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Eigen-vibrations of Plates made of Functionally Graded
Material

H. Altenbach1 and V. A. Eremeyev2

Abstract: Within the framework of the direct approach to the plate theory we
consider natural oscillations of plates made of functionally graded materials taking
into account both the rotatory inertia and the transverse shear stiffness. It is shown
that in some cases the results based on the direct approach differ significantly from
the classical estimates. The reason for this is the non-classical computation of the
transverse shear stiffness.

Keywords: functionally graded materials, foams, plate theories, direct approach,
natural frequencies, rotatory inertia, effective stiffness, transverse shear stiffness

1 Introduction

Functionally graded materials (FGM) are composite materials where the composi-
tion or the microstructure are locally varied so that a certain variation of the local
material properties is achieved. A nitrided steel, for instance, can be regarded as a
FGM since on the microlevel a strong inhomogeneous structure can be observed.
Modern FGMs are designed for complex requirements, such as the heat shield of
a rocket or implants for humans. The gradual transition between the heat or corro-
sion resistant outer layer (often made of a ceramic material) and the tough metallic
base material increases in most cases the life time of the component.

Another example of a FGM is a porous material with nonhomogeneous distribution
of porosity (see Fig. 1).

Engineering structures made of porous materials, especially metal and polymer
foams, have different applications last decades [Ashby, Evans, Fleck, Gibson, Hutchin-
son, and Wadley (2000); Banhart (2000); Gibson and Ashby (1997); Degischer
and Kriszt (2002); Banhart, Ashby, and Fleck (1999); Landrock (1995); Lee and
Ramesh (2004); Mills (2007)]. A metal or polymer foam is a cellular structure con-
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Figure 1: Nonhomogeneous structure of the metal foam

sisting of a solid metal or polymer, for example aluminium, steel, copper, polyure-
thane, etc., and containing a large volume fraction of gas-filled pores.

There are two types of foams. One is the closed-cell foam, while the second one is
the open-cell foam. The defining characteristics of foams is the very high porosity:
typically well over 80%, 90% and even 98% of the volume consists of void spaces.
Another example of a perspective material is syntactic foam. This is a composite
material synthesized by filling a metal, polymer or ceramic matrix with hollow par-
ticles called microballoons (see, e.g., Gupta and Ricci (2006); El Hadek and Tippur
(2003)). Functionally graded plates and shells are considered by Allahverdizadeh,
Naei, and Bahrami (2008); Arciniega and Reddy (2007); Batra (2007); Wu and Liu
(2007); Chen and Tan (2007); Efraim and Eisenberger (2007); He, Ng, Sivashanker,
and Liew (2001); Matsunaga (2004); Nie and Zhong (2007); Praveen and Reddy
(1998); Reddy (2000); Roque, Ferreira, and Jorge (2007) among others. They
present different theories based on hypotheses or mathematical treatments of the
three-dimensional equations.

The suggested theories can be classified mostly as

• first order shear deformation theories or

• higher order theories

The first one are based on the improvement of the strains introducing independent
translations and rotations of the points of the mid-plane of the plate. The advantage
of such theories is that the number of boundary conditions corresponds to the order
of the governing equations. In addition, all variables have a clear physical inter-
pretation. The disadvantage is related to the presentation of the transverse shear.
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Constitutive equations can be established for the transverse shear but they do not
reflect correctly the plate behavior. In most engineering approaches in this case, a
transverse shear correction is introduced and one gets more or less satisfying re-
sults. But the definitions for the shear correction are not unique, and so we have
many different suggestions in the literature (see, e.g., Altenbach (2000a,b)).

The second class of theories is very popular in the computational community. Start-
ing with the pioneering contributions of Levinson (1980) and Reddy (1984), sys-
tematically new theories were established. In the authors’ opinion, these theories
are free from the necessity to introduce a shear correction. But it is easy to check
that they have several disadvantages too. At first, the interpretation of the higher-
order terms is not clear, in general. At second, not in any case the boundary con-
ditions on the lower and the upper faces are fulfilled. Last, but not least, not all
theories are consistent in the sense of Kienzler (2002).

Here we present another approach which is free of assumptions about the three-
dimensional stress and deformation states. Instead of the shear correction or higher
order terms an alternative method of estimation the transverse shear stiffness is
applied. On the other hand, the identification of elastic constants in the two-
dimensional constitutive equations is a non-trivial problem. It is shown in Al-
tenbach and Zhilin (1988); Zhilin (1976, 2006) among others that the concept of
effective properties can support the handling of the identification. The identifica-
tion of the effective stiffness properties can be performed with the help of static
two-dimensional and corresponding three-dimensional boundary value problems
(tension superposed with bending, plane shear, and torsion) and the comparison of
the forces and moments in the sense of averaged stresses or stress resultants. In
Zhilin (2006) the same effective stiffness properties are obtained by comparison of
the spectrum of natural frequencies of the three-dimensional rectangular plate-like
body and the spectrum of the simply-supported 5-parametric rectangular plate with
rotatory inertia. Let us note that in major two-dimensional theories of plates effects
such as some boundary effects, through-the-thickness waves, etc., cannot be prop-
erly described and one needs to use the three-dimensional elasticity in this case.
But the global static analysis and the determination of the low values of eigenfre-
quencies can be performed by using two-dimensional approaches.

2 Governing Equations of a Two-dimensional Plate Theory

The direct approach is based on the Cosserat theory in continuum mechanics. In
continuum mechanics two different models can be introduced: the non-polar or the
polar. The polar continuum is more natural for plates. In the first of a non-polar
continuum case only force actions are assumed. From this it follows the symmetry
of the stress tensor and only translations are considered. For the second model one
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has force and moment actions. From this it follows that there are a symmetric and
a nonsymmetric stress tensor and translations and rotations can be suggested inde-
pendently. Now any continuum (three-, two- or one-dimensional) can be introduced
in a natural way: geometrical relations (kinematics), material independent balances
of mass, momentum, moment of momentum, energy, entropy and the material de-
pendent equations (constitutive equations and evolution equations). Finally, one
needs boundary and possibly initial conditions.

2.1 Symbolic Presentation of the Equations

Since the direct approach is the natural way to describe the behavior of plates (the
stress resultants which are used in most of plate theories can be regarded as forces
and moments) a two-dimensional plate theory which allows to model homogeneous
and inhomogeneous plates can be presented as follows. The basics are presented in
Altenbach and Zhilin (1988, 2004); Zhilin (1976).

2.1.1 Linear Basic Equations

Let us introduce the following assumption:

The plate (homogeneous or inhomogeneous in the transverse direction) can be
represented by a deformable surface.

In addition, the theory presented here is limited to small displacements and ro-
tations and the quadratic strain energy (for example, rubber-like materials cannot
be analyzed by these equations). Each material point is an infinitesimal rigid body
with 5 degrees of freedom (3 translations and 2 rotations). The following governing
equations can be introduced:

• Fist and second Euler’s law (balances of momentum and moment of momen-
tum)

·∇ ·T +q = ρüu+ρΘΘ1 ·· ϕ̈,

·∇ ·M∇ ·M +TT×+mmm = ρΘΘΘT
1 ··· üu+ρΘΘ2 ·· ϕ̈ϕϕ.

(1)

Here TT , MM are the tensors of forces and moments, qqq, mm are the vectors of
surface loads (forces and moments), T× is the vector invariant of the force
tensor [Lurie (2005)], ∇∇ is the nabla (Hamilton) operator (pseudovector),
u,ϕϕ are the vectors of the displacements and the rotations, Θ1,ΘΘ2 are the
first and the second tensor of inertia, ρ is the density (effective property of
the deformable surface), (. . .)T denotes the transposed tensor and ˙(. . .) the
time derivative.
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• Geometrical relations

µµµ = ( a∇u ·a∇u ·a)sym,
γ = ∇u ·∇u ·n+ ·c ·ϕ,
κκ = ∇ϕ∇ϕ.

(2)

a is the first metric tensor, n is the unit normal vector, cc = −a×na×n is the
discriminant tensor [Zhilin (2006)], µµ , γγ and κκ are the strain tensors (tensor
of in-plane strains, vector of transverse shear strains and tensor of the out-of-
plane strains), (. . .)sym denotes symmetric part of the tensor.

• Boundary conditions

ν ·TT = f , ν ·MM = ll (l ·nn = 0) or
u = u0, ϕ = ϕϕ

0 along S.
(3)

Here ff and l are external force and couple vectors acting along the boundary
of plate S, while uu0 and ϕϕϕ0 are given functions describing the displacements
and rotation of the plate boundary, respectively. νν is the unit normal vector
to S (νν ·nn = 0). The relations (3) are the static and the kinematic boundary
conditions. Other types of boundary conditions are possible. For example,
the boundary conditions corresponding to a hinge are given by

ν ·MM · τ = 0, u = 00, ϕ · τ = 0. (4)

τ is the unit tangent vector to S (τ ·n = ττ ·νν = 0).

2.1.2 Two-dimensional Constitutive Equations

Limiting our discussion to the elastic behavior, the following statements for the
constitutive modeling can be done. At first, the strain energy can be expanded in
a Taylor series limited to quadratic terms. In addition, we assume that the eigen-
stresses can be neglected (the linear terms in the series are dropped out).

• The general representation of the strain energy of the deformable surface W
is given by

W (µµ,γ,κκ) =
1
2

µµ ····A ··µ + µ ····B ···κ

+
1
2

κ ··C ··κ +
1
2

γγ ·Γ · γ
+γ · (ΓΓ 1 ····µµ +Γ 2 ···κ).

(5)

A,B,CC are 4th rank tensors, ΓΓ 1,Γ 2 are 3rd rank tensors, Γ is a 2nd rank ten-
sor of the effective stiffness properties. They depend on the material prop-
erties and the thickness geometry. In the general case the tensors contain 36
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different values - a reduction is possible assuming some symmetries. ·· is the
double dot product.

• From Eq. (5) the following constitutive equations may be derived

– the in-plane forces

aT ·a =
∂W
∂µµ

= AA ··µµ +BB ····κ +γ Γ·γ ·Γ 1. (6)

– the transverse forces

nT ·nT ·n =
∂W
∂γγ

= ΓΓ · γΓ · γ +ΓΓΓ 1 ····µµµ +ΓΓ 2 ······κκ. (7)

– the moments

MT =
∂W
∂κκ

= µ ····B+C ··κκ +γ ·γ ·Γ 2. (8)

Let us consider the through-the-thickness symmetric structure of the plate and
isotropic material behavior. In this case instead of the general form of the effective
stiffness tensors one gets [Zhilin (2006)]

AA = A11a1a1 +A22(aa2aa2 +a4a4),
C = C22(a2a2 +a4a4)+C33a3aa3,
ΓΓ = Γ a, BB = 00,
ΓΓ 1 = 00, Γ 2 = 0

with

aaa1 = aa = ee1ee1 +ee2eee2, aaa2 = ee1ee1−ee2ee2,
aa3 = c = e1ee2−ee2ee1, aa4 = e1e2 + e2e1.

e1,ee2 are unit basic vectors. In addition, one obtains the orthogonality condition
for the aaai (i = 1,2,3,4)

1
2

aai ····a j = δi j, δi j =
{

1, i = j,
0, i 6= j

.

Further we consider two cases:

Case 1: Homogeneous plates – all properties are constant (no dependency of the
thickness coordinate z).
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Case 2: Inhomogeneous plates (sandwich, multilayered, functionally graded) – all
properties are functions of z.

In the case of inhomogeneous, but isotropic behavior the material properties are
described by parameters depending on z

E = E(z), ν = ν(z),

G = G(z) =
E(z)

2(1+ν(z))
, ρ0 = ρ0(z).

E is the Young’s modulus, ν is the Poisson’s ratio, G is shear modulus, while ρ0 is
the density.

The identification of the stiffness tensors is proved by Zhilin (2006); Altenbach
(2000a,b). The following results are established:

• the in-plane stiffness tensor components

A11 =
1
2

〈
E

1−ν

〉
,

A22 =
1
2

〈
E

1+ν

〉
=< G >,

(9)

• the plate stiffness tensor components

C33 =
1
2

〈
E

1−ν
z2
〉

,

C22 =
1
2

〈
E

1+ν
z2
〉

=< Gz2 >,

(10)

• the transverse shear stiffness tensor component

Γ = λ
2C22 (11)

with λ following from

d
dz

(
G

dZ
dz

)
+λ

2GZ = 0,
dZ
dz

∣∣∣∣∣
|z|= h

2

= 0, (12)

see Altenbach and Zhilin (1988); Zhilin (2006), and < (. . .) > is the integral
over the thickness h.
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The tensors of inertia and the plate density are given in Altenbach and Zhilin
(1988); Zhilin (2006)

ρ = 〈ρ0〉 , ρΘ1 =−〈ρ0z〉c,
ρΘΘ2 = Θaa, Θ =

〈
ρ0z2〉 . (13)

The assumed symmetry with respect of the plate mid-plane results in Θ1 = 0. Θ
characterizes the rotatory inertia of the plate cross section.

2.2 Basic Equations for Isotropic Plates in Cartesian Coordinates

Let us assume the Cartesian coordinate system x1,x2 (in-plane coordinates) and z
(orthogonal to the mid-plane). Then the unit normal vectors are ee1,ee2 and n. With
respect to the introduced coordinate system the following representations are valid:

• Displacement and rotation vectors

u = u1e1 +u2ee2 +wnn, ϕ =−ϕ2ee1 +ϕ1ee2. (14)

uα(α = 1,2) are the in-plane displacements, w is the deflection and ϕα are
the rotations about the axes eeα , respectively.

• Force and moment tensors

TT = T1eee1ee1 +T12(ee1ee2 +ee2eee1)
+T2e2ee2 +T1ne1nn+T2ne2nn,

MM = M1ee1eee2−M12(ee1ee1−ee2eee2)
−M2ee2e1.

(15)

Tα ,T12 are the in-plane forces, Tαn are the transverse shear forces, Mα are the
bending moments and M12 is the torsion moment.

• Strain tensors

µµ = µ1e1e1 + µ12(ee1ee2 +ee2e1)+ µ2e2e2,
γγ = γ1ee1 + γ2eee2,
κ = κ1ee1ee2−κ12e1ee1 +κ21ee2e2−κ2e2ee1.

µα are the strains, µ12 is the shear strain, γα are the transverse shear strains,
κα are the bending deformations and κ12 is the torsion deformation.

• External loads

q = q1e1 +q2ee2 +qnnn, m =−m2e1 +m1e2. (16)

qα are the in-plane loads, qn is the transverse load, mα are the moments.
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Now the first and the second Euler’s law, the geometrical relations and the consti-
tutive equations take the form:

• First and second Euler’s law

T1,1 +T12,2 +q1 = ρ ü1,

T12,1 +T2,2 +q2 = ρ ü1,

T1n,1 +T2n,2 +qn = ρẅ,

M1,1 +M12,2−T1n +m1 = Θϕ̈1,

M12,1 +M2,2−T2n +m2 = Θϕ̈2.

(17)

• Boundary conditions (for brevity, S is a part of line x1 = const (νν = e1, τ =
ee2), and we present here only simple support boundary conditions)

M1 = 0, u1 = u2 = w = 0, ϕ2 = 0. (18)

• Geometrical relations

µ1 = u1,1, µ2 = u2,2,

µ12 =
1
2
(u1,2 +u2,1),

γ1 = w,1 +ϕ1,

γ2 = w,2 +ϕ2,

κ1 = ϕ1,1, κ2 = ϕ2,2,

κ12 = ϕ2,1, κ21 = ϕ1,2.

(19)

• Constitutive equations

T1 = (A11 +A22)µ1 +(A11−A22)µ2,

T2 = (A11−A22)µ1 +(A11 +A22)µ2,

T12 = 2A22µ12,

T1n = Γ γ1, T2n = Γ γ2,

M1 = (C33 +C22)κ1 +(C33−C22)κ2,

M2 = (C33−C22)κ1 +(C33 +C44)κ2,

M12 = C22(κ12 +κ21).

(20)

From the last equations can be seen that the Ai j are the effective in-plane
stiffness tensor components, the Ci j are the effective plate stiffness tensor
components, and Γ is the transverse shear stiffness.
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3 Examples of Effective Stiffness and Inertia

3.1 Homogeneous Plate

The simplest test for the correctness of the estimated stiffness properties is the
homogeneous isotropic plate. In this case the density and the rotatory inertia coef-
ficient are

ρ = ρ0h, Θ =
ρ0h3

12
. (21)

The classical plate (bending) stiffness follows as

C33 +C22 =
Eh3

12(1−ν2)
(22)

and can be found in textbooks, e.g. Timoshenko and Woinowsky-Krieger (1985).
The transverse shear stiffness follows from (11). Finally one obtains

Γ =
π2

h2

Gh3

12
=

π2

12
Gh. (23)

π2/12 is a factor which is similar to the shear correction factor which was first
introduced by Timoshenko (1921) in the theory of beams. Here this factor is a result
of the non-classical establishment of the transverse shear stiffness. Comparing
this value with the Mindlin’s estimate π2/12 [Mindlin (1951)] and the Reissner’s
estimate 5/6 [Reissner (1944)] one concludes that the direct approach yields the
same value as Mindlin’s theory (note that Mindlin’s shear correction is based on
the solution of a dynamic problem, here is used the solution of a static problem1).
Reissner’s value differs slightly.

3.2 Classical Sandwich Plate in Reissner’s Sense

Now we assume the following geometry: hc is the core thickness and hf the thick-
ness of the face sheets (hc � hf). The material properties of the core and the face
sheets are Ec,Ef,Gc,Gf, ρc0, ρf0 with Ec � Ef, Gc � Gf, ρc0 � ρf0 . With the

1 It must be underlined that the result (23) is independent of whether a static or a dynamic problem
is investigated. This is shown in Zhilin (1976).
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thickness h = hc +hf one gets

A11 =
1
2

(
Efhf

1−νf
+

Echc

1−νc

)
,

A22 =
1
2

(
Efhf

1+νf
+

Echc

1+νc

)
,

C33 =
1
24

[
Ef(h3−h3

c)
1−νf

+
Ech3

c

1−νc

]
,

C22 =
1
24

[
Ef(h3−h3

c)
1+νf

+
Ech3

c

1+νc

]
.

The density and the rotatory inertia coefficient are

ρ = ρc0hc +ρf0hf, Θ =
ρc0h3

c

12
+

ρf0(h3−h3
c)

12
. (24)

The bending stiffness results in

C33 +C22 =
1

12

[
Ef(h3−h3

c)
1−ν2

f

+
Ech3

c

1−ν2
c

]
.

The transverse shear stiffness can be computed from the following transcendent
equation [Altenbach (2000a)]

µ cosγ(1−α)cosγα− sinγ(1−α)sinγα = 0

with

γ = λ
h
2
, α =

hc

h
, µ =

Gc

Gf

µ and α take the values 0≤ µ < ∞ and 0≤α ≤ 1. A typical sandwich structure has
a very weak core and thin face sheets. Then the bending stiffness and the transverse
shear stiffness can be approximated by

C33 +C22 =
1
4

Efh2hf

1−ν2
f

, Γ = Gch. (25)

This solutions was first obtained by Reissner (1947).
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3.3 Functionally Graded Material

In this section we consider small deformations of a functionally graded plate made
of metallic or polymeric foams. For the panel made from porous metallic foams the
distribution of the pores over the thickness can be inhomogeneous. Let us introduce
h as the thickness of the panel, ρs as the density of the bulk material and ρp as the
minimum value of the density of the foam. For the description of the symmetric
distribution of the porosity we assume the power law

V (z) = α +(1−α)
∣∣∣∣2z

h

∣∣∣∣n , (26)

where α = ρp/ρs, n is the power. n = 0 corresponds to the homogeneous plate,
for n = 1 we have the linear distribution of the porosity through the thickness. The
distribution can be established, for example, if the plate is made of two symmetric
layers. If n > 1 one has a more complex distribution. If n� 1 the plate core has
an approximately constant porosity, but the distribution of the density in the face
layers is significant inhomogeneous. Examples of the distribution are shown in Fig.
2 for n = 0,1,10,50 with α = 0.1.

V(z)

z/h

n=0

n=1

n=10
n=50

Figure 2: Distribution of porosity

The elastic properties of a metallic foam highly depend on the porosity and the cell
structure. The dependence of the Young’s modulus and the shear modulus on the
porosity is given by the power law [Ashby, Evans, Fleck, Gibson, Hutchinson, and
Wadley (2000); Gibson and Ashby (1997)]

Ep

Es
∼ α

m,
Gp

Gs
∼ α

m, (27)

where Ep and Gp are the Young modulus and the shear modulus of the foam, re-
spectively, Es and Gs are the Young modulus and the shear modulus of the material
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which is used to synthesize the foam. The value m depends on the structure of
the foam. For the closed-cell foams m = 1, for the open-cell foams m ≈ 2. Based
on experimental data presented in Ashby, Evans, Fleck, Gibson, Hutchinson, and
Wadley (2000); Gibson and Ashby (1997) one can assume ν = const. Finally, we
obtain that A11, A22, C33, C22 are related by

A11 =
1+ν

1−ν
A22, C33 =

1+ν

1−ν
C22. (28)

For m = 2 (open cell foam) A22 and C22 are given by

A22 = Gsh

[
α

2 +
2α(1−α)

n+1
+

(1−α)2

2n+1

]
,

C22 =
Gsh3

12

[
α

2 +
6α(1−α)

n+3
+

3(1−α)2

2n+3

]
.

(29)

For m = 1 (closed cell foam)

A22 = Gsh

[
α +

1−α

n+1

]
,

C22 =
Gsh3

12

[
α +

3(1−α)
n+3

]
.

(30)

For n� 1 one can conclude that in both cases (29) and (30) tend to the following
approximations A22 ≈Gph and C22 ≈Gph3/12, but for finite values of n the values
of A11, A22, C33, C22 depend on the relation between α and n. Let us introduce the
notation for the effective bending stiffness as it follows

Deff = C33 +C22.

The values of the normalized Deff versus n is given in Fig. 3.

Here α = 0.1, DK is defined by the formula DK = Es/[12(1−ν
2)] which is anal-

ogous to Eq. (22) with E = Es, and the dashed lines correspond to the effective
bending stiffness calculated by Reissner’s formulae (25). One can see that Reiss-
ner’s approach gives lower bounds for the effective bending stiffness of a FGM
plate. To obtain the dependence of the transverse shear stiffness one has to solve
Eq. (12). The solution of the spectral problem (12) is found numerically by us-
ing the shooting method [Stoer and Bulirsch (1980)]. The values of normalized Γ

versus n is given in Fig. 4. Here we have m = 2, α = 0.1, ν = 0.3.

The density and the rotatory inertia coefficient are

1
ρs

ρ = α h+
(1−α)h

n+1
,

1
ρs

Θ =
1
12

αh3 +
1
4

(1−α)h3

3+n
.

(31)
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n
10080604020

0

0.5

1.0

m=1

m=2

D

D
K

eff

Figure 3: Normalized effective bending stiffness vs. n

n
10080604020

0.01

0.02

0.03

0.04

0.05

0.06
�

G
s
h

Figure 4: Normalized transverse shear stiffness vs. n
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From (31) one can see that for n� 1 one obtains ρ ≈ ρph and Θ≈ ρph3/12 which
are coincide with (24) if hf→ 0.

4 Equations of Motion for a Symmetric Isotropic Plate

In this case Eqs (17) split into two parts: plane problem for the tangential displace-
ments u1 and u2, and the bending problem for the w, ϕ1 and ϕ2, respectively. In
Cartesian coordinates with the geometrical relations (19) Eqs (17)1,2 reduce to the
form

(A11 +A22)u1,11 +(A11−A22)u2,21

+A22(u1,21 +u2,11)+q1 = ρ ü1,
(A11−A22)u1,12 +(A11 +A22)u2,22

+A22(u1,22 +u2,12)+q2 = ρ ü2.

(32)

The Eq. (17)3 has the following form

Γ (w,11 +w,22)+Γ (ϕ1,1 +ϕ2,2)+qn = ρẅ. (33)

The Eqs (17)4,5 result in

(C33 +C22)ϕ1,11 +(C33−C22)ϕ2,21

+C22(ϕ1,22 +ϕ2,12)−Γ ϕ1−Γ w,1 +m1 = Θϕ̈1,

(C33 +C22)ϕ2,22 +(C33−C22)ϕ1,12

+C22(ϕ1,21 +ϕ2,11)−Γ ϕ2−Γ w,2 +m2 = Θϕ̈2.

(34)

To eliminate the functions ϕ1 and ϕ2 from Eqs (33) and (34) let us differentiate the
first equation of (34) with respect to x1, while the second one with respect to x2.
Summing up these equations one gets

[(C33 +C22)∆−Γ ] (ϕ1,1 +ϕ2,2)−Γ ∆w
+m1,1 +m2,2 = Θ(ϕ̈1,1 + ϕ̈2,2).

(35)

Here ∆(. . .) = (. . .),11 +(. . .),22.

Using (33) we can eliminate ϕ1,1 + ϕ2,2 from Eq. (35). Thus, we obtain one equa-
tion with respect to w

(C33 +C22)∆∆w+ρẅ+
ρΘ
Γ

w(4)

−
(

Θ+ρ
C33 +C22

Γ

)
∆ẅ

= qn +
Θ
Γ

q̈n−
C33 +C22

Γ
∆qn +m1,1 +m2,2.

(36)

Here w(4) =
∂ 4w
∂ t4 .
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5 Free oscillations and dispersion curves of a rectangular plate

To analyze the influence of the transverse shear stiffness and the rotatory inertia
on the natural frequencies let us consider natural oscillations of a rectangular plate
with simple-support type boundary conditions. Let us assume that m1 = m2 = 0,
qn = 0, x1 ∈ [0,a], x2 ∈ [0,b], where a and b are the length and the width of the
plate. Thus, we can rewrite Eq. (36) in the following form

Deff∆∆w+ρẅ+
ρΘ
Γ

w(4)−
(

Θ+ρ
Deff

Γ

)
∆ẅ = 0. (37)

Introducing dimensionless variables by

w̄ = h−1w, x̄1 = h−1x1, x̄2 = h−1x2,

x̄1 ∈
[
0,

a
h

]
, x̄2 ∈

[
0,

b
h

]
, t̄ = T−1t, T 2 =

ρh4

Deff
,

Equation (37) transforms to

∆∆w̄+ ¨̄w+β w̄(4)−ζ ∆ ¨̄w = 0. (38)

Here

∆ =
∂ 2

∂ x̄2
1

+
∂ 2

∂ x̄2
2

,

while

β =
ΘDeff

ρΓ h4 , ζ =
1
h2

(
Θ
ρ

+
Deff

Γ

)
are dimensionless parameters.

Let us note that, if one considers the limiting case with Γ →∞ and Θ = 0, then β =
ζ = 0. Thus, the equation of motion for the Kirchhoff plate follows immediately
from Eq. (38) as

∆∆w̄+ ¨̄w = 0. (39)

Obviously, Eq. (38) contains two small parameters β and ζ and can be considered
as a singular perturbation of Eq. (39). While the small parameters are the coeffi-
cients of the derivatives with respect to time of higher order, than one can find the
difference between the solutions of Eqs (38) and (39) for highly oscillated modes.
Equation (38) contains a term with a small parameter on the mixed derivative with
respect to time and space.
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The solution of (38) can be given by

w̄ = Wmn exp(iω t̄)sin
πhmx̄1

a
sin

πhnx̄2

b
, (40)

where m, n = 1,2 . . . are integer numbers, Wmn is the dimensionless magnitude of
the oscillations.

The solution (40) describes the natural oscillations of the plate where ω and η are
connected by the dispersion relation

η
4−ω

2 +βω
4−ζ η

2
ω

2 = 0, (41)

where

η
2 =

(
πhm

a

)2

+
(

πhn
b

)2

.

All natural frequencies of the plate have to satisfy the dispersion relation ω = ω(η)
which is the solutions of Eq. (41).

Let us consider the solutions of (41) for different approaches to the plate theory.
For the Kirchhoff-plate theory we have Γ → ∞, Θ = 0. Then β = ζ = 0 and one
gets the standard dispersion relation

ω = η
2. (42)

Considering the Mindlin-plate theory without rotatory inertia (Θ = 0) we can use
Eqs (21) – (23). Then we obtain that β = 0 and ζ = 2/(1−ν). For example, for
ν = 1/3 one gets β = 3. The dispersion relation is given by

ω =
η2√

1+ζ η2
. (43)

The dispersion curve given by Eq. (43) coincides with the dispersion curve in the
Kirchhoff-plate theory when η � 1, but for η � 1 coincides with the asymptotic
line ω = η/

√
ζ . The dispersion curves are shown in Fig. 5. The solid curves

marked by labels K and M correspond to Eqs (42) and (43), respectively. Here
ν = 1/3 is assumed.

For the Reissner’s sandwich plate theory we use Eqs (25) and assume that Θ = 0.
Then again β = 0. Let us consider the sandwich plate core made of metal foam
while the faces made of material used to synthesize the foam. Introducing the
notations Ef = Es, Gc = Gp, etc., and applying Eqs (27) with the assumption νc =
νf = ν we obtain

ζ =
hf

2h(1−ν)αm . (44)
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Figure 5: Dispersion curves: K – Kirchhoff plate; M – Mindlin plate; R1 and R2

– Reissner sandwich plates with hf = 0.1h, α = 0.1, and hf = 0.05h, α = 0.05,
respectively. Kr, Mr, Rr1, and Rr2 are the corresponding dispersion curves with
taking into account the rotatory inertia

For instance, if hf = 0.1h, α = 0.1, m = 2, ν = 1/3 then ζ = 7.5. For hf = 0.05h,
α = 0.05, m = 2, ν = 1/3 one gets ζ = 15. The corresponding dispersion curves
are shown in Fig. 5. They are marked by labels R1 and R2, respectively.

Let us investigate the influence of the rotatory inertia (Θ 6= 0). For the Kirchhoff-
type plate theory with Γ → ∞ we obtain from Eq. (21) that β = 0 while ζ = 1/12.
Thus, we have the dispersion relation (43) with a fixed value of ζ . The correspond-
ing dispersion curve is marked by the label Kr in Fig. 5. One can see that, if we
neglect the transverse shear stiffness, then the influence of the rotatory inertia is not
significant.

For the Mindlin-type plate theory we obtain that

β =
1

6(1−ν)
, ζ =

1
12

+
2

1−ν
.

Thus, in this case we have dispersion equations in the general form (41). For ν =
1/3 the corresponding dispersion curve is marked by the label Mr in Fig. 5 using
point style with box markers. One can see that for β 6= 0 the qualitative behavior
of the dispersion curves is quite different. A new branch appears starting from the
point η = 0, ω = 1/

√
β .
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In the case β 6= 0, Eq. (41) has two solutions given by

ω± =

[
1+ζ η2±

√
(1+ζ η2)2−4βη4

2β

]1/2

. (45)

One solution of (45) starts from the point (0,0) in the η −ω diagram, while the

second one starts from the point
(

0,1/
√

β

)
. Both curves have linear asymptotes

when η → ∞

ω± = η

[
ζ ±

√
ζ 2−4β

2β

]1/2

, η � 1. (46)

The solution ω− describes the bending low-frequency oscillation modes or bending
waves in the case of an infinite plate, while ω+ describes high-frequency oscilla-
tions.

For the sandwich plate with non-zero rotatory inertia we obtain that

Θ
h2ρ

=
1
12

[
1− h3

c

h3 (1−α)
][

1− hc

h
(1−α)

]−1

,

Deff

h2Γ
=

hf

2h(1−ν)αm .

(47)

The corresponding dispersion curves are shown in Fig. 5 for two sets of values
hf = 0.1h, α = 0.1, m = 2, ν = 1/3 and hf = 0.05h, α = 0.05, m = 2, ν = 1/3.
They are marked by the labels Rr1 (point style with asterisk markers) and Rr2 (solid
line), respectively.

Note that for the chosen values of the material and geometrical parameters some
of the curves are practically coincide with each other. Indeed, the low branch of
the Mr-curve coincides with the M-curve, while the low branch of the Rr1-curve
coincides with the R1-curve.

Let us discuss the FGM plates in detail. Using Eqs (31), (28), and (11) we obtain
that

Θ
h2ρ

=
1
4

[
1
3

α +
1−α

3+n

][
α +

1−α

n+1

]−1

,

Deff

h2Γ
=

2
1−ν

1
h2λ 2 .

Note that λ 2 is the minimal eigen-value of the Sturm-Liouville problem (12) [Al-
tenbach (2000a,b)]. For the FGM plate it can be solved as in the previous case
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Figure 6: Dispersion curves for a FGM plate for two sets of material and geometri-
cal parameters

applying the shooting method. In Fig. 6 we present the dispersion curves for dif-
ferent values of n and α with m = 2, ν = 0.3. Dashed curves in Fig. 6 correspond
to Kirchhoff’s and Reissner’s solutions, marked by labels K and R1, respectively.
One can see that the influence of α is significant in the case of the high-oscillating
branches of the dispersion curves. For low-oscillating branch, the difference be-
tween the values α = 0.1 and α = 0.05 is very small. For the low dispersion curves,
the Kirchhoff’s and the Reissner’s solutions can be used as the upper and the lower
bounds of the eigen-frequencies of a FGM plate. One can see that the Reissner’s
sandwich-plate approach demonstrates a good qualitative coincidence with our re-
sults on a FGM plate as well as the Mindlin’s one. On the other hand, the classical
plate models cannot describe the high-oscillating solutions corresponding to our
dispersion curves for ω+.

The normalized first eigen-frequencies of a quadratic plate are presented in Table 1.
Here a = b, h = 0.1a, ν = 0.3, m = 2, Ω = ω/ωK, and ωK is the first eigen-
frequency of the Kirchhoff plate given by (42). One can see that for thick plates
the structure of the plate has an influence on the eigen-frequencies. The Kirchhoff
theory gives us larger values of the eigen-frequency, while Reissner’s theory gives
us smaller values of the eigen-frequency. So, they can be used as a estimation for
the modal analysis of FGM plates.
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Table 1: Minimal normalized eigen-frequency of a quadratic plate and correspond-
ing values of the normalized transverse shear stiffness and the rotatory inertia

Model description Γ /Gsh Θ/ρh2 Ω

Kirchhoff’s plate ∞ 0 1
Mindlin’s plate π2/12 0 0.799
Reissner’s sandwich plate

α = 0.1, hf = 0.1 0.01 0 0.644
α = 0.05, hf = 0.05 0.025 0 0.512

Kirchhoff-type plate ∞ 1/12 0.992
Mindlin-type plate π2/12 1/12 0.797
Reissner-type sandwich
plate

α = 0.1, hf = 0.1 0.01 0.028 0.644
α = 0.05, hf = 0.05 0.025 0.015 0.511

FGM plate α = 0.1 n = 1 0.061 0.12 0.818
n = 5 0.015 0.15 0.734
n = 10 0.012 0.14 0.782

The considered example demonstrates that the theory of sandwich plates may be
not sufficient to describe the oscillations of FGM plates which are highly non-
homogeneous in the thickness direction. The theory of laminated plates (see, e.g.
Altenbach, Altenbach, and Kissing (2004)) may be more useful, but here the prob-
lem of the determination of the number of layers and its properties appears.

6 Summary and Outlook

In the paper Altenbach and Eremeyev (2008), we analyzed the influence of the
transverse shear stiffness on the static behavior of FGM plates. Here we present
the analysis of FGM plates in dynamics taking into account not only the transverse
shear stiffness but the rotatory inertia as well. We have shown that both parame-
ters play a significant role in dynamics. In particular, the non-zero rotatory inertia
enables us to describe the high-oscillating solutions. We established the bounds
for the natural frequencies of FGM plates. The presented approach to model FGM
plates within the framework of a 5-parametric theory of plates has an advantage
with respect to theories of sandwich or laminated plates which do not take into ac-
count the transverse shear stiffness and the rotatory inertia or based on a fixed shear
correction since some results are more accurate, other results cannot be obtained
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by the classical approach.
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