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Treatment-resistant schizophrenia (TRS) or suboptimal response to antipsychotics affects
almost 30% of schizophrenia (SCZ) patients, and it is a relevant clinical issue with
significant impact on the functional outcome and on the global burden of disease.
Among putative novel treatments, glycine-centered therapeutics (i.e. sarcosine, glycine
itself, D-Serine, and bitopertin) have been proposed, based on a strong preclinical rationale
with, however, mixed clinical results. Therefore, a better appraisal of glycine interaction
with the other major players of SCZ pathophysiology and specifically in the framework of
dopamine – glutamate interactions is warranted. New methodological approaches at
cutting edge of technology and drug discovery have been applied to study the role of
glycine in glutamate signaling, both at presynaptic and post-synaptic level and have been
instrumental for unveiling the role of glycine in dopamine-glutamate interaction. Glycine is a
non-essential amino acid that plays a critical role in both inhibitory and excitatory
neurotransmission. In caudal areas of central nervous system (CNS), such as spinal
cord and brainstem, glycine acts as a powerful inhibitory neurotransmitter through binding
to its receptor, i.e. the Glycine Receptor (GlyR). However, glycine also works as a co-
agonist of the N-Methyl-D-Aspartate receptor (NMDAR) in excitatory glutamatergic
neurotransmission. Glycine concentration in the synaptic cleft is finely tuned by glycine
transporters, i.e. GlyT1 and GlyT2, that regulate the neurotransmitter's reuptake, with the
first considered a highly potential target for psychosis therapy. Reciprocal regulation of
dopamine and glycine in forebrain, glycine modulation of glutamate, glycine signaling
interaction with postsynaptic density proteins at glutamatergic synapse, and human
genetics of glycinergic pathways in SCZ are tackled in order to highlight the exploitation
of this neurotransmitters and related molecules in SCZ and TRS.
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INTRODUCTION: SCHIZOPHRENIA AND
GLYCINE NEUROTRANSMISSION

Schizophrenia (SCZ) is a chronic and debilitating severe mental
disorder affecting approximately 0.3–0.7% of the population
worldwide (1). It is characterized by a pleomorphic
symptomatology including hallucinations, delusions (“positive
symptoms”), social withdrawal, avolition and anhedonia
(“negative symptoms”), and deficits in multiple executive
funct ions (cognit ive symptoms) . SCZ is nowadays
conceptualized at molecular level as a disorder of the synaptic
plasticity (2) and of abnormal cortical-subcortical connectivity
(3–5). Most of the individuals affected by SCZ develop their
illness in adolescence and early adulthood with about 15%
showing a chronic and unremitting clinical course (6). The
long-term, if not lifelong, illness trajectory, the associated high
mortality, mostly determined by the elevated rates of medical
comorbidities and suicide (7), and the low levels of recovery (8),
make this disease a major psychiatric disorder with a great need
of significant therapeutic innovation. Furthermore, the treatment
response to antipsychotics, the mainstay of SCZ treatment,
remains suboptimal (9). A recent study, in which analysis of
16 randomized controlled trials (RCT) were pooled together,
showed that the percentage of short-term non-response ranged
from 20 to 87% depending on the threshold applied, with a non-
remission rate of 67% (9). In addition, a not-negligible
proportion (up to 20%) of SCZ patients who are resistant to
standard antipsychotic treatment, does not respond even to
clozapine (10), which is the gold standard in this scenario. In
this context, the identification of clinically novel effective and
safe pharmacological treatments is crucial.

The interest for the role of glycine, a co-agonist with
glutamate at N-methyl-D-aspartate receptor (NMDAR) in the
framework of dopamine-glutamate interactions for SCZ
pathophysiology and treatment, stems from the following
evidence: 1) increased dopamine release in the striatum is one
of the most replicated in vivo findings in SCZ pathophysiology
(11–14); 2) all antipsychotics block or occupy dopamine D2
receptor (D2R) with no exception (15–18); 3) dopamine release
is controlled, among other mechanisms, by NMDARs
modulation (19); 4) NMDAR hypofunction is believed to be
one of the putative pathogenetic mechanism of the disease (19,
20); 5) glutamatergic dysfunction, moreover, has been implicated
even in those cases of SCZ that are not characterized by
dopamine excess in subcortical regions and are not responsive
to conventional antipsychotics (21–25); 6) multiple lines of
evidence indicate a reciprocal modulation of both dopamine
and glutamate by glycine (26); 7) over time different
pharmacological glycine-centered approaches for treatment-
resistant schizophrenia (TRS) have been proposed with strong
preclinical rationale but mixed clinical results (27, 28).

New methodological approaches at the cutting edge of the
technology such as long-timescale molecular dynamics
simulations (29, 30) and single molecule fluorescence
resonance energy transfer (smFRET) (31) have unveiled the
very specific details of the structural and functional mutual
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interaction between glycine and glutamate system at preclinical
level. At clinical level novel human genetic findings and imaging
genetics studies link glycine signaling to SCZ. Given the
extensive evidence that glycine is deeply involved in regulating
glutamatergic neurotransmission, glycine reveals itself as
promising potential candidate for drug discovery and safe
novel pharmacological treatments. Glycine binding site on
GluN1 and GluN3A NMDAR subunits is a major determinant
in regulating NMDAR delivery on cell surface and furthermore
influencing significantly the NMDAR activity (32).

Here, we aim to selectively review the preclinical and clinical
evidence demonstrating that glycine, as well as the components
of its signaling pathway, might be suitable targets for the
identification of novel treatment strategies in severe psychiatric
disorder and particularly in SCZ. The following research
questions have led our dissertation:

1. Which is the role of glycine in the general framework of
dopamine–glutamate interaction and SCZ pathophysiology?

2. How does glycine affect dynamics of post-synaptic proteins?
3. How and to what extent can glycine neurotransmission and

its interaction with NMDAR be exploited to unveil novel
treatments for TRS?

First, therein we describe glycine transmission, focusing on
the characteristics of its components, namely receptors and
transporters and their relevance in the brain circuits relevant
for SCZ clinics and pathophysiology. Then, we detail the role of
glycine in regulating dopamine-glutamate interaction, as well as
its involvement in SCZ molecular pathophysiology.
Furthermore, we review the evidence on the associations of
genes encoding for elements of the glycine pathway with SCZ.
Finally, a critical appraisal of potential role of glycinergic agents
in treatment of psychiatric diseases is addressed.
DOPAMINE, GLUTAMATE, GLYCINE, AND
THE PATHOPHYSIOLOGY OF
SCHIZOPHRENIA

Traditional models of SCZ focused on dopaminergic dysfunction
to explain key symptoms of the disorder. This hypothesis holds
that hyperactivity of dopamine transmission is responsible for
positive symptoms (1) and it was formulated in the 1960s, after
the discovery of antipsychotic action of chlorpromazine (33),
and further endorsed by the correlation between clinical
response to antipsychotic drugs and their potency to block D2

receptors (34, 35). Neuroimaging studies using positron emission
(PET) or single photon emission (SPECT) demonstrated that,
after acute amphetamine administration, patients with SCZ
showed greater levels of dopamine release in subcortical
regions (particularly in the striatum) compared to healthy
subjects, and displayed a transient worsening of positive
symptoms (11, 36), supporting the idea that hyperfunction of
dopaminergic neurons is a relevant, albeit not unique,
component in SCZ pathogenesis.
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Administration of phencyclidine (PCP), ketamine, and other
NMDAR antagonists has been known to reproduce those
thought disorders observed in SCZ, such as poverty of speech,
circumstantiality, and loss of goal (37). Furthermore, NMDAR
antagonists may affect widespread neuropsychological domains:
working memory, response inhibition, and executive processing,
resulting in cognitive symptoms that are also described in SCZ,
suggesting the involvement of glutamatergic neurotransmission
in the pathogenetic mechanism underlying psychotic and
cognitive abnormalities (38). Therefore, glutamatergic
neurotransmission has been proposed as the major initial
aberration in the pathophysiology of SCZ. Subcortical
dopaminergic dysregulation itself might be a result of
impairment in glutamatergic neurons projecting from
prefrontal cortex (PFC) to midbrain dopaminergic neurons,
therefore exerting control on their firing (19, 39). Indeed, in
animals and humans, it has been demonstrated that NMDAR
antagonist administration results in an increase of
amphetamine-induced dopamine release (19, 40). These data
support the hypothesis of a deficiency of glutamatergic control
on dopamine neuronal activity that might underlie the increase
in amphetamine-induced dopamine release.

The activation of GABAergic interneurons by glutamatergic
projections is mediated by NMDAR, and NMDAR-
hypofunction may specifically affect corticolimbic GABAergic
parvalbumin-positive (PV+) interneurons, reducing their
excitability and expression of specific molecular markers such
as somatostatin and vasoactive intestinal peptide (VIP), as well as
increasing oxidative stress (41). Transgenic mice with selective
NMDAR deletion in cortical and hippocampal GABAergic
interneurons showed specific SCZ-like phenotypes (42),
supporting the so-called “GABAergic origin hypothesis” of
SCZ (41).

Since NMDAR dysfunctions account for both dopaminergic
and GABAergic dysregulation, it can be assumed that NMDAR
dysfunction could represent the final common pathway leading
from pathogenesis to symptoms (43). Glycine is deeply involved
in regulating the glutamatergic transmission, acting as a co-
agonist of NMDAR, allowing for its activation and enhancing
excitatory glutamatergic tone (44, 45). Glycine is also involved in
the regulation of dopamine transmission, exerting a multimodal
action depending on its concentration and possibly inhibiting
dopamine release in the striatum when administered at high
doses (presumably by modulating the dopaminergic
hyperfunction associated to SCZ) (46).

Potential implication of glycine signaling in the pathophysiology
of SCZ is supported by a number of recent studies exploring
genetic abnormalities within glycinergic system associated with
SCZ as well as by the evidence of potential pro-cognitive and
antipsychotic phenotype exhibited by animal models of Glycine
Transporter type 1 (GlyT1) functional inhibition both by
recombinant knock out (47) and pharmacological treatments
(48, 49). Finally, the recent finding of elevated brain glycine and
glutamate levels in patients with first-episode psychosis, measured
in vivo by means of echo time–averaged proton magnetic
resonance spectroscopy (MRS) at 4 Tesla, further confirm the
Frontiers in Psychiatry | www.frontiersin.org 3
relevant role of glycine in the framework of multiple interacting
neurotransmitters in SCZ pathophysiology (50).
GLYCINE: FUNCTIONAL ANATOMY
RELEVANT FOR DOPAMINE-GLUTAMATE
INTERPLAY

Histological Distribution of Glycinergic
Neurons and Glycine Receptor
Glycine is widely distributed in the mammalian central nervous
system (CNS), functioning as an inhibitory or excitatory
neurotransmitter, depending on its localization. Glycine is the
main neurotransmitter in inhibitory interneurons of the spinal
cord, brainstem, and in some other brain regions involved in the
processing of sensorimotor information and locomotor behavior
(51). In the CNS, glycine is synthesized through the catalysis of
serine by the isoenzyme serine hydroxymethyltransferase
(SHMT), and it is largely degraded by the glycine cleavage
system, also known as glycine decarboxylase complex (GDC)
(52). Glycine is released by Renshaw interneurons and regulates
motoneurons' excitability, exerting negative feedback through
recurrent inhibition (53). Glycinergic inhibitory interneurons are
involved also in the spinal reflex coordination, mediating reciprocal
inhibition in stretch reflex circuits and regulating the coordination
of opposing muscles (54). The anatomical distribution of glycine
immunoreactive (IR) cell bodies points to the cochlear nuclei, the
superior olivary complex, the medial nuclei of the trapezoid body,
the cerebellar cortex, the deep cerebellar nuclei, the area postrema,
and the thalamus of adult rats as main localizations (55, 56).
Moreover, glycine-IR fibers are localized in the hypothalamus and
basal forebrain, distant from their glycine IR cell bodies (56).
Glycine receptors (GlyR) have been found enriched in the spinal
cord, in apical dendrites of pyramidal neurons in the cerebral
cortex (57), in the limbic system, and in the hippocampus of
humans and rats (58), where they are involved in synaptic plasticity
(59) and in a variety of physiological processes, especially in
mediating inhibitory neurotransmission.

Structure and Function of
Glycine Receptors
Glycine can activate two classes of distinct ligand-gated ion
channels: chloride-permeable inhibitory GlyRs, and cation
selective excitatory NMDARs. GlyRs are ligand-gated anionic
channels and belong to the pentameric Cys-loop receptor
superfamily (60). Electrophysiological, immunocytochemical,
and in situ hybridization studies have shown that GlyRs are
prominent in the brainstem and spinal cord (61, 62) and
detectable also in the following brain regions: prefrontal
cortex, hippocampus, amygdala, hypothalamus, cerebellum,
nucleus accumbens, ventral tegmental area, and substantia
nigra (63–65). GlyRs exist either in homomeric or
heteromeric forms and are composed by five subunits
arranged symmetrically in a ring around a central Cl−

permeable pore. Heteromeric GlyRs are localized at the
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synapses and consist of three a and two b subunits, forming a
pentameric receptor complex. The homomeric forms are
composed of five a subunits and are located extra-
synaptically. The b subunits colocalize with receptor-associated
protein gephyrin, that anchors the GlyR complex at the synaptic
locus, thus providing a cluster of heteroligomeric GlyRs within
synapses (66, 67). The expression of a subunits changes during
neurodevelopment and it is regionally specific, whereas b
subunits are transcribed in all developmental stages in several
regions. Recent studies have detected functional GlyRs even in
absence of the glycinergic terminals in dopaminergic neurons of
the juvenile immature substantia nigra pars compacta and in
developing cortical neurons, but the function of these non-
synaptic GlyRs remains unclear (68, 69). Overall, a variety of
functions may be performed by GlyR, depending on the major
subunit of the receptor and its oligomerization. Moreover, the
pattern of GlyR expression seems to be relevant during critical
stages of brain development in cortical and subcortical brain
regions that have attracted the attention for the animal modeling
of SCZ pathophysiology.

As an excitatory neurotransmitter, glycine acts as a co-agonist
of NMDAR, allowing for depolarization, removal of the
magnesium blockade and Na+/Ca2+ passage through the
channel, which ultimately enhances the glutamatergic
excitatory tone that is critical for learning and neuronal
plasticity (44, 45). While glutamate binds to a bi-lobulated
cavity in NMDAR GluN2 subunit, glycine binds to a cavity
located in GluN1 or GluN3, the so-called glycine-B site or
strychnine-insensitive receptor (51). Glycine may be released at
excitatory sites from at least two different sources: i.e., neuronal
cells via alanine–serine–cysteine transporter-1 (Asc-1) (70) and
astroglial cells via the functional reversal of GlyT1 (26, 71, 72).
Moreover, since it colocalizes with NMDAR at post-synaptic
level (73, 74), GlyT1 is believed to modulate the excitability of
NMDAR by reducing glycine levels in the synaptic cleft, thus
preventing saturation of the glycine-B site (75–78).

Noteworthy, the affinity of glycine for NMDARs is
significantly higher than that of GlyRs (EC50 = 134 nM vs.
EC50 = 270 mM) (63, 79), thus, under physiological conditions
endogenous glycine may exert mainly an excitatory effect in the
hippocampus, where both GlyRs and NMDARs are expressed.
On the other hand, excessive glycine produced in pathological
conditions, such as ischemia and epilepsy (80, 81), may spillover
into extra-synaptic sites to activate inhibitory GlyRs in order to
counteract the excitotoxic damage. In these conditions, GlyR-
mediated inhibitory activity may be stronger than NMDAR-
mediated excitatory one, resulting in a net effect of depression of
excitatory post-synaptic currents (EPSCs) (82). Therefore, levels
of glycine could be the major determinants in setting the polarity
of glycine's role either in brain damage, either in correcting
unwanted synaptic plasticity (82, 83)

Beyond Glycine: Other Agonists at the
Glycine B-Site?
Multiple lines of evidence suggest a relevant crosstalk between
glycine and D-amino acids during the neurodevelopmental
Frontiers in Psychiatry | www.frontiersin.org 4
stages that are critical to SCZ pathophysiology. D-Serine is
synthetized in the neurons starting from astrocytic L-serine by
serine racemase (SR), according to the “serine shuttle”
hypothesis formulated by Wolosker, (84) and its levels in the
synaptic cleft are controlled by Asc-1 transporter (70, 85, 86).
Among D-amino acids, D-serine seems to be a crucial player in
synaptic plasticity, such as long term potentiation (LTP) (87–91),
and it has been considered the putative endogenous ligand at
NMDAR glycine B-site (92, 93), since it appears to be
functionally up to 100-fold more effective than glycine at
potentiating NMDAR activity. The role of D-serine in the
activation of NMDAR is confirmed by the reduction of
synaptic transmission by treatment with D-amino acid oxidase
(DAAO), which depletes endogenous D-serine but not glycine
(93). Noteworthy, NMDAR responses do not seem to be fully
reversed by DAAO and a “DAAO-insensitive fraction” has been
shown in rat hippocampus, that accounts up to 30–50% of
receptor activity (93), presumably because the remainder of the
sites may be already occupied by glycine, which therefore may act
in some parts of the brain and at certain stages of the
neurodevelopment as the major ligand. Immunohistochemical
studies comparing D-serine, glycine, and NMDARs pattern of
distribution in rat brain, showed that D-serine and NMDARs
overlap each other and have the highest concentration in
telencephalon and developing cerebellum; conversely, glycine
immunoreactivity does not correspond to NMDARs localization
(except in the brainstem, where it parallels the distribution of
NMDARs) but seems to prevail over D-serine in the adult
cerebellum, hindbrain, and olfactory bulb (94). Papouin and
colleagues performed an electrophysiological study, in order to
assess the specific contribution of glycine and D-serine at
synaptic and extra-synaptic NMDAR sites in CA1 region of
hippocampus. Using specific enzymes that degrade either D-
serine or glycine, they provide supporting evidence for assuming
that D-serine may be the co-agonist at synaptic receptors,
whereas glycine may act at extra-synaptic NMDARs, which
have little or no role in synaptic plasticity (90). Nonetheless,
Yan Li and colleagues proposed that the identity of the
endogenous ligand might be determined by the level of
synaptic activity, thus emphasizing the contribution of glycine
in LTP induction process (91), and extending previous in vitro
reports supporting the involvement of glycine in LTP
enhancement (95). They showed that tonic activation of
NMDARs in the amygdala under resting conditions may be
achieved by D-serine, whereas glycine may be released from
astrocytes in response to afferent impulses. Therefore, ambient
D-serine may act as major ligand in absence of evoked synaptic
events, while activity-dependent release of glycine may be
involved in LTP-related NMDAR activation in the context of
fear conditioning pathways (91). Rosenberg et al. also proposed
that D-serine would not be the sole co-agonist at synaptic
NMDAR sites: glycine and D-serine may have partial
overlapping roles in regulating synaptic activity at NMDARs,
and specific glycine effects may be revealed by deleting serine
racemase (SR), the enzyme that synthesized D-serine (70). In
fact, in an electrophysiological experiment, they demonstrated
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that the synaptic NMDAR responses were essentially unaltered
in adult SR-KO mice (70). Moreover, it has been demonstrated
that even the GlyT1 inhibitor bitopertin increases the magnitude
of LTP in rat hippocampal CA1 pyramidal cells, and this effect
likely results from an increase in the extracellular levels of glycine
(96). Direct application of glycine seems to exert the same effects
on LTP induction, as well as increases the amplitude of NMDAR
currents of approximately 50% (96). Nonetheless, it has been
reported that application of high concentrations of glycine,
exceeding the synaptic concentration of the endogenous
Glycine B-site agonist, produce opposite effects on NMDAR
currents amplitude and LTP, consistent with the internalization
of a percentage of NMDARs primed by glycine (96). Glycine and
glycine inhibitors may therefore display an inverted U-shape
concentration-response profile on LTP induction, for whom
higher glycine B-site occupancies may lead to a lack of efficacy
(49). However, taken together, these findings suggest that two
endogenous co-agonists, namely glycine and D-serine, may
regulate distinct populations of NMDARs, with one or the
other prevailing at a given synapse, finely tuning excitatory
transmission in order to diversify a wide ranging repertoire of
biological effects (97).

Interestingly, several lines of evidence disclose the role of D-
serine for inflammation, excitotoxicity, and epileptogenesis.
Inflammatory factors (such as amyloid b and lipopolysaccharide)
stimulates the astrocytes and microglia to express SR (98, 99),
thus these cells become the primary source of D-serine in
inflammatory conditions (100). The amount of D-serine
obtained by this way promotes excitotoxic damage and synaptic
dysfunction through the activation of NR2 subunit at extra-
synaptic sites (101). Transgenic mouse models for amyotrophic
lateral sclerosis (ALS) exhibit several-fold higher levels of D-
serine in spinal cord, and the elevation positively correlates with
disease progression (102). Moreover, D-serine increase in spinal
cord was observed even in sporadic postmortem human ALS
cases or ALS relatives (102). Furthermore, it may be of interest
that SR knockout mice were protected against cerebral ischemia
and excitotoxic damage (103). These findings suggest that D-
serine, rather than glycine, may be a key determinant for
NMDAR-mediated neurotoxicity.

Correlation between D-serine levels and SCZ is demonstrated
by multiple studies (104–107) that showed the decrease of its
levels in CSF and serum of schizophrenic patients. Despite
convergent lines of evidence pointing to the potential of D-
serine in treating SCZ, it displays a low oral bioavailability, being
largely metabolized by DAAO (104). Past clinical trials have
demonstrated benefits of adding D-serine to the antipsychotic
therapy in SCZ and bipolar disorder (108), but these results were
not unequivocally replicated (109–111), leaving aside the fact
that the high doses required may provoke peripheral
neuropathies and nephrotoxic effects (112–114). Rather than
therapeutic agent for SCZ symptoms, D-serine has recently been
proposed as promising biomarker to antidepressant response to
ketamine (112), with low plasma levels of D-serine predicting
ketamine efficacy.
Frontiers in Psychiatry | www.frontiersin.org 5
In summary, D-serine action at NMDAR may be more
relevant than originally thought, and may have a pivotal role
for synaptic plasticity and cognitive functions, as well as
neurodegeneration and excitotoxicity.

Finally, even if it is not the topic of this review, the role of
other D-amino acids in NMDAR modulation should be
acknowledged, and among all the one of D-aspartate. This
amino acid has been implicated in brain development (115,
116), a feature that is specifically appealing for SCZ, that is
conceptualized as a pathology of the neurodevelopment with
abnormal synaptic pathophysiology and altered brain
connectivity. Moreover, multiple lines of evidence from animal
modeling (117, 118) to postmortem brain abnormal gene
expression and epigenetics (119) indicate a potential role of D-
aspartate in SCZ pathophysiology, and lay the foundation for a
potential use of D-aspartate as adjunctive therapy in those cases
poorly responding to conventional antipsychotics (120).

Glycine and Neurodevelopment
Several recent studies have focused on changes in glycinergic
signaling and expression pattern of glycinergic markers, such as
glycine transporters and glycine receptors during the
development (68, 121) making the neurotransmitter of interest
for a disease believed to be of putative neurodevelopmental
origin, such as SCZ. It can be hypothesized that the synaptic
release of glycine is involved in the proper development of many
motor and sensory circuits (i.e., auditory, visual, respiratory, and
nociceptive) (122, 123). GlyRs expression is specifically regulated
in terms of subunit composition during the development and
throughout the CNS. Homomeric a2 subunits are mainly
expressed during the fetal period. Thus, a developmental
switch from a2 homomeric GlyRs to a1b heteromeric GlyRs
takes place between the birth and the third postnatal week in rats
(69). Indeed, several studies demonstrated that a1 is the most
abundantly expressed subunit in adult rats and, since b subunit
interaction with gephyrin is essential for the clustering of GlyRs
in the synapses, it is plausible that the a1b heteromeric form of
GlyRs is the most common subtype within synapses (124).

Different subtypes of GlyRs might fulfill opposite roles during
the development. Since intracellular chloride concentrations are
high in embryonic neurons, homomeric a2 GlyRs expressed during
the fetal period might be excitatory, mediating the depolarizing
chloride flux and the subsequent inward calcium flux. Therefore,
GlyR activation may exert an excitatory action in immature
neurons, whereas it mediates inhibitory neurotransmission in
adult CNS, by increasing Cl- permeability and leading to a
membranal hyperpolarization (125). Precisely this latter subtype,
a2 GlyR, seems to be involved in pathophysiology of the autism
spectrum disorder (ASD), condition that shares many clinical
features and biomarkers with SCZ (126). In ASD is assumed to
be an imbalance between glutamate and glycine in favor of an
increased activity of glutamatergic neurotransmission early in
neuromotor development. As highlighted by genetic and
functional studies, suggesting the potential role of a2 GlyRs in
synaptic plasticity, as well as learning and memory, glycinergic
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signaling might be linked to social and cognitive abnormalities in
ASD (127). In summary, glycine neurotransmission seems to be
highly modulated during brain development. This is in line with a
potential crucial involvement of this neurotransmitter in
pathophysiology of a disease, such as SCZ, strongly associated to
a neurodevelopmental dysregulation.
GLYCINE RECIPROCAL REGULATION OF
GLUTAMATE NEUROTRANSMISSION

NMDARs have unique functional characteristics: voltage
dependence, calcium permeability, slow kinetics, and complex
modulatory processes (128). NMDAR alone requires for an
efficient gating the binding of both glutamate and a co-agonist,
identified as glycine in the 1987 by Johnson and Asher (129).
NMDARs are hetero-oligomeric proteins composed by a
combination of different subunits called GluN1, GluN2, and
GluN3. Notably, while GluN1 subunit is mandatory, different
subunit composition leads to different receptor properties. The
GluN1 subunit forms the glycine binding site, whereas the GluN2
subunit provides part of the glutamate binding site; moreover, the
two sites appear to be allosterically coupled (130). Mice that
express reduced levels of GluN1 subunits display a lowered
glycine affinity and a variety of cognitive and learning defects,
including hyperactivity, increased stereotyped behavior,
disruptions of nest building activity, and poor performance in
theMorris watermaze, ameasure of cued learning (131, 132). The
behavioral phenotypes of these glycine-insensitive mutant mice
may resemble in certain respects the positive and negative
symptoms of SCZ, consistent with NMDAR hypofunction
hypothesis. This evidence further emphasizes the role of
glycinergic signaling in the pathophysiology of SCZ.

Glycine regulates glutamatergic neurotransmission at different
levels; however, glutamate affects glycine concentration too. In
fact, in vitro studies showed that elevated extracellular glutamate
concentration reduces glycine release and high-frequency trains of
stimulation decrease glycinergic inhibitory post-synaptic currents
(IPSC) (133).
GLYCINE TRANSPORTERS 1 AND 2

Glycine transporters (GlyT) are membrane-bound proteins
belonging to the Na+/Cl− dependent neurotransmitter
transporters family involved in the reuptake of glycine from
synaptic cleft. Two glycine transporters, encoded by different
genes, are known: GlyT1 and GlyT2. They share an amino acid
sequence identity of approximately 50%, but differ in their
expression pattern, subcellular localization, and functional
properties (125).

GlyT1 works in a bidirectional fashion with a stoichiometry of
2Na+/Cl−/Gly, regulating glycine availability in the extracellular
space, and terminates glycine signaling (134), significantly
modulating the glutamatergic neurotransmission. GlyT1 has
long been considered as exclusively expressed by glial cells,
Frontiers in Psychiatry | www.frontiersin.org 6
since early immunohistochemical studies did not recognize
GlyT1 neuronal forms, presumably due to epitope occlusion of
neuronal protein (135). However, there is an increasing evidence
that GlyT1 is also expressed in neurons throughout the brain,
where it is closely associated with the glutamatergic pathway
(136). In glutamatergic neurons, GlyT1 is localized in both pre-
synaptic membrane and postsynaptic density, where it interacts
with the scaffold protein PSD-95 (136, 137).

GlyT1 plays a pivotal role in neurodevelopment as well as in
cognitive processes of adult brain, as shown by the phenotype of
GlyT1 mutant mice. Homozygous GlyT1−/− mutant mice
appeared normal but unexpectedly died on the first day of
birth, showing severe motor-sensory deficits, suggesting a vital
role for GlyT1 that, even if dispensable for embryonic
development, it is crucial for postnatal survival (138).
Heterozygous GlyT1+/− mice, on the other hand, survive and
show promnesic phenotypes, as well as a resistance to
amphetamine disruptive effect on prepulse inhibition (PPI)
(47, 139, 140). PPI of the acoustic startle reflex is an
operational measure of the pre-attentive filtering process
known as sensorimotor gating (141, 142) that is disrupted in
SCZ as well as after stimulants administration even in healthy
subjects, whereas antipsychotic drugs commonly are able to
reverse PPI disruption (143–145). Therefore, it has been
suggested that a radical reduction in expression of GlyT1 may
be responsible for sensori-motor gating deficits due to the
hyperactive inhibitory glycine-mediated signaling (146),
whereas a mild reduction in expression of GlyT1 might
enhance NMDAR function and memory retention, and might
be protective against amphetamine-induced sensorimotor gating
deficits, suggesting that drugs which inhibit GlyT1 might exert
procognitive and antipsychotic effects (47).

Conversely to GlyT1, GlyT2 is exclusively expressed by
glycinergic neurons and localized in presynaptic terminals
adjacent to the active zones. Within the glycinergic bouton,
GlyT2 appears associated with the plasma membrane or as
discrete clumps and it seems to be excluded from the active site
of the synapse and synaptic cleft (147). Unlike GlyT1, GlyT2 is
coupled to electrochemical movement of 3Na+, maintaining the
high concentration gradient on the presynaptic terminals and
refilling presynaptic vesicles with glycine (148). Further, its
expression is restricted to regions with glycinergic transmission,
such as the cerebellum, brainstem, and the spinal cord (135).
Homozygous GlyT2 −/− knockout mice also die in the second
postnatal week, however, they show a phenotype entirely different
from GlyT1 knockout mice, developing a lethal motor deficiency,
reminiscent of severe forms of human hyperekplexia (hereditary
startle disease), characterized by muscular spasticity, tremor, and
impaired motor coordination (149).

GlyT1 function is thought to be closely regulated by several
molecular mechanisms, e.g., inhibition by arachidonic acid, a
second messenger released following phospholipase A2
activation (150). Moreover, intracellular pH value also
modulates GlyT1 activity. Low doses of Zn++, which is released
with glutamate by different types of excitatory neurons, induce
GlyT1 inhibition but have no effect on GlyT2 (151). Activation of
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protein kinase C (PKC), induced by sustained intracellular Ca++

influx, decreases GlyT1 and GlyT2 expression on the neuron
surface (152). Probably PKC does not affect directly GlyTs, but
intermediate substrate proteins and additional kinases such as
MEK1/2 kinases or PI3-kinase and CaMKII are involved in this
mechanism (152). In addition, several proteins interacting with
GlyTs regulate their trafficking and recycling at the pre-synaptic
terminal. Particularly, Ca++ influx induced by depolarization
promotes the GlyT2 expression on plasma membrane
surrounding the active zone and this process is thought to be
regulated by the interaction between GlyT2 and syntaxin-
1 (153).

In summary, it has been hypothesized that GlyTs have a
pivotal role in the regulation of neurotransmission both in
glycinergic and in glutamatergic synapses and several lines of
research suggest that changes in the activity, density, and
localization of GlyTs in glial and nerve terminals are involved
in synaptic efficacy and neuronal plasticity.
GLYCINE RECIPROCAL REGULATION OF
DOPAMINE NEUROTRANSMISSION

Glutamate effects on dopamine regulation have been extensively
recognized, since the evidence that NMDAR-antagonists
increase dopamine release in the striatum dates back to 1998.
It is also well known that glycine acts as a co-agonist of NMDAR,
but less is known regarding the effect of glycine on dopamine
release both in cortex and in striatum. Consistent with its ability
to reverse PCP-induced hyperactivity and psychotic-like
symptoms, it is conceivable that glycine may decrease
NMDAR-mediated dopamine release. Nevertheless, evidence in
this respect is controversial and glycine seems to be able to
increase, decrease, or have no effect on dopamine release.

Earlier studies on rat striatal slices unexpectedly showed a net
effect of glycine to potentiate dopamine release in the striatum
(154), and these results were replicated in other studies (155,
156); later this phenomenon was observed even in freely moving
rats, to whom glycine was administered via a microdialysis probe
in the anterior striatum, and who exhibited increased local
release of dopamine and its metabolites (157). A recent study
also shows that glycine may potentiate the excitability of
dopaminergic neurons in substantia nigra pars compacta (SNc)
by amplifying NMDAR-dependent signals. In fact, exogenous
applications of glycine on midbrain slices of juvenile rats may
regulate dopaminergic firing, leading to a switch from tonic
spontaneous firing to the bursting activity, and then increase
dopamine release at post-synaptic sites (158). If that were true,
glycine effect on dopamine in the striatum would not be
advantageous for treating psychosis; nevertheless, glycine could
rather be involved in nigral information processing and
locomotor behavior. As shown by a recent study, glycine
binding site stimulants might be helpful in alleviating
antipsychotic-induced EPS in treated patients rather than their
psychotic symptomatology, potentially by mitigating the reduced
dopamine function in the nigrostriatal pathway (159).
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On the other hand, according to an in vitro study on mouse
striatal tissue, low-dose of glycine seems to potentiate basal
dopamine release from presynaptic dopamine terminals,
whereas high-dose glycine showed to significantly inhibit
striatal dopamine release, which would be expected to be
therapeutically beneficial in SCZ (160). The same authors have
later demonstrated that a GlyT1 inhibitor, ALX5311, potentiates
NMDA-dependent GABA-release, and that this effect leads to
significant inhibition of striatal dopamine release, supporting a
model in which NMDARs have dual excitatory/inhibitory
function within striatum (46). Therefore, glycine might exert
an excitatory effect by acting on NMDARs located on pre-
synaptic dopamine terminal or conversely, an inhibitory effect
by acting on NMDARs located on GABAergic interneurons,
increasing or decreasing, respectively, striatal dopamine
release (46).

In summary, glycine seems to exert a multimodal effect on
regulation of dopamine release, depending on the brain region in
which the action is considered, glycine concentration, pre-
synaptic or post-synaptic action, as well as dopaminergic
functional state. This multimodal action should be taken into
account to explain some inconsistent clinical effects of
glycinergic agents in SCZ therapy.

Another way in which glycine modulates dopamine
neurotransmission is through GlyRs. GlyRs-mediated
regulation of dopaminergic firing seems to involve other
neurotransmitters such as GABA (161) and acetylcholine in
ventral tegmental area (162), and glutamate in nucleus
accumbens (163). The role of GlyRs in the regulation of
mesolimbic dopaminergic neurotransmission is confirmed by a
study in which accumbal perfusion of strychnine (the GlyRs
antagonist) was found to decrease dopamine levels in rats, and
this effect was reverted by glycine (164). Moreover, ethanol may
produce its reinforcing and dopamine-elevating effects precisely
via GlyRs: Molander and Söderpalm showed that accumbal
perfusion of strychnine decreased dopamine levels per se, as
well as prevented further dopamine increase after ethanol
administration (165). Accumbal GlyRs seem to be involved not
only in dopamine elevations induced by ethanol, but also may
contribute also to dopamine elevations induced by cannabinoids
and nicotine (166), thus showing important implications for
mechanisms related to alcoholism, other addictions and
dopamine-related psychiatric disorders such as psychosis.

Glycine may affect dopaminergic output indirectly, acting on
presynaptic GlyRs expressed on GABAergic terminals.
Noteworthy, at birth both GABA (167) and glycine (168, 169)
are excitatory neurotransmitters, but during the development,
they became inhibitory ones. Ye and coauthors demonstrate that,
despite these differences during the neurodevelopment, the net
effect of glycine on dopamine, through GABA, in ventral
tegmental area consists of a strengthening of the dopamine
firing (161). Furthermore, if glycine may affect dopamine
release, it is also relevant the role of dopamine in regulation of
glycine release. An intriguing modality by which dopamine could
regulate glycine release has been recently proposed by Shibasaki
et al. (26) The authors demonstrated that dopamine may
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increase glycine release from cortical astrocytes by reversing the
GlyT1. According to this view stimulation of dopamine receptors
may change the intracellular metabolicmilieu inducing glycolysis
and oxidative phosphorylation (170), resulting in increased
intracellular glycine levels. This increase in glycine
concentration may reverse transport by GlyT1 (171).

Overall, in the framework of SCZ pathophysiology, a
bidirectional regulation of glycine on dopamine should be
conceived: in fact, changes in dopamine release could modulate
glycine concentration, and in turn modify the response of NMDAR
via Glyt1 potential reverse activity, especially at cortical level.

Therefore, an “inverse” and different mechanism from the
canonical one, linking NMDAR and dopamine could be
suggested in regulating dopaminergic balance, which is a
crucial issue in SCZ.
GLYCINE TRANSPORTERS AND THE
POSTSYNAPTIC DENSITY

Postsynaptic density (PSD) is an electron-dense structure
composed of glutamate receptors (NMDARs, AMPARs,
mGluRs), proteins involved in signal transduction (disrupted in
schizophrenia 1, activity-regulated cytoskeleton-associated protein,
calcium/calmodulin-dependent protein kinase II, Ras GTPase, and
ion channels), scaffold proteins (post-synaptic density protein 95,
Shank, Homers), and cytoskeletal structures (tubulin, septin, and
others) localized at the distal tip of dendritic spines at excitatory
synapses (172–174). The type and the number of the proteins
highly influence PSD architecture, therefore significantly
impacting the synaptic plasticity and dendritic shape (172–174).
PSD has been implicated in pathophysiology of psychiatric
disorders, including SCZ, and their treatment (175–178).

In several studies postsynaptic density protein 95 (PSD-
95) has been found reduced in cortical and subcortical regions
of postmortem brain samples from patients affected by SCZ
(179–181). Considering that PSD-95 is physically and
functionally linked to NMDARs and Homer proteins (182), all
believed to be involved in SCZ, it will be of interest to understand
how glycine may affect and interact with PSD-95.
Immunohistochemical studies showed that in hippocampus
and dentate gyrus GlyT1 is localized at the PSD of asymmetric
glutamatergic synapses, belonging to a protein complex
including NMDAR. Therefore, recent studies have highlighted
that PSD-95 physically interacts with GlyT1 in the rat brain,
stabilizing its localization at post-synaptic membrane and
suppressing its internalization from cell surface, thereby
increasing glycine uptake (136, 137). It has been hypothesized
that PSD-95 could act as a link between GlyT1 and NMDAR,
regulating glycine concentration in the micro-environment of
NMDAR at glutamatergic synapses (Figure 1) (137). In
heterozygote mutant GlyT1 +/− mice, who display increased
concentrations of glycine, higher levels of GluN2 and increased
expression of PSD-95 have been found, suggesting that PSD-95
may anchor GluN2-containing-NMDAR at synapses (that is the
NMDAR subtype mostly involved in learning and synaptic
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plasticity) (183), preventing their internalization (184). Other
studies examined how heterozygous GlyT1+/− mice display an
enriched composition of PSD, showing concomitant increased
levels of GluN1/2A NMDAR subunits and GluA1/2 AMPAR
subunits, since an increase in NMDARs may probably cause an
elevation of synaptic AMPARs (185). Nevertheless, other recent
studies have found that the AMPAR/NMDAR ratio was
decreased in mutants compared to wild-type mice displaying
the complexity and variability of synaptic adaptation to altered
GlyT1 function (140).

Calcium/calmodulin-dependent protein kinase II (CaMKII)
is a core component of the PSD that may regulate GlyT1 activity
including indirect phosphorylation mechanisms (e.g., activation
of a signaling cascade or the phosphorylation of cytoskeletal
protein involved in trafficking of GlyT1) and there is evidence
that GlyT1 is inhibited by CaMKII inhibitors (Figure 1) (186).
Sequence analysis of SLC6 family transporters, including GlyT1,
revealed multiple consensus sites for phosphorylation by kinases.
It is plausible that PKCa/b also could play a regulatory role in
glycine transport by phosphorylating GlyT1 (152).

The role of glycine neurotransmission in the modulation of
Homer gene expression has been explored in reference to the
action of antipsychotics, alone or with the adjunction of glycine
B-site agonists such as D-cycloserine (187). Multiple lines of
evidence suggest an involvement of Homer (long and short
forms, and their splicing variants) in antipsychotics action at
level of PSD (188–191). Polese et al. have shown how add-on D-
cycloserine to typical (haloperidol) and atypical (clozapine)
antipsychotic treatment, modulate the expression of Homer 1a,
in a negative trend in caudate-putamen (187). These data and the
“dominant negative” function of Homer 1a can be predictive of a
relative increase of mGluR surface clustering. It could be
interpreted as a mechanism of mGluR activity enhancement,
mediated by NMDAR glycine site agonists.

Among proteins located at PSD, disrupted in schizophrenia 1
(DISC-1) has attracted the attention of SCZ scholars in the last
decade, since human genetic, imaging genetics, and preclinical
models indicate a pivotal role of this protein in SCZ
pathophysiology. Several antipsychotics, as well as compounds
modulating the glutamate signaling, have been demonstrated to
affect disk1 expression and function. Within the scope of this
review, is noteworthy that rapastinel (formerly GLYX-13), an
amidated tetrapeptide (threonine-proline-proline-threonine-
amide) acting as allosteric partial agonist of glycine B-site
(192) has been shown to counterbalance prepulse inhibition
(PPI) disruption, hyperlocomotion, and memory deficits,
induced by MK-801 administration in mice as well as to revert
the associated decrease in disk-1 and GluN2B proteins. It is
possible that this “antipsychotic-like” effect can be mediated by
GluN2B expression, since GLYX-13 seems to be ineffective in
GluN2B-knockdown mice (193).

Finally, although brain derived neurotrophic factor (BDNF)
cannot be strictly considered a constitutive component of PSD, it
has been isolated from this structure and directly affects its
function. It has been demonstrated that in rat hippocampus
BDNF reduces glycine reuptake by affecting the insertion of
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FIGURE 1 | Glycine Transporters and the Postsynaptic Density (PSD). GlyT1 is localized at the PSD of asymmetric glutamatergic synapses, belonging to a protein
complex including NMDAR. PSD-95 physically interacts with GlyT1, stabilizing its localization at postsynaptic membrane. CaMKII may regulate GlyT1 activity via
indirect phosphorylation mechanisms. Glycine may be released in the synaptic cleft also by astroglial cells via functional reversal of GlyT1. GlyT1: Glycine Receptor
Transporter 1; NMDAR: N-Methyl-D-aspartate receptors; PSD-95: postsynaptic density protein 95; CaMKII: Ca2+/calmodulin-dependent protein kinase; AMPAR: a-
amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; mGluR type I: metabotropic glutamate receptors type I.

de Bartolomeis et al. Treatment-Resistant Schizophrenia and Glycine Signaling
GlyT2 in cell membrane (194). Despite the intriguing
relationship between BDNF and glycine as underlined by the
previous finding, the role of BDNF in vivo in regulating glycine
pathways relevant for SCZ pathophysiology is still controversial.
In fact, patients treated with sarcosine, an agonist at glycine B-
site of NMDAR, display no changes in plasma levels of
BDNF (195).
GENETICS OF GLYCINERGIC PATHWAY
IN SCHIZOPHRENIA

A number of studies have explored the role of variation within
genes encoding for elements of the glycinergic pathway in SCZ,
with conflicting results in some cases. Deng et al. (196) found that
a polymorphism within the SLC6A5 gene, encoding for GlyT2,
was significantly associated with SCZ. Further, although indirect,
support for a role of genetic variation within the glycinergic
system in SCZ came from the study of Ohnuma et al. (197).
These authors found that polymorphisms within the gene
Frontiers in Psychiatry | www.frontiersin.org 9
encoding for D-amino acid oxidase (DAO), which partially
mediates the degradation of D-serine, a component of the
glutamatergic transmission and an endogenous ligand for the
glycine B-site on NMDAR (121), were statistically significantly
associated with SCZ in a case-control study (197). More recently, a
whole genome sequencing study in subjects with a high familial
loading for psychotic disorders over three generations (198) found
a frameshift mutation (rs10666583) in the GRIN3B gene, which
codes for the GluN3B subunit of the NMDAR. This mutation was
present in all family members with a psychotic disorder, but not in
healthy relatives (198). The authors conclude that, given that this
mutation induces an amino acid shift that degrades the S1/S2
glycine binding domain of the GluN3B subunit of the NMDAR,
which subsequently affects the permeability of the channel pore to
calcium ions, a decreased glycine affinity for the GluN3B subunit
might cause impaired functional capability of the NMDAR (198).
Of interest, a recent genetic association study in subjects with
schizotypal traits showed statistically significant associations
between the minor allele of three SNPs, rs2915885, rs11167557,
and rs1428159, all positioned within the glycine receptor a1
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subunit (GLRA1) gene, and dimensional schizotypy, specifically
with the disorganized symptoms cluster (199). Further support for
a role of the glycinergic system comes from a genetic-metabolomic
study (200), which showed that 5-oxoproline, aspartate, and
glutamate, known to affect NMDAR function, were significantly
elevated in patients with rare variants in genes encoding for the
glycine cleavage system. Finally, a groundbreaking study showed
that genetically informed pharmacological treatment targeted at
the glycinergic/glutamatergic signaling could improve
significantly clinical response in patients with psychosis (201).
These authors found several CNVs spanning 9p24.1 in a proband
and his mother, who had diagnoses of schizoaffective disorder
and bipolar disorder with psychotic features, respectively. Among
the genes involved, the gene encoding for the glycine
decarboxylase was of particular interest given its role in the
catabolism of glycine (201). The authors performed two proof-
of-principle clinical trials with glycine and d-cycloserine obtaining
an additional 20 to 26% reduction in symptom severity with the
former and 13 to 30% reduction with the latter (201)

Conversely, a series of negative studies do not appear to
support a role for glycine transmission and signaling in SCZ
molecular pathophysiology, at least on genetics ground. (202–
206). The study of Feng et al. (202) explored the role of genetic
mutations within the glycine receptora2 subunit gene (GLRA2) in
SCZ, using a sequencing approach. These authors detected three
silent mutations in the coding region, C894T in exon 5, C1134T in
exon 7, and C1476T in exon 9 (202), highlighting that a role of
these variants in the pathogenesis of SCZ is unlikely. Similarly,
subsequent case-controls studies confirmed these negative
findings (203–206). Another negative finding derived from a
gene expression analysis in post-mortem dorsolateral prefrontal
cortex and cerebellum brain samples (207). Indeed, Burnet et al.
did not find alterations of GlyT1 expression levels in these brain
areas in 18 SCZ patients compared to 20 healthy controls (207).

Taken together, there is some discrepancy in the genetic findings
of glycine and related signaling in SCZ. However, it should be noted
that most of the early, negative, studies used case-control approaches
often with inadequately powered sample sizes. The more recent
translational evidence points to a role of genetic determinants in the
pathophysiology of SCZ and contributes to the hypothesis that a
subgroup of affected patients might take advantage of treatments
targeted at the glycinergic/glutamatergic pathway.
CRITICAL APPRAISAL OF GLYCINE
PHARMACOLOGY AND ITS POTENTIAL
ROLE IN SCHIZOPHRENIA

Several studies indicate that cognitive processes may be regulated
by glycine levels at glutamatergic synapses (47, 208, 209). Glycine
concentration, in turn, is regulated by GlyT1, even if the glycine-
B site would be tonically saturated (210). There is consensus,
however, that GlyT1 prevents saturation of the glycine binding
site on NMDARs and that further glycine increase can enhance
NMDAR activation (155, 211), thus representing a potential
target to modulate excitatory synapses.
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Recent studies in GlyT1+/− mice showing NMDAR
hyperfunction, highlighted the presence of an increased
number of dendritic branching in the CA1 region of the
hippocampus, an enhanced synaptogenesis (184), as well as
higher density of excitatory glutamatergic synapses, and an
increased expression of PSD-95 compared to wild type. In
summary, these results suggest that glycine contributes to the
regulation of synaptic plasticity, dendritic maturation, and
glutamate-induced spinogenesis in the CNS (212).

Concerning behavioral phenotype, heterozygote GlyT1 +/−
mice displayed improved memory retention during spatial
learning task (47), and deletion of GlyT1 in the forebrain
neurons resulted in a pro-cognitive profile characterized by
facilitated associative learning, working memory, reference
memory, and reversal learning (208, 209). Indeed,
pharmacological blockade of GlyT1 exerted pro-cognitive
effects in a preclinical model of SCZ, as also showed by a
GlyT1 inhibitor, PF-3463275, that has been found to reverse
ketamine-induced working memory deficits (213). Furthermore,
SSR-504734, another GlyT1 inhibitor, facilitated cognitive
flexibility, as assessed in the attentional set-shifting task in rats
(214). These compounds probably may improve cognitive
function and memory by increasing NMDAR signaling (214,
215); moreover, they may increase long term potentiation (LTP)
that is one of the most studied manifestations of neuroplasticity.
Therefore, it might be possible that GlyT1 inhibitors can reduce
psychotic symptoms by improving neuroplasticity (216).

Deletion of the GlyT1 gene causes a divergent effect on PPI,
depending on regional specificity. In fact, complete GlyT1
deletion in cortex confers resistance to PPI disruption induced
by the NMDAR antagonist MK-801 (217), and may lead to a
“psychosis-resistant” phenotype. On the contrary, deletion of
GlyT1 in the striatum provokes a relevant PPI deficit, resembling
a SCZ endophenotype, and the animals remain sensitive to the
PPI-disruptive effect of MK-801 (217). Hence, there is no
unequivocal support to the antipsychotic potential of GlyT1
inhibition and much more remains to be discovered.

Despite the complexity of the issue, in animal models of SCZ,
such as neonatal lesion of the hippocampus (218) or acute
NMDAR blockade (219, 220), GlyT1 inhibitors, such as ALX-
5407, sarcosine, ORG 24598, SSR504734, and SSR103800 were
effective in reverting PPI disruption, thus displaying an attractive
antipsychotic-like activity (217).

The therapeutic strategies based on glycine neurotransmission
have yielded contrasting results with significant improvement of
SCZ symptoms in some clinical trials, as well as inconclusive
results or no effect at all in other studies (221) (Table 1).
DIGGING INTO POTENTIAL MECHANISM
RESPONSIBLE FOR GLYT1 INHIBITORS
FAILURE IN CLINICAL PRACTICE

To date, more than 70 placebo-controlled clinical trials of
agonists or partial agonists acting at NMDAR glycine
modulatory site in SCZ (including glycine, D-serine, D-
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TABLE 1 | Summary of the GlyT1 and GlyT2 inhibitors and their clinical and pre-clinical effects.

Type Compound Mechanism of action Functional results References

Sarcosine and
some sarcosine-
based GlyT-1
inhibitors

Sarcosine GlyT-1 inhibitor Improvement with positive symptoms,
negative symptoms, and cognitive deficits

Lane et al. (109)
Lane et al. (222)
Lane et al. (223)

NFPS/ALX5407 GlyT-1 inhibitor [Gly] ↑ in rodent cerebral spinal fluid (CSF),
pre-frontal cortex (PFC), and cerebellum

in vivo induction of LTP

Antipsychotic and pro-cognitive effects in
rodent behavioral models

Enhancement of pre-pulse inhibition (PPI)

Cioffi et al. (224)

Org 25935 GlyT-1 inhibitor Reduced ketamine-induced psychomimetic
and perceptual alterations in measures of total
positive and negative syndrome scale

Cioffi et al. (224)

AM747 GlyT-1 inhibitor Effective as adjunctive therapy for negative
symptoms in schizophrenic patients
concurrently maintained on an antipsychotic
treatment

Amgen et al. (225)

Org 24461 GlyT-1 inhibitor Zafra et al. (54)

Org 24598 GlyT-1 inhibitor Zafra et al. (54)

Non-sarcosine
based GlyT-1
inhibitors

Benzoyl is indolines Bitopertin Selective and non-competitive
GlyT-1 inhibitor

Enhancement of LTP in Sprague-Dawley rat
hippocampal CA1 pyramidal neurons

[Gly] ↑ in rat CSF and striatal tissues upon oral
administration.

Dose-dependent [Gly] ↑ in CSF in humans

Pinard et al. (226)

Hofmann et al.
(227)

Methylphenidate-
derived

SSR504734 GlyT-1 inhibitor Enhancement of working memory
performance in wild-type mice with high
retention demand

Protection against depression in the chronic
mild stress model of depression

Dose-dependent anti-depressant effects in
rats during the Porsolt forced swim test

Singer et al. (228)

Depoortere et al.
(229)

Boulay et al. (230)

SSR103800 GlyT-1 inhibitor Reversion of short-term memory deficit
induced by phencyclidine

Boulay et al. (230)

GSK1018921 GlyT-1 inhibitor Dose-limiting AEs including dizziness and
visual disturbances in humans

Cioffi et al. (224)

Alkyl and
heteroaromatic
substituted
sulfonamides and
sulfones

ACPPB GlyT-1 inhibitor Promotion of dopaminergic reinnervation of
the dorsal striatum; reversion of 6-OHDA-
induced lateralization of sensorimotor behavior
in mice

Schmitz et al. (231)

DCCCyB GlyT-1 inhibitor Reversion of PCP-induced cognitive deficits;
reversion of ketamine-induced perceptual
attentional set shifting in rat models

Blackaby et al.
(232)

Heteroaryl amides PF-03463275 GlyT-1 inhibitor Reversion of ketamine-induced working
memory deficits in non-human primates

Roberts et al. (213)

GlyT-2 inhibitors Org-25543 Irreversible GlyT-2 inhibitor ↑ Extracellular [Gly] in the lumbar dorsal spinal
cord of rats.

Whitehead et al.
(233)

GT-0198 GlyT-2 inhibitor Analgesic effect in a mouse model of
neuropathic pain

Omori et al. (234)

ALX1393 GlyT-2 inhibitor Inhibition of pain transmission Morita et al. (235)
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cycloserine, and D-alanine) have been reported in medical
literature, with controversial results (236). An alternative
approach to increase glycine availability is to block glycine
reuptake via GlyT1. However, even though several GlyT1
inhibitors seemed to be efficacious in animal models, clinical
studies in humans have been disappointing at least for major
endpoints. The most advanced compound tested with the highest
accuracy in terms of sample size and duration of the trials, is the
non-competitive GlyT1 antagonist bitopertin, which also failed
to reach its endpoints in Phase III trials (236).

With respect to the failure of GlyT1 inhibitors in clinical
trials, potential reasons are herein explored, in order to better
understand why a promising pharmacological strategy should
not be abandoned.

One aspect that could be critical in evaluating the effect of
GlyT1 inhibitors, included bitopertin, is the possibility that this
mechanism of action may lead to an increase in glycine levels
merely at extra-synaptic sites, therefore being less effective in
potentiating NMDAR synaptic function. Nonetheless, the
experiments of Martina and colleagues (96), confirming the
ability of bitopertin to increase the activity of synaptic
NMDARs, as well as to induce LTP processes, headed in a
different direction. Perhaps, bitopertin may correct a certain
degree of NMDAR hypofunction, being still unable to restore
completely the glutamatergic transmission. Beyond the degree of
activity, NMDAR dysfunction of SCZ may lay in the decreased
number of receptors (237), abnormal coupling with PSD
proteins (238), altered phosphorylation status (239), and other
non-neurotransmitter cues that can impact synaptic efficacy. Not
all these alterations potentially occurring in SCZ can be reverted
or counterbalanced merely by increasing NMDAR activity.

Moreover, we should observe that GlyT1 inhibitors display an
inverted U-shape concentration-response profile of action and
this element, taking into account wide inter-individual
differences in drug metabolism and pharmacokinetics, may be
responsible for conflicting clinical results. In fact, the inverted U-
shape dose-response curve displayed by bitopertin in LTP
induction processes, as well as the partial receptor occupancy
needed for efficacy (<50%) (49), maybe made further
complicated a successful translation from animals to patients
in terms of dose-finding issues.

Another point that should be raised is that, despite the
extensive preclinical evidence supporting the role of bitopertin
in treating SCZ, chronic administration has never been tested in
animal models, in order to exclude a potential loss of effect in
prolonged treatments.

In the original protocol of the clinical study, bitopertin was
co-administered with routine antipsychotic treatment (240), but
the class of antipsychotic was variable within the sample.
Therefore, a question remains to be answered about the
possibility that a certain combination would be less effective
than others, resulting in an overall lack of efficacy of bitopertin
intervention. Noteworthy, preclinical studies showed that
glycinergic agents, when combined with antipsychotics with
different receptor profile, may exert a wide ranging molecular
pattern of responses (187).
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Placebo effects observed in bitopertin phase III trials were
larger than in phase II, and placebo response rate was assessed at
56–61% both in DayLyte and FlashLyte studies, which could
explain the failure to detect any significant difference between
arms. The magnitude of symptoms improvement in the placebo
groups of RCTs (even those testing antipsychotics) is
considerably growing over time, as described by several reviews
(241, 242), making it even more difficult for the active
medication groups to separate in a statistically significant way
from placebo.

Finally, it is also important to remember that bitopertin has
been tested for negative symptoms of SCZ, that are not always
easy to be assessed reliably, as well as are difficult to be
distinguished between primary and secondary ones. Despite
the validity of the assessment instruments, negative symptoms
are often not a focus of assessment or treatment in clinical
practice, because they are rarely responsible for acute crisis or
hospitalizations (243). Noteworthy, to date, antipsychotic
medications remarkably effective in treating negative
symptoms are few. Trying to understand the reason of this
granitic-like resistance, Velligan et al. proposed a negative
symptom maintenance loop theory, wherein decreased
initiation and withdrawal lead to a series of self-perpetuating
outcomes (i.e., reduced responsiveness to social stimuli, low
interest in relationships, and decreased reinforcements from
the social context) (244). In this perspective, pharmacological
treatment might struggle to break the cycle, and although they
may motivate patients to increase their social drive, patients may
still lack the ability to interact due to previous chronic isolation.
Therefore, to achieve a tangible improvement of negative
symptoms, adjunctive behavioral training may be required.
DISCUSSION

TRS is a major clinical and therapeutic challenge in the
management of SCZ patients, representing also a crucial
mental health issue for the social implications and for care
costs (245, 246). Therefore, the search for new compounds
alone or in combination with the available antipsychotics is
warranted, especially when the gold standard (i.e., clozapine)
therapy fa i l s . Ongoing research suggests that the
multidimensional symptoms of SCZ may arise from
dysregulation in multiple signaling pathways that may revolve
around glutamatergic neurotransmission. NMDAR may
represent a converging point of environmental hits and genetic
factors, leading to downstream neurochemical dysfunctions that
may account for positive, negative, and cognitive symptoms.
Therefore, it can be hypothesized that pharmacological
augmentation of NMDAR transmission through glycine
signaling enhancement might restore the function of prefrontal
cortex to control dopamine release, offering a potentially useful
strategy in SCZ treatment. Glycine-based treatments for SCZ
have their rationale first of all for the potential of this amino acid
to regulate glutamate signaling and to modulate in a reciprocal
interplay dopamine release, interacting, indeed, with two
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neurotransmitters shown to be among the major players in SCZ
pathophysiology. Moreover, it should be remarked that TRS, at
least for those cases that are not fully responsive to dopamine
antagonists or partial agonists, is believed to be linked to aberrant
glutamatergic signaling. Several lines of evidence suggest a
glutamatergic mechanism of action even for clozapine that,
coincidentally, is significantly effective in TRS. This superior
efficacy is presumably due to an additional mechanism to D2
receptor occupancy and possibly to a pro-glutamatergic action.
Indeed, it has been hypothesized that clozapine may have an
intrinsic agonist or partial agonist activity at the glycine B-site,
that may contribute to its unique clinical effects (24).

It is clear that, despite the relevance of the issue and the strong
neurobiological rationale, glycine-based pharmacological
interventions are still inconclusive but, at the same time,
strongly suggestive of the high therapeutic potential, especially
for the severe form of TRS.

How the utilization of glycine enhancers or modulators can
be improved for SCZ therapy? A first level of analysis should
clearly separate the strategies based on potentiation of
transmission at NMDAR glycine B-site from the ones based on
GlyT1 inhibition. Comparing the outcomes of the two types of
strategies may be important to try to figure what kind of targets
are respectively achieved in terms of clinical improvement,
therefore a focused (meta?) analysis is needed.

From the perspective of clinical trial methodology, some trials
with compounds active at NMDAR glycine B-site have shown
positive results; however, larger sample size and more
homogeneous subsets of patients, separating those with
prevalent positive or negative symptoms and longer duration
of treatment, should be required. A number of measures should
be considered in order to minimize the placebo response,
including reducing the number of collaborating study sites and
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recruiting patients preferably from academic ones (241). A better
evaluation is needed to determine which patients should be
treated only with glycine-based pharmacological intervention,
and in which ones these agents should be administered in
augmentation with canonical antipsychotics. Finally, clinical
trials using glycinergic agents are not always designed
specifically for TRS patients, therefore an effort for including
this class of patients should be done.

Furthermore, for more TRS “tuned” treatment based on
glycine signaling, a better knowledge of the major kinetic steps
responsible for the activation of glutamate-bound NMDAR by
glycine is paramount to elucidate the pharmacodynamics of
glycinergic compounds (247). Therefore, how ambient glycine
levels regulate NMDAR function under a pattern of multiple
stimulations, how glycine transporters interact with multiple
PSD proteins, and how glycine affect overall dopamine–
glutamate interaction are key questions for the development of
new compounds.

In conclusion, despite the mismatch between the significant
advance of our knowledge of glycine signaling in the modeling of
SCZ pathophysiology and the results of clinical trials, glycine–
based pharmacological therapy, alone or in combination with
available antipsychotics is still worth to be explored and refined.
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