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Abstract 

Musculoskeletal disorders, particularly those involving the low back, represent a major health 

concern for workers, and originate significant consequences for the socio-economic system. As 

the average age of the population is gradually (yet steadily) increasing, such phenomenon 

directly reflects on labor market raising the need to create the optimal conditions for jobs which 

must be sustainable for the entire working life of an individual, while constantly ensuring good 

health and quality of life. In this context, prevention and management of low back disorders 

(LBDs) should be effective starting from the working environment. To this purpose, 

quantitative, reliable and accurate tools are needed to assess the main parameters associated 

to the biomechanical risk. In the last decade, the technology of wearable devices has made 

available several options that have been proven suitable to monitor the physical engagement 

of individuals while they perform manual or office working tasks. In particular, the use of 

miniaturized Inertial Measurement Units (IMUs) which has been already tested for ergonomic 

applications with encouraging results, could strongly facilitate the data collection process, 

being less time- and resources-consuming with respect to direct or video observations of the 

working tasks. Based on these considerations, this research intends to propose a simplified 

measurement setup based on the use of a single IMUs to assess trunk flexion exposure, during 

actual shifts, in occupations characterized by significant biomechanical risk. Here, it will be 

demonstrated that such approach is feasible to monitor large groups of workers at the same 

time and for a representative duration which can be extended, in principle, to the entire work 

shift without perceivable discomfort for the worker or alterations of the performed task. 

Obtained data, which is easy to interpret, can be effectively employed to provide feedback to 

workers thus improving their working techniques from the point of view of safety. They can also 

be useful to ergonomists or production engineers regarding potential risks associated with 
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specific tasks, thus supporting decisions or allowing a better planning of actions needed to 

improve the interaction of the individual with the working environment.  
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Introduction 

The demographic changes, in combination with the increasing ageing of the population 

which is accompanied by a large prevalence of several chronic degenerative diseases, pose 

significant challenges for the economy development and require specific attention, particularly 

as regards the quality of life that should be ensured to every citizen. In this context, the European 

Commission highlights the importance of promoting an active healthy ageing, on the interest 

of social cohesion and greater productivity (Europe 2020). Even at national level, the document 

“National Strategy for a Smart Specialization” (Strategia Nazionale Specializzazione 

Intelligente, SNSI, which is focused on determining investment priorities on strategic thematic 

areas) identifies as fundamental the capacity of redesign the life environments, including those 

dedicated to working activities, following an approach centred on the individual and his/her 

well-being.  

As mentioned, the increase of life expectancy which can certainly be considered a 

significant achievement of the last century, is not always accompanied by a parallel 

improvement in quality of life, especially in late adulthood. In particular, in the next years 

greater incidence of chronic degenerative diseases is expected and thus, there is an urgent need 

to develop comprehensive community-based approaches that include interventions to prevent 

declines in intrinsic capacity and foster healthy ageing. Among chronic degenerative diseases, 

of great importance (given their social and economic burden) are musculoskeletal disorders 

(MSDs) which affect one in two adults in US and other industrialized countries (WHO, 2018) 

at some point of their life. Such phenomenon directly reflects on labour market, as MSDs are 

one of the primary causes of work-related disorders, out of which approximately 30% is 

represented by low back disorders (LBDs) making them the most common MSD. The impact 
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of MSDs in general, and LBDs more specifically, encompasses various employment-related 

outcomes, ranging from usual paid work, to health-related work loss. In the worst cases, the 

latter event may cause early retirement or, in some countries, make the individual eligible to 

receive a state-funded disability pension. Until one of these conditions is reached, workers are 

often allowed to remain at work with amended or restricted duties, or diminished productivity 

(the so called “presenteeism”) or maintain their “employed” status but on sick leave. This 

scenario is further exacerbated in mature workers engaged in highly physically demanding jobs, 

as the assigned tasks may have a stronger impact on their health (with respect to younger 

workers) due to their intrinsic higher vulnerability associated to the cumulative effect of 

occupational exposure during the life course and to a generally reduced physical capacity. 

Hence, in order to promote longer healthy aging even in the mature worker, it appears important 

to take into account their physical and cognitive changes and, where possible, to design specific 

gradual adaptations in terms of assigned tasks, which enable to keep balance the relationship 

between physical/mental capacities and job requests. (Palmer and Goodson, 2015).  

Measurement of physical risk factors for LBDs under actual working conditions is a 

challenging task. This because differently from the usual concept of exposure (such as exposure 

to chemical or physical agents in the environment) the assessment of exposure in 

musculoskeletal epidemiology, cannot be determined independently from the worker. In fact, 

physical load depends on posture and movements that the worker carries out to interact with 

machinery and tools, and ultimately from the interaction between the physical work demand 

and the worker physical capability. 

The most commonly employed tools to characterize the level of exposure associated to different 

occupations are diaries, self-report questionnaires and observational methods (by direct 

observation or using video). Direct measurement methods, which make use of different kind of 

devices, are less frequently used despite their superior features in terms of reliability, accuracy 
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and repeatability. This is because while such systems are well suitable for laboratory settings, 

in most cases their use in actual work environment may result difficult or hardly bearable for 

tested workers. To enhance the applicability of quantitative assessment under actual working 

conditions, this research propose the use of wearable miniaturized devices like Inertial 

Measurement Units (IMUs) and activity trackers to evaluate trunk posture and to monitor the 

intensity of physical activity. Such simplified setup, which has been proven comfortable for use 

during regular task performances, is characterized by several advantages, such as the possibility 

to monitor a large number of workers in a reduced time, the availability of detailed data, which 

can be summarized in few information easy to interpret, thus giving the possibility to quickly 

identify those situations who increase the risk for low back injuries, as well as managing high 

risk jobs and to improve return-to-work strategies.  
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Chapter 1 

An ageing society 
 

During the last decades, Europe has experienced an outstanding increase of life 

expectancy due to several factors, including reductions in infant mortality, rising living 

standards, improved lifestyles and better education, as well as advances in healthcare and 

medicine (Eurostat, 2020). In fact, since 1950s life expectancy has increased by eight to ten 

years, leading to an European population that could reach a life expectancy above 80 years of 

age by 2070 (life expectancy from 78.3 in 2016 to 86.1 for males, from 83.7 in 2016 to 90.3 for 

females, Economic and Financial Affair, European Commission 2018, Report). Moreover, 

given the low birth rates, the age structure of the European population is further ageing. In 2001 

the “total dependency ratio” was 48.9%, that means that every two people of working age, there 

were two dependent people (younger than 15 or older than 65). Breaking this down, the old-

age dependency ratio (those 65 and over compared to those 15-64) was 23.5%, so there were 

more than four people aged 15-64 for each person aged 65 or over. The young-age dependency 

ratio (those aged 0-14 compared to those 15- 64) was 25%, meaning there were four people of 

working age for each person aged 0-14. In 2017, the total dependency ratio for the EU-28 

further increased to 53.9%. Not only there is a growing proportion of people likely to be 

dependent on the working age population overall, but this is therefore skewed towards those 

aged 65 plus, rather than towards children aged 0-14, who would at least in the future form part 

of the working age population potentially supporting others. In this scenario, hypothesizing that 

patterns of economic activity remain at current levels, projections suggest that the worsening 

of the total age-dependency ratio will accelerate dramatically, with the ratio reaching 63.5% as 
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soon as 2030. It will continue to increase rapidly, reaching 76.5% in 2050 (Demographic 

outlook for the European Union 2019). 

This social-demographic shift poses pension system under serious financial pressure. 

Indeed, since the ‘90s, European countries have started to reform their pension systems, 

increasing the labor-market participation of older people while, at the same time, restricting the 

possibilities for early retirements. Several authors analyzed the impact of pension reforms 

(Ardito, 2017; Rebate and Rochut, 2017; Staubli and Zweimuller, 2013; Geyer and Welteke, 

2017), founding a modest increase in the employment, counterposed to an increase of 

applications for unemployment, disability or sick-pay insurance exhibiting a substantial impact 

on the other public insurance schemes.  

Nowadays, a retirement age of 67 years is the most widespread policy in Europe (Ardito 

and d’Errico, 2018). From an ideal point of view, a longer working life may allow to make 

available superior resources to counterbalance the higher pension cost and health care costs 

associated with population ageing. Besides, it will also allow a smaller proportion of total 

resources to be used for the economic support of the older population and more to be allocated 

to the young, especially to education and unemployed. However, the duration of working period 

of an individual depends, among other factors, on health and disability trends. In such a context, 

the implementation of effective ergonomic solutions specifically designed for older workers 

appears crucial. 

 

 

Musculoskeletal disorders (MSDs) 
 

The side effect associated to the pension reforms may be due to the scarce consideration 

of age-related health issues such as the high presence of chronic disease among the older 
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population (Ardito and d’Errico, 2018). Indeed, older workers may experiment a reduced ability 

to deal with occupational demands and tasks due to chronic morbidity or functional limitations. 

In fact, many people aged between 51 and 65 years report chronic diseases such as hypertension 

(39.2%) dyslipidemia (21.3%), diabetes (9.2%), cancer (4.9%), arthritis (4.9%), stroke (3.3%) 

along with neurological disease in smaller percentage (d’Errico, 2017; Atella et al., 2019), 

scenario that is aggravated by the high prevalence of MSDs which are reported by 40% -50% 

of the people reporting chronic diseases Duffield et al. (2017). 

 

Definition, incidence and prevalence 

 

The term “Musculoskeletal disorders” (MSDs) generically describes both injuries and 

disorders involving muscles, joints, tendons, ligaments, nerves, cartilage, bones and the 

localized blood circulation system. For the purposes of the present study, we will consider only 

MSDs caused by inflammation or degenerations, characterized by an accumulative nature 

resulting in pain or physical constraints thus excluding the sequelae of systematic diseases such 

as rheumatoid arthritis, as well as those resulting from traumatic incidents such as falls, motor 

vehicle accidents and assault (Gillespie et al., 2013).  

If MSDs are either caused or aggravated primarily by work and by the effects of the 

immediate environment in which work is carried out, they are known as “work-related MSDs” 

(wMSD). It is noteworthy that wMSDs, contrarily to what intuitively thought, affects all forms 

of working environments, ranging from physically arduous work to low-intensity static work 

(da Costa and Viera, 2010; Bernard, 1997). 

Although wMSDs report trends showed a reduction of their impact in the last decade 

(European Agency for Safety and Health at Work – EU-OSHA Report, 2018), MSDs remain 

the most common work-related health problem in the developed countries (Côtè et al., 2013). 
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Workers in all sectors and occupations are concerned about wMSDs, although more common 

among specific occupations such as construction, water supply, agriculture, forestry and fishing 

(where around 69% of workers reported MSDs). However, they are also quite common among 

working tasks usually identified as “blue-collar” occupations, plant and machine operators and 

assemblers (66%), craft and related trades workers (65%) and workers in elementary 

occupations (64%) (Figure 1.1) (EU-OSHA Report, 2018).  

 

Figure 1.1 Percentage of workers reporting different musculoskeletal disorders in the past 12 

months, by occupation (ISCO-08), EU-28, 2015 

Adapted from https://www.bls.gov/opub/ted/2018/back-injuries-prominent-in-work-

related-musculoskeletal-disorder-cases-in-2016 

Low Back Disorders (LBDs) 

 

Among MSDs, those involving the low back are the most common (Global Burden Disease. 

GBD 2016). The term “low back disorder” (LBD) refers to an inflammatory and/or 

degenerative form of cumulative trauma that affects muscles, bones, tendons, ligaments and 

other structures supporting the back (OSHA, 2016). Every year, approximately 30% of the 

physician’s visit are requested based on back complaints (National Research Council, US, 

2001). It is common to observe that individuals experience disabling syndromes even in absence 
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of defined radiographic abnormalities. This condition is known as “non-specific back pain” 

(Hartvigsen et al., 2018). Common signs of LBDs include chronic pain, discomfort during 

activity or static posture, and loss of mobility (Cooper, 2015; EU-OSHA, 2016). These signs 

can emerge periodically as result of cumulative trauma and exertions in the workplace and 

consequently lead to possible muscular failure and physical disability (Konz and Johnson, 

2007). 

LBDs represent a major problem not only in the general population, but also among many 

occupational populations (Marras et al., 2009). In 2015, approximately 3/5 of workers in the 

EU reported MSD complaints and in particular LBP (43%) (Eurofound, 2017). Similarly, in the 

US in 2016 MSDs involving the back accounted for 38.5% of all work-related MSDs with a 

variable prevalence among occupations, with the highest rate recorded among health care 

assistant, material movers, forestry, machine operators (figure 1.2) (US Bureau of Labor and 

Statistics, BLS, 2016). 

 

Figure 1.2 Percentage of workers reporting low back pain in the past 12 months, by sector 

(Statistical Classification of Economic Activities in the European Community, NACE, 

rev.2) EU-28 2015. Adapted from https://www.bls.gov/opub/ted/2018/back-injuries-

prominent-in-work-related-musculoskeletal-disorder-cases-in-2016 
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Factors involved in low back disorders development 

 

It is generally accepted that the risk of developing LBDs in occupational settings is 

originated by a combination of individual, psychosocial and physical risk factors (da Costa and 

Vieira, 2010; Putz-Anderson and Bernard, NIOSH 1997; Trask et al., 2016; Wai et al. 2010; 

Bao et al. 2016; Waters et al., 2007; Keyserling, 2000; Shelerud, 2006; Burdorf and Sorock, 

1997; Hartvigsen et al. 2004; Manek and MacGregor, 2005). Psychosocial factors such as social 

support, job status, and job satisfaction have been found associated with back injuries 

(Hoogendoorn et al. 2001), but they may even impact more in the transition from pain to 

disability, or the chronicity of back pain (Shelerud, 2006) rather than the mechanisms of injury 

themselves. Similarly, individual risk factors such as, age, anthropometry, previous back injury, 

and smoking (Burdorf and Sorock, 1997) have been found related to the development of LBDs 

but they can be only partly controlled in a workplace context.  

A number of systematic reviews have suggested a causal relationship between LBDs and 

occupational risk factors such as non-neutral posture, manual materials handling, and repetitive 

tasks (Putz-Anderson and Bernard, 2007; Punnet and Wegman, 2004; Marras et al., 1995; da 

Costa and Vieira, 2010; Punnett et al., 1991). Non-neutral trunk postures, which are defined as 

mild to extreme deviations from resting positions (Putz-Anderson and Bernard, NIOSH 1997) 

that include trunk flexion and hyperextension in the sagittal plane, rotation in the transverse 

plane and lateral bending in the frontal plane. It should be noted  that such definition strongly 

depends on the context of the working task and on the type of posture analysis but in any case, 

such postures have been suggested to have potential effects on the musculoskeletal integrity of 

the back in occupational contexts.  

The real-world experience suggest that workers often experience non-neutral trunk 

postures, holding them, lifting objects or people, or twisting to reach tools (Dempsey, 1998). 
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Putz-Anderson and Bernard (1997), Burdorf and Sorock (1997), Hoogendorn et al. (1999), 

Beek and Hermans (2000), Lotters et al. (2003), Wai et al. (2010a, 2010b) and Heneweer et al. 

(2011) found a strong relationship between manual material handling and the development of 

LBDs. Some of these reviews, found also strong to moderate relationship between non-neutral 

postures (bending and twisting) and the development of LBDs as well as weak to strong 

relationship with heavy physical work defined as “work that has high energy demands or 

requires some measure of physical strength” (Putz-Anderson and Bernard, 1997; Burdorf and 

Sorock, 1997; Hoogendorn et al., 1999; Beek and Hermans, 2000; Lotters et al., 2003; 

Heneweer et al.,2011).  

When the trunk assumes a non-neutral posture, both spinal loading and intervertebral disc 

pressure increase, potentially resulting in impairment or injury due to overexertion (Jager et al., 

2000; McGill, 1997). In vitro studies which investigated the effects of spinal loading on tissue 

tolerance (Aultman et al., 2004; Aultman et al., 2005; Parkinson and Callaghan, 2007) show 

how physical loads culminate in mechanical (e.g. failure of the spinal unit after a number of 

cycle of compression) and physiological effects (e.g. increase of height loss with increase of 

cumulative load) (Courville et al., 2005). The results of such experiments led to estimate the 

mechanical limits of the involved anatomical structures and put the basis for theories on how 

physical exposures lead to injury (Marras, 2005). Moreover, sustained non-neutral postures can 

result in a reduction of the blood supply necessary to stabilize the musculature due to the 

compressive effects on capillaries and veins (Vieira and Kumar, 2004). In practice, the supply 

of oxygen and other nutrients to the back anatomical structures becomes limited when excessive 

load exists, thus leading to an accumulation of waste products (e.g. hydrogen ions, diprotonated 

phosphate etc.) which are cause of fatigue and discomfort (Garg, 1979).  

It has also been suggested that highly repetitive postural changes increase tissue fatigue 

and induce micro-strain on the low back (Adamds and Dolan, 1998). Of course, it is perfectly 
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normal to expect increased spinal loading while in non-neutral posture during regular activities 

of daily living, but if the necessary recovery is not allowed, the probability of experiencing 

muscular strain and injury increases (Brinckmann et al, 1988).  

Since LBDs have a multifactorial etiology, no consensus on the causal relationship 

between LBDs development and non-neutral posture exists. There are no specific guidelines 

unanimously accepted as regard threshold or limits at which trunk posture become an 

occupational hazard, thus they continue to be undefined (Dionne et al., 2008; Hoy et al., 2010). 

However, some authors (Hoogendorn et al., 2000; Coenen et al. 2013) reported an increased 

risk of LBDs development for workers who worked with the trunk flexed over 60° for more 

than 5% of the working time, or over 30° for more than 10% of the working time and for 

workers who lifted a load of at least 25 kg more than 15 times per working day.  

The prevalence of LBDs is different across different age groups (Rubin, 2007). In 

particular the highest rate of back pain are found consistently in the adult population between 

the third and sixth decades, with those experiencing new onset of back pain more likely to be 

in the third decade (Dionne et al., 2008; Hurwitz and Morgenstem, 1997; Waxman et al., 2000). 

A systematic review of the literature comparing the prevalence of LBDs in different periods of 

life found the lowest prevalence among younger adults (20-35 years old) with rates increasing 

with age until ages 60 to 65. After this age, a decline in the frequency of pain has been observed 

(Dionne et al., 2008; Loney and Stratford, 1999).  

As regards workers, some studies indicate that LBDs prevalence it is typically higher 

among older worker than younger workers (Okuribido et al., 2011). This phenomenon can be 

explained by biological changes of body structures related to the ageing process. The organ 

systems (i.e. cardiovascular, respiratory and musculoskeletal) functionality may decline around 

2% per year after the age of 30 (Sehl and Yates, 2001). As result, the physical capacity of a 65 

years old can be reduced up to 50% compared with a 25-years old, (Ilmarinen and Rantanen, 
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1999). The muscle strength peaks occur around the third decade, then strength remains constant 

approximately until 45 to 50 years of age and then declines at an average rate of 12% to 15% 

each decade thereafter. The primary factor responsible for the decline of muscular strength is 

the loss of muscle mass (Bellew et al., 2005; Delmonico et al., 2009), which begins to be 

observable at the age of 30 years and lead to a 30% of reduction of the muscle cross-sectional 

area at 65 years of age (Doerthy, 2001). These changes originate a reduction of the concentric 

muscular strength by 8-10% per decade which is more noticeable in the lower limbs (in 

particular, knee extensors and flexors) than in the upper limbs. The factors that contribute to 

this decline are sarcopenia and a simultaneous neuromuscular alteration such that there is a 

selective age-related denervation of motor units and an increase in the size of the remaining 

motor units, that lead to an increase of the muscles activation threshold and to a decreased speed 

of contraction (Miller et al., 2014). During the ageing process, particularly in individuals over 

50, it is possible to observe a reduction in the fraction of water present in both the vertebral disc 

and the surrounding tissues, which causes stiffness of the spine (Galbusera et al., 2014). 

Moreover, the deterioration of the viscoelastic properties of dorsal ligaments decreases their 

effectiveness as sensory organs (Solomon, 2006). Accordingly, back muscle reflex latency of 

older individuals, results delayed in response to spine loading and trunk muscles are 

characterized by reduced activity performing functional tasks (Hubley-Kozey et al., 2009). 

Taken together age-related sarcopenia and selective denervation are responsible for reduction 

in musculoskeletal capacity, flexibility and coordination thus markedly impairing work ability 

in older workers. 

 

The ageing workers 
 

In older workers, physiological age-related changes and chronic diseases lead to a 

reduction in work capacity and performances, with possible consequences on their health and 



14 

 

safety when the occupational demand is not properly modified (Yeomans, 2011). As result of 

this phenomena, the prevalence of wMSDs is higher among older workers, even though, there 

is no conclusive evidence that age itself represent a risk factor (Okunribido and Wynn, 2010). 

WMSDs are more likely to be developed at old age and this is particularly true under adverse 

working conditions, including physically demanding work, repetitive work under time 

constraints and working in awkward postures (Okunribido and Wynn, 2010; Breslin and Smith, 

2005). 

Notably, while health tends to decline with age, exposure to occupational hazards and 

to physical and psychological work demands does not. The European Working Condition 

Survey (2016) reported that exposure to main work-related risk factors does not decrease 

significantly in workers aged over 50 (Eurofound, 2016). In fact, only small reduction of non-

neutral postures, upper limb repetitive movements, and manual handling of heavy loads exists 

when comparing workers aged over 60 years with those aged between 50 and 60. In addition, 

even the amount of working hours do not decrease much, remaining, on average, elevated 

among men regardless their age (mean = 38 hours/week).  

Burr et al. (2017a) have found that high physical work demands (i.e. sustained non-

neutral posture) have a stronger impact on the health of older workers compared with their 

younger counterpart, while psychosocial risk exposures (e.g. high work pace, low influence at 

work, low social support from colleagues) do not have substantially different effects on the 

incidence of poor self-rated health depending on age (Burr et al. 2017b). A significant 

interaction between age and physical work demands for worsened self-report health was found 

also by Aittomaki et al (2005). These findings may indicate a higher vulnerability to the 

negative effect on health of physical work among older workers. This might be due to the 

cumulative effect of longer engagement in a given occupation (in terms of years of service) of 

older employees (Flecther et al., 2011; Blane et al., 2013) or to a lower mean physical capacity 
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of older employees respect to the younger ones, leading to an unbalance between their reduced 

physical capability and unchanged physical job requirements (Burr et al., 2017a; Savinainen et 

al., 2004). Hence, in order to promote longer working life, is important to consider health 

specificities of older workers. 
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Chapter 2 

Exposure assessment of risk factors for the 

development of low back disorders 
 

Measurement of physical risk factors for LBDs is a challenging task, particularly under 

actual working conditions. One of the most important reason that makes complex the 

assessment of risk factors for the development of LBDs is their nature itself. Indeed, in 

musculoskeletal epidemiology, the concept of exposure differs from those of occupational 

exposure, where this term refers to an agent or factor in the environment, external to the workers 

(Burdorf and van der Beek, 1999). Risk factors, as well as workload associated to the 

development of LBDs, cannot be determined independently from the worker. In fact, the 

physical load may depend on posture, movement and the forces resulting from the interaction 

between the physical work demand and the worker physical capability. The physical loads are 

stresses that disturb the internal state of the individual, mechanically and physiologically, 

resulting in cascade responses that start from the application of a load, that causes mechanical 

modification of tissues (e.g. deformation of connective tissues within the muscles, as well as 

increases in intramuscular tissue pressure which can affect the muscle blood flow 

mechanically), that in turn produce physiological changes (that include electrochemical and 

metabolic changes) which cause a neurological response (shifting concentrations of substrates 

and metabolites are conveyed to the central nervous system by sensory afferent nerves and 

cause corresponding sensations of effort and discomfort) (Armstrong et al., 1993). From a 

macroscopic point of view, the biomechanical stresses refer to tissue forces at each body part 

that are produced as a result of force exertion and movement of the body. Generating muscle 

forces leads to physiological disturbances on the human body such as energy consumption, 
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production of metabolic waste and localized or whole-body fatigue. If the biomechanical or 

physiological responses exceed the individuals’ capacity (in terms of strength, endurance or 

working techniques), one may experience discomfort, pain or incur in injuries.  

The relationship between the most common work-related risk factors and the occurrence 

of LBDs does not follow a linear trend, but is rather U-shaped trend, where at the two extremes 

are located respectively no exposure at all and extreme exposure (for instance constrained 

sitting posture and heavy material handling) (NIOSH, 1997, Winkel and Mathiassen, 1994). 

Moreover, workload is determined not only by external loads, but also by the interaction 

between the worker and the workplace (Radwin et al. 2001). External loads are affected by the 

geometry of the workplace, the types of tools used and the environmental conditions 

(Armstrong et al. 2003). Is therefore important to conduct the exposure assessment in the actual 

working environment, in order to obtain useful information for the reduction and prevention of 

development of LBDs. 

Exposure assessment for the most common LBDs risk factors previously mentioned (e.g. 

manual material handling, sustained non-neutral postures, frequent flexion and rotation, etc.) is 

not simple. Several authors have compared and discussed strength and weakness of different 

techniques for measuring exposure in musculoskeletal studies (Burdorf and van der Beek, 1999; 

Genaidy et al., 1993; Spielholz et al., 2001; Janowitz et al., 2006; Li and Buckle, 1999). They 

can be broadly classified into three categories: self-report methods, observational methods and 

direct measurement methods.  

 

Self-report methods 

 

Self-report measures on work-related diseases including health complaints, disorders, 

injuries, and classical occupational diseases, often under the form diaries, interviews and 
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questionnaires are widely used from several decades. They provide workers’ perception of 

ergonomic factors in a workplace and they are commonly employed in epidemiological studies 

to easily collect data on large sample of workers. Self-report methods can use discrete or 

continuous scale to obtain data from workers to estimate prevalence of postures, frequency of 

movements and the presence of level of forces or physical agents, or also ask about 

organizational, cognitive and psychosocial factors as well as pain perception. Self-report 

techniques provide useful data, have the apparent advantages of being straightforward to use, 

applicable to a wide range of working situations and appropriate for surveying large numbers 

of subjects with a relatively low cost (David, 2005). However, their validity has been questioned 

by several authors. In fact, the respondents are not always truthfully, and the answers are related 

to their own feelings, and these might be different for various subjects (Barrero et al., 2009). 

Furthermore, having severe musculoskeletal pain or psychological pressure regarding work 

situation or individual life probably impact on reporting work-related musculoskeletal risk 

factors (Balogh et al., 2004; Barrero et al., 2009). For instance, Balogh et al. (2004) found that 

the presence of musculoskeletal complaints led to higher estimation of exposure to physical 

risk factors. Additionally, Stock et al. (2005) explained some possible reasons for the low 

validity of self-reported questionnaires such as operators’ knowledge about work-related 

musculoskeletal risk factors, capacity to judge, respondents’ comprehension of the questions, 

response scale and methodological limitations of the studies which determine the validity of a 

questionnaire.  

 

Observational methods 

To date observational methods are probably the most used approach in field setting both 

to evaluate physical workload (in order to identify hazard at work) and to monitor the effects 

of ergonomic changes. The comprehensive review carried out by Takala et al. (2010) identified 
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a total of 30 available observational methods alternatively useful to assess the general work 

load, upper limb activities and manual material handling with the possibility to choose among 

them on the basis of the characteristics of the job to be assessed; the subject/s that must be 

monitored and who will use the method and the resources available for collecting and analyzing 

data.  

Among the most common applied observational method in the follow part are reported 

some of the main features and pros and cons in their applicability.  

Ovako working posture assessment system (OWAS)(Karhu et al., 1977). OWAS, which 

is probably the most widespread and documented method, was originally developed to describe 

workloads associated to the duty of steel industry company and allows to assess force (weight 

of the loads handled in three categories) and posture (back, arms and lower extremities) exerted. 

The assessment leads to 252 possible combinations that can be classified in four action 

categories indicating the need of an ergonomic change. The observations are carried out using 

fixed time-intervals. This method has shown good intra- and inter-observer variability but low 

agreement with direct measurements aimed in assessing the time spent in bent postures. Two 

main limitations are associated with this method: it is time-consuming and does not allow to 

consider duration and repetitions of sequential postures. 

Portable ergonomic observation (PEO) (Fransson-Hall et al., 1995). PEO is a computer 

based observational method for the continuous monitoring of workers. Each time the observer 

sees the worker adopts a new predefined posture, performs a task or changes posture, hits the 

corresponding keys and the software records the starting time of the event. When the worker 

change posture/task, the observer hits the same keys again. This procedure triggers the software 

to calculate and store the duration of a particular action. Starting from these data it is also 

possible to assess the cumulative exposure for a given period (day/week). This method has 

shown moderate to good agreement with direct measurement as well as intra and inter- observer 
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repeatability. However, this technique is time consuming and if the work-pace is rapid, the 

assessment of several exposure categories is not possible. 

Rapid entire body assessment (REBA, Hignett and McAtamney, 2000). REBA was 

designed as quick and easy observational and postural analysis tool for the whole-body 

activities in healthcare and other service industries. The REBA assessment associates 

increasing scores to positions of individual body segments as they deviate more from the neutral 

posture. The method provides the assessment of the posture of back, neck, legs, upper and lower 

arms and wrists for a total of 144 possible posture combinations that are transformed into a total 

postural score. The assessment of trunk and leg posture is characterized by a moderate intra-

observer agreement, but low for the assessment of the upper limbs. This method of assessment 

does not allow to record duration and frequency of the posture observed and scores only one 

side (i.e. there is no possibility to combine scores associated with right and left limbs) so that 

usually only the “worst case” is considered. 

US National Institute of Occupational Safety and Health (NIOSH) lifting equation (and 

its revision, Waters, Putz-Anderson, Garg, & Fine, 1993, 1994). When the focus of the 

assessment is on manual handling tasks, the most common method used is the NIOSH lifting 

equation, which has been developed to assess the risk of LBDs among jobs characterized by 

repeated lifting actions. The NIOSH Lifting Equation considers  six factors related to the lifting 

task, where multipliers are based on biomechanical, psycho-physiological and epidemiological 

data. The method is based on the calculation of a “lifting index” (𝐿𝐼 =  
𝐿𝑜𝑎𝑑 𝑊𝑒𝑖𝑔ℎ𝑡

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 𝐿𝑜𝑎𝑑𝑒𝑑
) 

which represents the ratio between the actual lifted weight and the relative weight loaded 

(dependent on several position multiplier factors). LI values below 1 are considered to be safe 

for the average population and, as LI increases, the worker is exposed to a greater risk to develop 

LBD. The strength of this method relies on its clear and simple way to indicate the need of 

ergonomic actions. Moreover, it is well documented and tested under several laboratory 



31 

 

conditions, in contrast, it is difficult to use in practical situations, due to several position metrics 

that is necessary to take into account in the calculation of the relative weight loaded (e.g. 

distance of hands on the load from midpoint between ankles; starting height of the hands from 

the ground; vertical travel distance of the lift etc.) 

 

Although the observational methods are focused on the assessment of biomechanical 

exposure on the musculoskeletal system, they are not directly comparable, mainly due to the 

use of different categories to perform the postural assessment (e.g. different angles threshold). 

Furthermore, their validity is limited to have a level of agreement with other methods since 

there is not a “gold-standard” to measure workload. But, also neglecting this aspect and 

assuming these methods being valid itself (because tested in a systematic way) factors such as 

the level of training of the observer, size of the body segment and rapidity of the movement to 

assess, lead to unpredictable errors. 

Summarizing, if the workplace is characterized by a limited number of postures that can 

be easily categorized into two or more classes, trained observers can be able to assess body 

posture with high level of accuracy and precision (van der Beek and Fring-Dresen, 1998). 

However, these methods provide unsatisfactory estimation when they are requested to classify 

very dynamic tasks. Also, they can lead to an alteration of the working strategy when the 

workers are aware about the observation (long observations make this aspect less critical as the 

worker become accustomed) (Trask et al. 2007). At last, these methods are not feasible for use 

in clinical settings as the nurse/physician-patient interaction poses critical privacy issues that 

may arise when a direct observation by a third party is performed. 
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Direct measurement methods 

 

The third category of exposure assessment methods is represented by direct 

measurement, which have been used with some success to quantify exposure in field studies 

and to investigate task simulations. Highly accurate systems such as optical motion capture 

have been used to record body posture, tracking position and velocity of different body 

segments, during the performance of simulated activities in laboratory settings. While in field 

studies, have been applied instruments which can range from simple hand-held devices for the 

measurement of joint range of motion to more sophisticated electro-goniometers that provide 

continuous recording of joint movement. In addition, lightweight devices such as inclinometers, 

accelerometers or Inertial Measurement Units (IMUs) have been applied to record joint/body 

segment movements, allowing the assessment of the time spent by the worker in different 

postures during the working day. Another largely used method is the surface electromyography 

that allows the characterization of muscle activity (Perry and Bekey 1980), or the evaluation of 

muscle fatigue (Radwin et al. 2001).  

Direct measurement systems can provide large amount of accurate data on a wide range 

of exposure variables. However, they usually require that sensors are attached to the worker’s 

body (as for example occurs in the case of surface electromyography electrodes) and this may 

result in discomfort and possible modifications in working behavior. Besides, most of these 

techniques are time and resource consuming and tend to generate dataset not easy to read and 

practical to interpret by ergonomic practitioners. In particular, if the time required for data 

collection is excessive, testing large groups of workers in a reasonable amount of time becomes 

hardly feasible. Last, but not less important, in some cases the initial investment to purchase 

the equipment is considerable, as well as the resources necessary to cover the costs of its 

maintenance and the employment of highly trained and skilled technical staff to ensure their 

effective functioning. 
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In summary, the choice of the assessment method should be based not only to the 

specific exposure parameter/s of interest, but also on its resolution, validity and reliability 

features. High resolution, validity and reliability are usually necessary for laboratory-based 

studies, but the practical implications of the results or transfer of measurement techniques 

developed in the controlled environment from the laboratory to actual and complex work 

environments are often difficult to achieve. 

When the goal is collecting data in real-work environments, the choice of a specific 

measurement method does not only depend on its characteristics (i.e. resolution, validity, 

reliability), but also on the variability expected within and between workers. A workplace 

analysis aimed in assessing risk factors for MSDs should collect a enough data to describe 

exposure patterns in the study population and effectively observe inter/intra-individual 

differences. In the case of physical workload, given its variability in time and among the 

strategies adopted by individual workers, is desirable to have information about each worker 

for an extended period of time so that it is reasonable to expect that a fully representative series 

of tasks is carried out. In practice, this kind of approach is difficult to use due to several reasons: 

- Exposure assessment methods should be applicable to a wide range of working 

context (e.g. industrial, clinical, etc.);  

- Exposure assessment methods should allow comparison between workers, days, 

occupations and sectors; 

- Exposure assessment methods should make use of instruments which are not source 

of discomfort during the performance of regular activities and sufficiently 

unobtrusive to allow to the worker to perform its job in a natural manner. 

 

The most common tools used for the assessment of trunk workload (i.e. surface 

electromyography and inclinometers) are quite difficult to employ in actual working 
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environment, due to the possible existence of adverse conditions including presence of 

humidity, extreme (high and low) temperatures, etc. For instance, cold storage warehouses may 

cause condensation in electrical circuits altering the functioning of the surface 

electromyography. Hot and humid environments may increase the worker’ sweating thus 

reducing the electrode adhesion and making all the surface electromyography measurement 

setup uncomfortable (Trask 2007). Moreover, since workers often wear protective equipment, 

the devices used to monitor posture should not alter their efficacy, as workplace safety is 

priority. In addition, acquired data should ensure enough evidences to support employees’ 

beliefs that the device will bring information helpful for their health in order to improve their 

compliance (Bergmann and McGregor, 2012; Schall et al., 2018; Jacobs et al., 2019). 

The recent advancement in the technology of miniaturized wearable devices greatly 

solved most of the mentioned issues. In particular, a suitable option to quantitatively assess 

workload in real work environments, potentially able to overcome some issues associated to 

commonly applied exposure assessment methods (e.g. obtrusiveness, long preparation time, 

difficult direct comparisons, subjective bias etc.) is represented by the use of IMUs, which will 

be described in detail in the next chapter. 
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Chapter 3 

Inertial sensors, a valid option for the 

assessment of exposure to physical risk factors 

related to the development of low back 

disorders 
 

In the field of human movement analysis, inertial sensor technology exploits the property 

of inertia to provide either angular velocities or accelerations of selected body segments using 

devices like accelerometers, inclinometers, gyroscopes, magnetometers and IMUs, the latter 

being a combination of accelerometers, gyroscopes and/or magnetometers. 

A single axis accelerometer consists of a mass, suspended by a spring in a housing (Figure 

3.1). 

 

Figure 3.1 Example of single axis accelerometer structure. The sensor contains a mass suspended 

by a spring. The distance d of the mass with respect to the sensor housing is measured 

and is a function of acceleration and the direction of the gravity vector g, with respect to 

the direction of distance measurement. The unit vector n represents the sensitive axis of 

the sensor 

 

The mass is allowed to move in one direction which represents the sensitive direction of the 

accelerometer. The displacement of the mass is a measure of the difference between the 
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acceleration (imposed) and the acceleration of gravity (g) along the sensitive axis. Combining 

three single axis accelerometers, a tri-axial accelerometer is obtained. A tri-axial accelerometer 

can be used to measure inclination (inclinometer) for applications in which the expectable 

acceleration is small compared to g. The inclination is determined by calculating the angle of 

the sensor axes with respect to g. In contrast, the use of an accelerometer does not allow the 

measurement of rotations around its vertical axis. 

A gyroscope consists of a vibrating mass. To measure the angular velocity, the vibrating 

mass undergoes to an additional vibration caused by the Coriolis effect. The displacement of 

the mass is measured in the direction perpendicular to the actuation direction. If the housing is 

rotated with an angular velocity perpendicular to the plane, the mass will experience an apparent 

force (Coriolis force) in the direction perpendicular to the angular velocity and momentary mass 

speed (Figure 3.2). This force is only apparent in the sensor coordinate system, not in the inertial 

coordinate system. As for the tri-axial accelerometers, combining three single axis gyroscopes, 

it is possible to construct a tri-axial gyroscope. 

  

Figure 3.2 Example of gyroscope structure. A gyroscope consists of a mass, which is brought into 

vibration by an actuator in the direction given by ract When the gyroscope is rotated, the 

mass will not only vibrate in the actuation direction, but will also undergo a (small) 

additional displacement in the direction perpendicular to both the original displacement 

ract and the angular velocity vector. This additional displacement, also known as the 

Coriolis effect, is used as a measure of angular velocity. 

 

To date these sensors (accelerometers and gyroscopes) are fabricated in small structure 

in the micrometer scale, where mechanical and electrical components are combined into so 

called microelectromechanical system (MEMS). 
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From a mathematical point of view, the integration of accelerations and angular velocity 

signals, would make possible to completely define the pose of a rigid body on which the sensors 

are attached. However, in the real-world, signals from micromachined gyroscopes and 

accelerometers are affected by errors which makes it difficult to obtain a reliable estimation of 

orientation and position, due to integration drift (Luinge, 2002). 

The use of IMUs (that consist of a tri-axial accelerometer, tri-axial gyroscope and 

possibly a tri-axial magnetometer), in combination with an appropriate sensor fusion algorithm 

such as Kalman filter or complementary filter (Madgwick et al., 2011) allows to overcome the 

above mentioned issues as, for instance, the drift error introduced by the integration of the 

gyroscope signal may be compensated by the accelerometer-based orientation estimate. These 

devices appear therefore more suitable than accelerometers or gyroscope alone to be employed 

for prolonged data collection. 

 

In the last decades, the use of inertial sensors (especially accelerometers and IMUs) has 

become widespread in many applications where fast and reliable quantitative assessment of 

human movement is required. The current availability of miniaturized lightweight IMUs make 

them very appealing to collect movement information under ecological conditions. 

Accelerometers are widely recognized as valid tools to monitor daily life activities for 

epidemiological or clinical purposes, both in healthy and pathological subjects (Arvidsson et 

al., 2019). They are commonly used to estimate energy expenditure and classify physical 

activity or behaviors according to their intensity (e.g. sedentary behavior, light, moderate and 

vigorous physical activity levels). Also, IMUs are becoming increasingly popular in clinical 

settings as they have been demonstrated reliable in assessing spatio-temporal parameters of gait 

(Bugané et al., 2012), and suitable to reproduce instrumented versions of classical clinical tests 

such as the Timed Up and Go, the 6-minutes walking test, etc. (Iosa et al., 2016) 
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In the last two decades accelerometers, gyroscopes and IMUs have become popular also 

in occupational field-based studies (Lim and D’Suoza, 2020), even though the variety of 

protocols employed for the measurements and the data processing techniques are so variable 

that a standardization is quite far from being achieved. As a matter of fact, the scientific 

literature reports studies that differ each other in terms of number of sensors employed (which 

ranges from 1 to 17), sensor placement locations (Figure 3.3) and parameters assessed (e.g. 

angular displacement, velocity etc.). Accelerometers have been used to assess exposure to non-

neutral working postures with particular focus on low back, neck and shoulders (Jansen et al., 

2001; Tesche et al., 2009; Schall et al., 2015; 2016). However, despite their common use, 

accelerometer-based estimates have been found characterized by poor accuracy in case of 

complex dynamic motions (Schall et al., 2015). Such issues pushed researchers to explore the 

potentialities of IMUs. 

 

Figure 3.3 Examples of different sensor/s placement locations adopted in different studies. 
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There are currently several models of IMUs on the market specifically designed for 

human movement analysis (see Figure 3.4). Being small, light and wearable, IMUs appear the 

ideal solution to monitor postural changes in field settings and thus, their validity and accuracy 

for the assessment of body kinematics have been extensively investigated, especially by 

comparing their performance to gold standards such as optical motion capture system (OMC) 

(Table 3.1). Such validation studies have been performed, for example, as regards the 

assessment of upper arms and shoulder kinematics (Cutti et al., 2008; El-Gohary and McNames, 

2012), cervical spine (Duc et al., 2014), lower extremities (Picerno et al., 2008; Ferrari et al., 

2009), and trunk (Plamondon et al., 2007; Schall et al., 2016).  

  

 
Figure 3.4 Example of IMUs commercially available. (From Top to bottom) Awinda (X-Sens 

Technology, Netherlands) and Aktos-t (Myon, Lucerne, Switzerland) allow the use of 

linked sensors. Shimmer3 (Shimmer Research, Dublin, Ireland), Gait Up (Alp ICT, 

Plan-les-Ouates, Switzerland), G-Sensor2 (BTS, Bioengineering, Milan, Italy)  

 

In terms of IMUs performances, Cutti et al. (2008) and then El-Gohary and McNames 

(2012) reported a RMS error <3.6° and <8° when evaluating respectively shoulder and elbow 

three-dimensional kinematics in terms of joint angles during the performance of flex-extension, 
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prono-supination and intra-extra rotation of the upper limb. Similarly, Duc et al. (2014), who 

employed IMUs to evaluate the cervical range of motion (ROM) found a mean difference with 

OMC <5.7° and a mean standard error in the test-retest repeatability <6.2°. At last, Ferrari et 

al. (2009) and Picerno et al. (2008) who evaluated the kinematics of the lower limb during gait, 

reported an excellent agreement with the results obtained by means of OMC.  

Besides the mentioned applications in clinical field, it is noteworthy that IMUs have been 

validated in terms of accuracy and precision also in ergonomic applications. The studies carried 

out by Plandmon et al. (2007) and Kim and Nussbaum (2013) evaluated the validity of using 

IMUs to assess trunk posture during manual material handling (MMH) tasks in comparison 

with OMC reference system. Plandmon et al. (2007) found on average an error of 1.5° in trunk 

lateral bending, 3.2° in trunk flexion and 4.3° in trunk axial rotation. Kim and Nussbaum (2013) 

investigated 3D joint angles and velocities of knees, hips, trunk and shoulders, in subjects who 

were requested to perform a range of MMH tasks (i.e. lifting, lowering, pushing, pulling and 

carrying). The comparison of the results obtained using IMUs and OMC, showed a mean 

absolute error (MAE) ranging between 0.8° and 3.6° for joint angles and between 0.53 °/s and 

1.03 °/s for joint angular velocities. Robert-Lachaine et al. (2017) assessed whole body 

kinematics during 32 minutes of MMH tasks, using simultaneously an OMC system and a full-

body inertial motion capture system in order to determine technological and biomechanical 

model differences between IMUs and OMC. They found an error due to different technologies 

generally below 5° of (calculated as RMS error) with coefficient of repeatability (𝐶𝑅 = 𝑆𝐸𝑀 ∙

√2 ∙ 1.96, value below which the absolute differences between two measurement would lie with 

95% of probability) varying from 2.2° to 9.7°, while differences associated to the biomechanical 

model were found statistically greater than those due to technology. Schall et al. (2016) 

explored the validity and reliability of an IMU compared with an OMC assessing trunk posture 
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during a simulated 8-hour shift in simulated milk-parlor activities, finding a sample-to-sample 

RMS difference ranging between 4.1° and 6.6°. 

IMUs have been also used to classify posture and types of work task by means of 

predictive models (e.g. machine learning, artificial neural network etc.) (see Table 3.2). For 

instance, Brandt et al. (2017) applied a Linear Discriminant Analysis to classify low and high-

risk lifting using data acquired by means of inertial sensors placed on the trunk. They found 

that, on average, the algorithm 

 

Table 3.1 Studies validating IMU-based measurements in clinical and ergonomic 
application in comparison with optical motion capture system 

Study Objective Validation Key findings 

Cutti et al (2008) 

Measure of 
scapulothoracic, 
humerothoracic and 
elbow 3D kinematics. 

Performance of flex-
extension, rotation and 
prono-supination (1 
subject tested) 

RMS error <3.6° 

Duc et al. (2014) 
Assessment of cervical 
spine mobility 

Sequences of imposed 
active head movements 
(lateral bending, axial-
rotation and flexion–
extension) (10 healthy 
subjects and 13 
arthrodesis patients 
tested) 

ICC range 0.63-0.99 
SEM <6.2° 
RMS difference <5.7° 

El-Gohary & McNames 
(2012) 

Assessment of shoulder 
and elbow joint angles  

Performance of shoulder 
and elbow flex-extension, 
rotation and ab-
adduction at regular and 
fast speed (8 subjects 
tested) 

RMS error <8° 

Ferrari et al. (2009) 
Assessment of thorax-
pelvis and lower limb 
kinematics” 

Gait (4 subjects tested) 

CMC coefficient of 
multiple correlation of hip, 
knee and ankle flex-
extension and hip ab-
adduction >0.88 

Kim & Nussbaum (2013) 
Assessment of full body 
joint angles and angular 
velocities  

20 minutes of MMH tasks 
performance (14 subjects 
tested) 

MAE joint angles range 
0.8°- 3.6° 
MAE joint angular 
velocities range 0.53°/s - 
1.03 °/s 
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Picerno et al. (2008) 

Repeatability of six 
examiners in the sensor 
placement for the 
evaluation of joint 
kinematics 

Upright posture and 
walking tasks (1 subject 
tested) 

RMS error walking 
condition range 2.5% - 
4.8% of the ROM in flex-
extension; range 13.1%-
41.8% of the ROM in 
internal-external rotation 

Plandmon et al. (2007) 3D trunk posture 

MMH task in static 
postures, dynamic 
motion of short duration 
(30s) and long durations 
(30min) (6 subjects 
tested) 

RMS error <3° along flex-
extension axis and <6° 
along axial rotation axis 

Robert-Lachaine et al. 
(2017) 

Technological and 
biomechanical model 
differences in the 
evaluation of full body 
kinematics  

Performance of MMH 
tasks (12 subjects 
tested) 

Differences attributed 
to the biomechanical 
model significantly 
greater RMSE than the 
technological error. 
Joint angles RMS error 
<5° 

Schall et al. (2016) 
Assessment of trunk 
angular displacement and 
upper arm elevation 

8 hours of dairy parlour 
tasks. (10 diary workers 
tested)  

RMS difference range 
4.1°-6.6°for the trunk 
RMS difference range 
7.2°-12.1°for upper arm 
elevation 

 

was able to correctly discriminate 65% of the postural angles estimated. In a laboratory 

study, Kim and Nussbaum (2014) compared the performances of three different classification 

algorithms (i.e. Linear Discriminant Analysis, k-nearest neighbor and Multi-layer feedforward 

neural network) which processed data obtained using different combination of sensors with the 

purpose to classify MMH tasks (i.e. carrying, walking, lifting/lowering from ground and 

knuckle eight and push and pulling). The precision of the classification exceeded 90%, while 

the durations of the task performed were underestimated of approximately 14%. Hosseinian et 

al. (2019) developed an algorithm based on a random forest model to classify four static 

activities (i.e., standing, trunk flexion, trunk lateral bending to the left and right side) and seven 

dynamic activities (i.e., bidirectional trunk twisting, lateral bending, flexion/extension, 

squatting, slow walking, fast walking, and running) using data features obtained from a single 

sensor located on the chest. The algorithm classified data from simulated activities with a 

prediction accuracy of 93%–98.2%. Peppoloni et al. (2016) developed a machine learning 
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segmentation algorithm to identify the starting and ending of different hand activities including 

neutral posture, reaching, grasping, and moving in a study which investigated the repetitive 

hand motions of supermarket cashiers. Deviations from neutral posture of the upper limb, neck, 

trunk, and leg during the segmented activities were used to calculate the RULA score for each 

activity. The study reported an accuracy of 94.8% within each activity cycle for the RULA 

scores obtained by the algorithm compared to those assessed by an ergonomic practitioner. 

Anderson et al. (2019) developed an algorithm based on decision trees to classify sitting, 

standing, weight-shifting, shuffling, and walking using data from a single accelerometer 

attached on the thigh. The prediction accuracy of the algorithm adopting a leave-one-subject-

out cross-validation method was between 93.3% and 96.8%. 

 

Table 3.2 Studies validating IMU-based measurements to classify ergonomic tasks 

Study Model Objective Features Validation 
Key 
findings 

Brant et al. 
(2017) 

Linear 
discriminant 
analysis 

To classify low 
and high risk 
lifting activities 

Feature vector 
composed by 90th, 
95th or 99th 
percentile of sEMG 
activity level and 
trunk inclinations 

Monte-Carlo cross 
validation (random 
sampling of training 
and test set 
repeated 100 
times) 

Accuracy 
65.1-65.5% 

Kim & 
Nussbaum 
(2014) 

Linear 
discriminant 
analysis; k-
nearest 
neighbor; 
Multilayer 
feedforward 
neural network 

To classify 
MMH tasks 
type: walking, 
carrying, lifting, 
lowering, 
pushing and 
pulling  

Feature vector 
composed by joint 
angular 
displacement; joint 
angular velocities, 
contact pressure 
(insole)  

Three fold cross-
validation 

Precision 
>90% and 
recall >80% 

Hossenian 
et al. 
(2019) 

Random forest 

To classify 
MMH tasks: 
four static and 
seven dynamic 

Feature vector 
composed by 
median trunk angles 
and area under the 
curve of normalized 
with respect to 
subjects’ height) 
acceleration 

NA 
Accuracy 
93%-98.2% 
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Peppoloni 
et al. 
(2016) 

State machine 

To classify 
task types: 
neutral pose, 
reach, grasp, 
and move 

NA 

Strain Index and 
RULA score 
calculated with the 
measured posture 
within the identified 
task duration were 
compared with 
human evaluator’s 
ratings 

Accuracy of 
94.8% for 
RULA action 
level, $$.8% 
for Strain 
Index 

Anderson 
et al. 
(2019) 

Decision Tree  

To classify 
sitting, 
standing, 
weight-shifting, 
shuffling and 
walking 

Raw acceleration 
data 

Leave-one-subject-
out cross-validation 

Accuracy 
93.3%-
96.8% 

 

In the last decade a relevant number of studies proposed the use of IMUs also for “in situ” 

analysis (see Table 3.3). For instance, Alvarez et al. (2016) measured the joint kinematics of 

upper limbs (wrist, elbow and shoulder joints), using four IMUs, to assess repetitive movements 

or sustained awkward postures (such as holding a bent arm position) in industrial settings but 

also in clinical settings for the joint motion evaluation procedures carried out by doctors in the 

examination of affected joints for granting medical sick leave.  Moriguchi et al. (2013) assessed 

the upper body posture (arms, head and neck) in a cohort of electricians working in the 

construction industries. Posture was assessed during a regular shift having the sensors placed 

bilaterally on the upper arms (sensors were attached on two plastic plates fixed below the 

deltoid muscle insertion), on the forehead (using a double-side tape) and in correspondence of 

the cervicothoracic spine (C7-T1). Sigh et al. (2017) evaluated musculoskeletal postural load 

in surgeons using three IMUs, placed bilaterally on the upper arms and on the chest. Data 

collected was then used to calculate a modified Rapid Upper Limb Assessment (RULA) score. 

Brant et al. (2018) used two IMUs placed on the upper back and on the thigh to analyze the 

workload (in terms of non-neutral posture and number of steps) in construction workers. 

Blanguier et al. (2017) aimed to characterize trunk posture patterns in vineyard activities 

recoding amplitude of flexion and time spent in non-neutral posture (>20°), by means of a single 



49 

 

IMU placed on the chest at the sternum level. Similarly, Asante et al. (2018) used a posture 

measurement system (IMU-based) to assess trunk flexion and lateral bending in different 

activities (pre-sorting; removal of unwanted/dangerous materials etc.) carried out by recycling 

workers. Jakobsen et al. (2018) compared the workload on the low back (assessed in terms of 

trunk posture and muscle activity) among blue-collar workers employed in different sectors 

(postal workers, machine operators, warehouse workers). Ribeiro et al. (2011) examined the 

within-day reliability of a commercial device (based on IMU) monitoring lumbo-pelvic trunk 

posture of healthcare workers, while Villumsen et al. (2016) investigated the association 

between trunk forward bending, low back pain (LBP) intensity and social support. 

 

Table 3.3 Studies validating IMU-based measurements in field settings 

Study Body district 
Biomechanical 
exposure metrics 

Field/occupation 
Number of 
sensor/s 

Alvarez et al. 
(2016) 

Upper limb 

Amplitude (threshold 
based), frequency and 
duration (%time) of 
non-neutral posture  

Industry 
4: thorax, upper 
arm, forearm and 
hand 

Moriguchi et al. 
(2014) 

Arm, head and 
neck 

Arm elevation 
(threshold based), 
head and neck flexion 
angles; duration 
(%time) 

Construction 
(electricians) (12 
Norvegian and 12 
Brazilian workers) 

4: right and left 
upper arms; 
forehead; 
cervicothoracic 
spine (C7-T1) 

Sigh et al. (2016) 
Neck, trunk and 
shoulder 

Neck and trunk flexion 
(threshold based); arm 
elevation (threshold 
based). Duration 
(%time) 

Surgeons (N=4) 
3: right and left 
upper arms and 
chest 

Balanguier et al. 
(2017) 

Trunk  

Trunk flexion and 
rotation (threshold 
based). Duration (%of 
time) 

Vineyard workers 
(N=15) 

1: chest (sternum 
level) 

Asante et al. 
(2018) 

Trunk 

Trunk flexion and 
lateral bending 
(threshold based). 
Duration (%Time) 

Recycling workers 
(N=10) 

1: chest 
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Ribeiro et al. 
(2011) 

Trunk 

Trunk flexion 
(threshold based). 
Frequency 
(bends/hour) 

Aged-care residential 
home workers (N=21) 

Spineangel postural 
monitoring 

Villumsen et al. 
(2016) 

Trunk  
Trunk flexion 
(threshold based). 
Duration (time) 

Blue-collar workers 
(N=657) 

2: Trunk (T1-T2) 
and thigh 

Schall et al. 
(2016) 

Trunk and 
upper arm 

Trunk flexion and 
upper arm elevation 
(Threshold based). 
Duration (%time). 
Count of 3s periods in 
neutral trunk posture 
or arm position with 
velocity <5°/s per min 

Nurses (N=36) 
3: right and left 
upper arm and 
thorax (T4) 

Jakobsen et al. 
(2018) 

Trunk 
Trunk flexion 
(threshold based). 
Duration (time)  

Warehouse 
workers(N=39), 
Operators (N=27); 
Postal workers 
(N=24) and 
slaughterhouse 
workers (N=20) 

1: thorax (T1-T2) 

 

The results of the above-mentioned studies strongly support the idea that IMUs represent 

an effective and feasible way to assess body postures and to classify MMH activities in 

occupational contexts. However, when a relevant number of sensors is employed, the 

application of such techniques to actual working contexts appear difficult. Also, most existing 

studies do not consider all the main features of exposure, namely amplitude, duration and 

frequency. To fill, at least partly, this gap, the main purpose of the present study is to propose 

the application of a simplified setup to assess trunk posture in terms of amplitude, frequency 

and duration in real work environments. 
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Chapter 4 

Instruments and methods 
 

As previously mentioned, this study is focused on the characterization of posture and 

movement of ageing workers, particularly in those engaged in physically demanding 

occupations which are possibly associated to an increased risk of develop LBDs. In order to 

simplify the assessment of workload associated with trunk posture and occupational physical 

activity, the research has been articulated into two main areas:  

1. To demonstrate the feasibility of use and the reliability of a simplified setup composed by a 

single IMU to monitor trunk flexion for prolonged working time in actual occupational 

settings. 

2. To explore the possibility to use the same setup to classify type, frequency and duration of 

a range of MMH tasks of interest (given their potential hazard for the development of LBDs) 

by means of specific algorithms that process IMU-derived data. 

 

In the subsequent part of this chapter, will be described in detail the devices employed for the 

study as well as the data processing techniques. 

 

Inertial Measurement Units (IMUs) and accelerometers 

to assess motion  

 

To date, there is a wide range of IMUs available on the market, which differ for technical 

characteristics like sensitivity range, presence of dedicated software to facilitate the data 

processing in clinical, sport or ergonomic use or for the possibility to acquire data on-board. 
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For instance, the X-Sens units (The Netherlands) IMUs (Figure 5.1) (see Faber et al., 2009; 

Kim and Nussbaum, 2013; Alvarez et al., 2016; Merino et al., 2019; Maurice et al., 2019); The 

I2M SXT, (APDM, Inc., Portland OR) (see Sigh et al. 2017); I4 motion (Technoconcept, Mane, 

France) (see Balanguier et al. 2017); SXT I2M (NextGen Ergonomics, Montreal, Canada) (see 

Asante et al., 2018); or the ArduIMU v3 (3D robotics, Inc., Berkeley, CA). The X-Sens units 

(The Netherlands) IMUs are probably the most widespread for research purposes due to the 

possibility they offer to collect and process data on full body kinematics by means of an ad-hoc 

suite. However, their use in the assessment of full body kinematics in actual working conditions 

is limited due to incompatibility with personal protective equipment and the need to stay close 

(15 m) to the sensor receiver. The G-Sensor2 (BTS-Bioengineering, Italy) (Figure 5.1) gained 

popularity especially in clinical and sport settings due to the availability of ready-to-use 

protocols to calculate parameters of interests for gait analysis, Timed-Up-and-Go, jumps, etc. 

Moreover, this device allows recording data on-board (up to 512 Mb of data, that is 2 to 8 hours 

of data collection depending on the acquisition frequency), giving the possibility to the tested 

subject to freely move (without the need to stay within the range of communication with a PC) 

appearing thus suitable to long monitoring in actual occupational settings. Actigraph company 

(USA) produce the GT9X IMU (see for example Brant et al., 2017), but in the literature is easier 

to find studies which employed the GT3x tri-axial accelerometer (Figure 5.1), a device 

extensively employed either as inclinometer or activity tracker to estimate levels of physical 

activity and energy expenditure (some examples are: Jakobsen et al., 2018; Schall et al., 2015; 

Villumsen et al., 2016). 

Different sensors, although based on the same principle of functioning, are characterized 

by peculiar features that make them more suitable to specific uses and settings. In the case of 

the present study, the G-Sensor2 was found the most appropriate solution to record trunk 

movement for prolonged period of time on-board. On the other hand, the X-Sens Awinda 
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system represented a good solution to compare the performance achievable in tasks 

classification with sensors placed in different locations simultaneously. Finally, the GT3x was 

a valid option to estimate occupational physical activity in a straightforward way due to its 

powerful management software. 

 

 

 

X-Sens Awinda, Strap and Suite 
version and recording receiver station 

G-Sensor 2 Actigraph Gt3x 

Figure 5.1 In figure are reported the three commercially available IMU, employed in this 
work 

 

Quantification of angular motion 

 

Assuming body segments as rigid bodies, the quantification of attitude or angular 

motion consist of three components, which refer respectively to the sagittal, coronal and 

transverse anatomical planes. Since several kind of parametrization are currently available to 

represent movement in three-dimension (3D), a given segment attitude can be specified by 

different components values depending on the parametrization that is chosen. In Cartesian 

coordinate systems, given a global reference system and a local reference system embedded in 
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the rigid body (body segment), the attitude of the segment can be described relatively to the 

global reference system by defining a 3x3 rotation matrix [R]. A commonly used 

parametrization makes use of Cardan/Euler angles, which are easily obtainable starting from a 

rotation matrix. Indeed, a set of three independent angles is obtained by an ordered sequence of 

rotations (a,b,c) about the axes of a selected Cartesian coordinate system (which generally is 

the global reference system) to obtain the attitude of the segment (or, equivalently, of the 

embedded reference system). The sequence is determined by the assignment of the axes x,y,z 

to the ordered sequence a,b,c. When all three rotations (a,b,c) occur around different axes (x,y,z) 

the term Cardan angles is used. For a=c (e.g. x,z,x), the term Euler angles is used. For a given 

attitude (i.e. a defined rotation matrix), the magnitude of the three angular components changes 

according on the way axes are assigned to the ordered sequence. Thus, Cardan/Euler angles are 

characterized by the so-called sequence dependency. 

In order to avoid this sequence dependency Cole et al. (1993) proposed a generalized 

algorithm which overcomes the issues related to the model proposed by Grood and Suntay 

(1983). In his generalized algorithm Cole et al. (1993) defined the axis of flexion F-axis, the 

longitudinal axis L-axis and the third axis T-axis, which is obtained by the cross product 

between F-axis and L-axis with the relative sequence of rotation F-L-T or rotation around the 

axis of flexion, rotation around the axis of ab-adduction and finally the rotation around the axis 

of axial rotation (FE-AA-IE). 

 

Quantification of angular motion using G-Sensor2 data 

 

The G-Sensor2 integrates a Digital Motion ProcessorTM (DMPTM) that provides as 

output the Cardan angles together with raw accelerations and angular velocities using a 

proprietary motion fusion algorithm. The Cardan angles are referred to a local reference systems 
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obtained from an autocalibration procedure which is performed each time the sensor is powered 

on, and thus is not directly usable in the determination of its attitude (or the attitude of the body 

segment on which it is attached). Following the generalized algorithm proposed by Cole et al. 

(1993), the attitude and subsequent angular movement of the sensor have been obtained 

following the next steps.  

 

• STEP 1: Definition of fixed and moving reference systems  

In order to obtain the sensor attitude, it is necessary to define both fixed and moving reference 

systems. For convenience, the fixed reference system has been chosen coincident to the 

reference system embedded in the sensor case which then coincide with the moving reference 

system before the start of the movement (i.e. during the calibration/stabilization phase).  

The x-axis of the fixed reference system is represented by the inferior-superior axis, the y-axis 

is the medio-lateral axis and the z-axis is the antero-posterior axis (see Figure 5.2a). They 

correspond respectively to the axis of axial rotation, flexion-extension and ab-adduction or 

lateral bending, when the sensor is attached to the subject’s trunk (the sensor was placed 

according to Faber et al., 2009).  

The moving reference system (local reference system) is based on the Cardan angles 

calculated by the DMPTM during the stabilization phase, identified using the vertical 

acceleration signal. This procedure is performed considering the interval of time in which the 

vertical acceleration values are within ± 2% of g threshold (g: acceleration of gravity), as shown 

in figure 5.3. 
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a b 

Figure 5.2  Figure a shows the reference system associated to the case of the sensor. x-axis 
that correspond to the axial rotation; y-axis that correspond to flex extension and z-
axis that correspond to the lateral bending. Figure b shows the sensor location 
placement according to Faber et al. (2009) 

 

 

 

Figure 5.3  Example of vertical of vertical acceleration where is indicated the portion of signal 
used to find the stabilization phase 
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- STEP 2: Sensor orientation assessment from IMU Cardan angles output 

To obtain the sensor orientation we must recall that the attitude of a rigid body (ρ) in space can 

be obtained using the relationship between a global (fixed) reference system and a local 

(moving) reference system (eq. 5.1) (Figure 5.4). 

ρ =
𝑔

𝑅𝑙
𝑔

ρ + 𝑜
𝑔

                                                         (5.1) 

 

 

Figure 5.4 Example of global and local reference systems. On the right the two system are 

overlapped (as during the stabilization phase); On the left the local reference system 

is rotated respect to the global reference system (as during trunk movements) 

 

Where the rotation matrix 𝑅𝑙
𝑔

ρ has been defined as: 

𝑅𝑙
𝑔

=  [

cos (𝛳𝑥𝑔𝑥𝑙
) cos (𝛳𝑥𝑔𝑦𝑙

) cos (𝛳𝑥𝑔𝑧𝑙
)

cos (𝛳𝑦𝑔𝑥𝑙
) cos (𝛳𝑦𝑔𝑦𝑙

) cos (𝛳𝑦𝑔𝑧𝑙
)

cos (𝛳𝑧𝑔𝑥𝑙
) cos (𝛳𝑧𝑔𝑦𝑙

) cos (𝛳𝑧𝑔𝑧𝑙
)

]                                 (5.2) 

 

Then, the relative movement between the fixed and moving reference systems can be calculated 

for each time sample, using the rotation matrix parametrization (5.2) and the equation (5.3)  

 

𝑅𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 =  𝑅𝑀𝑜𝑣𝑖𝑛𝑔
𝑇 ∗ 𝑅𝐹𝑖𝑥𝑒𝑑                                        (5.3) 
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Where 𝑅𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 is the rotation matrix that represents the angular movement of the 

sensor; 𝑅𝑀𝑜𝑣𝑖𝑛𝑔
𝑇  is the rotation matrix representing the moving reference system transposed and 

𝑅𝐹𝑖𝑥𝑒𝑑 is the rotation matrix associated to the fixed reference system. 

 

Finally, to represent in a simpler manner the information contained in the rotation matrix 

𝑅𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡 it has been translated using Cardan angles. This transformation has been 

performed using the Cardan rotation sequence Y-Z-X (corresponding to FE-AA-ROT), as 

suggested by Cole et al. (1993) to avoid errors associated to the sequence dependency. 

All the above-mentioned data processing has been performed using a custom MATLAB routine 

(R2019a, MathWorks, Natick, Massachusetts, USA).  

 

 

Figure 5.5 Example of transformation from Cardan angles output of the sensor to Cardan angles 
calculated with respect to the fixed sensor reference system, following the described 
steps 

 

Comparison of angular motion using G-Sensor2 and an optical motion 

capture system 

 

Although several studies verified the validity and reliability of the IMU in terms of 

human body kinematics assessment (Cutti et al., 2008; El-Gohary and McNames, 2012; 

Picerno, et al., 2008; Ferrari et al., 2010; Plamondon et al., 2007; Kim and Nussbaum, 2013; 
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Schall et al., 2015), to the best of our knowledge none of them specifically evaluated the 

performances of the G-Sensor2 (BTS Bioengineering, Milan, Italy). Thus, in order to assess the 

quality of the output achievable with this device, the Cardan angles measured by means of the 

IMU with those obtained from an optical motion capture system during simultaneous 

acquisitions. 

To this aim, three non- aligned markers were placed on the G-Sensor2 (as shown in 

Figure 5.6). They defined a reference system oriented as the embedded reference system of the 

case of the G-Sensor2 (Figure 5.6). 

 

 

 

Figure 5.6 Left: three non- aligned markers to build an embedded sensor reference system. 
Left: Sensor reference system represented in the optical motion capture system 
point of view. 

 

Labeling the markers attached to the sensor as: L_GS (left side marker), R_GS (right 

side marker), TOP_GS (top anterior marker), at each time was possible to obtain the 3D 

coordinates of three non-aligned point in space. Starting from these data we built the rotation 

matrix that defines the local reference system associated to the sensor as follows:  
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𝑗 =  ‖𝑃1 − 𝑃2‖ 

𝑎 =  ‖𝑃3 − 𝑃1‖ 

𝑘 =  ‖𝑎 × 𝑗‖ 

𝑖 =  ‖𝑗 × 𝑘‖ 

𝐿𝑜𝑐𝑎𝑙𝑅𝑆 = [𝑖, 𝑗, 𝑘]                                                         (5.4) 

 

Where P1 is R_GS; P2 is the mid-point between R_GS and L_GS and P3 is TOP_GS. Also, j is 

the unit vector that connect P1 to P2; k is the projection of P3 onto the unit vector j and i is the 

unit vector obtained as cross product between j and k. 

As described in equation (5.3) it is possible to obtain the information about the sensor 

angular displacement (from the optical motion capture system point of view) by comparing the 

rotation matrix of the local reference system with the rotation matrix associated to the global 

reference system (the laboratory reference system) suitably rotated so that at the initial time 

frame the two reference systems are overlapped (figure 5.4). 

To calculate the differences in angular displacements assessed obtained using the two 

systems (i.e. optical vs IMU), a sample-to-sample root mean squared distance (RMSD) on 21 

trials (7 subjects x 3 repetitions) for three main trunk movements (i.e. flex-extension, lateral 

bending, axial rotation) was performed. 

𝑅𝑀𝑆𝐷 =  √∑ (
𝜃𝐼𝑀𝑈−𝜃𝑂𝑝𝑡𝑖𝑐𝑎𝑙

𝑁
)

2
𝑁
𝑖=1                                               (5.5) 

The results showed a good level of agreement between the systems, with a RMSD 

ranging from 1.6° to 3.8° for lateral bending and axial rotation respectively (Table 5.1). 
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Table 5.1 sample-to-sample RMS error on 21 trials (7 subjects x 3 repetitions) for each trunk 

movement. Values are expressed as mean (SD) 

Analyzed Movement RMS 

Flexion 

Extension 

 

2.1 

(1.9) 

Lateral 

Bending 

 

1.6 

(0.8) 

Axial 

Rotation 

 

3.8 

(1.3) 
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Continuous Monitoring of trunk posture: Exposure 

Variation Analysis 

 

In field studies, exposure is an observed parameter and the quantification of variation 

becomes a problem of reducing exposure-vs-time data. The term “exposure” may denote the 

acute, instantaneous level of physical load, or may refers to a cumulative aspect which described 

the time-integrated quantity of exposure. In occupational field the exposure is a variable 

parameter that imply a problem of data processing to yield relevant information. Dynamic and 

static aspects of postural movements are important in explaining the way in which physical load 

may cause musculoskeletal problems. In principle, continuous registration of angular trunk 

position acquired through direct measurement techniques allows to quantitatively describe all 

three essential parameters of exposure, that is amplitude, frequency and duration. In practical 

terms, having available a method to easily assess exposure (while still able to 

discriminate/identify the relevant pattern of exposure), might help to compare exposure at 

different time or between different occupations (e.g. construction, healthcare, manufacturing 

etc.) or populations (e.g. young vs old, men vs female etc.).  

Matthiassen and Winkel (1991) proposed a method for the reduction of exposure data 

recorded as a function of time, named Exposure Variation Analysis (EVA). EVA basically 

translate exposure-versus-time registrations into a data sheet. The procedure to perform such 

process is the following: 

1. The duration of every single unbroken period spent within a certain class limit 

(a predefined level of exposure) is registered; 

2. These periods are sorted into time-period classes (each characterized by a 

predefined duration of exposure); 
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3. The accumulated time spent in each of the time-period classes is calculated and 

expressed as percentage of the total working time; 

4.  Steps (1) to (3) are repeated for each of the remaining exposure level classes. 

 

In this way a value located in a certain cell of the data sheet represent the accumulated 

time spent in period of defined length, at the exposure level within the indicated class. The sum 

of all cells values represents the 100% of the working time. A datasheet with n cells will contain 

n-1 statistically independent numbers, thus providing a basis for statistical evaluation of the 

analyzed work operation, as well as for comparison with other work tasks. The contents of the 

table can also be represented as a bar diagram (Figure 5.7). 

 

 

Figure 5.7 Example of EVA methods procedure. From the exposure vs time signals duration of every 
single unbroken period spent within a certain class limit is registered; periods are sorted 
into time-period classes; accumulated time spent in each of the time-period classes is 
calculated and expressed as percentage of the total working time. 
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The choice of exposure classes 

 

Specific thresholds or limits at which trunk postures become an occupational hazard 

have not been defined yet, although this issue was debated since a decade ago (Hoy et al., 2010). 

The attempts to classify mild, moderate and severe trunk postures resulted, so far in many (and 

even much different) thresholds. Wai et al. (2010) who summarized the results of 35 studies 

which adopted a variety of categories to evaluate awkward trunk postures, concluded that most 

epidemiological studies used thresholds of 45° or greater to define extreme postures. The 

NIOSH suggested that researchers should classify trunk postures into four major categories 

based on increment of 30° (i.e. 0°-30°; 30°-60°; 60°-90° and >90°, NIOSH, 2014). Although 

this classification was designed mainly to facilitate the use of observational methods, it also 

represents an important starting point for standardization of trunk postures and have been also 

used in subsequent studies (Villumsen et al., 2015; Lee et al., 2017; Coenen et al., 2013). In the 

present study we decided to adopt the NIOSH classification also to facilitate the comparison of 

the results with those of previous studies. 

Discrimination of different activities in manual material 

handling tasks 

 

In addition to the evaluation of body kinematics, IMUs have been used also to classify 

posture and type of work task by means of predictive models (e.g. machine learning, artificial 

neural network etc.). Since jobs that involve manual material handing (MMH) such as 

lifting/lowering, pushing/pulling, and carrying have been positively associated with a higher 

risk of LBDs development (National Research Council, USA, Panel on Musculoskeletal 

Disorders, Institute of Medicine 2001). In this study has been decided to apply a classification 

algorithm to estimate frequency and duration of eight MMH tasks namely: 1) lifting from the 
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ground, 2) lifting from knuckle height, 3) lowering to the ground, 4) lowering to knuckle height, 

5) pushing, 6) pulling, 7) carrying, and 8) walking. 

There are many currently available classifications algorithms and variants (e.g., Naïve 

Bayes, K-Nearest Neighbors, Decision Tree, and Support Vector Machines), that can be trained 

using signals obtained with different feature selection methods and, tested using different 

approaches. For our purposes, the choice of a bidirectional long short-term memory (BiLSTM) 

recurrent neural network appeared the most suitable. This choice because deep learning (among 

which BiLSTM) approaches have been found to often outperform conventional classification 

algorithms (Gjoreski et al., 2016) and can avoid the design and handpicking of features that 

typically require expert knowledge (Jordao et al., 2018; Wang et al., 2019; Shakya et al., 2018). 

Additionally, Wang et al. (2019) noted that a LSTM network is effective in classifying highly 

unbalanced activities in terms of frequency as occurs in MMH tasks (e.g., more lifting from 

knee level than lifting from ground level).  

The following paragraph will present BiLSTM in more detail. 

 

Bidirectional Long-Short Term Memory Network (BiLSTM) 

 

Bidirectional Long Short-Term Memory Network are a particular Artificial Recurrent 

Neural Network structure, a group of models that take the principle “infer the knowledge from 

the data”. These methods are suitable to study a particular class of problems that are represented 

by temporal sequences of input-output data pairs (e.g. speech recognition, time series 

prediction, dynamic control systems etc.).  
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Given a time series of input data vectors 𝒙1
𝑇, a RNN maps a corresponding output data 

vectors 𝒚1
𝑇by means of a set of activation weights and a non-linear activation function. With 

neighboring data being in some way statistically dependent. 

𝒙1
𝑇 = {𝒙1, 𝒙2, 𝒙3, … , 𝒙𝑇−1, 𝒙𝑇} 

𝒚1
𝑇 = {𝒚1, 𝒚2, 𝒚3, … , 𝒚𝑇−1, 𝒚𝑇} 

For a given time sequence 𝒙1
𝑇 and 𝒚1

𝑇 as training data, the aim is to learn the rules to 

predict the output data given the input data. Inputs and outputs can, in general be continuous 

and/or categorical variables. In the latter case categorical, they can be named class labels (as in 

the present study), and the problem is known as “classification problem”. In the case of the 

classification problem, the goal is to find the most probable class, out of a given pool of possible 

classes for every time frame t given an input vector sequence 𝒙1
𝑇. To make this kind of problem 

suitable to be solved by an artificial neural network, the categorical variables are usually coded 

as vectors as follows. Consider that i is the desired class label for the frame at time t. Then, 

construct an output vector yt such that its ith component is 1 and other components are 0. The 

output vector sequence 𝒚1
𝑇 construct in this way along with the input vector sequence 𝒙1

𝑇can be 

used to train the network which will result from a maximum likelihood estimation. It has been 

shown that the ith network output at each time point t can be interpreted as an estimate of the 

conditional posterior probability of class membership for class i, with the quality of the estimate 

depending on the size of the training data and the complexity of the network.  

Different architectures of artificial neural networks use input vector sequence in 

different ways (Figure 5.8 from Schuster and Paliwal, 1997). A RNN architecture can make use 

of all the available input information up to the current time frame tc to predict ytc. The amount 

of this information is captured by a particular RNN depends on its structure and the training 

algorithm used. In general for an input sequence 𝒙1
𝑇, a RNN compute the hidden sequence 𝒉1

𝑇 
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and the output sequence 𝒚1
𝑇 by performing the following operations for time steps t =1 to T 

(Graves et al. 2013): 

ℎ𝑡 = 𝐻(𝑊𝑥ℎ𝑥𝑡 + 𝑊ℎℎℎ𝑡−1 + 𝑏ℎ) 

𝑦𝑡 = 𝐻(𝑊ℎ𝑦ℎ𝑡 + 𝑏𝑦) 

Where H is the hidden layer activation function, 𝑊𝑥ℎ is the weight matrix between the 

input and the hidden layer, 𝑊ℎℎis the recurrent weight matrix between the hidden layer and 

itself, 𝑊ℎ𝑦 is the weight matrix between the hidden and output layer, and 𝑏ℎ 𝑏𝑦 are the hidden 

and output layer bias vectors respectively. H is usually an element-wise application of the 

sigmoid function. To overcome the vanishing gradient problem of traditional RNN, Hochreiter 

and Schmidhuber (1997) propose an alternative RNN called Long Shorth-Term Memory 

(LSTM) in which conventional neuron are replaced with a so-called memory cell controlled by 

input, output and forget gates. In this case, H can be described by the following composite 

function: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡+𝑊ℎ𝑖ℎ𝑡−1+𝑊𝑐𝑖𝑐𝑡−1 + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓𝑐𝑡−1 + 𝑏𝑓) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜𝑐𝑡 + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡tanh (𝑐𝑡) 

 

Where 𝜎 is the sigmoid function, I, f, o and c are respectively the input, forget, output 

gates and cell activation vectors. Future input information, i.e. those coming after tc, is usually 

useful for prediction, together with past and present input information. To use all available input 

information, it is possible to use two separate networks (one of each time direction) and then 

somehow merge the results (Schuster and Paliwal 1997). A bidirectional LSTM (BiLSTM), 

process input sequences in both directions with two sub-layers in order to account for the full 
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input context. These two sub-layers compute forward and backward hidden sequences ℎ𝑓 and 

ℎ𝑏 respectively, which are then combined to compute the output sequence y, thus: 

ℎ𝑡,𝑓 = 𝐻(𝑊𝑥ℎ,𝑓𝑥𝑡 + 𝑊ℎ,𝑓ℎ,𝑓ℎ𝑓,𝑡−1 + 𝑏ℎ,𝑓 

ℎ𝑡,𝑏 = 𝐻(𝑊𝑥ℎ,𝑏𝑥𝑡 + 𝑊ℎ,𝑏ℎ,𝑏ℎ𝑏,𝑡−1 + 𝑏ℎ,𝑏 

𝑦𝑡 = 𝑊ℎ,𝑓 𝑦ℎ𝑡,𝑓 + 𝑊ℎ,𝑏 𝑦ℎ𝑡,𝑏 + 𝑏𝑦 

An example of architecture is showed in figure 5.8. 

 

 

Figure 5.8 Example of BiLSTM architecture. (Figure adapted from Wadawadagi et al. 2020) 

 

BiLSTM was found characterized by good performance in task classification 

(Wainwright and Shenfield, 2019; Hammerla et al., 2016). Using a forward and a backward 

LSTM layer, BiLSTM learns bidirectional, long-term dependencies between time steps of time 

series, thus leading to a better performance than a (forward) LSTM layer that typically learns a 



74 

 

long-term dependency from prior time steps (Hammerla et al., 2016; Siami-Namini et al., 2019). 

We implemented the BiLSTM using the bilstmLayer function available in MatlabTM Deep 

Learning toolbox (R2019a, MathWorks, Natick, Massachusetts, USA). In particular, the 

architecture (see Figure 5.9) of the network here employed consisted of an input layer, 

characterized by variable sizes depending on the number of sensors considered for the analysis 

(3 accelerations signals and 3 angular velocities signals for each sensor).  

 

 

Figure 5.9 Architecture of the BiLSTM network employed for the MMH task classification. The 
input layer is characterized by variable sizes ranging from 6 to 102 depending on the 
number of sensors considered for the analysis (3 accelerations signals and 3 angular 
velocities signals for each sensor). The input layer was followed by the BiLSTM 
architecture consisted of 100 hidden units. After this layer, the fully-connected layer 
where have been indicated the number of classes of interest. The last layer provides 
the probability for each category in the dataset following the softmax function. 

 

The input layer was followed by the BiLSTM architecture consisted of 100 hidden units. 

After this layer, the fully-connected layer where is indicated the number of classes of interest. 

The bottom layer provides the probability for each category in the dataset following the softmax 

function. The maximum number of epochs was set to 300. Decision was made sample to 

sample.   
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Case study 1 

Trunk flexion monitoring among warehouse 

workers using a single inertial sensor and the 

influence of different sampling durations 
 

A version of this chapter has been published. Porta M., Pau M., Orrù P.F. and Nussbaum M.A. 

(2020). International Journal of Environmental Research and Public Health. 17(19),7117, 

pp.1-12.  

 

Introduction 

 

Non-neutral trunk postures, in particular those involving flexion (Wai et al., 2010), represent a 

risk factor for the onset of low-back disorders (Andersen et al., 2007; DaCosta and Vieira, 2009; 

Bernard, 1997; Punnet et al., 1991). These disorders represent a major health problem, causing 

absence from work, with consequent reduction in productivity (Villumsen et al., 2014), and in 

the most serious cases disability and impairment of the fundamental activities of daily living. 

Such adverse outcomes, along with their associated social costs (Dunning et al., 2009), have 

led ergonomists and safety professionals to try to improve job design decisions, and to establish 

suitable safe work limits that either prevent these outcomes or, at least, mitigate their adverse 

effects. 

A critical issue when planning prevention/mitigation strategies is obtaining an accurate 

evaluation of the biomechanical risk associated with each working task, which requires a 

detailed identification of task intensity, frequency, and duration (Burdorf and van Riel, 1996). 

Traditionally, such assessments have been typically performed by means of self-reports and 

observational methods. The former method is easy to use and inexpensive, but can be biased 
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by subjective perceptions of physical work demands, while the latter can be inaccurate and 

substantially time-consuming, with required analysis durations up to 30 times the actual 

duration of a video segment (Herberger et al., 2012). 

In the last three decades, however, several quantitative techniques have been developed and 

used to obtain direct measurements of trunk postures under actual working conditions, 

including electro-goniometers (Marras et al., 1992) and inclinometers (Williams et al., 1993). 

Unfortunately, some of these instruments are not suitable for long-term measurements, since 

they require additional external structures to be connected to the body. Since they are often 

attached on the subject’s skin, they can also cause discomfort (David, 2005). Moreover, these 

devices can alter an individual’s usual working behaviours. 

In recent years, the rapid advancement of technology and a parallel reduction in cost has made 

it easier to employ substantially smaller devices, such as wearable inertial measurement units 

(IMUs), to obtain quantitative data on movement kinematics. Such devices have rapidly 

become popular among human movement researchers, as they provide reliable data, with 

quality comparable to gold standards (i.e., optical motion capture systems: Faber et al., 2009; 

Goodvin et al., 2006; Kim and Nussbaum, 2013; Lebel et al., 2017; Schall et al., 2015). IMUs 

represent an appealing option even for field-based settings, as they do not interfere with 

worker’s task and can acquire a large amount of data, thus being suitable for long-term posture 

monitoring. 

For lumbar posture, the most common parameter in assessing exposure is the angular position 

of the trunk, commonly expressed using an ordinal scale (e.g., neutral, mild, and severe flexion), 

even when continuous data are recorded. In most cases emphasis is given to the level of 

exposure neglecting both frequency and duration, although duration of exposure may be used 

to evaluate cumulative exposure proportional to chronic damage (Burdorf and van Riel, 1996). 
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In the last decade, several reports have indicated that IMUs can effectively monitor body 

posture during the performance of diverse tasks, both in laboratory conditions (Faber et al., 

2009; Schall et al., 2015; Faber et al. 2016; Cutti et al., 2007; Godwin et al., 2009; Kim and 

Nussbaum, 2014; Lim and D’Suoza, 2019; Yan et al., 2017) and in situ (Villumsen et al., 2014; 

Schall et al., 2015; Arias et al. 2017; Bootsman et al. 2019; Jun et al., 2019; Asante et al., 2018; 

Balaguier et al., 2017; Jakobsen et al, 2018). However, while these have investigated trunk 

kinematics, no information was provided about critical aspects of postural exposure, such as 

the frequency and duration of trunk movements. 

Assessing trunk posture is of particular interest among warehouse workers. These workers are 

often assigned to order-picking processes, in which they perform a variety of physically-

demanding tasks, such as restocking shelves and pallets, loading and unloading pallets, and 

driving forklifts. In many warehouse facilities, it is typical for a worker to spend the majority 

of their shift picking items from shelves and stacking them onto a pallet to form orders that are 

then shipped. Since such tasks are not easily automatable, they are still mostly performed 

manually, with limited (or no) mechanical support. As such, warehouse workers commonly 

perform substantial manual material handling (MMH) tasks that involve repetitive exposures 

to non-neutral trunk postures, and experience a relatively high rate of low-back disorders 

(Marras et al., 1997; Marras et al., 1999; Schneider et al., 2006). 

In such a context, IMUs can be considered a valid option to monitor several aspects of 

movements associated with working tasks, as their interference with regular movements 

appears negligible and thus their use seems acceptable in workplaces. However, issues related 

to compliance, protection of personal data, and comfort, as well as the lack of standardized 

protocol for data acquisition and processing, are still under debate. Thus, the use of such devices 

in daily practice is not as widespread as expected (Beeler et al., 2018; Schall et al., 2018; 

Bergman et al., 2012). 
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To help overcome some of these concerns, this study aimed to assess the feasibility of 

classifying trunk flexion during actual MMH tasks among warehouse workers using a 

miniaturized wearable IMU. The main purpose of the study was to determine the potential of a 

simplified setup, a single IMU, suitable for application in actual working conditions for long-

term monitoring, and to provide a reliable classification of trunk postures in terms of frequency 

and duration. Additional analysis was completed to investigate the influence of the monitoring 

duration, to explore possible efficiencies in data collection that might help toward improving 

worker acceptability and enhancing the number of workers that can be included in exposure 

assessments. 

 

Materials and Methods 

 

Participants 

 

Twelve male, full-time workers participated voluntarily, with mean (SD) age = 35.4 

(9.1) years, height = 172.7 (5.3) cm, body mass = 72.3 (12.6) kg, and seniority in service = 9.5 

(6.2) years. Each participant was employed at the main regional warehouse in Sardinia of 

“Conad del Tirreno Soc. Coop. Srl” (the largest Italian retail supplier). At the time of the study, 

all workers were free from any signs of acute or chronic musculoskeletal conditions and, after 

a detailed explanation of the purposes and methodology of the study, signed an informed 

consent form. The study was carried out in compliance with the ethical principles for research 

involving human subjects expressed in the Declaration of Helsinki and its later amendments. 

Participants were routinely assigned to the same kind of tasks during a regular shift, namely: 1) 

refilling shelves with small packages by moving goods from a vertical closet to roller units 

placed at variable heights; and 2) assembling orders to be delivered to local stores, following 
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instructions received continuously via radio on the type and quantity of the necessary goods 

that will be subsequently placed on a pallet. Preliminary observations, along with interviews 

with the operators and their supervisors, indicated that the tasks completed by the workers 

exhibited distinct characteristics of cyclicity and repeatability. Such aspects were considered to 

select the monitoring duration in the experimental tests, as described in detail below. 

 

Experimental Protocol 

Raw accelerations and angular velocities were recorded onboard the IMU (G-Sensor, 

BTS-Bioengineering, Italy) at 100 Hz and preprocessed by a Digital Motion Processor 

(DMPTM), which provided rotational angles (i.e., roll, pitch, and yaw) (Further details are 

provided in Chapter 4). Such data must be further processed to obtain Cardan angles referred 

to a global reference system. Before data acquisition, during the working tasks, the 

physiological trunk position (expressed in terms of flexion angle) was assessed by having 

participants stand for 10 s in a neutral, upright posture. This procedure supported removing 

subject-specific angular offsets and errors caused by sensor placement. Cardan angles about the 

IMU axes were then calculated using the YZX sequence (i.e., flexion-extension around Y; 

lateral bending around Z axis; axial rotation around X axis) as generalized by Cole et al. (1993). 

Data processing was carried out by means of a custom routine developed in Matlab 

(R2019a, MathWorks, Natick, Massachusetts, USA) to classify trunk flexion angles as follows 

(Jakobsen et al., 2018; Hoogendorn et al., 2000; NIOSH, 2014): 

• Class 1: flexion angle = 30°–60° 

• Class 2: flexion angle = 60°–90° 

• Class 3: flexion angle > 90° 

Subsequently has been determined the duration of exposure to each posture class using an 

approach based on exposure variation analysis (EVA, Matthiassen and Winkel, 1991), which 
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has been applied in previous work to investigate trunk posture in workplaces Jansen et al. 

(2001), with specific time periods of 0–2s, 2–4s, and >4s. Finally, have been assessed the time 

spent in each of the combinations of posture and time period classes in terms of either frequency 

or percentage of the total working time. Data were processed for the entire 2-h period. 

These data were also processed separately for different sampling durations, to explore 

the effects associated with possible reductions of the monitoring time. To do so, we considered 

moving windows of different durations (from 15 to 90 min, in 15 min increments), each at one-

minute steps over the full two-hour sample (Figure 1). Mean values of the percentages spent in 

each class of flexion obtained for each duration were compared with those calculated using the 

original 2-h sample (considered as the “true” value). 

 

Figure 1 Example of two hours of trunk flexion data obtained from a participant (top). As 

shown at the bottom, windows of different duration (15, 30, 45, 60, 75, and 90 min) 

were moved across the entire signal, each in one-minute steps. Positive values 

indicate trunk flexion, while negative values indicate extension. 
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A relative mean squared error (MSE) was calculated to capture the error associated with a 

specific window duration. Figure 2 shows results obtained for each class of flexion and for each 

of the six window durations, demonstrating how averages across the subjects have been 

calculated  

 

Class 1 trunk flexion Class 2 trunk flexion 
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Figure 2 Mean values of the percentage of time spent in two classes of trunk flexion. Each point 
represents the mean value (standard error) calculated across the workers using windows of 
different duration, from 15 (top) to 90 (bottom) minutes, using steps of 1 minute. Black lines 
represent the “True” value calculated as mean exposure obtained from the entire 2 hours of 
monitoring. 

Results 

 

Table 1 summarizes the working time spent in trunk flexion according to the three defined 

classes, based on the full acquisition period (i.e., 2 h). Participants spent 5.1% of the time in 
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trunk flexion between 30° and 60°, and 2.3% of the time with flexion between 60° and 90°. The 

percentage of time spent in postures characterized by angles >90° was negligible (0.07%). 

Results of the EVA analysis are shown in Figure 3. Considering only the angles higher than 30 

degrees (which represent approximately 8% of the monitored time, the majority (~70%) of 

flexion angles ranged between 30 and 60° (i.e., Class 1), while lower percentages were observed 

for Class 2 (28%) and Class 3 (<1%) flexion. In terms of event duration, most (60%) trunk 

flexion events lasted ≤2 s, 24% had a duration of 2-4 s, and <10% were maintained for >4 s. 

 

 

Table 1 Results regarding different classes of trunk flexion. For each class of flexion, means 
(SD) of the percentage of time spent in different classes of trunk flexion are given from 
the entire 2-h observation periods and from several shorter window durations 

Windows 
duration 

Class 1 (30–60°) Class 2 (60–90°) Class 3 (>90°) 

Mean (SD) Mean (SD) Mean (SD) 

2 h 5.1 (2.2) 2.3 (1.5) negligible 

90 min 5.3 (2.2) 2.4 (1.6) - 

75 min 5.4 (2.4) 2.5 (1.6) - 

60 min 5.3 (2.6) 2.5 (1.8) - 

45 min 5.2 (3.0) 2.5 (1.8) - 

30 min 5.3 (3.4) 2.4 (2.0) - 

15 min 5.3 (4.2) 2.4 (2.5) - 
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Figure 3 Results from exposure variation analysis of trunk flexion. Bars represent the percentage 

of time spent in different categories of trunk flexion, based on flexion amplitude and 

duration. This representation captures the distribution of flexion pattern (e.g., nearly 70% 

of flexed posture occurred for less than two seconds and most trunk flexion was between 

30° and 60°). 

 

Although at the group level the percentage of time spent in trunk flexion appeared relatively 

low, analysis at the individual level revealed different behaviors, as shown in Figure 4. For 

example, participant A spent 6.7% of the time with trunk flexed between 30° and 60°, and 5.7% 

of the time with trunk flexed between 60° and 90°. In contrast, participant B spent 10.1% with 

trunk flexion between 30° and 60° and only 1.6% of the time with trunk flexion between 60° 

and 90°. In both cases, the obtained values exceeded those recommended to avoid an increased 

risk of low back pain (Hoogendorn et al., 2000). 
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Figure 4 Example of different postural behaviors adopted by two participants performing the same 

kind of activities. Noted thresholds for low back pain (LBP) are from (Hoogendorn et al., 

2000). 

 

Relative MSE values, capturing differences obtained with reduced monitoring durations with 

respect to the 2-h value, are shown in Figure 5. This error appears to decrease exponentially 

with increasing window duration. However, MSE values were quite similar for windows 

durations ranging from 60 to 90 min (between 4.1% and 3.1% for Class 1, and between 4.8% 

and 1.3% for Class 2). 

 

Figure 5 Relative mean squared error (MSE), indicating the difference between mean values of 

the time spent in trunk flexion and the mean “True” value (from the full 2-h sample). 

Values are given for several window durations (i.e., 15, 30, 45, 60, 75, and 90 min). 

Exponential curve fits are indicated by solid lines. 
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Discussion 

 

The main purpose of the present study was to assess the feasibility of using a simplified 

setup involving a single miniaturized wearable IMU to characterize a worker’s exposure to 

trunk flexion. The proposed approach is potentially suitable for long-term monitoring under 

actual working conditions, since it is based on a sensor that is of limited size, is easily 

positioned, and provides data with a straightforward interpretation. We tested this setup using 

a sample of warehouse workers, during the execution of tasks characterized by a marked 

cyclicity for 2-h of an actual shift; this approach may be suitable for application to other tasks 

characterized by similar features. 

IMU data on trunk flexion were reduced using the EVA approach integrated with 

recommended exposure thresholds. Overall, the current participants spent 5.1% of their 

working time with trunk flexion of 30–60°, and 2.3% of their time with trunk flexion 60–90°, 

while the time spent with trunk flexion exceeding 90° was negligible. In their 3-year prospective 

studies, Hoogendorn et al. (2000) and Coenen et al. (2003) assessed physical load in terms of 

trunk postures and the number of lifts by means of video analysis. They estimated that workers 

who spend either more than 10% of their daily shift with trunk flexion exceeding 30°, or more 

than 5% of the time with trunk flexion exceeding 60°, are at an increased risk of the onset of 

low back disorders. In contrast, no explicit conclusions were formulated for flexion exceeding 

90°. However, it is reasonable to assume that such extreme postures will be associated with an 

increased risk of low back disorders, given that trunk flexion amplitude is positively correlated 

with the load sustained by the intervertebral disks (Bayoglu et al., 2019). The patterns of trunk 

flexion found here are comparable with those reported by Jansen et al. (2001) from a sample of 

nurses (who spent approximately 9% of the working time with the trunk flexed >30°) and 

housekeepers (10% of the working time with the trunk flexed > 30°). Similar trends were also 
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reported by Jakobsen et al. (2018) for warehouse workers and machinery operators. Although 

the workers tested here spent, on average, only 7.4% of the working time with their trunk flexed, 

it is noteworthy that most of these flexions were in the shortest duration category (duration < 

2s, see Figure 3), suggesting that the tasks required relatively rapid activities. 

As a group, the tested participants would thus appear to be at low risk based on their 

trunk flexion exposures. However, for two participants the above-mentioned thresholds were 

exceeded. This is not surprising, since workers assigned to the same task can adopt distinct 

postural strategies according to factors such as experience, anthropometry, and optimization of 

energy expenditure (Kuorinka et al., 1994; Authier et al., 1996; Burdorf, 1992). Thus, the 

proposed simplified approach might be useful both to identify strenuous tasks and activities in 

a particular job (at the group level), and to detect potentially critical conditions that may exist 

even in presence of planned working conditions and suitable training programs, being 

applicable to a large sample of workers without a significant increase in measurement efforts. 

Application of the EVA approach (Matthiassen and Winkel, 1991) supports determining how 

different classes of trunk flexion are distributed as a function of their duration. Such information 

may also be useful to reproduce more realistic conditions for laboratory simulations, where the 

pace of the activity is usually determined a priori, along with the distribution and duration of 

different levels of trunk flexion. 

One practical issue in the use of sensors in monitoring working postures (and other 

outcomes) is determining the duration of monitoring. While reducing the monitoring time 

would allow testing more workers in a given period and would decrease the degree of 

interference of measurements with the task, such reductions may be possible only when the 

working task is characterized by substantial repeatability. If so, once data are obtained for a 

complete working shift (such as during a characterization study), further periodic monitoring 

could be shortened without any substantial loss of information. We found that errors (relative 
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MSE) decrease non-linearly with an increasing monitoring window duration (Figure 5). 

Although further quantitative investigations with larger samples are needed, our results suggest 

that 50–60 min periods of monitoring might be sufficient to capture postural exposures without 

substantial bias for the current task. 

Some limitations in the current study should be acknowledged. First, this study analyzed 

only postural exposure (specifically trunk flexion), although it is known that several other 

kinematic and kinetic aspects of exposure (e.g., movement velocity and external loads) are 

important in assessing biomechanical risk. In particular, velocity has been found (Marras et al., 

1995) to be a stronger predictor of risk among trunk kinematic factors. IMUs are suitable to 

provide such information easily, since angular velocities are immediately available as raw 

output data. However, as pointed out by Burdorf and van Riel (1997), posture is the basic 

element with which the other factors integrate to yield a complete picture of a worker’s 

exposure. Second, has been analyzed only trunk flexion, even though it would be of interest to 

consider other trunk movements, such as combined flexion–rotation or flexion-lateral bending, 

as these are also implicated in the risk of onset of low back disorders (Hoogendorn et al., 2000). 

Third, although these results suggest that 50–60 min of monitoring among warehouse workers 

might be sufficient to characterize the task in terms of trunk flexion, further studies are 

necessary to increase the generalizability of these results to other tasks. Finally, it would be 

interesting to explore the relationship between individual physical aspects, in terms of trunk 

range of motion and movement strategies adopted during the working shift, to understand 

whether limitations/impairments may influence a given workers material handling behaviors. 

Despite such limitations, the methodology proposed here may be useful especially for rapid in 

situ screenings of large cohorts of workers, while at the same time ensuring minimal 

disturbances to the working tasks. 
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Case study 2 

Do old workers cope with postures which 

require repeated trunk flexions differently from 

younger ones? 
 

Introduction 

The decline of the birth rates, in combination with increased life expectancy is gradually 

leading the world population towards an overall ageing. Statistical data report that the number 

of individuals aged over 60 increased from 9.2% in 1990 to 11.7% in 2013 and to 21.1% in 

2015 (UN-World Population Prospects, 2015). Worldwide life expectancy also risen from 65.3 

years in 1990 to 78.3 years in 2016 and it is expected to further increase (Murray et al. 2015, 

The 2018 Ageing Report). In particular, western European countries are characterized by one 

of the oldest populations (Walker & Maltby, 2012), with a demographic old-age dependency 

ratio (i.e. number of individuals aged 65 with respect to those aged 15-64) projected to increase 

significantly in the EU in the next decades. As a result of the pension reforms, the percentage 

of those aged over 65 (which was approximately 25% in 2010) rose to 29.6% in 2016 and is 

projected to further increase to reach 51.2% in 2070 (Economic and Financial Affair, European 

Commission 2018).  

Such socio-demographic shift, which put pension system under serious financial pressure, 

has been somehow faced by many European countries with several consecutive reforms of their 

pension systems, with the aim to increase the labor-market participation of older people. This 

approach is leading into a widespread retirement age of approximately 67 years in most of the 
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European countries (Ardito and d’Errico, 2018). However, to result effective in ensuring actual 

savings, it is essential that the increase of the average age of workforce is not accompanied by 

a consequent increase of applications for disability or sick-pay insurance. Thus, the 

implementation of effective ergonomic solutions specifically designed for older workers 

appears an issue of critical importance. 

In this context, it is useful to recall that, among workers aged between 50 and 64 years (which 

are classified as “old”, McCarthy et al., 2014) the most common cause of sick leave are low 

back disorders, arthritis and myalgia (31%, 34% and 32% respectively) (Hubertsson et al., 

2014), which have been found associated, at least partly, to the physiological decline of the 

musculoskeletal system due to the ageing process. Several studies reported that, in older 

individuals, biological tissues such as tendons and ligaments underwent a worsening in 

mechanical and viscoelastic properties and muscle mass decreases originating a generalized 

reduction of strength which is marked in body districts like lower limbs and trunk. Besides, the 

reduction in the fraction of water present in the vertebral disc and the surrounding tissues causes 

stiffness of the spine (Galbusera et al., 2014) and subsequent reduction in range of motion.  

When an individual aged over 50 is engaged in physically demanding occupations (like those 

typical of construction or metal industries, agriculture, healthcare etc., Karlquist at al., 2003; 

Proper et al., 2006), the possible negative effects associated with a reduction in physical 

capabilities are likely to be exacerbated. In fact, they include several tasks characterized by 

sustained non-neutral body posture, repetitive movements and manual material handling 

(MMH). Although such aspects are potentially harmful for any worker regardless his/her age, 

in older workers they have been recognized able to increase the risk of musculoskeletal 

disorders (MSDs) (Okunribido et al., 2011) according to two main mechanisms. Firstly, as 

previously mentioned, the individuals’ physiological decline with chronological age (Sluiter, 

2006) implies a reduced physical capacity as previously mentioned (Faber et al., 2006) and, 
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secondly, older workers are usually characterized by larger adverse occupational exposure 

merely due their longer engagement in a given occupation (in terms of years of service) 

compared to their younger colleagues. Thus, they are likely to experience higher degree of 

cumulative physical strain. In addition, even though most older workers are considered 

physically suitable to be assigned at the same tasks they performed in younger age, it cannot be 

neglected the fact that they require longer time to recover from fatigue associated with 

performed tasks (Kiss et al., 2008; Cotè et al., 2014). Based on these considerations, appears 

fully justified the need to plan proper monitoring actions and interventions to ensure older 

workers an “healthy ageing” as well as long working life of good quality. In this context, the 

accurate assessment of the workload represents a critical issue to control the higher 

vulnerability of older workers to occupational exposure. 

The characterization of jobs associated with high physical demands and the consequent 

assessment of physical workload, is commonly performed by quantifying the exposure to 

awkward postures, especially those involving repeated and sustained trunk flexion (because 

significantly involved in MSD development) and assess the level of occupational physical 

activity (Arias et al. 2017). It is noteworthy that generally, individuals exposed to repeated trunk 

flexion are more at risk to develop LBDs (Wai et al., 2010) and some studies attempted to 

quantify such risk as a function of the time spent in specific postures. For instance, Hoogendorn 

et al. (2000) found a 22% increase in relative risk of develop low-back pain (LBP)  in 

individuals who spend more than 10% of the working time with the trunk flexed between 30° 

and 60° and, similarly, Coenen et al.(2013) calculated increased odd ratios for LBP when more 

than 5% of the time was spent with the trunk flexed between 60° and 90°.  

The assessment of workload under actual working condition, is commonly performed using 

observational methods, video-recording and computer-aided analysis, even though quantitative 

techniques have been recognized necessary to support such analysis due to their superior 
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accuracy and reliability (David et al. 2005). In particular, the use of wearable miniaturized 

Inertial Measurement Units (IMUs) is quickly gaining popularity among researchers and 

practitioners as they are low-cost, relatively easy to use and able to potentially provide accurate 

data on a wide range of biomechanical parameters. Simple configurations based on the use of 

a single sensor to collect data about trunk posture (in terms of amplitude and duration of the 

movement) have been successfully employed in a wide range of occupational contexts 

characterized by intrinsic risk of development of LBDs (Sigh et al., 2017; Balanguier et al., 

2018; Asante et al., 2018; Ribeiro et al., 2011; Villumsen et al., 2016; Schall et al. 2016; 

Jakobsen et al. 2018, Porta et al. 2020). However, to the best of our knowledge, this approach 

has never been used to assess the existence of possible differences in postural strategies adopted 

to perform task typical of metalworking industry, among young and old workers.  

On the basis of the above mentioned considerations, the main purpose of the present study 

is to quantitatively characterize the physical exposure (in terms of trunk flexion) in a cohort 

composed by young and old (>50 years old) workers employed in a metalworking industry. We 

aim to address the following three research questions: 1) Are there any differences in the 

patterns of trunk flexion performed by young and older workers? 2) Are patterns of trunk 

flexion dependent by the spine mobility features of the workers? And 3) Is working experience 

(i.e. years of service) a factor able to influence trunk flexion patterns? 

 

Methods 

Participants 

Thirty-three full-time male workers currently employed at the “IMI Remosa Srl” (Cagliari, 

Italy) a metalworking company specialized in design and manufacturing of control and shut- 

off valves used in the oil refineries, were recruited for the study on a voluntary basis. At the 
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time of the study, they were free from any signs of acute or chronic musculoskeletal conditions 

(in the previous six months) according to self-reports and medical records of the company. 

After a detailed explanation of purposes and methodology of the study, they signed an informed 

consent form. The study was carried out in compliance with the ethical principles for research 

involving human subjects expressed in the Declaration of Helsinki and its later amendments.  

Participants were stratified into two groups according to their age as follows: young workers 

(aged between 18 and 49 years, n = 19) and old workers (aged >50 years, n = 14). Their 

demographics and anthropometrics characteristics are reported in Table 1. Both groups include 

a similar proportion of the main tasks performed in the company, namely machine tools 

operators, welding and assembly, warehousing and preparation and laying of refractory cement. 

 

Table 1 Anthropometric and demographic characteristics of participants. Values are 
expressed as mean±SD [range] 

 
Young Old 

 
Mean±SD Range Mean±SD Range 

Age (Years) 37.7 ± 7.2 25 – 49 54.7 ± 4.1  50 – 64 

Height (cm) 174.8 ± 8.2 155-186 169.0 ± 4.7 160-175 

Body Mass (kg) 73.6 ± 11.0  55-93 73.2 ± 11.7 [55-97] 

BMI (kg/m2) 24.0 ± 2.4 20.8-28.7 25.5 ± 3.1 21.1-31.6 

Seniority at work 
(Years) 

9.4 ± 5.2  2.0 – 19.8 24.9 ± 8.6  11.0 – 43.0 

 

Experimental protocol 

Trunk posture was continuously monitored for 4-hours during a regular 8-hour work shift, 

using a lightweight miniaturized IMU (G-Sensor, BTS Bioengineering S.p.A., Italy) which 

integrates tri-axial accelerometer, gyroscope and magnetometer and was previously employed 
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for similar studies (Porta et al., 2020). Raw data was recorded onboard the IMU at 50 Hz and 

pre-processed by a Digital Motion Processor (DMPTM), which provided Cardan angles (i.e., 

roll, pitch, and yaw). The device was placed on the low back using a semi-elastic belt, 

approximately at three-quarters of the distance between the C7 vertebrae and the mid-point 

between posterior superior iliac processes, as described by Faber et al. (2009). Before any 

experimental session, participants were requested to stand still for 10 s in a neutral, upright 

posture in order to remove any subject-specific angular offsets and errors caused by sensor 

placement. Moreover, the active ROM for flexion-extension movements of the trunk was 

assessed asking participants to perform a maximal trunk flexion followed by the return to 

neutral posture and then by a maximal extension. This sequence was repeated three times, at 

self-selected speed advising workers to avoid excessive non-natural movements. 

Trunk flexion patterns were assessed by processing IMU data by means of a custom routine 

developed in Matlab (R2019a, MathWorks, Natick, Massachusetts, USA) (Further details are 

presented in Chapter 4). In particular, acquired data was classified into three categories 

according to what proposed in previous similar studies (Hoogendorn et al. 2000; NIOSH 2014; 

Jakobsen et al., 2018) as a function of the calculated flexion angle as follows: 

• Class 1: (30° < flexion angle < 60°) 

• Class 2: (60° < flexion angle < 90°) 

• Class 3: (flexion angle > 90°) 

Then the duration of exposure for each posture class was calculated using an approach based 

on Exposure Variation Analysis (EVA, Mathiassen & Winkel, 1991), with specific time periods 

of 0-2s, 2-4s, and >4s. Finally, the time spent in each combination of ‘posture-time period’ 

classes was calculated in terms percentage of the total working time.  

Participants were also requested to wear a wrist-worn activity tracker (Actigraph GT3x-

BT, Acticorp Co., USA) previously validated for use in ergonomic studies (Jakobsen et al. 
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2018; Schall et al. 2015; Villumsen et al., 2016) to verify the existence of possible differences 

in the average physical activity (PA) performed by the tested groups, as this might represent a 

confounding factor for the results. This device, which basically include a tri-axial 

accelerometer, provides several metrics associated with performed PA such as number of steps, 

percentage of time spent in activity of light (<3 MET), moderate (3-6 MET) and vigorous 

(>6MET) intensity, as well as vector magnitude count (VMC) which represents an aggregate 

measure of movement expressed by the equation:  

𝑉𝑀𝐶 = √𝑥2 + 𝑦2 + 𝑧2                                                         (1) 

Where x, y and z represent the acceleration vectors.  

The raw acceleration data was downloaded and processed using the dedicated software Actlife 

v6.13.4 (Acticorp Co., USA) by applying the cut-points proposed by Hildebrand et al. (2014) 

to classify PA intensity. 

 

Statistical Analysis 

Three separate multivariate analysis of variance (MANOVA) was carried out to explore the 

existence of possible differences respectively in trunk flexion ROM, patterns of flexion during 

the work shift and level of physical activity performed (dependent variables) among the two 

age groups (independent variable). The level of significance was set at p = 0.05 and the effect 

size was assessed using the eta-squared (η2) coefficient. Univariate ANOVAs were carried out 

as a post-hoc test by reducing the level of significance to p = 0.017 (0.05/3) after a Bonferroni 

correction for multiple comparison. 

Furthermore, the existence of possible correlation between patterns of flexion and spine 

mobility (expressed by means of trunk flexion ROM) was explored using Spearman’s rank 

correlation coefficient rho, by setting the level of significance at p < 0.05. Rho values of 0.1, 

0.3, and 0.5 were assumed to be representative of small, moderate, and large correlations 



108 

 

respectively, according to Cohen’s guidelines (1992). Finally, a covariate analysis of variance 

(ANCOVA) was carried out to understand the influence of seniority at work in the choice of 

different postural behaviour. All analyses were performed using the IBM SPSS Statistics v.20 

software (IBM, Armonk, NY, USA). 

 

Results 

Baseline ROM of the participants and flexion patterns assessed based on IMU data are 

reported in table 2 and 3 respectively. The statistical analysis revealed that young workers are 

characterized by significantly higher ROM with respect to older workers (121.9° vs 102.2°, 

p=0.017). In particular, the difference in ROM is mainly attributable to the significant reduction 

in the amplitude of flexion movement, which passes from 95.7° of young workers to 79.9° of 

their older colleagues. 

 

Table 2 Values of range of motion (ROM) and separate value of flexion end extension 
for young and old workers. Values are expressed as mean±SD. 

 
Young Old 

ROM (°) 121.9 ± 20.3 102.2 ± 20.2* 

Flexion (°) 95.7 ± 14.2 79.9 ± 15.7* 

Extension (°) 26.2 ± 9.2 23.3 ± 7.3 

The symbol * denotes a significant difference vs. young workers after Bonferroni correction p = (0.05/3) =0.016 

 

Both groups performed most of trunk flexion between 30° and 60° (Class 1), while they 

spent a lower percentage of time with their trunk flexed between 60° and 90° (Class 2) and over 

90° (Class 3). However, MANOVA found a significant effect of age on the percentage of time 
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spent in Class 2 and Class 3. In fact, younger workers spent 1.55% and 0.13% of the time in 

Class 2 and Class 3 respectively, while older spent 0.65% and 0.03% in Class 2 and Class 3 

respectively.  

 

Table 3 Results regarding different classes of trunk flexion. For each class of flexion, 
means±SD of the percentage of time spent in different classes of trunk flexion 
are given from the entire 4-hour observation periods. 

 
Young Old 

Class 1 (%) 4.05 ± 3.0 3.97 ± 3.06 

Class 2 (%) 1.55 ± 0.96 0.65 ± 0.54* 

Class 3 (%) 0.13 ± 0.13 0.03 ± 0.05* 

The symbol * denotes a significant difference vs. young workers after Bonferroni correction p = (0.05/3) =0.016 

 

Figure 1, shows the evident differences in pattern of flexion of young and old workers 

according to the time spent in each class of flexion. Our results revealed that younger workers 

spent consistently longer time in mild, moderate and severe flexion with duration between 2 

and 4 s. While no differences were found as regards the time spent in mild flexion (Class 1) 

with short duration (0-2 s) and in severe flexion (Class 3) lasting more than 4 s.  

  

Figure 1 Results from Exposure Variation Analysis of trunk flexion. Bars represent the 
percentage of time spent in different categories of trunk flexion based on flexion 
amplitude and duration. This representation captures the distribution of flexion 
pattern  
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In terms of levels of occupational PA (see Figure 2), our data show that older workers 

spent longer percentage of work shift in moderate and vigorous PA, and carried out more steps, 

but such differences were not found statistically significant.  

 

  

Figure 2 Occupational physical activity parameters. Left: mean value of VMC and number of 
steps per hour. Right: Percentage of time spent in different level of physical activity 
intensity 

 

The results of the correlation analysis are reported in Table 3. The only significant 

correlation was detected between trunk flexion ROM and percentage of time spent in flexion 

>90° (Figure 3).  

 

Table 3 
Spearman’s correlation coefficients for correlation between flexion range of motion and 
percentage of time spent in different class of flexion 

 
% of Flexion in 

Class 1 
% of Flexion in 

Class 2 
% of Flexion in 

Class 3 

Flexion ROM 
rho -0.138 0.342 0.403 

p-value 0.484 0.075 0.033 
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Figure 3 Correlation between flexion range of motion and percentage of time spent in Class 3 of 
flexion (>90°) 

 

When the flexion patterns were analysed taking into account both age and expertise 

(seniority at work) no differences between the two groups in trunk flexion patterns were found. 

 

Discussion 

The main aim of this study was to quantitatively characterize the patterns of trunk 

flexion and the occupational physical activity levels of young and old metal workers during a 

regular work shift, using a simplified setup based on the use of a single IMU located in the low-

back. At first, it is noticeable that, generally speaking, the calculated values of trunk flexion 

(~4.5% in flexion 30°-60°; ~1.5% in flexion 60-60° and ~0.1% in flexion >90°) are in good 

agreement with those reported for similar tasks by Jacobsen et al. (2018) but lower than those 

reported by Shahriyari et al. (2018) although, in the latter case, the differences are likely due to 

a different placement location for the sensor (lumbar trunk vs sternum).  

Our initial hypothesis about the existence of age-related differences in trunk flexion 

patterns was confirmed by the results, especially as regards the percentage of time spent in 

Class 2 and Class 3 of flexion, which was found respectively 42% and 23% higher with respect 

to older colleagues. Such results are somehow consistent with those reported by Burr et al 
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(2017) and Authier et al. (1996) who found that demanding body postures (i.e. those with trunk 

flexed over 45°) were less common among older workers. Similarly, Plamondon et al. (2012) 

observed that more experienced workers tent to flex their lumbar trunk less than novice worker. 

Since the experienced workers were significantly older than novice, they speculated that this 

difference could be attributed to the chronological age, and in particular to reductions in the 

trunk flexibility associated with aging (Troke et al., 2005; Intolo et al., 2009). Such aspect seems 

to be relevant even in the case of the present study, as spine ROM of younger workers was 

found ~20° larger with respect to older ones. However, the reduced ROM seems to explain only 

the scarce occurrence of severe flexion among older workers, as confirmed by the significant 

correlation detected with baseline ROM. Indeed, most of the existing differences between the 

two groups are probably linked to the adoption of more conservative strategy chose by the older 

workers. It is known that lumbar flexions which approach the physiologic limits are convenient 

from an energetic expenditure point of view but, at the same time, it may also increase the risk 

of injuries. In fact, large trunk flexions due to stretching of the passive lumbar structures are 

associated with elastic energy storage which is subsequently restored during the recovering of 

the neutral position (Maduri et al. 2008). Moreover, lumbar flexion balances the external 

moment by an increase in the contribution of the passive elements thus reducing the internal 

compressive forces on the disk (Gracovetsky et al., 1989). In contrast, pronounced lumbar trunk 

flexion originates very high shear stresses (close to the resistance limits of the tissues) and the 

intervertebral disks underwent a 20-40% reduction in their load support capacity with respect 

to neutral posture (McGill, 1998). At last, such extreme postures desensitize the mechanical 

receptors of ligaments (Solomonow, 2007) thus altering the correct proprioceptive input and 

increasing the risk of injury. 

As regards the levels of occupational PA performed by the workers here tested, the 

results showed that older workers spent 38.7% and 20.8% of time in moderate and vigorous PA 
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respectively and younger workers spent 34.2% and 19.4% respectively. Although, generally 

speaking, elevated amounts of moderate and vigorous PA have been demonstrated beneficial 

in preventing non-communicable diseases and in improving quality of life (Anderson and 

Durstine, 2019), this might not be likewise true in the occupational context. In fact, it has been 

pointed out that occupational and leisure-time PA have opposite effect on the global health 

(Holterman et al., 2012). While leisure-time PA is beneficial for health, occupational PA at 

moderate and vigorous level is rather to be considered harmful, where the most probable reason 

is that high energetic demands at work continue for hours in comparison with much shorter 

bouts of leisure-time PA during which both the ability to control the task and the psychological 

expectations very often differ (Kukkonen-Harjula, 2007). In addition, Villegas et al. (2006) 

found that high-intensity occupational PA is inversely associated with high intensity leisure-

time PA, and this fact tends to enhance the discrepancy between “positive” and “negative” PA. 

Similarly, Blafoss et al. (2019) found that the duration of leisure-time PA gradually decreased 

with increased work-related fatigue in individuals engaged in physically demanding jobs, 

especially in those aged over 50 years, who were found to perform less leisure-time PA 

compared with younger workers. Unfortunately, we did not assess PA performed by 

participants during non-working hours, but given the substantial time spent in occupational 

moderate to vigorous PA, it appears reasonable to suppose that they perform a reduced amount 

of leisure-time PA, a fact that is likely to contribute to decrease physical capacity, thus resulting 

in increased work-related fatigue. 

Some limitations of the study should be acknowledged. First, we considered only trunk 

flexion, even though it would be of interest to consider other movements, such as combined 

flexion–rotation or flexion-lateral bending, as it is known that they are also involved in the risk 

of onset of LBDs (Hoogendorn et al., 2000). Secondly, as previously mentioned, we did not 

collect data on PA during non-working hours, and thus we are not able to exactly define the 
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influence of the level of fitness of the participants on the strategies adopted to perform the 

assigned tasks. At last, since the sample here tested was entirely composed by men, it remains 

unknown whether age-related effects in terms of trunk flexion strategies are also sex dependent. 

In conclusion, this study demonstrated that a simple non-intrusive measurement setup 

(composed by a single IMU worn on lumbar trunk and one wrist worn accelerometer) is able 

to provide information about the workload of metal industry workers, allowing to discriminate 

among different strategies adopted according to chronological age, basic spine mobility features 

and years of experience. Such data may result useful to highlight potentially harmful behaviors 

or conditions and suggest early intervention in order to prevent the development of LBDs, 

especially in individuals with marked signs of decline in their physical capacity. 
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Case study 3 

Manual Material Handling tasks classification 

using a single wearable inertial sensor data and 

Bidirectional Long Short-Term Memory 

network 
 

Introduction 

 

Work-related musculoskeletal disorders (wMSDs) still remain a major health issue in 

workplaces (Buckle, 2005, Carrillo-Castrillo et al., 2019), and are reported to cause productivity 

loss, absenteeism, and disability with a considerable economic burden (Villumsen et al., 2015). 

wMSDs explained 34% of lost workday in the U.S. (U.S. Bureau of Labor Statistics, 2019) and 

about 1/3 of work-related health complaints in the EU (European Agency for Safety and Health 

at Work, 2019). A number of risk factors have been strongly implicated in the aetiology of 

wMSDs, including manual material handlings (MMHs) such as lifting/lowering, 

pushing/pulling, and carrying; repetitive motions; and prolonged postures (National Research 

Council (US), Panel on Musculoskeletal Disorders, Institute of Medicine 2001). Moreover, for 

a given job, each worker may experience substantially different levels of physical demands due 

to individual work styles (Authier et al., 1995, Burdorf and van Riel, 1996) and anthropometry 

differences (Corbeil et al., 2019: Dempsey et al., 1999). To effectively control wMSDs and 

provide individual specific interventions, there is thus an important need for collecting 

information required to quantify physical exposures such as what task a worker does, and also 

when, how long, and how frequently they perform such a task.  
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Collection of such information can be achieved using diaries or direct observation 

approach. Though these approaches are straightforward and requires no particular tools, the 

diary approach is prone to a bias due to subjectivity in self-report measures and recall errors 

(Heberger et al., 2012). Direct observation is typically labor intensive and difficult to use in real 

time at workplace (Heberger et al., 2012) and also suffers from biases due to observer’s 

subjectivity and frequency of data logging (Pedersen et al., 2016). An alternative, promising 

approach can be activity/task classification. This approach has been explored using on-body 

sensors and vision-based systems (e.g., Chen et al. 2012; Ugulino et al 2012). A representative 

example of the former is an inertial measurement unit (IMU) that typically includes an 

accelerometer, a gyroscope and/or a magnetometer (Luinge, 2002). The use of an IMU quickly 

gained popularity as enabling continuous monitoring of data from the wearer without being 

limited in a fixed location like vision-based systems (e.g. video and depth cameras) (Cornacchia 

et al. 2017). Furthermore, with progresses in microelectromechanical systems (MEMS) sensor 

technologies, IMUs are reasonably affordable and widely available in many consumer products 

such as smartphone and smartwatches, and which has been viewed as a strength for the 

application of activity classification (Cust et al, 2019; Nweke et al., 2019, Lim and D’Suoza, 

2020).  

To date, exiting work strongly supports that IMU use is effective and feasible in 

classifying activities both in non-occupational (e.g. identifying/detecting activities of daily 

living, a fall event etc.) and occupational context (Wang et al 2019; Tahir et al., 2020). A good 

classification accuracy was reported (up to ~97%) for a wide range of daily activities (e.g., 

walking, sitting, climbing stairs etc.) using IMU data (e.g., Oshima et al., 2020; Parkka et al., 

2006). In the occupational context, MMH-related activities (such as, for example, lifting, 

lowering, pushing/pulling) were classified with accuracy of ~30% – ~100% (Ogris et al, 2008; 

Kim and Nussbaum, 2014; Bastani et al. 2016; Grzeszick et al. 2017). In these and related 
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studies, accuracy generally varied depending on the number of sensors and classification 

algorithms used.  

However, as argued by several research groups (Chung et al., 2011; David 2005; 

Neumann et al, 2012), a “practitioner-friendly” approach is needed to promote the application 

of task classification approach with IMUs (or other wearable sensors) to quantify physical 

demands in an actual workplace. Two practical challenges in using the task classification 

approach in real work environments can be the number of sensors and classification algorithm 

selection. First, though the use of a single sensor such as an activity tracker, smart watch/phone 

is commonly explored for the classification of daily activities, the existing work on occupational 

task classification typically used a multiple number of sensors ranging from three (Gholipour 

and Arjmand, 2016) to 17 sensors (Kim and Nussbaum, 2014), except a recent study of 

Hosseinian et al. (2019) with an accelerometer positioned on the chest of users. Although 

having a large number of sensors may improve classification performance, it can be an 

important practical concern for practitioners to manage and use multiple sensors in the field, 

and also for wearers (i.e., workers) to keep many sensors on multiple body parts for an extended 

period in a work environment. Second, there is no straightforward way to optimally select a 

classification algorithm and features for the selected algorithm. A variety of classification 

algorithms (e.g., Naïve Bayes, K-Nearest Neighbors, Decision Tree, and Support Vector 

Machines) with varying feature selection methods was explored previously, and classification 

performance for a given task was affected by specific algorithms and features. Thus, using the 

task classification may require expert knowledge in classification algorithms and their feature 

selection, and which can be a barrier for practitioners.  

Thus, to support the use of task classification approach to objectively assess exposures 

to physical risk factors of WMSDs in an workplace, the current study was aimed to investigate 

the use of a single IMU to extract task-relevant information (i.e., the task performed, duration 



125 

 

of a task, and the number of tasks performed) during several MMH tasks, and while utilizing a 

bidirectional long short-term memory (BiLSTM) network. Specifically, have been considered 

different body regions (i.e., the chest, the pelvis, a wrist) for the single sensor attachment 

location that were commonly used in the existing work on task classification and were 

suggested to produce high user compliance in wearing sensor(s) on the body (Lim and D’Souza, 

2020; Doherty et al., 2017). Additionally, have been explored likely scenarios that one or two 

sensors are additionally available to use with the single sensor setup, to examine how much 

performance gain the use of an additional sensor can provide. In the case of classification 

algorithm, has been employed a BiLSTM that is a variant of LSTM (see the BiLSTM section 

below), as deep learning approaches are found to often outperform conventional classification 

algorithms (Gjoreski et al. 2016), and can avoid the design and handpicking of features that 

typically require expert knowledge (Artur Jordao et al., 2018; Wang et al., 2019; Shakya et al. 

2018). Especially, a LSTM network is considered to be effective in classifying highly 

unbalanced activities in terms of frequency which may be viewed as characteristics of MMH 

tasks (e.g., more lifting from knee level than lifting from ground level) (Wang et al. 2019). 

 

Material and Methods 

 

Participants, MMH task simulation, and Instrumentation 

 

Details of the experimental procedure were previously reported (Kim and Nussbaum, 2014), 

thus here will be provide a summary. A total of 10 gender-balanced young adults (19-29 years 

old) completed four cycles of a simulated job in a laboratory setting. Each job cycle was 

designed to include major MMH tasks such as lifting/lowering, pushing/pulling, and carrying 

(Figure 1). Participants were allowed to complete each MMH task using self-selected 
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comfortable styles and speeds. Each of the four job cycles was paced to last 7 minutes, rest was 

given after each cycle, and the four cycles were repeated three times. For classification 

purposes, ground truth MMH task labels were manually assigned by direct observation (via 

video recordings). The MMH tasks performed include: 1) lifting from the ground (LG), 2) 

lifting from knuckle height (LK), 3) lowering to the ground (LoG), 4) lowering to knuckle 

height (LoK), 5) pushing, 6) pulling, 7) carrying, and 8) walking (only as required to perform 

the tasks).  

 

Figure 1 Illustration of the simulated job. Figure adapted from Kim and Nussbaum, 2014 

 

During the simulated job, whole-body accelerations and angular velocities were 

recorded at 60 Hz using an inertial motion capture system (MVN BIOMECH, Xsens 

technologies B.V., Enschede, the Netherlands), composed of 17 IMUs positioned on the head, 

sternum and pelvis; and bilaterally on the scapulae, the upper and lower arms, hands, thighs, 

shanks, and feet. Kinematic data were subsequently down-sampled to 15 Hz since 98% of the 

frequency spectrum content in human activities is below 10Hz (Khusainov et al., 2013). 

 

Bidirectional Long-Short Term Memory Network (BiLSTM) 

 

The BiLSTM is a variation of LSTM that includes a forward and a backward LSTM 

layer to learn information from the previous layer (Schuster and Paliwal, 1997) (an example of 
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architecture is shown in Figure 2). LSTM is a recurrent neural network (RNN) architecture for 

time series modeling to capture the long-term and short-term dependencies in time series and, 

has been proved to have good performance in task classification (Wainwright and Shenfield, 

2019; Hammerla et al., 2016). Using a forward and a backward LSTM layer, BiLSTM learns 

bidirectional, long-term dependencies between time steps of time series, and often lead to a 

better performance than a (forward) LSTM layer that typically learns a long-term dependency 

from prior time steps (Hammerla et al., 2016; Siami-Namini et al., 2019).  

 

Figure 2 Example of BiLSTM architecture. (Figure adapted from Wadawadagi et al. 2020) 

 

We implemented the BiLSTM using the bilstmLayer function in MatlabTM Deep 

Learning toolbox (R2019a, MathWorks, Natick, Massachusetts, USA). The architecture of the 

network here employed consisted of an input layer, a BiLSTM, a fully connected layer, a 

softmax layer, and an output classification layer (Figure 2). The input layer involved input node 

sizes of 6 to 102, depending on the number of sensors considered for the analysis (3 

accelerations signals and 3 angular velocities signals for each sensor). The input layer was 

followed by the BiLSTM architecture consisted of 100 hidden units. After this layer, the fully-

connected layer was to map outputs of BiLSTM layers to the output size (i.e., the number of 
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task classes of interest). The last layer provides the probability for each category in the dataset 

following the softmax function (see Figure 3). The maximum number of epochs was set to 300. 

Decision was made sample to sample.  

 

 
Figure 3  Architecture of the BiLSTM network employed for the MMH task classification. The input 

layer is characterized by variable sizes ranging from 6 to 102 depending on the number 
of sensors considered for the analysis (3 accelerations signals and 3 angular velocities 
signals for each sensor). The input layer was followed by the BiLSTM architecture 
consisted of 100 hidden units. After this layer, the fully-connected layer where have been 
indicated the number of classes of interest. The last layer provides the probability for 
each category in the dataset following the softmax function. 

 

MMH-task classification 

 

Since the choice of on-body sensor placement locations in the workplace may depend 

not only on the likelihood of a higher accuracy, but also on the practicality of the selected sensor 

location(s) (i.e., comfortable to wear, not interfering with a work tool, work environment, 

personal equipment, etc.) (Beeler et al., 2018). To facilitate the ease of IMU use in the field, 

four different sensor placement locations for a single IMU were considered: 
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• Pelvis (P): the sensor was placed over the midpoint between posterior superior iliac 

spines  

• Trunk (T8): the sensor was placed over the eighth thoracic spine process 

• Right wrist (RW): the sensor was placed over the right forearm close to the wrist joint 

• Left wrist (LW): the sensor was placed over the left forearm close to the wrist joint 

These locations were frequently adopted in earlier work and were suggested to lead to 

a high user compliance in wearing sensor(s) (Lim and D’Souza, 2020; Doherty et al., 2017). In 

addition to a single IMU scenario, we explored several combinations of these sensor locations, 

to examine how much classification performance gain might be achieved when having one or 

two additional sensors on the body. Specifically, three of two IMUs scenarios and one of three 

IMUs scenario were considered. The former includes both wrists (RW+LW), pelvis and right 

wrist (P+RW), trunk and right wrist (T8+RW). Note that though the LW location can be use 

with the latter two cases, we chose the RW location given the high prevalence of right-handed 

individuals in the general population (Papadatou-Pastou et al. 2020). The three IMUs scenario 

includes pelvis and both wrists (P+RW+LW). To understand the classification performance for 

these scenarios, we included a full body (FB) scenario (i.e., 17 IMUs) as a comparison 

reference. 

Timeseries of tri-axial accelerations and angular velocities from each sensor were used 

as input to the BiLSTM. We used the leave-one-out cross validation approach to train the 

BiLSTM while considering a participant as a fold. As such, the dataset from nine participants 

was used for training, and the dataset from the remaining one participant was used for 

validation; this process was repeated 10 times. This validation approach was used since it 

reflects a realistic scenario where a model is trained offline using the samples of existing 

subjects and it is tested with samples of an unseen subject (Li et al., 2020), although this 

approach may lead to high inter-subject variations due to the fact that the same task can be 
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performed in different ways by different subjects (Jordao et al. 2018). The performance of the 

trained BiLSTM was quantified using the following commonly used metrics: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 

 

where TP, TN, FP, and FN are, respectively, true positives, true negatives, false positives and 

false negatives. Though accuracy is often reported in the existing literature, it may be not a 

proper metric for imbalanced, multiclass classification (Sun et al., 2009; He and Garcia, 2009). 

To have a better understanding of accuracy, have been also included recall, precision, and a 

harmonic mean of recall and precision (i.e., F1- score). 

In addition, assessing physical exposures during MMH tasks often requires time-related 

information such as the duration to complete a task, and the frequency of a task during a work 

shift. For this reason, the time durations and frequency of each MMH task were also used as 

performance metrics such that percentage errors of time duration and frequency were calculated 

comparing these estimated from the BiLSTM to the ground truths determined by observations.  

 

Statistical Analysis 

 

Separate, two-way repeated-measures analyses of variances (ANOVAs) were 

performed to understand how Sensor configuration (i.e., single, two, three, and fully-body 

sensor configurations) and MMH Task affect classification performance metrics (accuracy, 

recall, precision and F1-Score values) and percentage of error concerning the estimation of 
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duration and frequency of MMH tasks. Percentage of error concerning the estimation of 

duration and frequency were log-transformed prior performance of statistical analysis. Where 

relevant, post-hoc comparisons were conducted using the Holm-Sidak method. All statistical 

analyses were completed using SigmaPlot 11.0 (Systat Software Inc., UK) with statistical 

significance determined when p<0.05.  

 

 

Results 

 

Figure 4 summarizes accuracy, F1-score, precision and recall values of each MMH task 

with respect to each sensor configuration. ANOVA results indicated significant main and 

interaction effects of Sensor configuration and Task on accuracy, F1-Score, precision and recall 

(all p-values<0.001). Post-hoc tests reveal that single sensor configurations generally yielded 

classification performance statistically comparable to the FB with some exceptions, depending 

on single sensor locations and tasks. For example, the RW configuration had statistically similar 

mean F1-Score values (0.785–0.935) compared to the FB (0.870–0.968), regardless of tasks. 

F1-Score values of the P configuration (0.737–0.934) were also similar to those of the FB for 

all the tasks except pulling. The LW configuration, however, generally had lower mean F1-

Score values (0.729–0.828) than the FB (0.870–0.968) except for the excluding walking, 

pulling, and pushing tasks. Additionally, there was no statistical difference in classification 

performance between the two (or three) sensor and the single sensor configurations. In fact, 

adding one or two additional sensors to a single sensor configuration appeared to not improve 

classification performance. Across all the tasks, mean precision, recall, and F1-Score values 

ranged, respectively, 0.688–0.920, and 0.759–0.820 for the two and the three sensor 

configurations; and 0.729–0.935, for the single sensor configurations.   
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In addition, a larger variance in accuracy was often observed when a sensor was placed 

on the wrist (i.e., either or both of LW or/and RW) particularly during the carrying ranging 

between 0.900 to 0.991, walking in the range 0.927-0.982, lifting knuckle in the range 0.921-

0.993, and pushing tasks in the range 0.954-0.999. Similarly, having a sensor on either or both 

of the LW or/and RW showed a larger variance in precision, recall, and F1-Score particularly 

during the pulling and pushing tasks (precision, recall and F1-score ranged between 0.140 to 

1.00; 0.121 to 1.00, and 0.126 to 0.988 respectively).   

Percentage errors in the duration and frequency of tasks are summarized in Tables 1 and 

2 respectively. The median percentage error in the estimation of task frequency was 0.0% in 

most of the sensor/s configuration and for most of the activities, with the exception of walking 

activity for which LW, BW and P show a median error of -7.1%. In the estimation. Regarding 

the estimation of tasks duration, it is possible to observe errors ranging from 0.0% to 13.6%. 

Comparing the error percentage obtained using data from different sensor configuration, only 

P+RW showed statistically different results compared to FB.  

 

 

 

 



 

Table 1 Error percentage [(true-estimated)/true]% on estimating task duration: median ([interquartile range=third quartile-first 
quartile]) 

 
Carrying LiftingG LiftingK LoweringG LoweringK Pulling Pushing Walking 

Ground Truth [s] 25.9 (3.6) 10.7 (1.9) 24.5 (5.0) 11.6 (3.5) 20.2 (3.4) 12.2 (3.3) 11.3 (1.6) 42.1 (10.7) 

FullBody 1.6 (9.0) -0.6 (5.4) 0.0 (9.3) 1.6 (10.4) 3.3 (16.7) 0.5 (30.7) 4.2 (33.3) 2.7 (13.3) 

T8 3.9 (16.5) -1.8 (15.9) -4.1 (16.8) -0.5 (16.0) 5.9 (20.6) -2.7 (60.4) 10.6 (27.35) 1.4 (14.8) 

T8+Right Wrist 2.6 (12.3) 0.5 (11.6) 0.2 (9.6) -0.6 (21.57) 5.1 (18.3) 3.1 (35.8) 4.0 (29.4) 3.5 (12.8) 

Pelvis+Right Wrist 3.7 (14.3) -1.7 (17.6) 1.0 (17.34) 13.6 (41.8) -5.2 (27.2) 2.3 (22.2) 1.6 (32.2) 0.1 (15.7) 

LeftWrist 0.0 (27.84) 9.8 (32.9) -0.5 (19.5) 4.1 (44.0) 3.1 (19.0) 3.5 (27.4) 5.5 (22.9) 4.2 (16.9) 

RightWrist 0.3 (17.0) -0.6 (18.6) 7.2 (24.9) 12.7 (35.0) 0.4 (16.0) 1.5 (21.0) -0.5 (14.2) -1.0 (14.9) 

BothWrist -0.2 (15.3) 0.8 (11.6) 1.3 (17.8) 6.3 (44.1) 4.2 (15.1) 1.4 (22.1) 1.6 (13.4) 4.2 (12.6) 

Pelvis 1.5 (12.5) 5.9 (13.2) -0.7 (18.8) 1.6 (22.3) 3.6 (23.3) 11.9 (39.5) 4.3 (17.0) 0.1 (17.6) 
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Table 2 Error percentage [(true-estimated)/true]% on estimating frequency of task: median [interquartile range=third quartile-first 
quartile]) 

 Carrying LiftingG LiftingK LoweringG LoweringK Pulling Pushing Walking 

Ground Truth [#] 15.0 (5.0) 5.0 (0.0) 15.0 (0.0) 5.0 (1.0) 15.0 (0.0) 5.0 (0.0) 5.0 (1.0) 10.0 (5.0) 

FullBody 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (20.0) 0.0 (6.6) 0.0 (20.0) 0.0 (0.0) 0.0 (0.0) 

T8 0.0 (13.3) 0.0 (20.0) 0.0 (6.7) 0.0 (20.0) 0.0 (6.7) 0.0 (25.0) 0.0 (60.0) 0.0 (14.3) 

T8+Right Wrist 0.0 (6.6) 0.0 (0.0) 0.0 (0.0) 0.0 (25.0) 0.0 (6.6) 0.0 (36.6) 0.0 (20.0) 0.0 (14.3) 

Pelvis+Right Wrist 0.0 (12.2) 0.0 (20.0) 0.0 (0.0) 0.0 (45.0) 0.0 (14.4) 0.0 (20.0) 0.0 (0.0) 0.0 (21.4) 

LeftWrist 0.0 (13.3) 0.0 (0.0) 0.0 (13.3) 0.0 (25.0) 0.0 (12.9) 0.0 (25.0) 0.0 (0.0) -7.1 (25.0) 

RightWrist 0.0 (20.0) 0.0 (20.0) 0.0 (0.0) 0.0 (20.0) 0.0 (19.6) 0.0 (25.0) 0.0 (20.0) 0.0 (22.2) 

BothWrist 0.0 (20.0) 0.0 (20.0) 0.0 (0.0) 0.0 (25.0) 0.0 (6.6) 0.0 (40.0) 0.0 (0.0) -7.1 (20.0) 

Pelvis 0.0 (6.6) 0.0 (0.0) 0.0 (6.6) 0.0 (25.0) 0.0(13.1) 0.0 (20.0) 0.0 (18.3) -7.1 (14.3) 

Wrist+Pelvis -6.6 (20.0) 0.0 (0.0) 0.0 (13.3) 0.0 (25.0) 0.0 (18.7) 0.0 (50.0) 0.0 (20.0) 0.0 (22.2) 

Wrist+Pelvis -1.7 (19.1) 6.5 (19.0) 2.4 (17.2) 4.5 (26.1) 3.3 (21.7) -1.8 (27.1) 2.3 (21.1) 1.4 (18.34) 
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Figure 4 In figure are summarizes accuracy, F1-score, precision and recall values of each MMH task with respect to each sensor configuration 

FB: significant difference respect to Full Body configuration 
P: significant difference respect to Pelvis configuration 
RW: significant difference respect to Right Wrist configuration 
T8+RW: significant difference respect to T8+Right Wrist configuration 
*: significant difference vs all configurations 

 

 



 

Discussion 

 

In this study, to support objective physical exposure assessments in a workplace, has been 

examined the use of a single IMU with a BiLSTM network to classify MMH tasks to obtain task 

relevant information (i.e., task type, task duration and the number of a given task). Overall, in many 

cases, using a single IMU led to classification performance, comparable to using multiple (i.e., 2-3) 

IMUs and the full-body sensors (17 IMUs). For example, median [5th-95th %ile range] F1-scores for 

the use of a single IMU were 0.889 [0.396-0.983], depending on specific body locations and MMH 

tasks, while F1 scores for using two IMUs were 0.897 [0.417-0.988] , three sensors 0.878 [0.127-

0.983] and F1 scores for the full-body sensors were 0.942 [0.537 – 0.991]. Earlier study that used the 

full-body sensors to classify MMH task reported F1 scores of 0.8960 – 0.9599 (Barazandeh et al., 

2018) and 0.853 – 0.945 (Kim and Nussbaum, 2014). 

MMH-task classification performance was similar when a single IMU was placed either on 

the pelvis, the right wrist, or the thorax, and was a relatively work when a single IMU was placed on 

the left wrist (Figure 3). Yet, the left wrist (vs. other locations) configuration had statistically lower 

MMH-task classification performance only for some MMH tasks. The obtained results demonstrated 

that depending on a sensor location, using a single IMU can achieve statistically similar classification 

performance, compared to the FB configuration (17-IMUs). Some comments about the comparison 

of the performance of the configurations which can be considered more suitable for practical uses. 

We used the FB configuration as reference, therefore as expected reported the best performances in 

terms of accuracy and F1-Score as well as precision and recall. Comparison between this (FB) and 

the other configurations was found statistically significant only in few cases. The worst performances 

were instead observed for the LW configuration, whose values were statistically lower than FB 

configuration in six out of 8 tasks classification in terms of F1-Score and in 3 out of 8 tasks 

classification in terms of accuracy (see Figure 3). At first glance, such findings are somehow 

expectable since it is known that the sensor placement largely influences the classification 
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performances (Atallah et al., 2011), and better results are usually achieved when the sensor is placed 

on the body district directly involved in the specific movement analyzed. However, performances 

were not statistically different with respect to the FB configuration using the same configuration 

(wrist sensor data) but having the sensor in the dominant limb (RW). Good performances were also 

achieved from data obtained from T8 (Trunk) or P (Pelvis) locations, although T8 showed 

significantly lower performance than FB classifying pushing task (F1-sore was 14% lower) and both 

P and T8 showed significantly lower performance than FB classifying pulling task (F1-sore were 

14.3% and 16.5% and lower respectively), appearing less suitable in the classification of such tasks. 

Although not significant from a statistical point of view, results achieved using wrist sensors showed 

a greater variability, reflecting the wider choice of strategies possible performing MMH task using 

hands rather than trunk.  

An important aspect in the classification process is the error in the estimation of the duration 

and frequency of a certain task. This is important because also when the estimation of the duration of 

a certain task is similar to the ground truth, the number of times that task has been performed may be 

different from the estimated frequency and vice-versa. Our results showed that tasks duration 

estimation varied, and in some cases substantially, depending on the specific classification 

algorithms, sensor setup or task type (see Tables 1 and 2), ranging from -0.5% to 12.2% where 

typically larger errors are associated with tasks of shorter duration, but the median error in the 

estimation of the frequency of tasks was often zero.  

These findings suggest that even data obtained from a single sensor may lead to satisfactory 

results in terms of task classification and estimation of its duration, when external conditions like 

dominant limb and type of performed activity are carefully considered. This statement finds support 

on the analysis of the results of performances achieved adding one or two sensors. In fact, RW alone 

achieved an average F1-score of 0.87, while adding LW, T8 or P F1-scores were found lower, 0.83, 

0.85 and 0.84 respectively. Although a reduction in performances (not statistically significant) was 

someway unexpected, a possible explanation might be found in the lower performances of LW (F1-
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score = 0.80), T8 (F1-score = 0.85) and P (F1-score = 0.86) compared to those achieved by RW, that 

instead of improve the overall classification, seems to confuse the one achieved by RW. 

These results demonstrate that data from a single IMU can classify simulated activities 

commonly observed during MMH tasks enabling accurate and efficient ergonomic assessment. Here 

have been explored the performances of different sensor setup compared with the optimal available 

condition of the FB setup. Since performances of single sensor setup do not statistically differs from 

each other, in terms of task type identified, their duration, and the number of a task identified, we 

would like therefore to leave to the reader the choice of the more feasible placement on the basis of 

his/her practical need. Circumstances in which, the job does not require frequent pushing and pulling 

tasks, pelvis can be an optimal unobtrusive placement, as alternative to the wrist placement that in 

some peculiar circumstances might led to potentially harmful condition (e.g. to hook in some 

machinery). Furthermore, if the practitioner expects some challenges in data collection, using a 

combination of sensors he/she may overcome the data collection failure. Of course, although a single 

sensor allows to reach good classification performances, when possible, the use of a full body 

configuration allows to extract additional detailed information such as joints kinematics. 

The novelty of this study resides in the use of a BiLSTM for the classification of MMH tasks 

using a single IMU. Some comments about the choice of this particular network need to be cited. An 

interesting aspect in the choice of a BiLSTM network for the classification of MMH tasks in real 

work environment is that it is potentially able to process signals collected by consumer devices like 

smartphone or smartwatch equipped with accelerometers and gyroscopes, due to the fact that it can 

be fed using raw time-series signals thus avoiding the need for complicated feature extraction 

processes that usually require expert knowledge and tend to reduce the generalizability of the method 

(Artur Jordao et al., 2018; Wang et al., 2019). Furthermore, since the frequency of the different tasks 

associated with MMH can be extremely different (i.e. more lifting from knee level than lifting from 

ground level), the BiLSTM option seems to be appropriate because exhibit good performances also 

in presence of task that happened with unbalanced frequency (Wang et al, 2019). 
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Some limitations need to be accounted. Firstly, an exhaustive exposure assessment provides 

three levels: intensity, frequency and duration, while our approach allows to assess only frequency 

and duration. Secondly, the classifier has been trained using data from activities carried out in 

laboratory settings, although performed at self-selected speed and using the preferred strategy. 

Another drawback might be related to the relative inexperience of the participants performing MMH 

tasks compared to professional workers. Linked to the abovementioned limitation, future works might 

include information about the carrying loads (Lim and D’Suoza, 2019), adding knowledge about the 

intensity of the MMH tasks performed. Finally, but not less important, future works should consider 

testing the proposed method in field settings, to assess its performances in real work environment. 
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Conclusion 

This project was designed to provide a small contribution in bridging the gap between the research 

typically performed in a laboratory setting, and the possibility to translate the results into practical 

applications in an actual industrial context.  In the last decades, both society and industry have 

experienced new challenges associated with the huge demographic changes and, in many countries, 

the change in age composition of the population has been faced through reforms aimed in reducing 

any possibility of early exit from the work market, thus pushing individuals towards  a prolonged 

working life. However, the increased presence of older people in the workforce is likely to have 

consequences in terms of health issues since the prevalence of chronic diseases increases with age. 

Among them, musculoskeletal disorders (and particularly LBDs) represent a serious problem for 

workers, employees, insurance and public administrations. In this context, this research project has 

been focused on designing an approach (feasible to be applied in actual working environments) able 

to provide quantitative reliable data useful to support the monitoring of potential harmful conditions 

for workers, with the final aim of preserving and promoting an “healthy ageing” of workers. 

The development of work-related LBDs is an “old” problem, but despite the large number of 

studies carried out on this topic, no definitive solutions have been found so far. Some possible 

explanation may be related to different methods applied in the epidemiological research to 

characterize exposure to risk factors. In fact, most researches that attempted to explain the existence 

of a causal relationship between risk factors and symptoms have been carried out in laboratory 

settings, thus neglecting several aspects of the actual interaction between workers and environment. 

In other cases, self-reported questionnaires have been used, but such tools are highly biased by the 

workers perception. As a result, scarce information about quantitative assessment of exposure to risk 

factors under actual working condition are available. 
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Driven by these drawbacks, this research attempted to propose a valid tool to collect information 

about workers’ trunk posture, easy to use, feasible for actual working conditions, and able to provide 

straightforward output. 

To reach these goals, this research has been articulated into two main paths:  

1. To demonstrate the feasibility of use and the reliability of a simplified setup composed by a 

single IMU to monitor trunk flexion for prolonged working time in actual occupational 

settings. 

2. To explore the possibility to use the same setup to classify type, frequency and duration of a 

range of MMH tasks of interest (given their potential hazard for the development of LBDs) 

by means of specific algorithms that process IMU-derived data. 

The obtained results demonstrated that IMUs represent a suitable way to monitor trunk posture, at the 

same time providing the possibility to discriminate among different strategies adopted to perform a 

given task. Such features suggest that this technique can highlight potentially harmful behaviors or 

conditions. In this way, early intervention to prevent the development of LBDs might be planned. 

The simplicity of the employed setup and the associated methodology to process IMU-based data 

here proposed, may be useful specially to perform rapid screenings of large cohorts of workers, with 

minimal disturbances to the working tasks. Collected data may represent valuable information for 

ergonomist or production engineers regarding potential risks, to support decisions or type of actions 

needed to improve the interaction with the working environment, with the final aim of preventing 

injuries to keep workers healthier and active as long as possible. 
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