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a b s t r a c t

In the framework of the simplified linear Gurtin–Murdoch surface elasticity we discuss a

singularity of stresses and displacements in the vicinity of a mode III crack. We show that

inhomogeneity in surface elastic properties may significantly affect the solution and to

change the order of singularity. We also demonstrate that implicitly or explicitly assumed

symmetry of the problem may also lead to changes in solutions. Considering various load-

ing and symmetry conditions we show that the stresses may have logarithmic or square

root singularity or be bounded in the vicinity of a crack tip.
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Introduction

It is well established that the surface related phenomena become important when the ratio of number of near-surface

material particles (“atoms”) to one in the bulk becomes significant as in the case of nanostructured materials. Various en-

hancements of classic elasticity have been proposed in order to capture deviations of material properties at the nanoscale

from the microscopic ones. In particular, there is a so-called size-effect, that is the dependence of material properties such

as Young’s modulus on the characteristic size. To this end, we mention the surface elasticity model proposed by Gurtin and

Murdoch (1975, 1978) that has found various applications in mechanics at the nanoscale, see, e.g., Duan, Wang, and Kari-

haloo (2008), Wang et al. (2011) and Eremeyev (2016). From the physical point of view, this model describes deformations

of an elastic solid with a thin near-surface layer which elastic moduli differ from ones in the bulk material. The layer is

modelled as a infinitesimally thin elastic coating attached to the surface. The constitutive equations for the bulk material

and for the coating are formulated independently. Mathematically, the governing equations for the coating coincide with

ones of a hyperelastic membrane. As a result, in the case of small deformations and an isotropic material we have two addi-

tional elastic moduli called the surface elastic Lamé moduli. These moduli inherit both thickness and elastic properties of the

near-surface layer. The stress resultants in limiting membrane are called surface stresses and are similar to surface tension

known in the theory of capillarity. From the mathematical point of view, the presence of surface stresses results in changes

of the smoothness of the classic and weak solutions, see Schiavone and Ru (2009), Eremeyev and Lebedev (2013) and
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Sigaeva and Schiavone (2014) and references therein. For example, weak solutions of the boundary-value problems for solids

with surface stresses belong to Sobolev’s spaces containing generalized functions which under sufficiently general conditions

are smoother than in the case of linear elasticity (Eremeyev & Lebedev, 2016). Let us note that the case of cracks does not

satisfy these conditions and because of this the question of the singularity near the crack tip remains still open.

In literature, the surface elasticity equations have been used to extend classic linear fracture mechanics, in particular,

to analysis of stress concentration near crack tips, see, e.g., Antipov and Schiavone (2011), Kim, Schiavone, and Ru (2011c),

Kim, Ru, and Schiavone (2013) and Walton (2012), including, also, bridged cracks, see Wang and Schiavone (2016a) and

Wang and Wang (2017), and curvilinear cracks Wang (2015). Mode III crack was analyzed in details by Kim, Schiavone, and

Ru (2010b), Kim, Schiavone, and Ru (2010a) and Kim, Schiavone, and Ru (2011b) where complex variable methods were

used to obtain an exact solution valid everywhere including the vicinity of cracks tips. These results shown that unlike

classic linear elasticity the stresses may remain finite at the crack tip that is more realistic from the physical point of view.

On the other hand in some cases the surface stresses cannot eliminate the singularity, see Walton (2012), Kim et al. (2013),

Wang and Schiavone (2016b) and Li (2019). In most of the above mentioned works the surface elastic moduli were assumed

to be constant. Wang and Schiavone (2015, 2016b) demonstrated that inhomogeneity of the surface elastic moduli may

also significantly affect the corresponding solutions. Note that mathematically, the corresponding boundary conditions are

equivalent to the so-called stiff interface between materials discussed by Benveniste and Miloh (2001) and Benveniste and

Miloh (2007), see also Mishuris, Öchsner, and Kuhn (2006a). Singularity near the tip of the interfacial crack dynamically

growing along the stiff interface was investigated by Mishuris, Movchan, and Movchan (2006b) and Mishuris, Movchan, and

Movchan (2010); the static problem of an interfacial crack lying at a stiff interface of arbitrary shape and elastic properties

near the crack tip was analyzed by Mishuris (2003).

The present paper focuses on the issue of stress singularity at a crack tip with the account of surface stresses along the

crack surfaces. The analysis is restricted to a relatively simple problem of stress concentrations in the vicinity of mode III

crack. The considered inhomogeneity of the surface elastic moduli represents the concentration of surface strain energy near

the crack tip. It also covers two limiting cases, of traction-free and of rigidly stiff interface.

The paper is organized as follows. In Section 1 a brief overview of the basic equations of elastostatics in the framework of

the linear Gurtin–Murdoch model. In Section 2 the problem of anti-plane deformations of an elastic half-space with a crack

is formulated; this problem is split into symmetric and asymmetric (with respect to crack line) problems. The formulation

of the symmetric problem in terms of the Mellin is reformulated in terms of the Wiener–Hopf problem in Section 3. The

analysis of obtained solution is given in Section 4. We discuss the case when stresses have the logarithmic singularity

near the crack tip and when they are bounded. We also discuss two limiting cases, of zero surface stresses and of a rigid

inclusion (“anticrack”). Numerical example of stress and displacement distributions is presented in Section 5. The solution

of the asymmetric problem is analyzed in Section 6, where we identify the square root stress singularity and calculate the

stress intensity factor. We believe that this analysis effectively closes discussions on disparity of results in various papers

concerning singularity at the crack tip with surface stress on its surfaces.

1. Basics of linear Gurtin–Murdoch model

Following Gurtin and Murdoch (1975) we introduce the basic equations as follows. In the bulk, we have classic constitu-

tive equations of an isotropic solid with Hooke’s law

σ = 2μe + λ I tr e, e = 1

2

(∇u + (∇u)T
)
,

where λ and μ are Lamé elastic moduli, σ is the stress tensor, e is the strain tensor, u = u(x) is a displacement vector, x is

the position vector, tr is the trace operator, I is the 3D unit tensor, and ∇ is the 3D nabla-operator.

Additionally, we introduce surface stress tensor s defined as follows

τ = μsε + λsP(tr ε), ε = 1

2

(
P · (∇su) + (∇su)T · P

)
,

where λs and μs are the surface elastic moduli, ∇s = P · ∇ is the surface nabla operator, P ≡ I − n � n, n is the unit vector

of outer normal to ∂V, where ∂V is the boundary of the body volume V.

Considering mass force free solid we get the equilibrium equation

∇ · σ = 0, ∀ x ∈ V, (1)

and the static boundary equations

n · σ = ∇s · τ + g, ∀ x ∈ ∂V, (2)

where g is a traction vector. The latter equation differs from the classic traction condition in linear elasticity. It called the

generalized Laplace–Young equation. As a result, the term with τ brings new properties of corresponding solutions of the

boundary-value problem (1) and (2).
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Fig. 1. An elastic half-space x > 0 with a crack of length l.
2. Anti-plane problem formulation

We consider mode III plane fracture problem in a half-space x > 0 within the Oxy frame. A crack of length l occupies an

interval 0 < x < l, y = 0 and loaded by a specific type of shear traction, see Fig. 1. On the boundary of the half plane (y = 0)

and the crack surfaces (� ± ), the shear stresses are imposed.

For the anti-plane deformations, the vectors of displacements and external forces takes the form

u = w(x, y)i3, g =

⎧⎪⎨
⎪⎩

−g+(y)i3; x = 0, y > 0;
g−(y)i3; x = 0, y < 0;
−h+(x)i3; x ∈ (0, l), y = 0+;
h−(x)i3; x ∈ (0, l), y = 0−,

(3)

where ik, k = 1, 2, 3 are base unit vectors related to Cartesian coordinates x, y, z, respectively.

For the anti-plane shear deformation (3), the equilibrium Eq. (1) and boundary conditions (2) reduce to the Laplace

equation into the domain �

∇2w = 0, x, y ∈ �, (4)

and the boundary conditions

σxz = g±(y), x = 0, ±y > 0, (5)

σyz + ∂

∂x

(
f (x)

∂w

∂x

)
= h±(x), 0 < x < l, y = ±0, (6)

[w] = 0, [σθz] = 0, x > l, y = ±0, (7)

respectively.

Note that more general linear constitutive equations for τ can be also considered (Duan et al., 2008), see also Ru (2010).

For example, they include residual surface stress σ 0P. However, the appearance of σ 0 does not change the form of (6), see,

e.g., Kim et al. (2010b).

In these equations w = w(x, y) is a displacement field in z direction, σyz = μ∂w/∂y, σxz = μ∂w/∂x are shear stresses.

Functions g ± (y), h± (x) define the loading conditions and the function μs ≡ f(x) describes the nonhomogeneous surface shear

modulus. The case f (x) = C ≡ const is the standard case of the homogeneous surface elastic properties, see e.g., Kim et al.

(2010a,b, 2011b), whereas f (x) = Cx corresponds to the assumption that the surface stresses are most important in the

neighbourhood of the crack tip. In certain sense this assumption is similar to Barenblatt’s model of cracks with adhesion

zone (Barenblatt, 1959). We consider here only this case to highlight possible consequence of such realistic assumption,

when the surface energy is mostly concentrated near the crack tip and vanishes far from it.
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We assume that the given functions do not affect directly the behaviour in crack singular points. Namely, we state that

g ± (x) are finite functions (g±(x) = 0 for |x| <ε, and |x| > 1/ε for some ε > 0), while the functions h ± (x), described on the

crack surface, are finite and smooth enough (h± ∈ C1
0

[0, l]).

We search for a solution where the displacement and stresses both vanish at infinity in the same manner as for the

problem for half-space without a crack:

w = O(r−1), σ jz = O(r−2), r → ∞. (8)

Using the superposition principle, we divide the problem into two: symmetrical and antisymmetrical with respect to

the ray θ = 0 (y = 0, x > 0 and the respective problem can be considered in the domain 0 <θ <π /2 with the respectively

modified function g+(y) = g j(y) ( j = 1, 2 2g1(y) = g+(y) + g−(−y) and 2g2(y) = g+(y) − g−(−y), y > 0, while the boundary

conditions defined along the ray θ = 0 read:

σyz + C
∂

∂x

(
x
∂w

∂x

)
= h1(x), 0 < x < l, w = 0, x > l, y = 0. (9)

and

σyz + C
∂

∂x

(
x
∂w

∂x

)
= h2(x), 0 < x < l, w′

θ = 0, x > l, y = 0, (10)

where 2h1(x) = h+(x) + h−(x) and 2h2(x) = h+(x) − h−(x).

The mathematical treatment of the problem becomes easier if we turn to the polar coordinates. The Eq. (5)1 reads:(
1

r2

∂

∂θ2
+ 1

r

∂

∂r

(
r
∂

∂r

))
w = 0, r > 0, 0 < θ <

π

2
, (11)

with the boundary conditions

σθz

∣∣
θ=π/2

= μ

r

∂w

∂θ

∣∣∣
θ=π/2

= gj(r), r > 0, j = 1, 2, (12)

along the boundary θ = ±π
2 and

σθz + C
∂

∂r

(
r
∂w

∂r

)
= h1(r), 0 < r < l, w = 0, r > l, θ = 0,

σθz + C
∂

∂r

(
r
∂w

∂r

)
= h2(r), 0 < r < l, σθz = 0, r > l, θ = 0, (13)

along the other boundary. Here indices 1 and 2 correspond to the symmetric and asymmetric problem, respectively. In

what follows we omit these indices referring explicitly to the problem under consideration. Note that the estimate 8 can be

different in those two cases and defines the worst behaviour.

It is convenient to perform normalization as follows:

r̂ = r

l
, ĝ(r̂) = g(r̂l)l, ĥ(r̂) = h(r̂l)l, ŵ(r̂, θ ) = w(r̂l, θ ). (14)

We drop hats in the following, if not mentioned the opposite. Note that the crack length l > 0 is not appeared in the problem

formulation as all the operator are homogeneous of the same order. However, that value of course is a part of the solution

influencing the new right-hand sides.

3. Solution for the symmetric problem

3.1. Reduction to the Wiener–Hopf problem

Let us write the boundary conditions in the form defined along the entire ray 0 < r <∞:

μ
∂w

∂θ
= rg(r), θ = π

2
,

μ
∂w

∂θ
+ Cr

∂

∂r

(
r
∂w

∂r

)
= rh(r) + φ(r), w = ψ(r), θ = 0. (15)

where the given function h(r) satisfies the condition h(r) = 0 for r > 1 and newly introduced unknown functions are assumed

to be:

φ(r) = 0, 0 < r < 1, ψ(r) = 0, r > 1. (16)

Note that for simplicity we omit here index in the functions h1 and g1. An additional condition for those functions near the

end of the intervals, where they do not vanish, will be prescribed later.
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In this particular case one may apply the Mellin transform in the standard form and its application to the displacement

is defined as:

W (s, θ ) =
∫ ∞

0

w(r, θ )rs−1 dr,

Application of this transform to (15) leads to:

∂2W
∂θ2 (s, θ ) + s2W (s, θ ) = 0, 0 < θ < π

2

μ∂W
∂θ

(s, θ ) = G(s + 1), θ = π
2

(17)

μ
∂W

∂θ
(s, θ ) + Cs2W (s, θ ) = H+(s + 1) + �−(s), W (s, θ ) = +(s), θ = 0. (18)

Here, the known functions are:

G(s + 1) =
∫ ∞

0

g(r)rs dr, H+(s + 1) =
∫ 1

0

h(r)rs dr, (19)

and unknown functions are defined as follows:

+(s) =
∫ 1

0

ψ(r)rs−1 dr, �−(s) =
∫ ∞

1

φ(r)rs−1 dr. (20)

We search for solution w(r) satisfying the following conditions at all singular points of the problem:

w(r) = w0 + O(rα0 ), r → 0, (21)

w(r) = O((1 − r)α1 ), r → 1−, (22)

w(r) = O(r−α∞ ), r → ∞, (23)

where all unknown constants are positive (α0, α1, α∞ > 0). As a result, we expect that:

ψ(r) = w0 + O(rα0 ), r → 0, (24)

ψ(r) = O((r − 1)α1 ), r → 1−, (25)

φ(r) = O(r−α∞−1), r → ∞, (26)

φ(r) = O((1 − r)α1−2), r → 1 + . (27)

In turn, we conclude that +(s) and �−(s) are analytic in the half-planes 
s > −α0 (with a possible simple pole at the

point s = 0) and 
s <α∞, respectively. Hereinafter 
 and � denote the real and imaginary parts of a complex number,

respectively. Moreover, their behaviours at infinity within the respective half-planes can be estimated by the Abelian type

theorem (Piccolroaz & Mishuris, 2013; Piccolroaz, Mishuris, & Movchan, 2009) as

�+(s) = O
(
s−1−α1

)
, −(s) = O

(
s−α1+1

)
, s → ∞. (28)

For the mechanical equilibrium of the system, the following balance condition should be satisfied:∮
�
σθzd� = 0 or

∫ ∞

0

g(r)dr −
∫ ∞

0

μ
1

r

∂w

∂θ

∣∣∣
θ=0

= 0,

The latter can be written in terms of the Mellin transform as

G(1) = μ
∂W

∂θ
(0, 0). (29)

Solution of the derived differential Eq. (17)1 reads:

W (s, θ ) = A(s) cos

(
s

(
θ − π

2

))
+ B(s) sin

(
s

(
θ − π

2

))
, (30)

M[σzθ ](s + 1, θ ) = μ
∂W

∂θ
(s, θ ) = −μsA(s) sin

(
s

(
θ − π

2

))
+ sμB(s) cos

(
s

(
θ − π

2

))
, (31)

with functions A(s) and B(s) analytical in the strip (0 <
s <α∞) to be found. We apply boundary condition at θ = π/2 and

obtain:

B(s) = G(s + 1)

μs
. (32)

Note that the balance condition (29) transforms into (32) in the limiting case s → 0. Here we take into account the fact that

the displacement is bounded at zero point and, therefore, the function A(s) has a simple pole at zero point only. If G(1) �= 0,

then B(s) has a simple pole at point s = 0, however, the image of the displacement is always bounded at this point.
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Substituting (30) into the boundary conditions along the ray θ = 0 we get:(
A(s)
B(s)

)
=

⎛
⎝ cos

πs

2
sin

πs

2

− sin
πs

2
cos

πs

2

⎞
⎠(

+(s)
�−(s) + H+(s + 1)

μs
− Cs

μ
+(s)

)
(33)

This brings us to the Wiener–Hopf equation:

G(s + 1)

Cs2 cos πs
2

= 1

s2C

(
�−(s) + H+(s + 1)

)
− L(s)+(s), (34)

valid in the strip −α0 < 
s < α∞. Here the kernel function is defined as follows:

L(s) = μ

sC
tan

πs

2
+ 1, (35)

and takes real positive values bounded from below along the imaginary axis L(iξ ) ≥ L(0) = μπ/(2C) + 1. Moreover, its

behaviour at infinity is estimated as:

L(it) = 1 + μ

|t|C + O
(|t|−1e−π |t|/2

)
, t → ±∞. (36)

Note that the first zero of the kernel function L(s) in the half-plane 
s < 0 is real (s = −β∗) where 1 <β∗ (C) < 2 such

that:

L(s) �= 0, −β∗ < 
s < β∗,

and β∗ (C) is a monotonically decreasing function with respect to constant C > 0 and:

lim
C→0

β∗(C) = 2, lim
C→∞

β∗(C) = 1. (37)

Note that our assumptions (21)–(23) and (24)–(27) are consistent with (34) and the following conclusions can be made

from its analysis at point s = 0:

G(1) = �−(0) + H+(1), w0 = 1

CL(0)

d

ds

(
�−(s) + H+(s + 1) − G(s + 1)

)∣∣
s=0

. (38)

The first equation in the latter is nothing else but an alternative form of the balance condition (29).

Further conclusions can be made on the width of the analyticity strip analyzing the Wiener–Hopf equation, providing all

given functions are finite:

α∞ = 1, α0 = β∗(C) > 1. (39)

3.2. Factorization of the function L(s)

The solution of the Wiener–Hopf problem is closely related with the factorization of the kernel function. Note that L(s) is

an even analytical function in the strip −1 < 
s < 1. It has simple poles at s = ±1 at the borders of this strip and L(±i∞) = 1

within the strip. It can be therefore easily factorized in the form:

L(s) = L+(s)L−(s), L−(s) = L+(−s), L+(0) =
√

μπ

2C
+ 1, lim

s→±i∞
L±(s) = 1, (40)

and

L±(s) = exp

{
∓ 1

2π i

∫ i∞∓γ

−i∞∓γ

log(L(ξ ))

ξ − s
dξ

}
, (41)

where 0 ≤γ < 1 is an arbitrary constant. The function L+(s) is analytic in the complex half-plane −1 < 
s < ∞. Unfortu-

nately, factorization can not be accomplished in the closed form and numerical evaluation of the factors is required. We can

estimate more accurately the behaviour of the factors L ± (s) at infinity. Let us consider an auxiliary function

χ(t, b) = a

|t| + b
, a = μ

C
, (42)

while b > 0 should be found from the condition

T (b) ≡
∫ ∞

0

(
log L(it) − χ(t, b)

)
dt = 0. (43)

One can check that

log L(it) − χ(t) = O
(|t|−2

)
, t → ∞,

thus the integral in (43) is finite for any 0 < b <∞, while the function T(b) monotonically increase from −∞ to ∞ when b

changes from 0 to ∞. Therefore, there exists a unique b = b > 0 giving T (b ) = 0.
0 0
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As a result, we can represent the factors L ± (s) in the form:

L±(s) = L±
0 (s)L±

∗ (s), L±
∗ (s) = exp

{
∓ 1

2π

∫ ∞

−∞

log L(it) − χ(t, b0)

it − s
dt

}
, (44)

and

L±
0 (s) = exp

{
∓ 1

2π

∫ ∞

−∞

χ(t, b0)

it − s
dt

}
= exp

{
± s

π

∫ ∞

0

χ(t, b0)

t2 + s2
dt

}
,

or

L±
0 (s) = exp

{
a

2π

πb0 ± 2s log (±s/b0)

s2 + b2
0

}
, (45)

Note that log z here is the same function with the cut along the negative part of the real axis.

The behaviour of L±∗ (s) is now estimated (in the respective half-plane) as:

L±
∗ (s) = 1 + o

(
s−1

)
, L±

0 (s) = 1 ± a

πs

(
log(±s) − log b0

)
+ o

(
s−1

)
, s → ∞. (46)

Summarizing these intermediate results we conclude that the leading terms of the asymptotic behaviour of the functions

L ± (s) and L±
0
(s) coincides and:

L±(s) = 1 ± μ

πsC

(
log(±s) − log b0

)
+ o

(
s−1

)
, s → ∞. (47)

Remark: note that the term of the order s−1 can be computed differently. Indeed, it is enough to take any value b > 0 then

the asymptotics (47) takes form:

L±(s) = 1 ± μ

πsC

(
log(±s) − log b + C

μ
T (b)

)
+ o

(
s−1

)
, s → ∞,

or b0 = b exp (−CT (b)/μ).

3.3. Solution of the problem

Having in place the factorization of the kernel, the Wiener–Hopf Eq. (34) can be rewritten in the equivalent form:

1

CL−(s)
�−(s) − s2L+(s)+(s) = F (s)

C
, (48)

in the strip 0 <
s < 1, where

F (s) = 1

L−(s)

(
1

cos πs
2

G(s + 1) − H+(s + 1)

)
. (49)

Under the assumptions on the given loads, F(s) is an analytical function at least in the strip −1 < 
s < 1 and decays at

infinity faster than s−1. By means of the standard procedure involving Cauchy type integrals, it can be represented in the

form:

F (s) = F+(s) + F−(s), F±(s) = ∓ 1

2π i

∫ i∞∓γ

−i∞∓γ

F (ξ )

ξ − s
dξ , (50)

where 0 ≤γ < 1. Moreover, F±(s) ∼ ±F∞s−1 as |s| →∞ in the respective half-plane.

F∞ = 1

2π

∫ ∞

∞
F (iξ )dξ .

With this representation in mind, the Wiener–Hopf Eq. (48) can be rewritten in the equivalent form:

1

L−(s)
�−(s) − F−(s) = s2CL+(s)+(s) + F+(s) ≡ Pn(s), (51)

in the strip 0 <
s < 1, where Pn(s) is a polynomial according to Liouville’s theorem. As a result, the final solution of the

Wiener–Hopf equation is:

+(s) = Pn(s) − F+(s)

Cs2L+(s)
, �−(s) =

(
F−(s) + Pn(s)

)
L−(s). (52)

Comparing this with (28), one can conclude that the degree of the polynomial n = 0 which delivers two possible scenarios.

Note that the case n = 1 is equivalent to α1 = 0 and thus, there appears a jump of the displacement near the crack tip that

makes no physical sense.
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At this point we can find the function A(s) which together with that B(s) defined in (32) and (33) allows us to reconstruct

the entire solution:

A(s) = −G(s + 1)

Cs2L(s)

(
1 − Cs

μ
tan

πs

2

)
+ �−(s) + H+(s + 1)

Cs2L(s) cos πs
2

, (53)

Substituting the results into relations for the displacement and stresses in their Mellin leads to:

W (s, θ ) = 1

Cs2L(s) cos πs
2

((
�−(s) + H+(s + 1)

)
cos s

(
θ − π

2

)
+ G(s + 1)

(
Cs

μ
sin sθ − cos sθ

))

μ
∂

∂θ
W (s, θ ) = −μ

CsL(s) cos πs
2

((
�−(s) + H+(s + 1)

)
sin s

(
θ − π

2

)
− G(s + 1)

(
Cs

μ
cos sθ + sin sθ

))
From the Mellin transform of the boundary conditions in (18) it straightforward follows that for θ = 0:

W (s, 0) = +(s, 0),

μ
∂W

∂θ
(s, 0) = H+(s + 1) + �−(s) − Cs2+(s),

where functions �−(s) and +(s) are found in (52). It is convenient to present the solution as:

W (s, 0) = Pn(s) − F+(s)

Cs2L+(s)
, (54)

μ
∂W

∂θ
(s, 0) = �+(s) + �−(s), (55)

where

�+(s) = F+(s)

L+(s)
+ Pn(s)

(
1 − 1

L+(s)

)
+ H+(s + 1) + Qn−1(s),

�−(s) = F−(s)L−(s) + Pn(s)
(
L−(s) − 1

)
− Qn−1(s), (56)

with an arbitrary polynomial Qn−1(s). Finally, note the balance of the external load (38) can be written in the form:

G(1) = �+(0) + �−(0). (57)

4. Analysis of the symmetric problem

4.1. Behaviour at infinity

One can directly check that the balance condition (29) is valid when

Pn(0) = F+(0). (58)

Interestingly, the same condition eliminates logarithmic singularity near the point r = 0. One can also check that the condi-

tion (58) makes both equations in (38) satisfied.

Analyzing the behaviour of the function �−(s) we observe that, under the assumptions made on the externally applied

load, they are analytic in the domains 
s < 1. This means that our previous statement (39) is valid indeed, α∞ = 1, regardless

of the other problem parameters. Thus

σθz(r, θ ) = O(r−2), r → ∞.

Note that the degree of the polynomial Pn(s) is restricted by the behaviour of the displacement image at infinity, that

gives n ≤ 1, and taking into account the condition (58) we conclude Pn(s) = D0 + D1s where the constant D0 as been already

defined (D0 = F+(0)), while the remaining one, D1, is still to be determined.

Let us consider the case when D1 = 0 for which Qn−1(s) = 0. We get

W (s, 0) = F+(0) − F+(s)

Cs2L+(s)
, μ

∂W

∂θ
(s, 0) = �+(s) + �−(s),

�+(s) = F+(s)

L+(s)
+ F+(0)

(
1 − 1

L+(s)

)
+ H+(s + 1),

�−(s) = F−(s)L−(s) + F+(0)
(
L−(s) − 1

)
. (59)

The asymptotic behaviour of these functions is:

W (s, 0) = F+(0)
2

+ O(s−3 log s), s → ∞, (60)

Cs
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�±(±s) = μF+(0)

πC

log s

s
+ 1

s

(
F∞ − μF+(0)

πC
log b0

)
+ o(s−1), 
s → ±∞. (61)

As a result, we conclude that

w(r, 0) = F+(0)

C
(1 − r) + O

(
(1 − r)2 log(1 − r)

)
, r → 1−, (62)

σθz(r, 0) = −μF+(0)

πC
log |1 − r| + F∞ − μF+(0)

πC
(log b0 + γ ) + o(1), r → 1. (63)

where γ ≈ 0.5772 is the Euler–Mascheroni constant. Finally, near the inlet of the crack we have (compare to (39)):

w(r, 0) = w0 + O(rβ∗(C)), σθz(r, 0) = O(rβ∗(C)−1) r → 0, (64)

where

w0 =
√

2

C

f0√
μπ + 2C

, f0 = − lim
s→0

d

ds
F+(s).

If the external load is prescribed in a way that F+(0) = 0, then the logarithmic singularity at the crack tip disappears

and the smoothness of the displacement further improves. However, the load should be adjusted for each particular value

of the constant C. The results correlate nicely with those from (Kim et al., 2013; Wang & Schiavone, 2016b).

4.2. Solution with bounded stress near the crack tip

One can eliminate the stress singularity at the crack tip by considering a solution with Pn(s) ≡ 0. In this case solution

becomes:

W (s, 0) = − F+(s)

Cs2L+(s)
, μ

∂W

∂θ
(s, 0) = �+(s) + �−(s),

�+(s) = F+(s)

L+(s)
+ H+(s + 1), �−(s) = F−(s)L−(s). (65)

And the asymptotic behaviour is:

W (s, 0) = − F∞
Cs3

+ o(s−4 log s), s → ∞, (66)

�+(s) = �−(−s) = 1

s
F∞ + o(s−1), 
s → +∞. (67)

In this case

w(r, 0) = O
(
(1 − r)2 log(1 − r)

)
, r → 1−, σθz(r, 0) = F∞ + o(1), r → 1. (68)

However, the function A(s) has then a double pole at zero point. As a result, the displacement has a logarithmic singularity

at point r = 0, while the stress behaves in the same way as previously:

w(r, 0) = −F+(0)

CL+(0)
log r + w∗

0 + O(rβ∗(C)), σθz(r, 0) = O(rβ∗(C)−1) r → 0, (69)

Explanation to this phenomenon is as follows. This solution corresponds to the one with an additional concentrated force

applied at zero point from the side of the surface stress (θ = 0, r = 0). As a result, the balance condition (29) will now read

(compare (38)1):

G(1) = H+(1) + �−(0) + F+(0)

L+(0)
= �+(0) + �−(0) + F+(0)

L+(0)
. (70)

Note that the last term corresponds to the point force acting at point r = 0.

Remark. Note that both solutions discussed in the Sections 4.1 and 4.2 coincide if F+(0) = 0.

4.3. Extreme cases C → ∞ and C → 0

Here we only discuss expected behaviour of the solution not concentrating on its exact estimate.
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4.3.1. Limit case C → ∞
For the kernel of the Wiener–Hopf equation one can expect:

L(s) = 1 + O(C−1), L±(s) = 1 + O(C−1/2), C → ∞, (71)

while (compare (37)) in this case β∗(∞) = 1+ (and thus the limit is not uniform with respect to variable s). Note that the

function F(s) from (48) as well as F ± (s) can be roughly estimated as

F (s) = G(s + 1)

cos πs
2

+ O(C−1), F±(s) = O(1), C → ∞. (72)

This gives us

+(s) = O(C−1), �−(s) = F−(s) = 1

2π i

∫ i∞+γ

−i∞+γ

G(ξ + 1)

cos πξ
2

dξ

ξ − s
+ o(1), C → ∞. (73)

The first direct conclusion from the latter is that w(r, 0) = O(C−1) along the entire ray θ = 0 (compare (60)). Along the same

line, the stress near the point r = 0 will change its behaviour from vanishing to a constant value (see (64)).

Thus, one can expect the solution to converge to a solution of the similar problem for a half plane containing no crack.

However, the convergence should be properly determined.

4.3.2. Limit case C → 0

This case is more difficult to estimate in comparison with the first one.

For the kernel of the Wiener–Hopf equation one can expect:

L(s) = O(C−1), L±(s) = O(C−1/2), C → 0, (74)

but the estimate is not uniform (remind that L(s) → 1 as s → ∞). Note that the function F(s) from (48) as well as F ± (s) can

be roughly estimated as

F (s), F±(s) = O(C1/2), C → 0. (75)

This gives us

W (s, 0) = O(1), �±(s) = (1), C → 0. (76)

Finally, it is clear that the estimate for the solution is blowing up near the point r = 1 (compare (62) and (63)). The complete

solution is shown in Appendix A for comparative purposes.

5. Numerical example for symmetric problem

We consider the following external load:

g(r) = Pδ(r − a), h(r) = 0. (77)

As a result, we can conclude that the solution is represented by the formulae (59) with

F (s) = Pas

L−(s) cos πs
2

.

It is worth noting that under such loading conditions there exists an exact solution when C → ∞. Indeed, in this case

L(s) = 1 and one can check that +(s) = 0 while the solution along the boundary reduces to:

W (s, 0) = 0, μ
∂W

∂θ
(s, 0) = F (s).

We also notice that:

M−1[F (s)](r) = M−1

[
G(s + 1)

cos πs
2

]
(r) = 2

π

Par

r2 + a2
.

Thus, we get:

w(r, 0) = 0, σθz(r, 0) = 2

π

Pa

r2 + a2
. (78)

In Fig. 2 we present distribution of the stress and displacement along the symmetry line for μ = 1, P = 1, a = 1 for

different properties of the surface stress (various values of C > 0). Black solid line corresponds to the limiting case C = ∞.
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Fig. 2. Logarithmic singularity (Section 4.1). Distribution of stress and displacements according to solution in (64) and different values of C: a) normalized

stress, b) displacements.

Fig. 3. Logarithmic singularity (Section 4.1). Dependence of different quantities on parameters C a) displacement at r = 0, θ = 0 according to (62), b)

coefficients of asymptotic expansion from (63).
Only in this case, the stress near the crack tip is bounded, while when 0 < C <∞, the stress demonstrate log singularity near

this point. Coefficient in the front of this term is shown on the Fig. 3.

Let us now turn to presentation of the results for the alternative case described in Section 4.2. The corresponding stresses

and displacements are shown in Fig. 4. Now, the singular point appears at r = 1. Interestingly, both solutions from the in

Sections 4.1 and 4.2 coincide in the limiting case C = ∞ regardless of the load (even if F+(0) �= 0) as it clearly follows

from (54).

Finally, we illustrate both solutions by comparing the force balance conditions (70) and (57). In more details, we present

in Fig. 5 total stress � ± (0) and their sum (solid bold line). One can see that the balance condition (70) satisfies for the first

solution (G(1) = 1), but not for the second one due to aforementioned appearance of the point forces at zero point (at the

corner of the domain).

6. Solution for asymmetric problem

6.1. Reduction to the Wiener–Hopf problem

General comment - solution cannot be found in unique way (at least adding a constant to the solution w change nothing

in formulation (apart from the behaviour at infinity). For this reason, we again search for solution vanishing at infinity.
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Fig. 4. Bounded solution (Section 4.2). Distribution of stress and displacements according to the alternative solution in (65) and different values of C: a)

normalized stress, b) displacements.

Fig. 5. Bounded solution (Section 4.2). Total force comparison for different solutions and different values of C: a) principal solution (65), b) alternative

solution (65).
Let’s write the boundary conditions in the form defined along the entire ray 0 < r <∞:

μ
∂w

∂θ
= rg(r), θ = π

2
,

μ
∂w

∂θ
+ Cr

∂

∂r

(
r
∂w

∂r

)
= rh(r) + φ(r), μ

∂w

∂θ
= ψ(r), θ = 0. (79)

where the given function h(r) satisfies the condition h(r) = 0 for r > 1 and newly introduced unknown functions assume

φ(r) = 0, 0 < r < 1, ψ(r) = 0, r > 1. (80)

Applying again the Mellin transform we will get (17) and the last condition changes to:

μW ′
θ + Cs2W = H+(s + 1) + �−(s), μW ′

θ = +(s), θ = 0. (81)

Here, we preserve the same notations for given functions.
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Substituting (30) into the boundary conditions along the ray θ = 0 now we have:(
A(s)
B(s)

)
=

⎛
⎝sin

πs

2
cos

πs

2

cos
πs

2
− sin

πs

2

⎞
⎠

⎛
⎝ 1

μs
+(s)

1

Cs2

(
�−(s) + H+(s + 1) − +(s)

)
.

⎞
⎠ (82)

This brings us to the Wiener–Hopf equation:

G(s + 1)

cos πs
2

+ μ

C
M(s)H+(s + 1) = L(s)+(s) − μ

C
M(s)�−(s), (83)

valid in the strip −α0 < 
s < α∞. Here the kernel function L(s) is the same as in (35) and:

M(s) = 1

s
tan

πs

2
. (84)

Note that our assumptions (21)–(23) and (24)–(27) are consistent with (34) and the following conclusions can be made

from its analysis at point s = 0:

G(1) = �−(0) + H+(1), +(0) = G(1), w0 = 1

C

d

ds

(
�−(s) + H+(s + 1) − +(s)

)∣∣
s=0

. (85)

The first and the second equations in the latter are nothing but equivalent forms of the balance condition (29). Finally, in

the preliminary analysis of the Wiener–Hopf equation it follows that α0 = α∞ = 1.

6.2. Solution to the Wiener–Hopf equation and it analysis

Note that the function M(s) can be easy factorized analytically in closed form M(s) = M+(s)M−(s) where M+(s) =
M−(−s), M+(s) is analytical in the half-plane 
s > −1 and

M±(0) =
√

π

2
, M±(s) ∼ (±s)−1/2, 
s → ±∞.

As a result the Wiener–Hopf Eq. (34) can be rewritten in the form:

L+(s)

M+(s)
+(s) − μ

C

M−(s)

L−(s)
�−(s) = K(s), (86)

where

K(s) = 1

M+(s)L−(s)

(
G(s + 1)

cos πs
2

+ μ

C
M(s)H+(s + 1)

)
. (87)

Assuming function H+(s + 1) behaves not bad we have:

K±(s) = ∓ 1

2π i

∫ i∞∓γ

−i∞∓γ

K(ξ )

ξ − s
dξ , (88)

where 0 ≤γ < 1 is an arbitrary constant. Solution to the Eq. (86) can be found in the form:

L+(s)

M+(s)
+(s) − K+(s) = μ

C

M−(s)

L−(s)
�−(s) + K−(s) ≡ Pn(s), (89)

in the strip 0 <
s < 1, where Pn(s) is a polynomial.

As the result, the final solution of the Wiener–Hopf equation is:

+(s) = M+(s)

L+(s)

(
Pn(s) + K+(s)

)
, �−(s) = CL−(s)

μM−(s)

(
Pn(s) − K−(s)

)
. (90)

We can compute the sought for Mellin images of displacements and stress along the line θ = 0 described in the domain

0 <
s < 1 (to preserve the proper behaviour at infinity):

W (s, 0) = 1

μs tan πs
2

(
+(s) − G(s + 1)

cos πs
2

)
, μ

∂

∂θ
W (s, 0) = +(s). (91)

This, in turn allows us to conclude that the polynomial should be a constant only Pn(s) = P0. To satisfy balance condition

(and it eliminates the log r term at zero point in displacement), we need to satisfy the condition (85)2 or

M+(0)

L+(0)

(
P0 + K+(0)

)
= G(1). (92)

As a result,

+(s) = M+(s)

L+(s)

(
L+(0)

M+(0)
G(1) − K+(0) + K+(s)

)
. (93)
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Analyzing the behaviour at infinity we can conclude that

w(r, 0) = O(|1 − r|1/2), r → 1, σzθ (r, 0) = O((r − 1)−1/2), r → 1−,

or more accurately,

σθz(r.0) ∼ k3√
1 − r

, r → 1−, k3 = P0√
π

= 1√
π

(
L+(0)

M+(0)
G(1) − K+(0)

)
.

If by a chance P0 = 0 or:

M+(0)

L+(0)
K+(0) =

√
Cπ

2C + μπ
K+(0) = G(1), (94)

then there is no singularity at the crack tip. Note that the (94) is always possible to satisfy. For example, taking h(r) = 0

and g(r) = D1δ(r − a1) + D2δ(r − a2). However, it is clear that at least on of the constants defining function g(r) will depend

on C.

6.3. Discussion on the solution expected behaviour when (C →∞ and C → 0)

When C → ∞ then K(s), K±(s) = O(1), the same property can be checked for the function +(s). One can check that this

solution has a direct limit (corresponding to the problem with the condition w(r, 0) = 0 for 0 < r < 1 and the semi-infinite

crack on 1 < r <∞ free of load.

In the opposite limiting case we have

K(s) = O(C−1/2), K±(s) = O(C−1/4), C → 0, if h(r) ≡ 0,

or

K(s) = O(C−3/2), K±(s) = O(C−3/4), C → 0, if h(r) �= 0,

thus those two cases should be considered separately.

In the first (h(r) ≡ 0), we have +(s) = O(s1/4), P0 = O(s−1/2) as C → 0. As a result, we can expect that while the stress

vanishes along the interval 0 < r < 1, it blows up near the point r = 1 when the stress intensity factor dramatically increases

(k3 = O(s−1/2)).

In the second case (h(r) ≡ 0), we conclude that +(s) = O(s−1/4), P0 = O(s−1/2) as C → 0. Thus, both, the stress along the

interval 0 < r < 1 and the stress intensity factor frows dramatically.

Note that these conclusions were made after assumption that the given load is fixed while the constant C changes. If the

load is following the value of C to satisfy (94), statements related to the value of the stress intensity factors will change. In

addition we finally note, that all those propositions on the possible behaviour of the problem in limiting cases are not exact

and the estimates given are not uniform.

7. Concluding remarks

In the framework of the linear Gurtin–Murdoch model of surface elasticity we presented full solution of mode III crack

problem. In order to analyze effects of surface stresses near the crack tip we assume linear dependence of the surface shear

modulus on the coordinate along the surface μs = f (x) such that it has maximum value at the crack tip and vanishes at

the point where the crack ends at the boundary. Note that the case f (x) = C ≡ const with g±(y) = 0 and h+(x) = h−(x)

corresponds to the aforementioned configuration considered by Kim et al. (2010a, 2010b, 2011b). Using the integral trans-

formations technique the analysis yields nonsingular stress and displacements distributions.

We have already mentioned in the introduction certain controversies concerning the near-tip asymptotics in case of sur-

face stresses at crack surfaces, see Kim et al. (2011c), Kim, Schiavone, and Ru (2011a), Wang et al. (2011), Walton (2012) and

Xu and Dong (2016). Namely, even for mode III some papers stated that traction is bounded, see Kim et al. (2010a, 2010b,

2011b), while other works found log singularity (Kim et al., 2013; Walton, 2012; Wang & Schiavone, 2016b) or the classic

square root singularity (Li, 2019). In the present work focused on a specific geometry, we show that there is actually no a

controversy in this issue: the singularity exists if some additional loading and geometry conditions are not fulfilled.

Specifically, we have demonstrated that in the problem under consideration, depending on the certain conditions on

the applied load, the solution may be finite near the crack tip, or has the logarithmic or even the square root singularity.

Physically, this can be explained by the fact that the Gurtin–Murdoch model is mathematically equivalent to a stiff elastic

surface coating (Mishuris, 2003; Mishuris et al., 2006b; 2010). This, in turn, clearly constrains one type of loading but may

invoke an additional effects for another loading resulting in the surface bending. The Gurtin–Murdoch model has been

further extended to more general surface-related constitutive equations by Steigmann and Ogden (1997, 1999), where the

resistance to surface bending is considered, and some others, see, e.g., Povstenko (1991), Lurie, Volkov-Bogorodsky, Zubov,

and Tuchkova (2009), Javili, Mc Bride, and Steinmann (2013b), Javili, dell’Isola, and Steinmann (2013a), Belov, Lurie, and

Golovina (2019) and Eremeyev (2019), and references therein. It would be interesting to analyze near tip asymptotics for

a crack with more sophisticated models of surface elasticity as Steigmann–Ogden one (see relevant works by Zemlyanova

(2016, 2017) and Han, Mogilevskaya, and Schillinger (2018)).
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Appendix A. Complete solution for the limit case C=0

Herewith, we present the solution of a conventional problem with an edge crack. This scenario corresponds to the sym-

metric case [w] = 0, r > 1, θ = 0, referring to terminology of the main body of the work. For simplicity, we also consider

case h(r) = 0. We define functions:

�−(s) =
∫ ∞

1

μ
∂w

∂θ
(r, 0)rs−1 dr, +(s) =

∫ 1

0

w(r, 0)rs−1 dr.

Symbol + refers to the complex valued functions analytic in domain 
s >β with β > 0 whereas symbol − stands for func-

tions analytic in 
s < 0. Application of the remaining boundary conditions (15) in case C = 0:

A(s)μs sin

(
πs

2

)
+ G(s + 1)

s
μs cos

(
πs

2

)
= �−(s),

A(s) cos

(
πs

2

)
− G(s + 1)

s
sin

(
πs

2

)
= +(s). (A.1)

Eliminating A(s) from the last system reduces it to the Wiener–Hopf problem:

μ

cos

(
πs

2

)G(s) = �−(s) − s2L(s)+(s). (A.2)

The kernel function of the problem is defined as:

L(s) = μ
tan

(
πs

2

)
s

.

We expect the following behaviour of functions:

+(s) = O
(
s−1

)
, s → 0,

+(s) = O
(|s|−3/2

)
, �−(s) = O

(|s|−1/2
)
, s → ∞.

(A.3)

Kernel functions behaves as follows:

L(s) = μπ

2
+ O

(
s2

)
, s → 0, L(±iξ ) ∼ −i

μ

ξ
, ξ → ∞. (A.4)

Let us use the facts that:

�
(

2 − z

2

)
�
(

z

2

)
= π

sin πz
2

, �
(

1 − z

2

)
�
(

1 + z

2

)
= π

cos πz
2

,

z�(z) = �(z + 1),

where �(z) is the Gamma function, analytic in the half-plane 
(z) > 0. Hence:

tan
πs

2
= s

2

�
(

1−z
2

)
�
(

1+z
2

)
�
(

2−z
2

)
�
(

2+z
2

)
Function L(s) can be factorized as follows:

L(s) = L+(s)L−(s), L±(s) =
√

μ

2
�
(

1 ± s

2

)
�−1

(
2 ± s

2

)
(A.5)
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Recall Stirling’s formula:

�(z + 1) ∼
√

2πz

(
z

e

)z

, z → ∞

Functions L ± (s) has the following asymptotic behaviour:

L±(s) =
√

μπ

2
+ o(1), s → 0, L±(s) =

√
μ

±s

(
1 ∓ 1

4s
+ O

(
1

s2

))
, s → ±∞. (A.6)

We get:

�−(s)

L−(s)
− s2+(s)L+(s) = F (s), F (s) = μ

cos πs
2

G(s + 1)

L−(s)
. (A.7)

Function F(s) is presented as follows:

F (s) = F+(s) + F−(s), F±(s) = ∓ 1

2π i

∫ i∞

−i∞

F (p)

p − s
dp, (A.8)

where F±(s) = O(|s|−1), s → ∞. Then, we conclude:

�−(s)

L−(s)
− F−(s) = s2+(s)L+(s) + F+(s) ≡ D0 + D1s. (A.9)

Coefficients D0,1 and chosen in such a way to get the desired behaviour of displacements and stresses. We finally arrive to

the following solution:

�− =
(
F−(s) + F+(0)

)
L−(s), +(s) = −F+(s) − F+(0)

s2L+(s)
. (A.10)

Thus, we may obtain:

A(s) = G(s + 1)

s
tan

πs

2
− 1

cos πs
2

+(s), (A.11)

and, similarly to the previous more general case:

W (s, θ ) = +(s) cos θs +
(

+(s) tan
πs

2
+ B(s)

cos πs
2

)
sin θs (A.12)

When θ = 0 we directly obtain:

W (s, 0) = +(s), μ
∂W

∂θ
(s, 0) = �−(s). (A.13)

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ijengsci.2019.

103183.
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