hν = h · ν are defined in (17), and

pν =
∫ +

−
(φ(ξ) − ϕ)hlRn · nlR μ dξ,

ρς =
∫ +

−
(φ(ξ) − ϕ) ρRζR μ dξ − (φ+ − ϕ)h+

Rn · n+
Rμ+ − (φ− − ϕ)h−

Rn · n−
Rμ−, (26)

Here ς(x, t) is the extra 2D resultant species mass supply per unit mass of Π , and pν = p · ν is the extra 2D
resultant species mass flux through ∂Π with p the corresponding extra resultant 2D species mass flux vector,
per unit length of ∂Π .

Taking this representation, the 2D resultant fields (19) and the 2D form (20) of the stress power, the resultant
2D representation of the balance of energy (9) is

∫∫
Π

ρε̇ da =
∫∫

Π

(ρr + σe) da −
∫

∂Π

qν ds

+
∫∫

Π

ρ(ϕζ + ς) da −
∫

∂Π

(ϕhν + pν) ds. (27)

3.5 3D fields and their 2D counterparts

Summarizing the results presented above, let us note that after the through-the-thickness integration the reduc-
tion in 3D governing balance and imbalance equations to 2D resultant ones generates additional surface fields,
see Table 1. Here in addition to the mean surface field ϑ(x, t) introduced by (14), we have the respective dual
field, which is the resultant 2D surface entropy η(x, t). This field appears naturally as multiplier of ϑ after the
through-the-thickness integration of the 3D entropy distribution ηR(x, ξ, t) compatible with 3D temperature
distribution (14), see [47] for details.

Following [27], we have considered here the 3D chemical potential which has been introduced to charac-
terize the energy changes due to the species mass transport. Appeared naturally is the 2D surface field of mean
chemical potential ϕ(x, t). The 2D field ϕ(x, t) requires the respective dual field which is the 2D mean mass
fraction c(x, t) characterizing the non-homogeneous distribution of the 3D species mass across the thickness
of the shell-like solid.

In addition to ε, we introduce here the surface free energy density ψ = ψ(x, t) and the surface grand-
canonical energy density ω = ω(x, t) with their 3D counterparts ψR = εR − θηR and ωR = ψR − φcR by
the relations

ψ = ε − ϑη, ω = ε − ϑη − ϕc. (28)

4 Local form of the 2D BVP

The nonlinear problem of 2D resultant shell thermodiffusion is governed by the global balance laws of linear
momentum (10), of angular momentum (11) and of diffusing species mass (12), together with the balance of
energy (17) and the entropy imbalance (19).

Let us apply to these global laws the surface divergence theorems
∫

∂Π

a · ν ds =
∫∫

Π

DivSa da,

∫
∂Π

Sν ds =
∫∫

Π

DivSS da,

∫
∂Π

a × Sν ds =
∫∫

Π

{
a × DivSS + ax

[
S(Grad Sa)T − (Grad Sa)ST

]}
da (29)
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Table 1 3D fields and their 2D counterparts

3D field 2D fields

Placement y(x, ξ, t) y(x, t), Q(x, t)
Stresses P(x, ξ, t) N(x, t), M(x, t)
Temperature θ(x, ξ, t) ϑ(x, t)
Heat flux qR(x, ξ, t) q(x, t), s(x, t)
Entropy ηR(x, ξ, t) η(x, t)
Mass density ρR(x, ξ, t) ρ(x, t)
Internal energy εR(x, ξ, t) ε(x, t)
Free energy ψR(x, ξ, t) ψ(x, t)
Species mass fraction cR(x, ξ, t) c(x, t)
Species mass flux hR(x, ξ, t) h(x, t), p(x, t)
Chemical potential φ(x, ξ, t) ϕ(x, t)
Grand-canonical energy ωR(x, ξ, t) ω(x, t)

valid for any a(x, t) ∈ TxM and S(x, t) ∈ V ⊗ TxM , where the surface gradient and divergence operators
with respect to x ∈ M are defined as in [28]. Then, after some transformations we obtain the following local
laws of 2D resultant shell thermodiffusion in the referential (Lagrangian) description valid in any Π ⊂ M :

DivSN + ρ f = 0, DivSM + ax
(
NFT − FNT

)
+ ρc = 0, (30)

ρċ + DivSh − ρζ = 0, (31)

ρε̇ − (N : E◦ + M : K ◦) − ρr + DivSq − ρ(ϕζ + ς) + DivS(ϕh + p) = 0, (32)

ρη̇ − ρ
( r

ϑ
+ s

)
+ DivS

( q
ϑ

+ s
)

≥ 0, (33)

where F = Grad S y ∈ V ⊗ TxM is the surface deformation gradient.
The corresponding 2D static and thermodiffusive boundary conditions are:

u = u∗, Q = Q∗ along ∂Md ,
Nν = n∗, Mν = m∗ along ∂M f = ∂M\∂Md ,
ϑ = ϑ∗ along ∂Mt ,

q · ν = q∗, s · ν = s∗ along ∂Mh = ∂M\∂Mt ,
c = c∗ along ∂Mdi f f ,

h · ν = h∗, p · ν = p∗ along ∂Mm = ∂M\∂Mdi f f ,

(34)

where the starred quantities are prescribed and ∂M = ∂Md ∪ ∂M f = ∂Mt ∪ ∂M f = ∂Mdi f f ∪ ∂Mm .
Obviously, other mixed boundary conditions are also possible. Since (31) and (32) are evolutionary equations,
the proper initial conditions at t = 0 should also be added in the case of quasistatic thermodiffusive process.

The relations (30)–(34) are 2D resultant implications of the global laws of continuum thermodiffusion,
for the shell-like body represented during quasistatic motion by the material base surface M(t), which in the
reference placement is M .

In what follows, it is convenient to introduce the referential resultant 2D stress measures N(x, t) and
M(x, t) with corresponding work-conjugated 2D strain measures E(x, t) and K(x, t) defined by

N = QT N, M = QT M, E = QT E, K = QT K .

With E and N,K andM, σe = N : E+M : K. Tensors N andM are the surface 2D stress measures of second
Piola–Kirchhoff type of the shell.

Because by definition ϑ > 0, and

DivS
( q
ϑ

)
= 1

ϑ
DivSq − 1

ϑ2 q · Grad Sϑ

we rewrite (33) in the form

ρϑη̇ − ρr + ρϑs − ϑDivS
( q
ϑ

)
+ ϑDivS(s) = ρϑη̇ − ρr − ρϑs
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+ DivSq + ϑDivS s − 1

ϑ
q · Grad Sϑ ≥ 0.

Solving the 2D balance of energy (32) for −ρr + DivSq, we obtain

−ρr + DivSq = −ρε̇ + σe + ρ(ϕζ + ς) − DivS(ϕh + p),

which introduced into the inequality above gives

ρϑη̇ + σe − ρε̇ + ρ(ϕζ + ς) − DivS(ϕh + p) − ρϑs

+ ϑDivS s − 1

ϑ
q · Grad Sϑ ≥ 0.

With (31), we can also exclude DivS(ϕh) here using the relation

DivS(ϕh) = h · Grad Sϕ + ϕDivSh = h · Grad Sϕ + ρϕζ − ρϕċ.

As a result, after some rearrangement we get the local entropy inequality in the form

ρϑδ ≡ ρϑη̇ + ρϕċ + σe − ρε̇ + ρς − ρϑs − DivS p + ϑDivS s

− 1

ϑ
q · g − h · k ≥ 0. (35)

Here δ is the entropy production per unit mass of M , and for brevity we have denoted g = Grad Sϑ , k =
Grad Sϕ, and g, k ∈ TxM .

Replacing ε̇ in (35) with the formula

ψ̇ = ε̇ − ϑ̇η − ϑη̇

following from (28)1, we obtain

ρϑδ ≡ ρ
(
ϕċ − ϑ̇η − ψ̇

) + σe + ρς − ρϑs − DivS p + ϑDivS s

− 1

ϑ
q · g − h · k ≥ 0. (36)

Differentiating (28)2, we also obtain

ω̇ = ε̇ − ϑ̇η − ϕ̇c − ϑη̇ − ϕċ,

which gives the alternative formula for the local entropy production

ρϑδ ≡ −ρ
(
ϑ̇η + ϕ̇c + ω̇

) + σe + ρς − ρϑs − DivS p + ϑDivS s

− 1

ϑ
q · g − h · k ≥ 0. (37)

Let us recall that the entropy imbalancemust hold for all admissible thermodynamic processes, i.e. solutions
of the 2D equations (30), (31) and (32).

5 2D constitutive equations

The structure of 2D relations of nonlinear shell thermodiffusion given in Sects. 3 and 4 differs considerably
from the structure of Cauchy-type 3D rational continuum thermomechanics.

1. The kinematic structure of our resultant 2D shell theory is that of Cosserat surface [13] for which both
y(x, t) and Q(x, t) are independent field variables. There are two kinematical relations (21) ) for the 2D
surface stretch E(x, t) and bending K (x, t) tensors.

2. Our resultant 2D thermodiffusive laws (32) and (33) for shells contain the extra surface heat supply s(x, t)
and vector heat flux s(x, t) fields, which are not present in the 3D Cauchy-type continuum thermo-diffuso-
mechanics.
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3. The additional 3D species diffusion requires the additional 3D balance law of species mass (7) and corre-
sponding modification of 3D balance law of energy (9). When integrated through the shell thickness, this
gives rise the additional resultant 2D fields ζ(x, t), h(x, t), ς(x, t) and p(x, t), which modify the resultant
2D balance of energy (32) and then the entropy imbalance (36) or (37).

Our local resultant 2D balance laws (30)–(32) and the entropy imbalance (35) (or (36), or (37)) are
expressed through scalar-, vector- and tensor-valued fields on M . Together with corresponding boundary and
initial conditions, these fields describe the shell thermo-diffuso-mechanical process over the spatial domain
x ∈ M and the time domain t ∈ [0,∞). Different fields play different roles in the process. The fields
�(x, t) ≡ ( y, Q, ϑ, c) (x, t) constitute the basic (primary) independent variables of the 2D resultant initial-
boundary-value problem (IBVP) of nonlinear shell thermodiffusion. The fields ρ, f , c, ζ , r defined at (x, t) ∈
M × [0,∞) are arbitrarily assignable. The starred boundary quantities in (34) defined at (x, t) ∈ ∂M ×
[0, ∞) and with appropriate initial data at t = 0 are assumed to be given. The remaining fields �(x, t) ≡
(ψ, η,N,M, ϕ, s, q, ς, h, p, s) (x, t) have to be specified by appropriate 2D constitutive equations. In our case
of Lagrangian description, the constitutive functions are usually formulated relative to some known (usually
undeformed) reference placement M0 of the shell base surface which is natural for some mean 2D temperature
ϑ0 and for some resultant mass fraction c0 of the species.

Let us recall that in 3D rational continuum thermomechanics, several principles based on experience for
formulating constitutive equations were proposed in [23,61] or [60]. These are principles of determinism, local
action, material frame indifference, equipresence, fading memory and other. We suppose that at least some
similar requirements may be used in formulating a part of the constitutive equations of our resultant 2D shell
thermodiffusion.

The principle of material frame indifference within the Lagrangian description requires the functions �
to depend explicitly on the 2D Lagrangian strain measures E, K instead of the 2D displacement fields y, Q.
The principle of local action and slowness of processes discussed here suggest that, in general, the constitutive
fields � are supposed to be influenced only by infinitesimal neighbourhood of the independent fields � in
space, that is

� = (E,K, ϑ, g, c, l), l = GradSc. (38)

The principle of equipresence suggests that the fields � should initially be assumed as functions of all
independent fields, that is � = �̂(�). The 2D constitutive equations are required to be thermodynamically
admissible such that the 2D entropy imbalance (36) is not violated.

Taking the material time derivative of ρψ(x, t) together with 2D balance of mass ρ̇ = 0, we have

−ρψ̇ = −ρψ̂,E : Ė − ρψ̂,K : K̇ − ρψ̂,ϑ ϑ̇ − ρψ̂,g · ġ − ρψ̂,cċ − ρψ̂,l · l, (39)

where comma denotes partial differentiation. Introducing this result into (36), we obtain

ρ(ϕ − ψ̂,c)ċ − ρ(η + ψ̂,ϑ )ϑ̇ +
(
N − ρψ̂,E

)
: Ė +

(
M − ρψ̂,K

)
: K̇

− ρψ̂,g · ġ + ρς − ρϑs − ρψ̂,l · l
+ ϑDivS s − DivS p − 1

ϑ
q · g − h · k ≥ 0. (40)

Due to ϑ > 0, ρ > 0 and linearity of (40) in material time derivatives of various fields, which themselves
can take arbitrary values, the 2D entropy imbalance (40) is not violated only if

ϕ = ψ̂,c, η = −ψ̂,ϑ , N = ρψ̂,E, M = ρψ̂,K, ψ̂,g = ρψ̂,l = 0. (41)

This indicates that ψ = ψ̂(E,K, ϑ, c) and the constitutive equations for N, M, η and ϕ can be reduced to

N =ρψ̂,E = N̂(E,K, ϑ, c), M = ρψ̂,K = M̂(E,K, ϑ, c), (42)

η = − ψ̂,ϑ = η̂(E,K, ϑ, c), ϕ = ψ̂,c = ϕ̂(E,K, ϑ, c). (43)

With (41), the 2D entropy imbalance (40) reduces to

ρς − ρϑs + ϑDivS s − DivS p − 1

ϑ
q · g − h · k ≥ 0. (44)
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Since ψ = ε − ϑη by definition, also ε = ε̂(E,K, ϑ, c). However, the constitutive functions of the
remaining fields in �(x, t) may still depend on all �, in general.

The 2D IBVP of shell thermodiffusion implied by the 2D balance laws (30)–(32), the 2D constitutive
equations (42) and those of general structure for the remaining fields s, q, ς , h, p, s, complemented with
appropriate boundary and initial conditions, are extremely complex and hardly readable. This is the result
that our 2D IBVP for shells is direct and exact 2D implication of the corresponding IBVP of 3D nonlinear
thermo-diffuso-mechanics presented in Section 2. For some narrower classes of nonlinear shell thermodiffusion
problems, we may introduce additional simplifying characterization of their constitutive modelling. Below we
present an example of such possible simplifying assumptions.

Let the 2D resultant heat flux vector q and the 2D resultant vector of species flux h be characterized only
by the surface gradients of mean temperature g and of mean chemical potential ϕ according to the respective
generalizations of Fourier-type and Fick-type linear relations,

q = −Cg + Dk, h = −Hk + P g. (45)

Here C is the surface thermal conductivity tensor and H the surface species mobility tensor, while the
surface tensors D and P can be called the thermal diffusivity tensor and the species conductivity tensor of
the shell, respectively. All the material surface tensors in (45) are related to corresponding 3D tensors, if they
are available, by direct through-the-thickness integration of appropriate 3D relations. Otherwise, these surface
tensors should be established by experiments corresponding to the analysed 2D thermo-diffuso-mechanic shell
problem at hand.

Thefields s, s are of thermal origin. Thus,wemay suppose that the approximate constitutive characterization
of these fields depends primarily on 2D thermal variables ϑ , g, such that

s = ŝ(ϑ, g), s = ŝ(ϑ, g). (46)

Similarly, the fields ς , p are of speciesmass origin. Thus, wemay suppose that the approximate constitutive
characterization of these fields depend primarily on 2D species mass fraction variables c, l , such that

ς = ς̂ (c, l), p = p̂(c, l). (47)

With (45), (46) and (47), the resulting set of 2D equations (30)–(32) of nonlinear shell thermodiffusion becomes
expressed only in terms of independent field variables y, Q, ϑ . In particular, the corresponding local resultant
balance laws (31) and (32) are simplified to

ρċ + DivS(Hk − P g) + ρζ = 0,

ρε̇ − (N : Ė + M : K̇) − ρr + DivS(Cg − Dk) − ρ(ϕζ + ς)

+ DivS [ϕ(Hk − P g)] = 0. (48)

6 Conclusions

We have developed the most complete resultant 2D model of elastic shell thermodiffusion. Our 2D model is
fully nonlinear and follows by direct through-the-thickness integration of 3D balance laws of mass of the body
and diffusing species, linear and angular momentum, and energy as well as of entropy imbalance of continuum
thermodiffusion. Our 2D model contains several additional 2D fields which are not present in the 3D parent
model.

Wehave discussed inmore detail the elastic thermodiffusive shells. The forms ofmost constitutive equations
have been formulated discussing restrictions of the resultant entropy imbalance imposed bymodified procedure
of Coleman and Noll.

Our general 2Dmodel of shell thermodiffusion allows for a number of possible simplifiedmodels. These can
be obtained applying additional restrictions on nonlinearity of the process, alternative through-the-thickness
distribution of temperature and chemical potential, assuming special material symmetry of the body and
diffusing species, and so on. Such simplified models can be more appropriate to analyse a specific problem at
hand.
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A 3D local relations of nonlinear thermodiffusion in solids

Since P is an arbitrary part of B, by the use of 3D divergence theorems from (2) follows the Lagrangian
equilibrium equation [59,60]

DivRP + ρRb = 0, (49)

where DivR is the Lagrangian 3D divergence operator in the reference placement.
Taking into account (49), from (3) we get the following constraint for the Piola stress tensor:

P(Grad y)T = (Grad y)PT . (50)

The mass balance of the diffusing species (7) results in

ρR ċR = ρRζR − DivRhRn. (51)

The global energy conservation law (9) is equivalent to

ρR ε̇R = P : Grad ẏ + ρR(rR + φζR) − DivR(qRn + φhRn). (52)

Finally, the global Clausius–Duhem inequality (6) takes the local form,

ρR η̇R ≥ ρRrR
θ

− DivR
qRn

θ
. (53)

This inequality can be written as

ρRθη̇R ≥ ρRrR − DivRqRn − θqRn · Grad 1

θ
. (54)

With the use of (52) and (51), the underlined term in (54) takes the form

ρRrR − DivRqRn = ρR ε̇R − P : Grad ẏ − ρRφċR + hRn · Grad φ. (55)

As a result, (54) transforms into the following inequality:

ρR (θη̇R − ε̇R + φċR) − P : Grad ẏ − hRn · Grad φ − 1

θ
qRn · Grad θ ≥ 0. (56)

Let us note that (56) should be fulfilled for any material body. For simple materials, the internal energy density
depends on the deformation gradient only. Assuming here that the internal energy density depends in addition
on the species mass fraction

εR = εR(Grad y,ηR, cR),

we come to the 3D constitutive relations of thermoelastic media with diffusion

P = ρR
∂εR

∂Grad y
, θ = ∂εR

∂ηR
, φ = ∂εR

∂cR
. (57)

If instead of εR , we introduce the free energy density ψR = εR − θηR as function of Grad y, θ, and cR ,
ψR = ψR(Grad y, θ, cR), we get the 3D constitutive relations in another form

P = ρR
∂ψR

∂Grad y
, ηR = −∂ψR

∂θ
, φ = ∂ψR

∂cR
. (58)

http://creativecommons.org/licenses/by/4.0/
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Introducing the grand-canonical energy ωR = εR − θηR − cRφ, ωR = ωR(Grad y, θ, φ), we have still another
forms of constitutive relations

P = ρR
∂ωR

∂Grad y
, ηR = −∂ωR

∂θ
, cR = −∂ωR

∂φ
. (59)

For the thermo-diffuso-elastic body, the Clausius–Duhem inequality (53) transforms to the reduced inequality
for the heat and mass fluxes,

−hRn · Grad φ − 1

θ
qRn · Grad θ ≥ 0. (60)

Note that the fluxes hRn and qRn depend on both gradients of θ and φ, in general. The left-hand side of (60)
describes dissipation in elastic media related to heat propagation and diffusion. It is the entropy production
which has the standard bilinear form used in the thermodynamics of irreversible processes, see [16,31,52].
The consistent with (60) linear in gradients forms of q and h can be given by

q = − θL11Grad θ − θL12Grad φ, (61)

h = − L21Grad θ − L22Grad φ, (62)

where Lαβ = Lαβ(Grad y, θ,φ) are tensors of phenomenological coefficients which form the positive definite
matrix (

L11 L12
L21 L22

)
.

The Onsager reciprocal relations require that L12 = LT
21.

In particular, for isotropic media (61) and (62) reduce to

q = − θL11Grad θ − θL12Grad φ, (63)

h = − L21Grad θ − L22Grad φ, (64)

with L12 = L21, and by the positive definiteness requirements L11 > 0, L22 > 0, and (L12+L21)
2 < 4L11L22,

see [16,52]. Constitutive relations (63) and (64) contain both Fourier’s and Fick’s laws. Note that since φ
depends on the strains, here we also have coupling between stresses and thermodiffusion, so one can say that
the latter equations describe stress-assisted thermodiffusion.
For elastic media with the use of (57) and (51), the conservation law (52) reduces to

ρRθη̇R = ρRrR − DivRqRn − hRn · Grad φ. (65)

Equilibrium equation (49), diffusion equation (51) and the thermoconductivity equation (52) (or (65)) should
be complemented by proper constitutive relations and corresponding boundary conditions. Representing the
boundary ∂B of B as follows

∂B = ∂Bu ∪ ∂B f = ∂Bθ ∪ ∂Bq = ∂Bn ∪ ∂Bh,

the boundary conditions take the form

u =u∗, x ∈ ∂Bu, PnR = t∗, x ∈ ∂B f , (66)

θ =θ∗, x ∈ ∂Bθ , qRn · nR = q∗, x ∈ ∂Bq , (67)

cR =c∗
R, x ∈ ∂Bn, hRn · nR = h∗, x ∈ ∂Bh, (68)

where u∗, t∗, θ∗, q∗, c∗
R and h∗ are given functions defined on corresponding parts of the boundary. Instead of

(67) and (68), one can also use boundary conditions of the third kind,

qRn · nR + κθ(θ − θ∗) = q∗, qRn · nR + κc(cR − c∗
R) = h∗, (69)

where κθ and κc are material parameters.
Since (51) and (65) are evolutionary equations, for quasistatic processes we need also the initial conditions
which have the form

θ = θ◦, cR = c◦
R, x ∈ B, t = 0, (70)

where θ◦ and c◦
R are initial distributions of the temperature and of the species mass fraction.
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