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Abstract: Thyroid cancer is the most common endocrine system malignancy. However, there is still 

a lack of reliable and specific markers for the detection and staging of this disease. Fine needle 

aspiration biopsy is the current gold standard for diagnosis of thyroid cancer, but drawbacks to this 

technique include indeterminate results or an inability to discriminate different carcinomas, thereby 

requiring additional surgical procedures to obtain a final diagnosis. It is, therefore, necessary to seek 

more reliable markers to complement and improve current methods. “Omics” approaches have 

gained much attention in the last decade in the field of biomarker discovery for diagnostic and 

prognostic characterisation of various pathophysiological conditions. Metabolomics, in particular, 

has the potential to identify molecular markers of thyroid cancer and identify novel metabolic 

profiles of the disease, which can, in turn, help in the classification of pathological conditions and 

lead to a more personalised therapy, assisting in the diagnosis and in the prediction of cancer 

behaviour. This review considers the current results in thyroid cancer biomarker research with a 

focus on metabolomics. 
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1. Introduction 

Thyroid carcinoma is the most common endocrine malignancy with papillary thyroid carcinoma 

accounting for 85–90% of all thyroid tumours [1–3]. The development of thyroid nodules is a common 

clinical problem, and its incidence varies geographically worldwide, possibly reflecting 

environmental influences, the age and sex distribution of the populations studied as well as genetic 

factors of these populations [4]. The occurrence of these nodules increases with age, is more frequent 

in females, in iodine-deprived regions and individuals with a history of radiation exposure [5,6]. The 

estimated annual incidence of thyroid carcinoma worldwide in 2018 was 6.7 cases per 100,000 

individuals (https://gco.iarc.fr/today, accessed on 19 June 2019). Furthermore, thyroid cancer affects 

567,000 individuals with relatively low annual mortality rates of about 41,000 deaths in 2018 [7]. 
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Thyroid carcinoma develops from two different cell types of the thyroid gland: the follicular and 

parafollicular cells. Follicular cells are epithelial cells responsible for iodine uptake and thyroid 

hormone synthesis, while parafollicular cells produce and secrete the hormone calcitonin. Of these 

two, follicular cells are responsible for most of the thyroid-derived carcinomas [8]. Thyroid carcinoma 

can be subdivided into papillary, follicular, anaplastic and medullary. 

Thyroid nodules can be clinically detected by palpation or thyroid ultrasound. The most widely 

used clinical method for the diagnosis of thyroid nodules is cytological analysis through fine-needle 

aspiration biopsy (FNAB), but this procedure often produces inconclusive results. The Bethesda 

classification divides the results of this cytological examination into six classes: non-diagnostic or 

unsatisfactory (I), benign (II), atypical or follicular lesions of undetermined significance (AUS/FLUS) 

(III), suspicion of follicular neoplasia (IV), suspicion of malignancy (V) and malignancy (VI). When 

the cytological analysis is non-diagnostic (I) or in the case of AUS/FLUS (III), FNAB should be 

repeated. Scheduling a new FNAB may not always help to clarify the diagnosis, since it could 

continue to be non-diagnostic or indeterminate, requiring a clinical decision of active surveillance or 

surgery based on little information. However, when the result is the suspicion of follicular neoplasia 

or suspicion of malignancy, surgical removal of tissue is recommended for a more complete 

histological diagnosis [9]. Furthermore, less than 30% of lesions classified as atypical or follicular 

lesions of undetermined significance (AUS/FLUS) (III), suspicion of follicular neoplasia (IV) and then 

diagnosed by histology following surgery are subsequently classified as malignant [10], meaning that 

several surgeries could have been avoided, had the initial diagnosis been conclusive in ruling out 

malignancy. Moreover, even though histopathological evaluation remains the gold standard in 

distinguishing different types of thyroid cancer, it may also not be conclusive in some cases [11]. 

The discovery of standalone malignancy biomarkers is therefore of particular importance for 

patients with indeterminate cytologies, mainly categories AUS/FLUS (III), suspicion of follicular 

neoplasia (IV) and suspicion of malignancy (V). Thus, new biomarkers could be useful in the selection 

of cases for surgery. The need to improve the diagnostic power of FNAB has been a longstanding 

concern, reflected in an editorial by Ernest L. Mazzaferri in 1992 which reported the uncertainty in a 

diagnosis performed solely by this biopsy, and emphasised the importance of combining its data with 

good clinical history [12]. 

In the last decade, the different “omics” played an essential role in improving the knowledge of 

complex biological systems and identifying potential new biomarkers of pathological progressions, 

or pharmacologic responses to a therapeutic intervention. The “omics” field encompasses a large 

variety of approaches, from genomics (genetic mapping and DNA sequencing of genomes) and 

transcriptomics (gene expression patterns) to proteomics (protein expression and interactions) and 

metabolomics (metabolites and related biochemical reactions), which aim to identify biomarkers. 

The mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signalling 

cascades are the main activator pathways implicated in thyroid cancer. Papillary carcinoma, in 

particular, is mostly related to mutations that activate the MAPK signalling pathway, including 

RET/PTC rearrangements and point mutations of the BRAF and RAS genes. Genetic alterations found 

in follicular carcinomas, the second most frequent type of thyroid cancer, include RAS mutations and 

PAX8-PPARγ rearrangement [13]. In terms of genetic biomarkers, the BRAFV600E mutation has been 

found to be very specific for papillary thyroid carcinoma; however, its absence cannot reliably rule it 

out [11,14]. Indeed, these common genetic mutations are considered poor prognostic markers, 

although they can still be useful at an individual level [15]. The differential expression of micro RNA 

molecules (miRNAs) in distinct histopathological tumour types and at various stages of tumour 

differentiation and progression has also been reported to have diagnostic and prognosis potential. 

MicroRNAs are small non-coding RNAs that can regulate gene expression at the post-transcriptional 

level and are involved in a wide range of biological processes, including cancer. In thyroid cancer, in 

particular, the levels of miRNA-146b, -221 and -222 were found to be changed [16–18]. Either alone 

or as a panel, miRNAs could be useful diagnostic and prognostic markers, and may even be 

considered as therapeutic targets. 
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While genetic expression corresponds to protein synthesis, it does not necessarily correlate with 

the concentration of the expressed protein since this depends on its degradation rate as well as its 

rate of synthesis. Hence. It is important to study not only genomics but also the proteomics of the 

system. Given the recent mass spectrometry (MS) advances, especially for proteomics applications, 

this approach has become the gold standard for protein identification. In particular, MS imaging of 

protein expression has become an interesting technique for future clinical applications since it can be 

applied directly to intact tissue samples, thereby revealing the spatial distribution of individual 

proteins. The number of proteomics studies in thyroid cancer currently exceeds those based on 

metabolomics, and these have been extensively reviewed [19,20]. In particular, protein S100-A6 was 

identified as a factor that discriminated between follicular and papillary thyroid carcinoma, with 

overexpression in the latter [21–23]. However, its sensitivity and specificity for distinguishing 

between benign and malignant thyroid cancer were relatively poor (85% and 69%, respectively). 

Another protein that was found to be upregulated in papillary thyroid carcinoma in comparison to 

follicular thyroid cancer was 14-3-3 σ [24–26]. This protein usually acts as a negative regulator of the 

cell cycle, but it is thought to have an enabling role in papillary carcinoma. Proteomics per se can 

provide not only diagnostic and prognostic biomarkers but also reveal potential therapeutic targets. 

For example, protein HSP90 was found to be overexpressed in thyroid cancer [27,28]. This protein is 

responsible for the folding of many proteins directly associated with malignant progression, so its 

inhibition could result in a combinatorial attack on numerous oncogenic pathways. Inhibition of 

HSP90 can therefore not only attenuate cell proliferation but also increase the efficacy of radioiodine 

therapy in thyroid cancer patients [29–32], making this protein a good chemotherapeutic target. 

Recently, a proteomics profiling of tissues for the four types of thyroid cancer and benign 

follicular adenoma revealed that several proteins associated with metabolism, including 

mitochondria-related functions, lipid and nucleic acids metabolism, could discriminate between 

these different thyroid lesions [25]. Besides being capable of discriminating between cancer types, the 

integration of these results with metabolomics and transcriptomics data has enabled a more complete 

understanding of the pathogenesis of these cancers. This is a good example of how the integration of 

multiple omics approaches can provide a more holistic understanding of thyroid cancer, as well as 

confirm the mechanistic insights obtained from each omic strategy. 

Metabolomics carry a great promise for discovering potential markers of various pathological 

conditions and for better understanding biochemical pathways associated with disease development 

[33–35]. The metabolome comprises the entire set of small molecules that are generated by metabolic 

activity within cells, tissues and organs. Its composition may change in response to enzyme levels 

and activities, cellular regulation, signalling pathway activation, and genetic variations. The 

metabolome can reflect changes in the transcriptome (mRNA) and proteome (proteins), as a 

consequence of environmental factors, such as drugs, nutrients and pollutants, in addition to 

phenotypic alterations in pathophysiological states. In particular, metabolomics provides a 

phenotypic snapshot of a cell, tissue or organism, reflecting more closely the clinical reality, thus 

improving the understanding of physiopathological mechanisms. As metabolites are the end-

products of biochemical reactions in the body, they are the closest molecules to phenotype. On this 

basis, metabolomics could represent a very useful tool for the identification of metabolic pathways 

specific to thyroid cancer, alongside other omics techniques. Since tumours significantly alter 

primary metabolic pathways, metabolomics is rapidly becoming an important approach to identify 

cancer biomarkers too. Alterations of the metabolome can also be mirrored in different biofluids such 

as blood [36], urine [37] and amniotic fluid [38]. Thus, analysis of a biofluid can also be 

alternative/integrative data to FNAB. In the last few years, the capability for determining metabolic 

profiles through the use of nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry 

has grown significantly, resulting in a consequent increase in metabolomic studies of thyroid cancer. 

However, more studies are needed to identify possible biomarkers and better understand the 

mechanisms involved in the metabolic alteration in thyroid cancer. In this review, we discuss how 

metabolomics has been used to study thyroid cancer by focusing on the original papers in the matter 

and suggest future perspectives. 
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2. Metabolomics in Thyroid Cancer 

Compared to proteomics and transcriptomics, thyroid cancer metabolomic studies have 

featured in relatively few papers over the last ten years. However, recent technical improvements in 

both hardware (mass spectrometers with higher mass accuracy, SWATH data-independent MS 

acquisition and ion-mobility MS) and software (improvement of metabolite identification databases, 

as well as metabolite biological integration and NMR automatic identification and quantification) 

have allowed metabolomics to emerge as a standalone method for profiling of thyroid cancer samples 

[39–41]. Although this review is focused on NMR and MS metabolomics, it is worth mentioning that 

other techniques could also be applied. Raman spectroscopy also has an interesting diagnostic 

potential: by analysing the vibrational modes of chemical bonds, it can identify non-specific 

molecules, such as proteins, lipids or nucleic acids, that may just be enough to distinguish between 

malignant and benign samples [42,43]. 

2.1. The Early Years—NMR Spectroscopy 

One of the first metabolomic studies that attempted to address the lack of diagnostic power in 

thyroid cancer was in 1994 and consisted of a 1H NMR study of 19 malignant and 24 benign patient 

tissue samples (Table 1). The authors were able to identify triglycerides and lysine as potential 

discriminatory metabolites, but the method’s specificity was only 52% [44]. Two years later, the same 

authors applied two-dimensional NMR spectroscopy, which improved the resolution of metabolite 

signals, allowing a higher number of metabolites to be monitored. However, this only led to a 

moderate improvement in the method specificity [45]. 

By the beginning of the 21st century, NMR spectroscopy had emerged as the main technique for 

performing metabolomic analysis. The first proof-of-concept studies in thyroid cancer used either 

magnetic resonance spectroscopy imaging (MRSI) [46–48] or 1H NMR spectroscopy on excised tissue 

samples or deproteinised tissue extracts [49,50]. One interesting feature of the study of King et al. is 

that it was one of the first studies to identify choline as a metabolite whose levels were changed in 

thyroid cancer [46]. This was confirmed in subsequent studies and choline has since often been 

proposed as a thyroid cancer biomarker. However, it should be emphasised that, while MRSI is non-

invasive, the standard 1.5T systems in current clinical use are limited to detecting a handful of highly 

abundant metabolites, such as choline, within relatively large voxel volumes (1 mL) [46–48]. 

The first high-resolution magic angle spinning (HR-MAS) NMR metabolomics study [51] and 

the first MS study [52] that we found in our literature search were both published in 2011. HR-MAS 

allows spectra to be obtained from intact biopsy samples of 10–40 μL volumes with signal resolution 

approaching that of high-resolution NMR spectra of tissue extracts. The study of Jordanet al., 

although using a limited number of samples, had the benefit of being able to compare results of 

tissues with those of aspirates. The study of Yao et al. analysed the serum of 30 papillary thyroid 

carcinomas (malignant), 80 nodular goitres (benign) and 30 healthy controls and found that 

malignant and benign samples were correlated with changes in lipid metabolism, with 3-

hydroxybutyric acid, an intermediate product of fatty acid metabolism, particularly important. One 

year later, the group of Prof. Caldarelli published two similar papers [53,54] using HR-MAS NMR on 

tissue samples. These revealed increased phenylalanine, taurine and lactate levels, and a decrease in 

choline and choline derivatives and myo- and scyllo-inositol levels in malignant tissues compared to 

benign. However, when these data were modelled using orthogonalised partial least-squares 

discriminant analysis (OPLS-DA) their diagnostic power was found to be limited, as indicated by the 

area under the curve (AUC) of the receiver operating characteristic (ROC) of 0.77 .[55] 

In another study, 1H HR-MAS NMR of tissue, in conjunction with 1H NMR from plasma 

samples, was used to classify papillary thyroid microcarcinomas, a subtype of papillary carcinoma. 

By using nine significantly changed metabolites from plasma (glucose, mannose, pyruvate, 3-

hydroxybutyrate, valine, tyrosine, proline, lysine and leucine), they were able to achieve good 

sensitivity and specificity with an AUC of 0.992 [56]. This technique was more recently used in FNABs 

of thyroid tissues collected post-surgically and found statistically relevant metabolites in 

indeterminate lesions (myo- and scyllo-inositol, serine, citrate, leucine, alanine, phenylalanine and 
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tyrosine) [57]. While HR-MAS NMR can provide 1H NMR spectra of semisolids with a comparable 

spectral resolution to liquid-state NMR, it requires high spinning rates of several kHz. This may not 

only disrupt the tissue structure but can also result in the leakage of potentially infectious material. 

Furthermore, HR-MAS probes are costly, while incomplete suppression of the water signal can also 

interfere with the quantification of some metabolites. Therefore, 1H-NMR spectroscopy of tissue 

extracts has continued to be widely used [56,58–63]. In the study of Deja et al., four metabolites were 

considered as selective biomarkers of thyroid cancer, namely creatine, myo- and scyllo-inositol and 

uracil, but the thyroid cancer group was comprised of only 12 patients [58]. The study by Metere at 

al., although with only 14 patients, observed differences in cancer and healthy tissue in lactate, 

phenylalanine, citrate, myo-inositol and threonine [63]. Tian et al. were able to distinguish malignant 

thyroid lesions from benign with a ROC of 0.88 [59]. On the other hand, Ryoo et al. from the aspirates 

alone could distinguish seven metabolites (lactate, choline, O-phosphocholine, glycine, citrate, 

glutamate and glutamine) with ROCs ranging 0.64–0.85 [60]. Seo et al. attempted to predict lymph 

node metastasis in papillary carcinoma patients, but they were not able to discriminate the presence 

of metastasis [61]. In the study of Li et al., 15 metabolites were found to be differentiated using two 

OPLS-DA models [62]. 

Although NMR spectroscopy has been a valuable technique for several metabolomic studies so 

far, it has had a strong competition by MS in the last few years. One of the reasons is its lower 

sensitivity in comparison to MS. However, NMR spectroscopy presents advantages in relation to MS, 

by being highly reproducible and capable of performing absolute quantification of the metabolite’s 

concentrations. Furthermore, it can detect compounds that are less easily detected by MS, such as 

sugars, organic acids, alcohols and other highly polar compounds, and it is well suited for studying 

intact tissues, organs and other solid or semi-solid samples through solid-state NMR and HR-MAS 

NMR. However, metabolite identification is not straightforward given the complexity of the 1H-NMR 

spectra but can be more easily overcome by databases such as the Human Metabolome Database 

(HMDB) [64], or the use of (semi)automatic identification and quantitation tools such as BAYESIL 

[65] or Chenomx NMR Suite from Chenomx Inc.. This complexity comes mainly from peak overlap, 

which could be ameliorated by the use of stronger magnets, increasing spectral dispersion. Presently, 

commercial NMR spectrometers can achieve magnetic fields of 28.2 Tesla, the equivalent to a 1H 

Larmor frequency of 1.2 GHz, but unfortunately, the cost of such equipment is by now detrimental 

to their use, with the 600-MHz NMR spectrometers being the best cost-sensitivity/resolution 

compromise. The more frequent application of selective excitation techniques on specific spectral 

regions and of multidimensional NMR experiments such as total correlation spectroscopy (TOCSY) 

and J-resolved spectroscopy (J-Res) [56,59,66] could also help in resolving overlapping peaks. 

Another exciting development in NMR metabolomics is in probes design, with microprobes for MAS 

enabling an enhancement of sensitivity while reducing the sample size to a few microliters, and 

cryoprobes significantly increasing signal sensitivity. 

2.2. The Rise of Mass Spectrometry 

Even though the sensitivity of NMR spectroscopy has significantly improved over the last few 

years with a metabolite quantification threshold of ≥1 μM, it remains far less than that of MS [67]. 

With the improvements in instrumentation, experimental methods, software and spectral databases, 

the use of mass spectrometry in the field of metabolomics has grown considerably in recent years, 

including its application to metabolomics studies of thyroid cancer (Figure 1). Liquid 

chromatography coupled to mass spectrometry (LC-MS) was first used to study thyroid cancer in 

serum samples from 30 papillary thyroid carcinoma, 80 benign thyroid nodules and 30 healthy 

controls [52]. 3-hydroxybutyric acid, an intermediate product of fatty acid metabolism, was found to 

be higher in the papillary thyroid carcinoma group compared to either benign or healthy groups. In 

2017, Zhouet al. applied a data-independent acquisition (DIA) workflow for metabolomics [68]. 

Unlike the traditional data-dependent acquisition (DDA) strategies, this acquisition mode has higher 

metabolite coverage by using mass range windows to obtain the fragmentation spectra. It is expected 

that this innovative way of LC-MS metabolite profiling will be translated into metabolomic studies 
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[69]. However, alternative approaches can be used in thyroid cancer metabolomics; for example, an 

amino acid analyser was used on the plasma of thyroid cancer patients and found significantly higher 

levels of methionine, leucine, tyrosine and lysine [70]. In addition to the analysis of water-soluble 

metabolites, several lipid species have also been identified as putative biomarkers for resolving 

malignant and benign thyroid lesions. Ishikawa et al. combined imaging mass spectrometry with a 

matrix-assisted laser desorption/ionisation tandem time-of-flight (MALDI-TOF/TOF) instrument to 

identify and describe the distribution of individual biomolecules in a tissue section [71]. With this 

approach, they revealed that phosphatidylcholine (34:1) and (34:2) and sphingomyelin (34:1) were 

present in significantly higher amounts in papillary thyroid carcinoma when compared to normal 

tissue from the same patients. A similar approach was applied to tissue and serum samples collected 

from subjects with malignant or benign lesions (tissue), as well as healthy subjects with no thyroid 

lesions (serum). In this case, it was found that a biomarker panel consisting of phosphatidic acid (36:3) 

and sphingomyelin (34:1) could distinguish malignant cancer from benign, with an AUC value of 

0.961, a sensitivity of 87.8% and a specificity of 92.3% [72]. Zhang et al. observed increased relative 

abundances of ceramides and specific glycerophosphoinositols using 2D desorption electrospray 

ionisation mass spectrometry to image thyroid cancer in lymph node tissues [73]. Meanwhile, 

Huanget al. showed a higher expression of phenylalanine, leucine and tyrosine in the tumour region 

with a gradual level decrease from tumour to the stromal and normal tissues and the inverse profile 

of creatinine [74]. Another study was able to profile lipids directly in formalin-fixed tissue sections 

by MALDI-Q-Ion Mobility-TOF-MS, demonstrating that this technique could be complementary to 

the present histological methods [75]. These studies demonstrate the potential of spatially resolved 

metabolomics to provide meaningful and clinically relevant information from biopsy samples that 

are by nature highly heterogeneous. 

 

Figure 1. Number of papers of untargeted metabolomics studies in thyroid cancer using magnetic 

resonance spectroscopy and high-resolution liquid and solid state NMR spectroscopy (MR) and mass 

spectrometry (MS). Papers found in the PubMed and Web of Science on April 16th 2020. Criteria—

Pubmed: (((thyroid neoplasms[MeSH Terms]) OR (metabolomic*[MeSH Terms])) AND 

(metabolom*[MeSH Terms])) AND (thyroid[Title/Abstract]) Filters: Humans, English and 

(thyroid[Title/Abstract]) AND ((cancer*[Title/Abstract]) OR (carcinom*[Title/Abstract]) OR 

(malignant[Title/Abstract])) AND ((metabolom*[Title/Abstract]) OR (metabolit*[Title/Abstract])) 

Filters: Humans, English . Web of Science: ((TI = (thyroid AND (cancer OR carcinom* OR neoplasm* 

OR malignant*) AND (metabolomic* OR metabonom* OR metabolit*)))) AND English AND Article. 

Note: Reviews, other non-related papers, response to treatment or other omics studies that were not 

untargeted metabolomics were excluded. 

The year 2015 saw a peak in the number of metabolomic publications, with gas chromatography-

mass spectrometry (GC-MS) being widely reported (Figure 1). This technique was first used in 

combination with a 1H NMR metabolomics study to measure fatty acid abundances [59]. They 

showed higher levels of (C14:0), (C16:0) and (C18:3n3) fatty acids and lower levels of (C20:3n6) fatty 
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acids in malignant compared to benign tissues. Since then, other GC-MS metabolomics studies have 

been published that identified metabolites in carbohydrate metabolism, including glucose, fructose, 

galactose, mannose, 2-keto-D-gluconic acid and rhamnose that were decreased in papillary thyroid 

carcinoma, which is consistent with an upregulation of the glycolysis and pentose phosphate 

pathways [76]. These results are consistent with cancer tissues requiring higher rates of cytosolic ATP 

production and increased amounts of NADPH and precursors for biosynthesis of nucleotides and 

other cell components. Another study combined the metabolic profiles obtained by GC-MS and ultra-

performance liquid chromatography-mass spectrometry (UPLC-MS), resulting in a total of 195 

detected metabolites. From these metabolites, they concluded that purine and pyrimidine 

metabolism was higher in papillary thyroid carcinoma, as well as taurine and hypotaurine levels. 

However, another study that used GC-MS and UPLC-MS identified a decrease in galactinol, 

melibiose and melatonin in papillary thyroid carcinoma with an AUC of 0.96 [77]. 

In an attempt to discriminate between different types of thyroid cancer, and some of their most 

common variants, Wojakowska et al. analysed five different types of thyroid malignancies (follicular, 

papillary classical variant, papillary follicular variant, medullary and anaplastic cancer), as well as 

benign follicular adenoma and normal thyroid tissue [78]. They found an upregulation of lactic acid 

and downregulation of several fatty acids and their esters in cancer versus normal tissue, as well as 

upregulation of myo-inositol phosphate, succinic acid and certain fatty acids and their esters in 

malignant versus benign tissue. Moreover, the classical variant of papillary carcinoma could be 

distinguished from follicular thyroid lesions by lower levels of gluconic acid and higher amounts of 

citric acid. In addition, follicular carcinoma could be distinguished from the follicular variant of 

papillary carcinoma by changes in the levels of decanoic acid ester. It would be important to promote 

more studies which discriminate between different types of thyroid cancer since cancer classification 

is essential to assess prognosis and select an adequate treatment. Moreover, follicular adenoma, 

follicular carcinoma and the follicular variant of papillary carcinoma can be hard to distinguish 

histologically, so metabolomics can represent an important tool to assist in their differentiation. 

Regarding more specific studies, the serum of 37 patients with distant metastasis was compared with 

the serum of 40 patients from an ablation group, where it was found that serum asparagine, gamma-

amino butyric acid (GABA), aminooxyacetic acid and 4-deoxypyridoxine increased in the distant 

metastasis group while pyroglutamic acid was decreased [79]. A GC-MS metabolomic study was also 

performed on a model system of thyrospheres, containing cancer stem-like cells, from B-CPAP and 

TPC-1 cell lines derived from papillary thyroid cancer of the BRAF-like expression profile class, 

which showed significant differences in Krebs cycle intermediates, amino acids, cholesterol and fatty 

acids content when compared to non-cancer stem-like cells [80]. Besides in vivo measurements, it 

may be interesting to characterise individual cell types found within the tumour, given the 

heterogeneity of cancer cells, to therapeutically target those that are contributing the most to the 

cancer phenotype. The papillary thyroid cancer-derived cells also showed altered redox homeostasis 

as well as increased levels of intracellular oxidant species, a common hallmark of cancer, since ROS 

homeostasis needs to be tightly regulated, otherwise it can promote an altered metabolism. The most 

perturbed metabolic phenotype was found in B-CPAP cells, which are characterised by the most 

aggressive genetic background [81], demonstrating the connection between genetic background and 

cancer metabolism and consequently phenotype. Once again, we observe the importance of 

combining information from genetics to metabolism for a better understanding of this disease. 

The field of mass spectrometry-based metabolomics has been facing a significant evolution with 

more sensible, higher dynamic range, higher data acquisition speeds and different acquisition modes 

equipment. Nonetheless, data acquisition is not the only critical point. Data analysis with better 

algorithms for peak detection, alignment and analysis; better software tools that integrate these 

algorithms and further statistical analysis; and better databases with information on each compound, 

such as possible adducts and multiple retention times (XCMS/Metlin and HMDB), are pushing the 

field forward at higher speeds. More specifically, identification of metabolites on a large scale with 

the assistance of software tools (Elucidata El MAVEN [82] and Sciex Accurate Mass Metabolite 

Spectral Library with MasterView™ software) or using sample preparation kits (IROA® Quantitation 
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Kits) will advance even further mass spectrometry as the go-to methodology for metabolomics. 

Thyroid cancer profiling, in particular, will definitely benefit from these advances. Moreover, the 

technical advances for mass spectrometers have allowed even for their use in the clinical setting. 

Take, for example, an automated and biocompatible handheld mass spectrometer that can quickly 

and non-destructively assess if at the pointed location cancerous tissue is present, which allows 

surgeons to accurately define the tumour margins prior to excision [79]. 

2.3. Peripheral Fluids 

Most of the publications for thyroid cancer metabolomics to date have focused on the direct 

analysis of the thyroid gland. However, with the aim of avoiding the invasive biopsy of the thyroid, 

there have also been studies that looked for associations between thyroid malignancies and plasma 

[50,56,70,83] or serum metabolites [52,72,79,84,85]. A study of children and adolescents with thyroid 

cancer identified an increase in the levels of serum leucine, lactate, alanine, lysine, acetate, glycine 

and choline and lower levels of glucose in papillary thyroid carcinoma samples versus benign by 1H 

NMR spectroscopy, which is consistent with other works in adults [86]. More recently, a plasma GC-

MS study has suggested sucrose as a discriminative compound between papillary thyroid cancer and 

multinodular goitre, which poses an interesting question as to the influence of high sucrose sugar 

diets in the promotion of tumorigenesis [83]. Another non-invasive approach used capillary 

electrophoresis to analyse urine [87]. In this case, the authors focused on the profiling of urinary 

nucleosides, with inosine, N2-methyl guanosine, N2-N2-dimethylguanosine and 1-methylguanosine 

being higher in thyroid cancer patients when compared to healthy controls. In a study of paired blood 

and urine samples, it was shown that, while metabolome data of each analyte could differentiate 

between healthy subjects and those with nodular lesions, analysis of the combined datasets provided 

better predictive power [88]. Another study, collecting both serum and urine, indicated serum β-

hydroxybutyrate, docosahexaenoic acid, 1-methyladenosine, pregnanediol-3-glucuronide, urinary 

nicotinic acid mononucleotide and xanthosine as a potential biomarker panel for papillary thyroid 

cancer, using two validation sets [89]. Huang et al. integrated data of serum and plasma metabolites 

from six independent centres, having had a total of 1540 serum-plasma matched samples and 114 

tissues [90]. The study was divided into a discovery phase, composed of one centre and then the 

validation phase, with the rest of the samples from the other centres. They were able to establish a 

panel of six biomarkers with an AUC of 98%, namely myo-inositol, α-N-phenylacetyl-L-glutamine, 

proline betaine, L-glutamic acid, lysophosphatidylcholine (18:0) and lysophosphatidylcholine (18:1), 

to distinguish between healthy samples and papillary thyroid carcinoma. However, they were not 

able to distinguish cancer samples from benign thyroid nodules. Another study compared the plasma 

lipidomic profiles of five commonly found cancers: liver, lung, gastric, colorectal and thyroid [91]. 

Interestingly, they found a distinct profile in thyroid cancer relative to all the other studied cancers, 

selecting lysophosphatidylinositol (18:0) and (18:1) as specific to thyroid cancer only. Going beyond 

blood and urine, a study of thyroid carcinoma patients and healthy controls revealed highly 

predictive differences in intestinal microbiota genera and faecal metabolites [92]. Finally, exhaled 

breath from 39 papillary thyroid carcinoma, 25 benign and 32 healthy volunteers was analysed by 

solid-phase microextraction GC-MS with (3-methyl-oxiran-2-yl)-methanol, 1,1,3-trimethyl-3-(2-

methyl-2-propenyl) cyclopentane and trans-2-dodecen-1-ol being identified as significantly changed 

in papillary thyroid carcinoma versus benign [93]. 

The study of body fluids is important to give a broader overview of the disease depending on 

the compartmentalisation of such fluids. For example, urine is highly dependent on food and liquid 

intake, while blood can have a more stable metabolome. Biofluids imply non-invasive or minimally 

invasive collection when compared to tissues and reflect the overall response of the patient to the 

disease. They have therefore the potential to be used in the monitoring of therapy and cancer’s 

evolution. In the case of thyroid cancer diagnosis, it would be important to find a minor invasive 

method that could complement the FNAB exam and would ultimately provide a faster and more 

accurate diagnosis of thyroid cancer. Furthermore, omics profiles in these samples can bring us closer 
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to precision medicine, where an individual’s metabolomic fingerprint can assist the physician in 

therapy customisation. 

2.4. Most Referred Metabolites 

The most cited metabolites in thyroid cancer profiling are identified in Figure 2. The top three 

are choline, lactate and tyrosine. When comparing different studies, the differences in the abundance 

of these metabolites between healthy subjects or patients with benign and patients with malignant 

thyroid lesions do not always match. This might be explained by the use of different sampling 

methods, techniques and study groups. Nevertheless, there is a broad consensus that lactate is 

upregulated in thyroid cancer. According to Warburg’s hypothesis, cancer cells present a high 

glycolytic rate with high rates of glucose conversion to lactate even with plentiful levels of oxygen 

[94]. Although far less ATP is generated per mole of glucose via glycolysis, compared to oxidative 

phosphorylation, it is generated at a much faster rate [95]. Moreover, the lactate product may not be 

a bystander in this process, because it is thought to have a role in angiogenesis, immune escape, cell 

migration, metastasis and self-metabolism [96]. Thus, it is not surprising that lactate has been 

identified as a biomarker in thyroid cancer as well as in lung [97], breast [98] and pancreatic cancer 

[99]. 

 

Figure 2. Metabolites featured in thyroid cancer versus healthy or benign controls. Metabolites 

referenced more than three times in the metabolomic studies of thyroid cancer showcased in Table 1, 

altered or with discriminative value. Dark grey, upregulated; light grey, downregulated. 

Tyrosine is considered a non-essential amino acid because it can be synthesised from 

phenylalanine; nonetheless, it has an important role in the production of proteins that are a part of 

signal transduction processes, acting as a receiver of phosphate groups transferred through tyrosine 

kinases. In turn, these enzymes have been associated with the regulation of cellular proliferation, 

survival, differentiation, function and motility, linking them to a cancer phenotype [100]. In 
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particular, thyroglobulin, which contains multiple tyrosine residues, is a protein produced by the 

follicular cells of the thyroid, and that is, in turn, the precursor of thyroid hormones T3 and T4. The 

dysregulation of thyroglobulin is associated with multiple thyroid diseases, including cancer. Besides 

tyrosine’s role in protein biosynthesis, it acts as an intermediate in the biosynthesis of catecholamines, 

which have also been associated with thyroid cancer [101]. The role of choline and choline derivatives 

is not clear since some studies have shown that they are downregulated [50,53,54], while others have 

shown them as upregulated [46,47,59,60,71]. Nonetheless, choline has also been associated with other 

types of cancer [102]. Activated choline metabolism, characterised by increased phosphocholine and 

total choline-containing compounds is a common hallmark of different cancers [103] and increased 

levels of choline and its derived compounds have been associated not only with proliferation but also 

with malignant transformation [104]. Other metabolites that are mentioned frequently could even be 

explained by the same mechanisms and cancer driven pathways. This is the case of lactate, citrate, 

alanine, glutamic acid, glutamine and leucine, since their dysregulation coincides with 

glutaminolysis in a cancer context. Glutamine is therefore heavily consumed to generate ATP and 

lactate, as well as being used in the synthesis of other molecules, such as nucleotides and proteins, 

producing during these mechanisms more glutamic acid, alanine and leucine. Citrate on the other 

hand, will be likely consumed to provide acetyl-CoA for lipid synthesis. 

Cancer cells reprogram their metabolism to meet high energy needs and require increased 

biosynthesis to be able to grow and divide. The overall dysregulation in lipids and amino acids, as 

observed in Figure 2, can be associated with a higher metabolic turnover of these species. In the case 

of lipids, there is a high demand for membrane biosynthesis in cell propagation, which explains why 

they are decreased in cancer samples, while for amino acids there is possibly a high protein turnover 

which may explain their unusually high values in malignant tissues. 

The metabolites referenced the most in thyroid cancer are also a reflection of the methods used 

to detect them since these three top mentioned molecules reflect metabolites more easily identified 

by NMR spectroscopy. Although being mentioned more often, they have not been validated as 

specific thyroid cancer biomarkers, which shows the importance of using more sensitive techniques, 

such as mass spectrometry, which could provide other metabolites to be considered as biomarkers. 

Furthermore, some biomarkers where found decreased in some works, but increased in others. 

Although significantly different levels of these biomarkers in patients with thyroid cancer versus 

those with benign lesions could be applied for thyroid cancer diagnosis, it is important to also 

correlate these changes with tumour growth and proliferation and confirm that differences in 

biomarker levels correspond to different cancer stages. Moreover, validation of the potential 

biomarkers found will be crucial. In an exploratory study, cross-validation is enough, but an 

independent validation, and ultimately the approval of regulatory agencies, is recommended for 

clinical biomarker establishment. This could be performed through metabolomic data collection in 

multicentre studies; however, it is extremely important to develop and strictly follow the same 

standard operating procedures to ensure that data can be combined. The compilation of the literature 

results in systematic reviews can also aid in confirming the most significant biomarkers for thyroid 

cancer; for example, Khatami et al. suggested citrate and lactate [105]. It is only by cross-validating 

information that these biomarkers can be incorporated into clinical decision making. Additionally, 

two distinct paradigm shifts should be changed in the reporting of metabolomics results: the 

possibility to submit metabolic fingerprints (such as Raman spectroscopy) instead of well-identified 

metabolites as biomarkers, and integration of different biomarker types (metabolites, proteins and 

miRNA) to improve the differential diagnosis of thyroid lesions. In the future, it will also be 

important to interpret such results in light of the changes in biochemical signalling activity and 

metabolic pathway fluxes that characterise tumour malignancy. For example, information from 

online resources such the Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway Database 

[106] and Metaboanalyst [107], could be coupled with stable isotope tracer measurements of 

metabolic fluxes that are upregulated in malignancy, such as glycolytic lactate production [96] and 

generation of nucleoside precursors via the pentose phosphate pathway [108]. 
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Table 1. Summary of metabolomics studies on thyroid cancer in the last 25 years. 

Technique Method Study site Sample Study design Altered metabolites Reference 

NMR MRS 

Spatially 

resolved 

information 

Non-invasive 

method 
8 TC vs. 5 CTR Ch ↑ [46] 

 MRS 
Non-invasive 

method 
8 MN vs. 17 BN Ch ↑ [47] 

 MRS 
Non-invasive 

method 
8 PTC vs. 18 BN Ch ↑ [48] 

 1H-NMR 

Tissue 

Tissue 19 MN vs. 24 BN TGL, K ↑ [44] 

 2D 1H-NMR Tissue 32 MN vs. 61 BN 
Cross peaks from CHL/cholesteryl esters and di-

/TGL ↑; two unassigned cross peaks ↓ 
[45] 

 HR-MAS-NMR Tissue 

Tissue: 72 TC vs. 28 CTR; 

Tissue: 38 MN vs. 34 BN; 

Aspirate ex vivo: 12 TC vs. 

12 CTR 

Tissue TC vs. CTR: F, Y, S, K, TAU, Q, E, A, I, L and 

V ↑; Lip ↓. 

Tissue MN vs. BN: LAC and TAU ↑; Lip, Ch, PC, 

myo- and scyllo-IST ↓ 

[53] 

 HR-MAS-NMR Tissue 38 MN vs. 34 BN 
F, TAU and LAC ↑; Ch and Ch derivatives, myo- 

and scyllo-IST ↓ 
[54] 

 HR-MAS-NMR Tissue 52 MN vs. 46 BN Y, S, A, L, F↑; myo- and scyllo-IST and CIT ↓ [57] 

 1H-NMR 

Tissue extracts 

Tissue extracts 
15 TC vs. 19 BN and 27 

CTR 
CHL ↑; DLC ↓ [49] 

 1H-NMR Tissue extracts 

45 thyroid lesions vs. 19 

CTR from the same 

participant 

M, A, E, G, LAC, Y, F and HPX ↑; ACT ↓ [58] 

 1H-NMR Tissue extracts 

32 LNM vs. 20 absence of 

LNM; 

19 lateral LNM vs. 33 

absence of lateral LNM 

No statistically altered metabolites [61] 

 1H-NMR Tissue extracts 
16 PTC vs. 16 CTR from 

the same participant 

L, V, G, TAU, LAC, Ch, ETA, GPC and LDL↑; CIT, 

VLDL ↓ 
[62] 

 1H-NMR Tissue extracts 
11 TC vs. 10 CTR from the 

same participant 
LAC, F ↑ [63] 

 1H-NMR FNAB Aspirates 34 PTC vs. 69 BN LAC, Ch, O-PC, G↑; CIT, E, Q ↓ [60] 

 31P-NMR 
Systemic 

profiling 
Plasma 

16 MN vs. 17 hypothyroid 

in remission and 14 

euthyroidism in remission 

and 23 healthy euthyroid 

controls 

MN vs. hypothyroid in remission: PE + SM and PC ↓ [50] 
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 1H-NMR Serum 
20 PTC vs. 20 BN and 20 

CTR 

PTC vs. CTR: V, L, I, LACA, A, E, K, G ↑; Lip, Ch 

and Y ↓ 
[84] 

 1H-NMR Serum 
17 PTC vs. 17 BN and 20 

CTR 

PTC vs. BN: KYN, HIP, NIC, XNT ↑; Q, CIT, O-ALC, 

GSH, W, Y, HoS, β-A ↓ 

PTC vs. CTR: myo- and scyllo-IST, W, PPN, LAC, 

HoC, 3-Me GTA, N, D, Ch ↑; ACM ↓ 

[85] 

 1H-NMR Serum 
41 PTC vs. 55 BN and 40 

CTR 
L, LAC, A, G, K and Ch ↑; GLU ↓ [86] 

 1H-NMR Serum and urine 
17 PTC vs. 33 BN and 17 

CTR 

PTC vs. CTR: Serum: CRE ↑; V, A, CRN and Y ↓; 

Urine: CIT and ACT ↓ 
[88] 

 HR-MAS-NMR 

Combination 

Tissue and 

Aspirates 
4 PTC, 4 FA, 5 CTR NA [51] 

 
HR-MAS-NMR and 

1H-NMR 

Tissue and 

plasma 

Tissue: 16 PTMC vs. 11 

CTR tissues from the same 

participants; Plasma: 26 

PTMC vs. 17 CTR 

volunteers 

Tissue: F, Y, LAC, S, C, K, Q/E, TAU, L, A, I and V ↑; 

FA ↓. 

Plasma: same as tissue as well as GLU, MAN, PYR 

and 3-HBA ↑ and V, Y, P, K, L ↓ 

[56] 

MS 

IMS and MS/MS 

Spatially 

resolved 

information 

Tissue 
7 PTC vs. 7 CTR from the 

same participants 
PC (16:0/18:1) and (16:0/18:2) and SM (d18:0/16:1) ↑ [71] 

IMS and MALDI-

FTIR MS 

Tissue and 

serum 

Tissue: 16 MN vs. 5 BN 

and 15 CTR 

Serum: 124 MN vs. 43 BN 

and 122 CTR 

MN vs. BN: PA (36:2), (36:3), (38:3) ↑ PA (38:4), 

(38:5), (40:5) ↓ 
[72] 

DESI-MS 

Tissue 

Tissue 

8 PTC vs. 18 CTR lymph 

nodes from the same 

participant 

Q in adjacent lymph node, GSH, CDL, PI, PS and 

CER↑ 
[73] 

AFADESI-IMS Tissue 
12 PTC vs. 12 CTR from 

the same participant 
F, L, Y ↑; CRE ↓ [74] 

GC-MS 

Tissue extracts 

Tissue extracts 
16 PTC vs. 16 CTR from 

the same participant 

MLO, IN, CHL and ARA altered; GLU, FRU, GAL, 

MAN, 2-keto-D-GLA and RHA ↓ 
[76] 

GC-TOF-MS and 

UHPLC-qTOF-MS 
Tissue extracts 

57 PTC vs. CTR from the 

same participant; 48 BN 

vs. CTR from the same 

participant 

LACA, TCA cycle intermediates, Aa, one-carbon 

metabolism ↑, disrupted W metabolism in PTC and 

BN. TAU and HTAU and ECDA ↑ in only PTC 

[109] 

GC-TOF-MS and 

UHPLC-QqQ-MS 
Tissue extracts 

Untargeted: 15 PTC vs. 15 

CTR from the same 

participants; Targeted: 10 

GOL, MLB and MEL ↓ [77] 
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PTC vs. 10 CTR from the 

same participants 

GC-MS 
Formalin-fixed 

tissue 

7 FTC, 4 PTC, 4 PTC-FV, 6 

MTC, 6 ATC, 3 FA, 5 CTR 

Cancerous thyroid vs. normal tissue: LACA ↑; 

several FA and their esters ↓. 

MN vs. BN: myo-IST Ph, SCA and certain FA and 

their esters ↑; PTC vs. follicular thyroid lesions: CTA 

↑; GLA ↓ 

[78] 

MALDI-Q-Ion 

Mobility-TOF-MS 

Formalin-fixed 

tissue sections 

3 PTC vs. 3 BN from the 

same participant 

PC (32:0), (32:1), (34:1) and (36:3), SM (34:1) and 

(36:1) and PA (36:2) and (36:3) ↑ 
[75] 

GC-MS 

Systemic 

profiling 

Exhaled breath 
39 PTC vs. 25 BN and 32 

CTR 

PTC vs. BN: 1, 1, 3-triMe-3-(2-Me-2-propenyl) CPT, 

trans-2-dodecen-1-ol ↑; (3-Me-oxiran-2-yl)-methanol 

↓; PTC vs. CTR: PHN, ETG mono vinyl ester, CPR, 

1-bromo-1-(3-Me-1-pentenylidene)-2,2,3,3-tetraMe 

CPR ↑; CHX, 4-HBA, 2,2-dimethyldecane, ETH ↓ 

[93] 

GC-MS Plasma 
19 PTC vs. 16 BN and 20 

CTR 

PTC vs. BN: SUC ↑; PTC vs. CTR: E, α-KTG, AD-5 

monoPh, 3-HBA, CPA, URA ↑; CYS, C↓ 
[83] 

nUHPLC-ESI-

MS/MS 
Plasma 

10 TC vs. 74 other cancers 

and 20 CTR 

TC vs. other cancers and CTR: Lyso PI (18:0) and 

(18:1) 
[91] 

LC-LTQ Orbitrap 

MS 
Serum 

30 PTC vs. 80 BN and 30 

CTR 
FA, AC, SPG (SPG, SPG-1-Ph), OLM and 3-HBA ↑ [52] 

GC-TOF-MS Serum 37 PTC-DM vs. 40 PTC-AB N, GABA, AOA, 4- DOP ↑; PGA ↓ [79] 

LC-DIA-MS Serum 30 PTC vs. 27 CTR 392 significantly changed metabolites [68] 

UPLC-QTOF-MS Fecal matter 15 TC vs. 15 CTR 

3,7,11,15-tetraMe-6,10,14-hexadecatrien-1-ol, TGL 

(16:0/16:1(9Z)/18:2(9Z, 12Z)), 10-propyl-5,9-

tridecadien-1-ol ↑; DHEAS, EPKSI ↓ 

[92] 

HUPLC/UHPLC-

MS 
Serum and urine 

124 PTC vs. 76 BN and 116 

CTR 

PTC vs. BN and CTR: Serum β-HBA, DHA, 1-MeAD 

↑, pregnanediol-3-GLC, urinary NIC 

mononucleotide and XNTO ↓ 

[89] 

UPLC-Q/TOF-MS 

Tissue and 

systemic 

profiling 

Tissue, serum 

and plasma 

141 PTC vs. 93 BN and 100 

CTR plus validation sets 

in 6 independent centers 

PTC vs. CTR: Serum: 17 significantly changed 

metabolites; Plasma: 42 significantly changed 

metabolites, such as PB, L-E ↑; myo-IST, alpha-N-

phenylacetyl-L-Q, lyso PC (18:0) and (18:1) ↓ 

PTC vs. BN: No significant differences in 

serum/plasma; Tissue: 16 significantly changed 

metabolites 

[90] 
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GC-MS Culture cells 

Thyrospheres 

with cancer 

stem-like cells 

Cancer thyrospheres vs. 

cancer parental adherent 

cells and to non-cancer 

thyrospheres 

SCA, MLI, D, E ↑; GLU, PYR, FRU ↓ [80] 

NMR and 

MS 

1H-NMR and 

GC−FID/MS 
Tissue extracts Tissue extracts 

53 thyroid lesions vs. 46 

CTR from the same 

participant 

Ch, PC, GPC, PEA, LAC, GSH, TAU, myo- and 

scyllo-IST, IN, FUM, URD and Aa ↑; Lip ↓ 
[59] 

Other 

FT-Raman Tissue Tissue 6 MN vs. 10 BN T3 and T4 hormones ↑ [43] 

Hyperspectral 

Raman microscopy 
Tissue extracts Single cells 5 PTC vs. 5 BN Lip; Nuc ↑; F, W, Prot, ↓ [42] 

Capillary 

electrophoresis Systemic 

profiling 

Urine 12 TC vs. 12 CTR IN, N2-MG, N2,N2-DMG, 1-MG ↑ [87] 

Amino acid 

analyser 
Plasma 33 TC vs. 137 CTR M, L, Y and K ↑ [70] 

Study design abbreviations: AB, ablation; ATC, anaplastic thyroid carcinoma; BN, benign; CTR, healthy controls; DM, distant metastasis; FA, follicular adenomas; 

FTC, follicular thyroid carcinoma; LNM, lymph node metastasis; MN, malignant; MTC, medullary thyroid carcinoma; NA, not applicable; PTC, papillary thyroid 

carcinoma; PTC-FV, papillary thyroid carcinoma follicular variant; PTMC, papillary thyroid microcarcinoma; TC, thyroid carcinoma. Altered metabolites 

abbreviations: ACT, Acetone; ACM, Acetamide; ALC, Acetylcarnitine; AC, Acylcarnitine; AD, Adenosine; A, Alanine; Aa, Aminoacids; AOA, Aminooxyacetic acid; 

ARA, Arachidonic acid; N, Asparagine; D, Aspartate; CPA, Capric acid; CDL, Cardiolipin; CER, Ceramide; CHL, Cholesterol; Ch, Choline; CIT, Citrate; CTA, Citric 

acid; CRE, Creatine; CRN, Creatinine; CHX, Cyclohexanone; CPT, Cyclopentane; CPR, Cyclopropane; C, Cysteine; CYS, Cystine; DHEAS, Dehydroepiandrosterone 

sulfate; DOP, Deoxypyridoxine; DMG, Dimethylguanosine; DHA, Docosahexaenoic acid; DLC, Dolichol; ECDA, Eicosadienoic acid; EPKSI, Epimedokoreanoside 

I; ETA, Ethanolamine; ETG, Ethyleneglycol; ETH, Ethylhexanol; FA, Fatty acids; FRU, Fructose; FUM, Fumarate; GAL, Galactose; GOL, Galatinol; GABA, Gamma-

aminobutyric acid; GLA, Gluconic acid; GLU, Glucose; GLC, Glucuronide; E, Glutamic acid; Q, Glutamine; GTA, Glutaric acid; GSH, Glutathione; GPC, 

Glycerophosphocholine; G, Glycine; HIP, Hippurate; HoC, Homocysteine; HoS, Homoserine; HBA, Hydroxybutyric acid; HTAU, Hypotaurine; HPX, 

Hypoxanthine; IN, Inosine; IST, Inositol; I, Isoleucine; KTG, Ketoglutarate; KYN, Kynurenine; LAC, Lactate; LACA, Lactic acid; L, Leucine; Lip, Lipids; LDL, Low 

density lipoprotein; K, Lysine; MLI, Malic acid; MLO, Malonic acid; MAN, Mannose; MEL, Melatonin; MLB, Melibiose, M, Methionine; Me, Methyl; MG, 

Methylguanosine; NIC, Nicotinic acid; Nuc, Nucleic acids; OLM, Oleamide; PHN, Phenol; F, Phenylalanine; Ph, Phosphate; PA, Phosphatidic acids; PC, 

Phosphatidylcholine; PE, Phosphatidylethanolamine; PI, Phosphatidylinositol; PS, Phosphatidylserine; PEA, Phosphoethanolamine; P, Proline; PB, Proline betaine; 

PPN, Propionate; Prot, Proteins PGA, Pyroglutamic acid ; PYR, Pyruvate; RHA, Rhamnose; S, Serine; SM, Sphingomyelin; SPG, Sphingosine; SCA, Succinic acid; 

SUC, Sucrose; TAU, Taurine; TGL, Triglyceride; W, Tryptophan; Y, Tyrosine; URA, Uracil; URD, Uridine; V, Valine; VLDL, Very low density lipoprotein; XNT, 

Xanthine; XNTO, Xanthosine. 
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3. Conclusions 

Thyroid cancer incidence has dramatically increased worldwide in recent years [110]. The need 

for reliable biomarkers that can be used for fast and accurate diagnosis of the disease is critical since 

the initial cytological diagnostic evaluation via FNAB often provides indeterminate results and 

distinguishing between different types of thyroid nodules is uncertain. Several “omics” approaches 

have been applied to the study of thyroid cancer, but it has only been in the past few years that 

metabolomics has come to the forefront. A single analytical technique is not capable of thoroughly 

profiling the entire metabolome, but NMR spectroscopy and mass spectrometry-based approaches 

provide complementary information on a wide range of metabolites. At the present time, the majority 

of metabolomic studies have focused on core biopsies taken after inconclusive FNABs; hence, at first 

glance, it may be argued that these studies have not provided a complementary technique to FNAB 

so that a surgical procedure could be prevented. However, the fact that distinctive metabolite 

signatures have been found for benign versus malignant thyroid lesions coupled with identifiable 

metabolite profiles in body fluids suggests that metabolite profiling at the initial stage could 

contribute to a more confident diagnosis. Before these techniques are applied in a clinical context, it 

will be imperative to validate them. The application of standardised procedures for metabolomic 

studies, as well as improvements in the identification of metabolites by bioinformatic tools, will also 

be important. In metabolomics, more than in other “omics”, the collaboration and integration of 

clinicians, biologists, chemists, statisticians and bioinformaticians to obtain the most out of the 

ongoing research is pivotal. Finally, the integration of other “omics” techniques along with 

metabolomics is still lacking, in particular the use of miRNAs could ameliorate the diagnostic power 

of solely metabolite panels. “Omics” collaborations will be essential in order to fully understand this 

disease and to discover new therapeutic targets or diagnostic biomarkers. 

In a clinical setting, we will more likely see mass spectrometers than an NMR spectrometer. Both 

LC-MS and NMR spectrometers can have a large initial price at installation, but GC-MS instruments 

are more affordable, although in terms of cost per sample, NMR can provide analysis at lower costs 

than the other two MS techniques. On the other hand, NMR spectroscopy is known for its 

reproducibility, capability for absolute quantification and comparability of spectra inter-laboratories, 

but these hurdles can be overcome in MS by the use of internal standards to monitor reproducibility, 

the use of analytical standards for absolute quantification and standard operating procedures for 

inter-laboratory comparison. Moreover, mass spectrometers require less specialised space for the 

equipment and are capable of measuring low-concentration metabolites. The development of new 

analytical techniques (e.g., ion mobility MS and mass imaging) and the improvement of data analysis 

tools are increasing our knowledge regarding the metabolic changes and their role at both systemic 

and cellular levels in different pathological conditions. This information can also be acquired with a 

smaller amount of tissue or blood nowadays. Presently, a better understanding of the metabolome 

may support the diagnosis, better define the staging and the prognosis of cancer, too. By monitoring 

the metabolic changes, metabolomics may also predict the response to therapy and possible side 

effects of it. In the next years, we can expect that the development of metabolomics will give a big 

contribution towards a more precise and personalised approach to thyroid cancer in a systemic 

context. Not only will thyroid biopsies be used, but relevant information will be achieved by the 

integration of omics data from blood samples, considering it as a liquid biopsy of the tumour. 
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Abbreviations 

AUC Area under the curve 

AUS/FLUS Atypical or follicular lesions of undetermined significance 

DDA Data-dependent acquisition 

DIA Data-independent acquisition 

FNAB Fine-needle aspiration biopsy 

GABA Gamma-amino butyric acid 

GC-MS Gas chromatography coupled to mass spectrometry 

HMDB Human metabolome database 

HR-MAS High-resolution magic angle spinning 

J-Res J-resolved spectroscopy 

KEGG Kyoto Encyclopedia of Genes and Genomes 

LC-MS Liquid chromatography coupled to mass spectrometry 

MALDI-TOF/TOF Matrix-assisted laser desorption/ionisation tandem time-of-flight 

MAPK Mitogen-activated protein kinase 

miRNAs Micro RNA molecules 

MRSI Magnetic resonance spectroscopy imaging 

MS Mass spectrometry 

NMR Nuclear magnetic resonance 

OPLS-DA Orthogonalized partial least squares discriminant analysis 

ROC Receiver operating characteristic 

TOCSY Total correlation spectroscopy 

UPLC-MS Ultra-performance liquid chromatography coupled to mass spectrometry 

References 

1. Sipos, J.A.; Mazzaferri, E.L. Thyroid cancer epidemiology and prognostic variables. Clin. Oncol. 2010, 22, 

395–404, doi:10.1016/j.clon.2010.05.004. 

2. Sherma, S.I. Thyroid carcinoma. Lancet 2003, 361, 501–511, doi:10.1016/s0140-6736(03)12488-9. 

3. Kondo, T.; Ezzat, S.; Asa, S.L. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat. Rev. Cancer 

2006, 6, 292–306, doi:10.1038/nrc1836. 

4. Figge, J.J. Epidemiology of thyroid cancer. In Thyroid Cancer: A Comprehensive Guide to Clinical Management; 

Wartofsky, L., Van Nostrand, D., Eds.; Springer: New York, NY, USA, 2016; Volume 2, pp. 9–15. 

5. Nils Knudsen, P.L.; Hans Perrild, Inge Bülow, Lars Ovesen, Torben Jørgensen. Risk factors for goiter and 

thyroid nodules. Thyroid 2002, 12, 879–888, doi:10.1089/105072502761016502. 

6. Albi, E.; Cataldi, S.; Lazzarini, A.; Codini, M.; Beccari, T.; Ambesi-Impiombato, F.S.; Curcio, F. Radiation 

and thyroid cancer. Int. J. Mol. Sci. 2017, 18, doi:10.3390/ijms18050911. 

7. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: 

GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J. 

Clin. 2018, 68, 394–424, doi:10.3322/caac.21492. 

8. Zaballos, M.A.; Santisteban, P. Key signaling pathways in thyroid cancer. J. Endocrinol. 2017, 235, R43-R61, 

doi:10.1530/JOE-17-0266. 



Int. J. Mol. Sci. 2020, 21, 5272 17 of 22 

 

9. Alshaikh, S.; Harb, Z.; Aljufairi, E.; Almahari, S.A. Classification of thyroid fine-needle aspiration cytology 

into Bethesda categories: An institutional experience and review of the literature. Cytojournal 2018, 15, 4, 

doi:10.4103/cytojournal.cytojournal_32_17. 

10. Bongiovanni, M.; Spitale, A.; Faquin, W.C.; Mazzucchelli, L.; Baloch, Z.W. The Bethesda system for 

reporting thyroid cytopathology: A meta-analysis. Acta Cytol. 2012, 56, 333–339, doi:10.1159/000339959. 

11. Gill, K.S.; Tassone, P.; Hamilton, J.; Hjelm, N.; Luginbuhl, A.; Cognetti, D.; Tuluc, M.; Martinez-Outschoorn, 

U.; Johnson, J.M.; Curry, J.M. Thyroid cancer metabolism: A review. J. Thyroid Disord. 2016, 5, 

doi:10.4172/2167-7948.1000200. 

12. Mazzaferri, E.L. Thyroid cancer in thyroid nodules: Finding a needle in the haystack. Am. J. Med. 1992, 93, 

359–362. 

13. Nikiforov, Y.E. Thyroid carcinoma: Molecular pathways and therapeutic targets. Mod. Pathol. 2008, 21, S37–

S43, doi:10.1038/modpathol.2008.10. 

14. Lee, S.E.; Hwang, T.S.; Choi, Y.L.; Kim, W.Y.; Han, H.S.; Lim, S.D.; Kim, W.S.; Yoo, Y.B.; Kim, S.K. Molecular 

profiling of papillary thyroid carcinoma in Korea with a high prevalence of BRAF(V600E) mutation. Thyroid 

2017, 27, 802–810, doi:10.1089/thy.2016.0547. 

15. Pak, K.; Suh, S.; Kim, S.J.; Kim, I.J. Prognostic value of genetic mutations in thyroid cancer: A meta-analysis. 

Thyroid 2015, 25, 63–70, doi:10.1089/thy.2014.0241. 

16. Chen, Y.T.; Kitabayashi, N.; Zhou, X.K.; Fahey, T.J.; 3rd; Scognamiglio, T. MicroRNA analysis as a potential 

diagnostic tool for papillary thyroid carcinoma. Mod. Pathol. 2008, 21, 1139–1146, 

doi:10.1038/modpathol.2008.105. 

17. Yip, L.; Kelly, L.; Shuai, Y.; Armstrong, M.J.; Nikiforov, Y.E.; Carty, S.E.; Nikiforova, M.N. MicroRNA 

signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann. Surg. Oncol. 2011, 

18, 2035–2041, doi:10.1245/s10434-011-1733-0. 

18. Pallante, P.; Visone, R.; Ferracin, M.; Ferraro, A.; Berlingieri, M.T.; Troncone, G.; Chiappetta, G.; Liu, C.G.; 

Santoro, M.; Negrini, M.; et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. 

Relat. Cancer 2006, 13, 497–508, doi:10.1677/erc.1.01209. 

19. Pagni, F.; L'Imperio, V.; Bono, F.; Garancini, M.; Roversi, G.; De Sio, G.; Galli, M.; Smith, A.J.; Chinello, C.; 

Magni, F. Proteome analysis in thyroid pathology. Expert Rev. Proteom. 2015, 12, 375–390, 

doi:10.1586/14789450.2015.1062369. 

20. Damante, G.; Scaloni, A.; Tell, G. Thyroid tumors: Novel insights from proteomic studies. Expert Rev. 

Proteom. 2009, 6, doi:10.1586/EPR.09.51. 

21. Nipp, M.; Elsner, M.; Balluff, B.; Meding, S.; Sarioglu, H.; Ueffing, M.; Rauser, S.; Unger, K.; Hofler, H.; 

Walch, A.; et al. S100-A10, thioredoxin, and S100-A6 as biomarkers of papillary thyroid carcinoma with 

lymph node metastasis identified by MALDI imaging. J. Mol. Med. 2012, 90, 163–174, doi:10.1007/s00109-

011-0815-6. 

22. Sofiadis, A.; Dinets, A.; Orre, L.M.; Branca, R.M.; Juhlin, C.C.; Foukakis, T.; Wallin, G.; Hoog, A.; Hulchiy, 

M.; Zedenius, J.; et al. Proteomic study of thyroid tumors reveals frequent up-regulation of the Ca2+ -

binding protein S100A6 in papillary thyroid carcinoma. Thyroid 2010, 20, 1067–1076, 

doi:10.1089/thy.2009.0400. 

23. Lewis, M.; Brown, S.M.H.; Stephen, W.; Hunsucker, Romana, T. Netea-Maier,; Simon, A.; Chiang, D.E.H.; 

Kenneth, R.; Shroyer, Mark, W.; Duncan, Bryan; Haugen, R. Quantitative and qualitative differences in 

protein expression between papillary thyroid carcinoma and normal thyroid tissue. Mol. Carcinog. 2006, 45, 

613–626. 

24. Sofiadis, A.; Becker, S.; Hellman, U.; Hultin-Rosenberg, L.; Dinets, A.; Hulchiy, M.; Zedenius, J.; Wallin, G.; 

Foukakis, T.; Hoog, A.; et al. Proteomic profiling of follicular and papillary thyroid tumors. Eur. J. 

Endocrinol. 2012, 166, 657–667, doi:10.1530/EJE-11-0856. 

25. Gawin, M.; Wojakowska, A.; Pietrowska, M.; Marczak, L.; Chekan, M.; Jelonek, K.; Lange, D.; Jaksik, R.; 

Gruca, A.; Widlak, P. Proteome profiles of different types of thyroid cancers. Mol. Cell Endocrinol. 2018, 472, 

68–79, doi:10.1016/j.mce.2017.11.020. 

26. Ito, Y.; Miyoshi, E.; Uda, E.; Yoshida, H.; Uruno, T.; Takamura, Y.; Miya, A.; Kobayashi, K.; Matsuzuka, F.; 

Matsuura, N.; et al. 14-3-3 σ possibly plays a constitutive role in papillary carcinoma, but not in follicular 

tumor of the thyroid. Cancer Lett. 2003, 200, 161–166, doi:10.1016/s0304-3835(03)00282-9. 



Int. J. Mol. Sci. 2020, 21, 5272 18 of 22 

 

27. Soudry, E.; Stern Shavit, S.; Hardy, B.; Morgenstern, S.; Hadar, T.; Feinmesser, R. Heat shock proteins 

HSP90, HSP70 and GRP78 expression in medullary thyroid carcinoma. Ann. Diagn. Pathol. 2017, 26, 52–56, 

doi:10.1016/j.anndiagpath.2016.11.003. 

28. Mo, J.H.; Choi, I.J.; Jeong, W.J.; Jeon, E.H.; Ahn, S.H. HIF-1alpha and HSP90: Target molecules selected 

from a tumorigenic papillary thyroid carcinoma cell line. Cancer Sci. 2012, 103, 464–471, doi:10.1111/j.1349-

7006.2011.02181.x. 

29. Marsee, D.K.; Venkateswaran, A.; Tao, H.; Vadysirisack, D.; Zhang, Z.; Vandre, D.D.; Jhiang, S.M. 

Inhibition of heat shock protein 90, a novel RET/PTC1-associated protein, increases radioiodide 

accumulation in thyroid cells. J. Biol. Chem. 2004, 279, 43990–43997, doi:10.1074/jbc.M407503200. 

30. White, P.T.; Subramanian, C.; Zhu, Q.; Zhang, H.; Zhao, H.; Gallagher, R.; Timmermann, B.N.; Blagg, B.S.; 

Cohen, M.S. Novel HSP90 inhibitors effectively target functions of thyroid cancer stem cell preventing 

migration and invasion. Surgery 2016, 159, 142–151, doi:10.1016/j.surg.2015.07.050. 

31. Thomas Ratajczak, T.; Ward, B.; Walsh, J.; Cluning, C. Hsp90 as a therapeutic target in endocrinology: 

Current evidence. Res. Rep. Endocr. Disord. 2015, 10.2147/rred.s68546, 141, doi:10.2147/rred.s68546. 

32. Lin SF, L.J.; Hsueh C, Chou TC, Yeh CN, Chen MH, Wong RJ. Efficacy of an HSP90 inhibitor, ganetespib, 

in preclinical thyroid cancer models. Oncotarget 2017, 8, 41294–41304, doi:10.18632/oncotarget.17180. 

33. Deidda, M.; Piras, C.; Binaghi, G.; Congia, D.; Pani, A.; Boi, A.; Sanna, F.; Rossi, A.; Loi, B.; Cadeddu 

Dessalvi, C.; et al. Metabolomic fingerprint of coronary blood in STEMI patients depends on the ischemic 

time and inflammatory state. Sci. Rep. 2019, 9, 312, doi:10.1038/s41598-018-36415-y. 

34. Piras, C.; Arisci, N.; Poddighe, S.; Liggi, S.; Mariotti, S.; Atzori, L. Metabolomic profile in hyperthyroid 

patients before and after antithyroid drug treatment: Correlation with thyroid hormone and TSH 

concentration. Int. J. Biochem. Cell Biol. 2017, 93, 119–128, doi:10.1016/j.biocel.2017.07.024. 

35. Griffin, J.L.; Atherton, H.; Shockcor, J.; Atzori, L. Metabolomics as a tool for cardiac research. Nat. Rev. 

Cardiol. 2011, 8, 630–643, doi:10.1038/nrcardio.2011.138. 

36. Deidda, M.; Piras, C.; Cadeddu Dessalvi, C.; Locci, E.; Barberini, L.; Orofino, S.; Musu, M.; Mura, M.N.; 

Manconi, P.E.; Finco, G.; et al. Distinctive metabolomic fingerprint in scleroderma patients with pulmonary 

arterial hypertension. Int. J. Cardiol. 2017, 241, 401–406, doi:10.1016/j.ijcard.2017.04.024. 

37. Fanos, V.; Pintus, M.C.; Lussu, M.; Atzori, L.; Noto, A.; Stronati, M.; Guimaraes, H.; Marcialis, M.A.; Rocha, 

G.; Moretti, C.; et al. Urinary metabolomics of bronchopulmonary dysplasia (BPD): Preliminary data at 

birth suggest it is a congenital disease. J. Matern. Fetal Neonatal Med. 2014, 27 (Suppl. 2), 39–45, 

doi:10.3109/14767058.2014.955966. 

38. Iuculano, A.; Murgia, F.; Peddes, C.; Santoru, M.L.; Tronci, L.; Deiana, M.; Balsamo, A.; Euser, A.; Atzori, 

L.; Monni, G. Metabolic scharacterisation of amniotic fluids of fetuses with enlarged nuchal translucency. 

J. Perinat. Med. 2019, 47, 311–318, doi:10.1515/jpm-2018-0314. 

39. Bingol, K. Recent advances in targeted and untargeted metabolomics by NMR and MS/NMR methods. 

High Throughput 2018, 7, doi:10.3390/ht7020009. 

40. Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards 

more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494, 

doi:10.1093/nar/gky310. 

41. Cui, L.; Lu, H.; Lee, Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted 

metabolomics in diseases. Mass Spectrom. Rev. 2018, 37, 772–792, doi:10.1002/mas.21562. 

42. de Oliveira, M.A.S.; Campbell, M.; Afify, A.M.; Huang, E.C.; Chan, J.W. Hyperspectral Raman microscopy 

can accurately differentiate single cells of different human thyroid nodules. Biomed. Opt. Express 2019, 10, 

4411–4421, doi:10.1364/BOE.10.004411. 

43. Teixeira, C.S.; Bitar, R.A.; Martinho, H.S.; Santos, A.B.; Kulcsar, M.A.; Friguglietti, C.U.; da Costa, R.B.; 

Arisawa, E.A.; Martin, A.A. Thyroid tissue analysis through Raman spectroscopy. Analytic 2009, 134, 2361–

2370, doi:10.1039/b822578h. 

44. Russell, P.; Lean, C.; Delbridge, L.; May, G.; Dowd, S.; Mountford, C. Proton magnetic resonance and 

human thyroid neoplasia I: Discrimination between benign and malignant neoplasms. Am. J. Med. 1994, 96, 

383–388, doi:10.1016/0002-9343(94)90071-x. 

45. Mackinnon, W.B.; Delbridge, L.; Russell, P.; Lean, C.L.; May, G.L.; Doran, S.; Dowd, S.; Mountford, C.E. 

Two-dimensional proton magnetic resonance spectroscopy for tissue scharacterisation of thyroid 

neoplasms. World J. Surg. 1996, 20, 841–847, doi:10.1007/s002689900128. 



Int. J. Mol. Sci. 2020, 21, 5272 19 of 22 

 

46. King, A.D.; Yeung, D.K.; Ahuja, A.T.; Tse, G.M.; Chan, A.B.; Lam, S.S.; van Hasselt, A.C. In vivo 1H MR 

spectroscopy of thyroid carcinoma. Eur. J. Radiol. 2005, 54, 112–117, doi:10.1016/j.ejrad.2004.05.003. 

47. Gupta, N.; Goswami, B.; Chowdhury, V.; RaviShankar, L.; Kakar, A. Evaluation of the role of magnetic 

resonance spectroscopy in the diagnosis of follicular malignancies of thyroid. Arch. Surg. 2011, 146, 179–

182, doi:10.1001/archsurg.2010.345. 

48. Gupta, N.; Kakar, A.K.; Chowdhury, V.; Gulati, P.; Shankar, L.R.; Vindal, A. Magnetic resonance 

spectroscopy as a diagnostic modality for carcinoma thyroid. Eur. J. Radiol. 2007, 64, 414–418, 

doi:10.1016/j.ejrad.2007.03.006. 

49. Yoshioka, Y.; Sasaki, J.; Yamamoto, M.; Saitoh, K.; Nakaya, S.; Kubokawa, M. Quantitation by (1)H-NMR 

of dolichol, cholesterol and choline-containing lipids in extracts of normal and phathological thyroid tissue. 

Nmr Biomed. 2000, 13, 377–383, doi:10.1002/1099-1492(200011)13:7<377::aid-nbm658>3.0.co;2-e. 

50. Raffelt, K.; Moka, D.; Süllentrop, F.; Dietlein, M.; Hahn, J.; Schicha, H. Systemic alterations in phospholipid 

concentrations of blood plasma in patients with thyroid carcinoma: An in-vitro 31P high-resolution NMR 

study. Nmr Biomed. 2000, 13, 8–13, doi:10.1002/(sici)1099-1492(200002)13:1<8::aid-nbm602>3.0.co;2-x. 

51. Jordan, K.W.; Adkins, C.B.; Cheng, L.L.; Faquin, W.C. Application of magnetic-resonance-spectroscopy- 

based metabolomics to the fine-needle aspiration diagnosis of papillary thyroid carcinoma. Acta Cytol. 2011, 

55, 584–589, doi:10.1159/000333271. 

52. Yao, Z.; Yin, P.; Su, D.; Peng, Z.; Zhou, L.; Ma, L.; Guo, W.; Ma, L.; Xu, G.; Shi, J.; et al. Serum metabolic 

profiling and features of papillary thyroid carcinoma and nodular goiter. Mol. Biosyst. 2011, 7, 2608–2614, 

doi:10.1039/c1mb05029j. 

53. Miccoli, P.; Torregrossa, L.; Shintu, L.; Magalhaes, A.; Chandran, J.; Tintaru, A.; Ugolini, C.; Minuto, M.N.; 

Miccoli, M.; Basolo, F.; et al. Metabolomics approach to thyroid nodules: A high-resolution magic-angle 

spinning nuclear magnetic resonance-based study. Surgery 2012, 152, 1118–1124, 

doi:10.1016/j.surg.2012.08.037. 

54. Torregrossa, L.; Shintu, L.; Nambiath Chandran, J.; Tintaru, A.; Ugolini, C.; Magalhaes, A.; Basolo, F.; 

Miccoli, P.; Caldarelli, S. Toward the reliable diagnosis of indeterminate thyroid lesions: A HRMAS NMR-

based metabolomics case of study. J. Proteome Res. 2012, 11, 3317–3325, doi:10.1021/pr300105e. 

55. Carter, J.V.; Pan, J.; Rai, S.N.; Galandiuk, S. ROC-ing along: Evaluation and interpretation of receiver 

operating characteristic curves. Surgery 2016, 159, 1638–1645, doi:10.1016/j.surg.2015.12.029. 

56. Lu, J.; Hu, S.; Miccoli, P.; Zeng, Q.; Liu, S.; Ran, L.; Hu, C. Non-invasive diagnosis of papillary thyroid 

microcarcinoma: A NMR-based metabolomics approach. Oncotarget 2016, 7, 81768–81777, 

doi:10.18632/oncotarget.13178. 

57. Rezig, L.; Servadio, A.; Torregrossa, L.; Miccoli, P.; Basolo, F.; Shintu, L.; Caldarelli, S. Diagnosis of post-

surgical fine-needle aspiration biopsies of thyroid lesions with indeterminate cytology using HRMAS 

NMR-based metabolomics. Metabolomics 2018, 14, 141, doi:10.1007/s11306-018-1437-6. 

58. Deja, S.; Dawiskiba, T.; Balcerzak, W.; Orczyk-Pawilowicz, M.; Glod, M.; Pawelka, D.; Mlynarz, P. Follicular 

adenomas exhibit a unique metabolic profile. (1)H NMR studies of thyroid lesions. PLoS ONE 2013, 8, 

e84637, doi:10.1371/journal.pone.0084637. 

59. Tian, Y.; Nie, X.; Xu, S.; Li, Y.; Huang, T.; Tang, H.; Wang, Y. Integrative metabonomics as potential method 

for diagnosis of thyroid malignancy. Sci. Rep. 2015, 5, 14869, doi:10.1038/srep14869. 

60. Ryoo, I.; Kwon, H.; Kim, S.C.; Jung, S.C.; Yeom, J.A.; Shin, H.S.; Cho, H.R.; Yun, T.J.; Choi, S.H.; Sohn, C.H.; 

et al. Metabolomic analysis of percutaneous fine-needle aspiration specimens of thyroid nodules: Potential 

application for the preoperative diagnosis of thyroid cancer. Sci. Rep. 2016, 6, 30075, doi:10.1038/srep30075. 

61. Seo, J.W.; Han, K.; Lee, J.; Kim, E.K.; Moon, H.J.; Yoon, J.H.; Park, V.Y.; Baek, H.M.; Kwak, J.Y. Application 

of metabolomics in prediction of lymph node metastasis in papillary thyroid carcinoma. PLoS ONE 2018, 

13, e0193883, doi:10.1371/journal.pone.0193883. 

62. Li, Y.; Chen, M.; Liu, C.; Xia, Y.; Xu, B.; Hu, Y.; Chen, T.; Shen, M.; Tang, W. Metabolic changes associated 

with papillary thyroid carcinoma: A nuclear magnetic resonance-based metabolomics study. Int. J. Mol. 

Med. 2018, 41, 3006–3014, doi:10.3892/ijmm.2018.3494. 

63. Metere, A.; Graves, C.E.; Chirico, M.; Caramujo, M.J.; Pisanu, M.E.; Iorio, E. Metabolomic reprogramming 

detected by (1)H-NMR spectroscopy in human thyroid cancer tissues. Biology 2020, 9, 

doi:10.3390/biology9060112. 



Int. J. Mol. Sci. 2020, 21, 5272 20 of 22 

 

64. Wishart, D.S.; Feunang, Y.D.; Marcu, A.; Guo, A.C.; Liang, K.; Vazquez-Fresno, R.; Sajed, T.; Johnson, D.; 

Li, C.; Karu, N.; et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018, 46, 

D608-D617, doi:10.1093/nar/gkx1089. 

65. Ravanbakhsh, S.; Liu, P.; Bjorndahl, T.C.; Mandal, R.; Grant, J.R.; Wilson, M.; Eisner, R.; Sinelnikov, I.; Hu, 

X.; Luchinat, C.; et al. Correction: Accurate, fully-automated NMR spectral profiling for metabolomics. 

PLoS ONE 2015, 10, e0132873, doi:10.1371/journal.pone.0132873. 

66. Jimenez, B.; Mirnezami, R.; Kinross, J.; Cloarec, O.; Keun, H.C.; Holmes, E.; Goldin, R.D.; Ziprin, P.; Darzi, 

A.; Nicholson, J.K. 1H HR-MAS NMR spectroscopy of tumor-induced local metabolic "field-effects" enables 

colorectal cancer staging and prognostication. J. Proteome Res. 2013, 12, 959–968, doi:10.1021/pr3010106. 

67. Lutz, N.W.; Sweedler, J.V.; Wevers, R.A. Methodologies for Metabolomics: Experimental Strategies and 

Techniques; Cambridge University Press: Cambridge, UK, 2013. 

68. Zhou, J.; Li, Y.; Chen, X.; Zhong, L.; Yin, Y. Development of data-independent acquisition workflows for 

metabolomic analysis on a quadrupole-orbitrap platform. Talanta 2017, 164, 128–136, 

doi:10.1016/j.talanta.2016.11.048. 

69. Mendes, V.M.; Coelho, M.; Manadas, B. Untargeted metabolomics relative quantification by SWATH mass 

spectrometry applied to cerebrospinal fluid. Methods Mol. Biol. 2019, 2044, 321–336, doi:10.1007/978-1-4939-

9706-0_20. 

70. Gu, Y.; Chen, T.; Fu, S.; Sun, X.; Wang, L.; Wang, J.; Lu, Y.; Ding, S.; Ruan, G.; Teng, L.; et al. Perioperative 

dynamics and significance of amino acid profiles in patients with cancer. J. Transl. Med. 2015, 13, 35, 

doi:10.1186/s12967-015-0408-1. 

71. Ishikawa, S.; Tateya, I.; Hayasaka, T.; Masaki, N.; Takizawa, Y.; Ohno, S.; Kojima, T.; Kitani, Y.; Kitamura, 

M.; Hirano, S.; et al. Increased expression of phosphatidylcholine (16:0/18:1) and (16:0/18:2) in thyroid 

papillary cancer. PLoS ONE 2012, 7, doi:10.1371/journal.pone.0048873. 

72. Guo, S.; Qiu, L.; Wang, Y.; Qin, X.; Liu, H.; He, M.; Zhang, Y.; Li, Z.; Chen, X. Tissue imaging and serum 

lipidomic profiling for screening potential biomarkers of thyroid tumors by matrix-assisted laser 

desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry. Anal. Bioanal. Chem. 

2014, 406, 4357–4370, doi:10.1007/s00216-014-7846-0. 

73. Zhang, J.; Feider, C.L.; Nagi, C.; Yu, W.; Carter, S.A.; Suliburk, J.; Cao, H.S.T.; Eberlin, L.S. Detection of 

metastatic breast and thyroid cancer in lymph nodes by desorption electrospray sionisation mass 

spectrometry imaging. J. Am. Soc. Mass Spectrom. 2017, 28, 1166–1174, doi:10.1016/bs.ctdb.2017.02.002; 

10.1007/s13361-016-1570-2. 

74. Huang, L.; Mao, X.; Sun, C.; Luo, Z.; Song, X.; Li, X.; Zhang, R.; Lv, Y.; Chen, J.; He, J.; et al. A graphical 

data processing pipeline for mass spectrometry imaging-based spatially resolved metabolomics on tumor 

heterogeneity. Anal. Chim. Acta 2019, 1077, 183–190, doi:10.1016/j.aca.2019.05.068. 

75. Wojakowska, A.; Cole, L.M.; Chekan, M.; Bednarczyk, K.; Maksymiak, M.; Oczko-Wojciechowska, M.; 

Jarzab, B.; Clench, M.R.; Polanska, J.; Pietrowska, M.; et al. Discrimination of papillary thyroid cancer from 

non-cancerous thyroid tissue based on lipid profiling by mass spectrometry imaging. Endokrynol. Pol. 2018, 

69, 2–8, doi:10.5603/EP.a2018.0003. 

76. Chen, M.; Shen, M.; Li, Y.; Liu, C.; Zhou, K.; Hu, W.; Xu, B.; Xia, Y.; Tang, W. GC-MS-based metabolomic 

analysis of human papillary thyroid carcinoma tissue. Int. J. Mol. Med. 2015, 36, 1607–1614, 

doi:10.3892/ijmm.2015.2368. 

77. Shang, X.; Zhong, X.; Tian, X. Metabolomics of papillary thyroid carcinoma tissues: Potential biomarkers 

for diagnosis and promising targets for therapy. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2016, 

37, 11163–11175, doi:10.1007/s13277-016-4996-z. 

78. Wojakowska, A.; Chekan, M.; Marczak, L.; Polanski, K.; Lange, D.; Pietrowska, M.; Widlak, P. Detection of 

metabolites discriminating subtypes of thyroid cancer: Molecular profiling of FFPE samples using the 

GC/MS approach. Mol. Cell Endocrinol. 2015, 417, 149–157, doi:10.1016/j.mce.2015.09.021. 

79. Shen, C.T.; Zhang, Y.; Liu, Y.M.; Yin, S.; Zhang, X.Y.; Wei, W.J.; Sun, Z.K.; Song, H.J.; Qiu, Z.L.; Wang, C.R.; 

et al. A distinct serum metabolic signature of distant metastatic papillary thyroid carcinoma. Clin. 

Endocrinol. 2017, 87, 844–852, doi:10.1111/cen.13437. 

80. Caria, P.; Tronci, L.; Dettori, T.; Murgia, F.; Santoru, M.L.; Griffin, J.L.; Vanni, R.; Atzori, L. Metabolomic 

alterations in thyrospheres and adherent parental cells in papillary thyroid carcinoma cell lines: A pilot 

study. Int. J. Mol. Sci. 2018, 19, 2948, doi:10.3390/ijms19102948. 



Int. J. Mol. Sci. 2020, 21, 5272 21 of 22 

 

81. Tronci, L.; Caria, P.; Frau, D.V.; Liggi, S.; Piras, C.; Murgia, F.; Santoru, M.L.; Pibiri, M.; Deiana, M.; Griffin, 

J.L.; et al. Crosstalk between metabolic alterations and altered redox balance in PTC-derived cell lines. 

Metabolites 2019, 9, 23, doi:10.3390/metabo9020023. 

82. Agrawal, S.; Kumar, S.; Sehgal, R.; George, S.; Gupta, R.; Poddar, S.; Jha, A.; Pathak, S. El-MAVEN: A fast, 

robust, and user-friendly mass spectrometry data processing engine for metabolomics. Methods Mol. Biol. 

2019, 1978, 301–321, doi:10.1007/978-1-4939-9236-2_19. 

83. Abooshahab, R.; Hooshmand, K.; Razavi, S.A.; Gholami, M.; Sanoie, M.; Hedayati, M. Plasma Metabolic 

Profiling of Human Thyroid Nodules by Gas Chromatography-Mass Spectrometry (GC-MS)-Based 

Untargeted Metabolomics. Front. Cell Dev. Biol. 2020, 8, 385, doi:10.3389/fcell.2020.00385. 

84. Zhao, W.-X.; Wang, B.; Zhang, L.-Y.; Yan, S.-Y.; Yang, Y.-H. Analysis on the metabolite composition of 

serum samples from patients with papillary thyroid carcinoma using nuclear magnetic resonance. Int. J. 

Clin. Exp. Med. 2015, 8, 18013. 

85. Farrokhi Yekta, R.; Rezaei Tavirani, M.; Arefi Oskouie, A.; Mohajeri-Tehrani, M.R.; Soroush, A.R.; 

Akbarzadeh Baghban, A. Serum-based metabolic alterations in patients with papillary thyroid carcinoma 

unveiled by non-targeted 1H-NMR metabolomics approach. Iran J. Basic Med. Sci. 2018, 21, 1140–1147, 

doi:10.22038/IJBMS.2018.30375.7323. 

86. Zhou, Q.; Zhang, L.Y.; Xie, C.; Zhang, M.L.; Wang, Y.J.; Liu, G.H. Metabolomics as a potential method for 

predicting thyroid malignancy in children and adolescents. Pediatr. Surg. Int. 2019, doi:10.1007/s00383-019-

04584-0. 

87. La, S.; Cho, J.; Kim, J.-H.; Kim, K.-R. Capillary electrophoretic profiling and pattern recognition analysis of 

urinary nucleosides from thyroid cancer patients. Anal. Chim. Acta 2003, 486, 171–182, doi:10.1016/s0003-

2670(03)00473-2. 

88. Wojtowicz, W.; Zabek, A.; Deja, S.; Dawiskiba, T.; Pawelka, D.; Glod, M.; Balcerzak, W.; Mlynarz, P. Serum 

and urine (1)H NMR-based metabolomics in the diagnosis of selected thyroid diseases. Sci. Rep. 2017, 7, 

9108, doi:10.1038/s41598-017-09203-3. 

89. Chen, J.; Hu, Q.; Hou, H.; Wang, S.; Zhang, Y.; Luo, Y.; Chen, H.; Deng, H.; Zhu, H.; Zhang, L.; et al. 

Metabolite analysis-aided diagnosis of papillary thyroid cancer. Endocr. Relat. Cancer 2019, 26, 829–841, 

doi:10.1038/s41598-017-09203-3; 10.1530/erc-19-0344. 

90. Huang, F.Q.; Li, J.; Jiang, L.; Wang, F.X.; Alolga, R.N.; Wang, M.J.; Min, W.J.; Ma, G.; Zhao, Y.J.; Wang, S.L.; 

et al. Serum-plasma matched metabolomics for comprehensive scharacterisation of benign thyroid nodule 

and papillary thyroid carcinoma. Int. J. Cancer 2019, 144, 868–876, doi:10.1002/ijc.31925. 

91. Lee, G.B.; Lee, J.C.; Moon, M.H. Plasma lipid profile comparison of five different cancers by nanoflow 

ultrahigh performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2019, 1063, 

117–126, doi:10.1016/j.aca.2019.02.021. 

92. Feng, J.; Zhao, F.; Sun, J.; Lin, B.; Zhao, L.; Liu, Y.; Jin, Y.; Li, S.; Li, A.; Wei, Y. Alterations in the gut 

microbiota and metabolite profiles of thyroid carcinoma patients. Int. J. Cancer 2019, 144, 2728–2745, 

doi:10.1002/ijc.32007. 

93. Guo, L.; Wang, C.; Chi, C.; Wang, X.; Liu, S.; Zhao, W.; Ke, C.; Xu, G.; Li, E. Exhaled breath volatile 

biomarker analysis for thyroid cancer. Transl. Res. J. Lab. Clin. Med. 2015, 166, 188–195, 

doi:10.1016/j.reprotox.2013.08.008; 10.1016/j.trsl.2015.01.005. 

94. Warburg, O. On the origin of cancer cells. Science 1956, 123, doi:10.1126/science.123.3191.309. 

95. Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11, 85–95, 

doi:10.1038/nrc2981. 

96. San-Millan, I.; Brooks, G.A. Reexamining cancer metabolism: Lactate production for carcinogenesis could 

be the purpose and explanation of the Warburg Effect. Carcinogenesis 2017, 38, 119–133, 

doi:10.1093/carcin/bgw127. 

97. An, Y.J.; Cho, H.R.; Kim, T.M.; Keam, B.; Kim, J.W.; Wen, H.; Park, C.K.; Lee, S.H.; Im, S.A.; Kim, J.E.; et al. 

An NMR metabolomics approach for the diagnosis of leptomeningeal carcinomatosis in lung 

adenocarcinoma cancer patients. Int. J. Cancer 2015, 136, 162–171, doi:10.1002/ijc.28949. 

98. Suman, S.; Sharma, R.K.; Kumar, V.; Sinha, N.; Shukla, Y. Metabolic fingerprinting in breast cancer stages 

through (1)H NMR spectroscopy-based metabolomic analysis of plasma. J. Pharm. Biomed. Anal. 2018, 160, 

38–45, doi:10.1016/j.jpba.2018.07.024. 

99. Michalkova, L.; Hornik, S.; Sykora, J.; Habartova, L.; Setnicka, V. Diagnosis of pancreatic cancer via(1)H 

NMR metabolomics of human plasma. Analyst 2018, 143, 5974–5978, doi:10.1039/c8an01310a. 



Int. J. Mol. Sci. 2020, 21, 5272 22 of 22 

 

100. Krause, D.S.; Etten, R.A.V. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med. 2005, 353, 172–

187, doi:10.1056/NEJMra044389. 

101. Groot, J.W.B.d.; Kema, I.P.; Breukelman, H.; Veer, E.v.d.; Wiggers, T.; Plukker, J.T.M.; Wolffenbuttel, 

B.H.R.; Links, T.P. Biochemical markers in the follow-up of medullary thyroid cancer. Thyroid 2006, 16. 

102. Jia, M.; Andreassen, T.; Jensen, L.; Bathen, T.F.; Sinha, I.; Gao, H.; Zhao, C.; Haldosen, L.A.; Cao, Y.; Girnita, 

L.; et al. Estrogen receptor alpha promotes breast cancer by reprogramming choline metabolism. Cancer 

Res. 2016, 76, 5634–5646, doi:10.1158/0008-5472.CAN-15-2910. 

103. Glunde, K.; Bhujwalla, Z.M.; Ronen, S.M. Choline metabolism in malignant transformation. Nat. Rev. Cancer 

2011, 11, 835–848, doi:10.1038/nrc3162. 

104. Aboagye, E.O.; Bhujwalla, Z.M. Malignant transformation alters membrane choline phospholipid 

metabolism of human mammary epithelial cells. Cancer Res. 1999, 59, 80–84. 

105. Khatami, F.; Payab, M.; Sarvari, M.; Gilany, K.; Larijani, B.; Arjmand, B.; Tavangar, S.M. Oncometabolites 

as biomarkers in thyroid cancer: A systematic review. Cancer Manag. Res. 2019, 11, 1829–1841, 

doi:10.2147/CMAR.S188661. 

106. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. Publ. 

Protein Soc. 2019, 28, 1947–1951, doi:10.1002/pro.3715. 

107. Pang, Z.; Chong, J.; Li, S.; Xia, J. MetaboAnalystR 3.0: Toward an soptimised workflow for global 

metabolomics. Metabolites 2020, 10, 186, doi:10.3390/metabo10050186. 

108. Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 2014, 39, 347–354, 

doi:10.1016/j.tibs.2014.06.005. 

109. Xu, Y.; Zheng, X.; Qiu, Y.; Jia, W.; Wang, J.; Yin, S. Distinct metabolomic profiles of papillary thyroid 

carcinoma and benign thyroid adenoma. J. Proteome Res. 2015, 14, 3315–3321, 

doi:10.1021/acs.jproteome.5b00351. 

110. Wiltshire, J.J.; Drake, T.M.; Uttley, L.; Balasubramanian, S.P. Systematic review of trends in the incidence 

rates of thyroid cancer. Thyroid 2016, 26, 1541–1552, doi:10.1089/thy.2016.0100. 

 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


