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Abstract: We investigated the stability of an axially loaded Euler–Bernoulli porous nanobeam
considering the flexomagnetic material properties. The flexomagneticity relates to the magnetization
with strain gradients. Here we assume both piezomagnetic and flexomagnetic phenomena are
coupled simultaneously with elastic relations in an inverse magnetization. Similar to flexoelectricity,
the flexomagneticity is a size-dependent property. Therefore, its effect is more pronounced at small
scales. We merge the stability equation with a nonlocal model of the strain gradient elasticity. The
Navier sinusoidal transverse deflection is employed to attain the critical buckling load. Furthermore,
different types of axial symmetric and asymmetric porosity distributions are studied. It was revealed
that regardless of the high magnetic field, one can realize the flexomagnetic effect at a small scale. We
demonstrate as well that for the larger thicknesses a difference between responses of piezomagnetic
and piezo-flexomagnetic nanobeams would not be significant.
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1. Introduction

Flexomagneticity arises through elastic strain gradient or magnetic field gradient during electric
magnetization in the magneto-elastic coupling in smart structures and actuators [1–3]. Such an effect
should be significant in nano electro-mechanical systems (NEMS) and other smart sensors and actuators.
Similar to this influence, viz. flexoelectricity for centrosymmetric and non-centrosymmetric structures
has been estimated widely [4–19]. However, the flexomagneticity effect has been less known. Although
the structure and physics of a flexomagneticity phenomenon are very complicated, it has economic
implications. Physically, it may be difficult to interpret, but the basic idea satisfactorily shows the
importance of flexomagneticity.

In discussing a mechanical response of nanomaterials with magneto-mechanical coupling, the
importance of piezomagneticity has been profoundly evaluated by scholars in the contemporary
decade [20–39]. However, fewer studies are available regarding flexomagneticity [40–45]. In the
available literature, Sidhardh and Ray [40] worked on the bending response of a thin cantilever
nanobeam with flexomagnetic property. They discussed both direct and reverse impacts of
magneto-elastic coupling with the presence of the surface elasticity. Zhang et al. [41] conducted
the importance of flexomagneticity for a nanoscale size-dependent Euler-Bernoulli beam exposed to
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transverse static loading. To present the size-dependent mechanical behavior of the structure, they
utilized the surface elasticity. Both direct and converse flexomagnetic influences were investigated
when the nano-sized beam was kept in ends with fixed, pivot, and free edge conditions. One of their
momentous achievements was the conclusion that the flexomagneticity is a scale-dependent property
of materials. Recently, Malikan and Eremeyev [42] investigated vibrating nanobeams by taking into
account the piezomagnetic, particularly flexomagnetic, properties. The free vibration frequencies were
evaluated by linear assumptions of strain and the impact of size-dependency was inspected on the
basis of a new nonlocal elasticity theory. The size-dependent behavior of the flexomagnetic effect was
affirmed by their results. In another effort, Malikan and Eremeyev [43] explored the flexomagnetic
response of a smart nanobeam in a vibrational condition based on large frequency modes. The small
scale response of the nanoscale beam was searched by imposing a nonlocal strain gradient elasticity
approach into the constitutive equations. Besides these, Malikan and Eremeyev [44] performed research
on non-linear static bending of smart nanoscale beams while the material included a remarkable
flexomagnetic response. The computational model was solved by coupling between an analytical and
numerical solution method. The new finding demonstrated that the presence of the flexomagnetic
feature leads to diminishing the deflections. More recently, Malikan et al. [45] examined post-buckling
stability of a nanoparticle in which both flexomagnetic and piezomagnetic properties were included.
The calculations extracted new findings that are helpful for magnetic nanosensors applications.

To the best of our knowledge, the flexomagnetic studies on the mechanical response of
nanostructures referred to above represent the majority of cases in the literature, unless otherwise stated.
In these references, the models are restricted to piezomagnetic nanobeams under some mechanical
analyses. The present research attempts to demonstrate the flexomagnetic property for the stability
problem of a nano-sized beam, while it includes a material imperfection with intentional nonlocality
and size-dependent characteristics according to the nonlocal strain gradient constitutive equation. The
structural and material imperfection is estimated in the framework of different types of porosities.
The nonlocal influences that can affect the flexomagnetic response of the Euler–Bernoulli nanoscale
beam are addressed in this paper. A sinusoidal transverse deflection is assumed when applying
the Navier approach to beam flexure. Terminally, the nanobeam is considered for variations of
key parameters based on the three cases, i.e., a simple nanobeam, piezomagnetic nanobeam, and
piezo-flexomagnetic nanobeam.

2. Formulation of the Problem

2.1. Constitutive Relations for Piezo-Flexomagnetic Solids

Pursuing [1–3], we briefly introduce constitutive relations for flexomagnetic material. In the
following, we assume infinitesimal deformations under isothermal conditions. Therefore, the variables
are the displacements u and the magnetic field is H as below

u = u(x), H = H(x). (1)

where x is a position vector, and H is a tensor of first-order. Within the flexomagneticity, the free energy
density function U has the form

U = U(ε, η, H) = − 1
2 H · a ·H + 1

2ε : C : ε+ 1
2η

...g
...η+ ε : r

...η.

−H · q : ε−H · f
...η

(2)

where ε is the strain tensor and its gradient is

ε =
1
2

(
∇u +∇uT

)
, η = ∇ε. (3)
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where ∇ is the 3D nabla-operator in a general case. We introduced to Equation (2) several tensors
of material parameters. q is the third-order piezomagnetic tensor, a is the second-order magnetic
permeability tensor, g is the sixth-order gradient elasticity tensor, C is the fourth-order elasticity
coefficient tensor, f is the fourth-order flexomagnetic tensor, and the strain and strain-gradient tensors

are coupled by r, which itself is a fifth-order tensor. Moreover, “·”, “:”, and “
...” stand for scalar (inner)

products in spaces of vectors, second-order and third-order tensors, respectively.
In the following, we express H through the magnetic potential ψ [40,41],

H = −∇ψ. (4)

The governing equations of the static flexomagneticity can be derived using the virtual work
principle as

δΠ = δA. (5)

in which Π =
∫

V UdV, where V is the volume of domain that occupies the flexomagnetic solid and δA
is the work of external loads.

For simplicity, we assume the simple form of

δA =

∫
V

F · δu +

∫
∂V

t · δuds. (6)

where F and t are external mass forces and surface traction.
Using the standard calculus of variations from Equation (5) we get

∇ · (σ−∇ · ξ) + F = 0, (7a)

∇ · B = 0. (7b)

in which B is the magnetic induction vector. The following constitutive equations are introduced

σ =
∂U
∂ε
≡ C : ε+ r

...η−H · q, (8a)

ξ =
∂U
∂η
≡ g : η+ ε : r−H · f , (8b)

B = −
∂U
∂H

= a ·H + q : ε+ f
...η. (8c)

2.2. The Piezo-Flexomagnetic Beam Model

The piezo-flexomagnetic nanobeam studied in this research is exhibited in Figure 1. In the figure,
length and height of the beam are denoted by L and h, respectively.
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Figure 1. Geometry and description of a continuum nanobeam as a square actuator installed on simple
end conditions.

The constitutive equations (Equation (8)) can be re-written for a beam incorporating the
flexomagnetic property as [40,41]

σxx = Cp
11εxx − q31Hz, (9)

ξxxz = g31ηxxz − f31Hz, (10)

Bz = a33Hz + q31εxx + f31ηxxz. (11)

in which ηxxz and εxx are the gradient of the axial elastic strain and the strain itself, C11 = C1111 is the
elastic modulus, σxx is the axial stress, f31 = f3311 denotes the component of the fourth-order
flexomagnetic coefficients tensor, a33 represents the component of the second-order magnetic
permeability tensor, q31 = q311 depicts the component of the third-order piezomagnetic tensor, ξxxz is
the component of the higher-order hyper stress tensor and is an induction of coverse flexomagnetic
effect, Bz and Hz exhibit the magnetic flux and the component of magnetic field, respectively, and
g31 = g311311 illustrates the influence of the sixth-order gradient elasticity tensor. It is worth mentioning
that the piezomagnetic tensor would be non-zero for non-centrosymmetric ferroics only, but the
flexomagnetic tensor would be non-zero for both centrosymmetric and non-centrosymmetric materials.

The displacement field with respect to the Euler–Bernoulli beam is available as [46–48]

u1(x, z) = u(x) − z
dw(x)

dx
,

u3(x, z) = w(x).
(12)

where ui (i = 1,3) represent the points’ displacements in direction of x and z, u and w are the axial and
transverse displacements of the mid-plan, respectively, see Figure 1. To show the thickness coordinate,
the z parameter is used.

Due to the linear problem studied in this research, the linear Lagrangian strain can be employed as

εi j =
1
2

(
∂ui
∂x j

+
∂u j

∂xi

)
. (13)
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The components of the transverse strain and the strain gradient can be presented on the basis of
substituting Equation (12) into Equation (13) as below

εxx =
du
dx
− z

d2w
dx2 ,

ηxxz =
dεxx

dz
= −

d2w
dx2 ,

ηxxx =
dεxx

dx
= −z

d3w
dx3 .

(14)

As the ηxxx is small compared to the ηxxz, it can be ignored. With respect to the Lagrange’s
principle, we have

δ

∫
(ΠW + ΠU) = 0. (15)

in which ΠW and ΠU depict the performed work by outer loads, and the total internal strain energy
(magnetic potential energy and mechanical strain energy). The total strain energy by means of Equation
(14) can be demonstrated as

δΠU =

∫
V
(σxxδεxx + ξxxzδηxxz − BzδHz)dV. (16)

One can obtain the governing equation and non-classical boundary conditions as below

δΠMech
U1

= −

L∫
0

(
dNx
dx

δu +
d2Mx

dx2 δw +
d2Txxz

dx2 δw
)
dx, (17a)

δΠMag
U2

= −

L∫
0

h/2∫
−h/2

dBz

dz
δΨdzdx, (17b)

δΠMech
U1

=

(
Nxδu−Mx

dδw
dx
− Txxz

dδw
dx

+
dMx
dx

δw +
dTxxz

dx
δw

)∣∣∣∣∣∣L
0
, (18a)

δΠMag
U2

=

L∫
0

(BzδΨ)
∣∣∣h/2
−h/2dx. (18b)

in which

Nx =

h/2∫
−h/2

σxxdz, (19)

Mx =

h/2∫
−h/2

σxxzdz, (20)

Txxz =

h/2∫
−h/2

ξxxzdz. (21)
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The performed work by external factors can be expressed as below [49,50]

ΠW =
1
2

L∫
0

N0
x

(
dw
dx

)2

dx. (22)

Its first variational form is

δΠW =

L∫
0

N0
x

(
dδw
dx

dw
dx

)
dx (23)

in which N0
x shows the axial membrane load.

Hereafter, the magnetic field’s transverse component can be expressed as

Hz +
dΨ
dz

= 0. (24)

Assuming the condition of a closed circuit as well as the inverse piezomagnetic effect, one gives
the magnetic boundary conditions as

Ψ
(
+

h
2

)
= ψ, (25a)

Ψ
(
−

h
2

)
= 0. (25b)

where ψ determines the external magnetic potential applied to the upper surface of the beam. With
mixing Equations (11), (17b), (18b), (24) and (25), one can derive the magnetic polarization and magnetic
field as [40,41]

Ψ = −
q31

2a33

(
z2
−

h2

4

)
d2w
dx2 +

ψ

h

(
z +

h
2

)
, (26)

Hz = z
q31

a33

d2w
dx2 −

ψ

h
. (27)

The nanoscale atomic interactions can be projected in a continuum space by means of the nonlocal
strain gradient elasticity theory (NSGT) given as [51](

1− µ
d2

dx2

)
σNL

xx =

(
1− l2

d2

dx2

)
σL

xx. (28)

In order to allocate the influence of nonlocality, namely stiffness-softening, the nonlocal parameter
µ (unit: square nanometers =(nm)2) is employed. Note that µ(nm)2 = (e0a)2, in which e0 and a are
two small scale factors that determine the nonlocal parameter. Furthermore, in order to set the effect of
the size deduction, namely stiffness-hardening, the l(nm) parameter is used, which is named as the
strain gradient length scale parameter. It is to be noted that [52,53] confirmed the fact that the aforesaid
small scale factors are not material constants and can be varied by respecting a variety of conditions.
Additionally, the NL and L indexes respectively express the nonlocal and the local components of stress.

Thus, inserting Equations (26)–(28) into Equations (9)–(11), it is possible to present the stress field
component, the higher-order moment stress tensor component, and magnetic induction component in
the NSGT form as (

1− µ
d2

dx2

)
σxx =

(
1− l2

d2

dx2

)Cp
11

du
dx
− z

Cp
11 +

q2
31

a33

d2w
dx2 +

q31ψ

h

, (29)

(
1− µ

d2

dx2

)
ξxxz =

(
1− l2

d2

dx2

)[
−

(
g31 +

q31 f31z
a33

)
d2w
dx2 +

f31ψ

h

]
, (30)
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(
1− µ

d2

dx2

)
Bz =

(
1− l2

d2

dx2

)(
− f31

d2w
dx2 −

a33ψ

h

)
. (31)

Hence, on the basis of Equations (29)–(31), Equations (19)–(21) can be expanded as [54–61](
1− µ

d2

dx2

)
Nx =

(
1− l2

d2

dx2

)(
Cp

11h
du
dx

+ q31ψ

)
, (32)

(
1− µ

d2

dx2

)
Mx =

(
1− l2

d2

dx2

)−Iz

Cp
11 +

q2
31

a33

d2w
dx2

, (33)

(
1− µ

d2

dx2

)
Txxz =

(
1− l2

d2

dx2

)(
−g31h

d2w
dx2 + f31ψ

)
. (34)

in which Iz =
∫

A z2dA is the moment of inertia.
Due to inevitable variations in the manufacturing processes, the presence of some porosity

in nanobeams is unavoidable. Inclusion of this imperfection into mechanical analysis of the
piezomagnetic-flexomagnetic nano-sized beam is performed as [62]

Cp
11 = C11

(
1.21− αλ(x)

1.21

)2.3

(35)

where α denotes the porosity coefficient. Axial porosities are defined mathematically and analytically
in Table 1 [62].

Table 1. Axial porosity distribution patterns.

Porosity Type λ(x) Ranges of α

“O” type distribution η2
1 sin

(
π
L x

)
0 ≤ α < 0.344

“O” type distribution η2
2

[
1− sin

(
π
L x

)]
0 ≤ α < 0.112

“X” type distribution η1η2 sin
(
π
L x

)
0 ≤ α < 0.197

“X” type distribution η1η2
[
1− sin

(
π
L x

)]
0 ≤ α < 0.197

Uniform type distribution 1 0 ≤ α < 0.85

η1 = π
2 , η2 = π

π−2

On the basis of Equations (17a) and (23), and replacing into Equation (15), one can derive the local
governing relations as below

dNx
dx

= 0, (36)

d2Mx

dx2 +
d2Txxz

dx2 + N0
x

d2w
dx2 = 0. (37)

Equations (36) and (37) are decoupled and thus, Equation (37) gives the stability equation in order
to have values of critical buckling loads.

Thus, we should transfer the local stability equation (Equation (37)) to a size-dependent relation.
In so doing, inserting Equation (37) into Equation (33), one gets

Mx = −µ

(
d2Txxz

dx2 + N0
x

d2w
dx2

)
− Iz

Cp
11 +

q2
31

a33

(1− l2
d2

dx2

)
d2w
dx2 . (38)

Then, Equation (37) can be re-derived by mixing Equation (38) and Equation (34) as follows(
1− µ

d2

dx2

)(
B

d4w
dx4

+ N0
x

d2w
dx2

)
+ D

(
1− l2

d2

dx2

)
d4w
dx4

= 0. (39)
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in which B = −g31h, and D = −Iz

(
Cp

11 +
q2

31
a33

)
.

Here, it is required to define the pre-buckling compression as membrane loads as

N0
x = NMech + NMag. (40)

where NMech and NMag are the axial membrane magnetic and mechanical loads assumed as follows:

NMech = −Pcr, (41a)

NMag = −q31ψ. (41b)

3. Solution of the Problem

Regarding the analytical closed-form solution, we apply the following transverse
deflection equation

w(x) =
∞∑

m=1

Xm(x). (42)

in which Xm is an allowable function satisfying the boundary conditions of simply-simply supported
(S-S) for two ends.

The dedicated kinematic and nonlocal strain gradient constitutive boundary conditions for the
S-S nanobeam are expressed by Table 2 [63–66]

Table 2. Constitutive boundary conditions for S-S.

Nonlocal Strain Gradient Conditions at
(0, L)

Local Conditions
(l=µ=0) at (0, L)

w = 0
Mnl =

(
1 + l2 d2

dx2

)
Ml + µ d

dx

(
d2Txxz

dx2 + N0
x

d2w
dx2

)
= 0 *

Txxz = B d2w
dx2 + f31ψ = 0

w = 0
Ml = −D d2w

dx2 = 0 *

Txxz = B d2w
dx2 + f31ψ = 0

* Sub-indexes (nl and l) are nonlocal and local phases, respectively.

The pointed conditions in Table 2 may be satisfied by the admissible function given below [57]

Xm(x) = sin(αmx). (43)

in which αm = mπ
L .

Substituting Equation (42) into Equation (39), the closed-form size-dependent buckling relation
for the piezo-flexomagnetic nanobeam becomes

Pcr =

L∫
0

−

(
Bµ+ l2D

)
α6

m + (B− q31ψµ+ D)α4
m + q31ψα2

m

µα4
m − α

2
m

Ymdx. (44)

in which Ym is a residue. It is important to bear in mind that all of the results of the present work are
given for m = 1.

4. Numerical Results

4.1. Validation of Results

The literature survey clearly and obviously showed that the static bifurcation buckling of a
piezo-flexomagnetic nanobeam has not been studied thus far. Therefore, the only path to validate
correctness of the formulation is neglecting piezomagneticity, flexomagneticity, and the strain gradient
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model to compare the results with a nano-sized circular beam [67,68]. Both parts of the literature
employed a classical beam, however, ref. [67] used the differential transform solution method and
ref. [68] used an explicit solution method. As can be shown from Table 3, our results are entirely
matched with the literature.

Table 3. Critical loads’ validation with literature (E = 1 TPa, ν = 0.19, d = 1 nm).

PCr (nN)

L (nm)
µ = 0 nm2 µ = 1 nm2 µ = 4 nm2

[67] [68] Present [67] [68] Present [67] [68] Present

10 4.8447 4.8447 4.8447 4.4095 4.4095 4.4095 3.4735 3.4735 3.4735
12 3.3644 3.3644 3.3644 3.1486 3.1486 3.1486 2.6405 2.6405 2.6405
14 2.4718 2.4718 2.4718 2.3533 2.3533 2.3533 2.0574 2.0574 2.0574
16 1.8925 1.8925 1.8925 1.8222 1.8222 1.8222 1.6396 1.6396 1.6396
18 1.4953 1.4953 1.4953 1.4511 1.4511 1.4511 1.3329 1.3329 1.3329
20 1.2112 1.2112 1.2112 1.182 1.182 1.182 1.1024 1.1024 1.1024

4.2. Stability Analysis

Investigating the flexomagneticity effect on the stability of a nanostructure is the main goal of this
work. Table 4 presents applied material properties [40,41]. To take a rational amount for the nonlocal
parameter, 0.5 nm < e0a < 0.8 nm [69], and 0 < e0a ≤ 2 nm [70,71], are utilized.

Table 4. Material parameters of the piezo-flexomagnetic nanobeam.

CoFe2O4

C11 = 286 GPa
q31 = 580.3 N/A.m

a33 = 1.57 × 10−4 N/A2

(A = Ampere)

Given Figure 2a, the nonlocal coefficient variations are plotted for four nanobeam states. That is,
first, we have just the usual nanobeam by eliminating magnetic effects; the latter is a state where we
merely have the piezomagnetic effect and finally the third and fourth states are when we have both the
piezo- and flexomagnetic effects but with two different values of flexomagnetic property. As is clear
from the figure, increasing the numerical value of the nonlocal parameter reduces the critical loads in
all four states. Thereby, one of the important results of this graph is that when we consider a positive
magnetic field and we have the piezomagnetic as well as flexomagnetic effect, the nanobeam has greater
stability against the axial membrane forces. Furthermore, while purely having the piezomagnetic
effect, the least stability is observed for the magneto-mechanical nanobeams. Further investigation is
needed and is shown by the next figures. On the other hand, Figure 2b shows a comparison of both
piezomagnetic and piezo-flexomagnetic nanoscale beams while the strain gradient parameter is the
changeable factor of the horizontal axis of the figure. As it is clarified by Figure 2b, it is noteworthy to
say that increasing the strain gradient parameter results in a decrease in difference between the results
of the piezo-flexomagnetic nanobeam with the piezomagnetic nanobeam. It is worth underlining that
this proximity pertains to the flexomagnetic feature. This means that the increase of the value of the
length scale parameter leads to a stiffening effect; therefore, by increasing the values of this parameter,
the critical load’s results tend to each other in magnetic beams. It can be argued that the length scale
parameter makes the flexomagnetic effect ineffective. Eventually, if the length scale parameter is a
large numerical value, it can be stated that the flexomagnetic effect is nothing and all the magnetic
nanobeams will respond similarly.
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Figure 2. (a) Nonlocal parameter vs. four cases of non-porous nanobeams (l = 0.5 nm, L = 10 h, ψ = 1
mA). (b) The length scale strain gradient parameter vs. different cases of non-porous nanobeams (e0a =
0.5 nm, L = 10 h, ψ = 1 mA).

In Figure 3, we investigate the effects of given patterns of the porosities for two cases of the
nano-sized magnetic beam, the first one with the flexomagnetic property (PFM) and the later one
ignoring this physical feature. We observed in the previous figure that in attending the positive
magnetic field, if the piezomagnetic nanobeam has a flexomagnetic property (piezo-flexomagnetic), it
is the most stable case in terms of magneto-mechanical nanobeams. It can now be seen from this figure
that for all PFM cases, the further in-plane resistance can be observed. Hence, one can prove that this
effect makes material stiffer. Furthermore, increase of the value of the porosity parameter (α) leads
to reduction of material stability in all cases. However, this decline is more noticeable for X and O
porosities and insignificant for O and X samples. It is also notable that in terms of X and O porosity
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types, an increase of value of the porosity parameter leads to more gaps between PFM and PM. This
means that these kinds of porosities make the flexomagnetic property more important.Symmetry 2020, 12, x FOR PEER REVIEW 11 of 16 
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Figure 4 is presented correspondingly to reveal the incremental variations of the external magnetic
potential. In this figure, as in the previous ones, the nanobeam is investigated in different cases.
As can be seen, the increased magnetization potential leads to greater stability of the magnetic
nanobeams. Of importance in the diagram is the magnetic nanobeams containing lesser critical
loads than the conventional nanobeam. As a matter of fact, the in-plane static stability for such
beams in negative amounts of magnetic potential is smaller than that of the conventional nanobeam.
This downward/upward trend is linear in the form of a steep slope, indicating that in very strong
positive magnetic fields, the piezomagnetic effects and, especially the flexomagnetic ones, will be
more and more pronounced. However, these effects are also significant and undeniable in a weak
magnetic environment.
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Figure 5 displays the aforementioned states of nanobeams concerning changes in their thicknesses.
It can be inferred from the figure that at very small thicknesses, and also positive magnetic potential,
the flexomagnetic property plays a vital role in in-plane stability. With the thickening of the nanobeams,
the difference between the results of the piezomagnetic and piezo-flexomagnetic nanobeams decreases.
Thereupon, for larger thicknesses, the flexomagnetic effect seems to be unimportant.
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5. Conclusions

This study presented the stability capacity of a porous nanobeam involving piezomagnetic as
well as flexomagnetic impacts. To date, it is known that the mechanism of action of nanostructures
is based on two principles of hardening and softening. This research applied these actions to a
piezo-flexomagnetic nanobeam. Substituting Lagrangian, and nonlocal theory of strain gradient
elasticity, the stability relation of the piezo-flexomagnetic nanobeam was gained. Thereafter, the Navier
method gave a closed-form solution to reach numerical amounts of the in-plane static stability.

The flexomagnetic effect as a complex physical phenomenon into the magneto-mechanical
coupling is known as a size-dependent property that was also here affected by small-scale parameters.
Furthermore, the variations of thickness of the nanobeam affected the flexomagneticity, and this property
is further noticeable for lower thicknesses of nanobeams. Moreover, comparing a piezomagnetic
nanobeam with a piezo-flexomagnetic one showed that this feature presents more stable material.
In addition, based on our observations, it was proved that despite the flexomagnetic effect being
important in the lowest positive external magnetic potentials, if the potential is sufficiently large, the
capacity of static stability for piezo-flexomagnetic nanobeams will be enhanced markedly. Another
significant point obtained in this research work was the influence of porosity on the flexomagnetic
response of the piezomagnetic nano-sized beam. The results showed that in some patterns of porosity,
this imperfection can affect the flexomagnetic behavior of the material.
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